DE10254241A1 - Kugelaktivkohle - Google Patents

Kugelaktivkohle Download PDF

Info

Publication number
DE10254241A1
DE10254241A1 DE10254241A DE10254241A DE10254241A1 DE 10254241 A1 DE10254241 A1 DE 10254241A1 DE 10254241 A DE10254241 A DE 10254241A DE 10254241 A DE10254241 A DE 10254241A DE 10254241 A1 DE10254241 A1 DE 10254241A1
Authority
DE
Germany
Prior art keywords
activated carbon
spherical activated
pore
carbon according
fractal dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE10254241A
Other languages
English (en)
Inventor
Manfred SCHÖNFELD
Raik SCHÖNFELD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bluecher GmbH
Original Assignee
RVG BERLIN BRANDENBURG GES FUE
Rvg Berlin-Brandenburg Gesellschaft fur Verfahrensentwicklung und Recyclingtechnologien Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32308617&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE10254241(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by RVG BERLIN BRANDENBURG GES FUE, Rvg Berlin-Brandenburg Gesellschaft fur Verfahrensentwicklung und Recyclingtechnologien Mbh filed Critical RVG BERLIN BRANDENBURG GES FUE
Priority to DE10254241A priority Critical patent/DE10254241A1/de
Priority to DE20221998U priority patent/DE20221998U1/de
Priority to DE50311527T priority patent/DE50311527D1/de
Priority to AT03785528T priority patent/ATE431316T1/de
Priority to PCT/DE2003/003866 priority patent/WO2004046033A1/de
Priority to EP03785528A priority patent/EP1562855B1/de
Priority to US10/535,954 priority patent/US7538069B2/en
Priority to AU2003294632A priority patent/AU2003294632A1/en
Publication of DE10254241A1 publication Critical patent/DE10254241A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D5/00Composition of materials for coverings or clothing affording protection against harmful chemical agents
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D9/00Composition of chemical substances for use in breathing apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • B01J20/28092Bimodal, polymodal, different types of pores or different pore size distributions in different parts of the sorbent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/382Making shaped products, e.g. fibres, spheres, membranes or foam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Emergency Management (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Pulmonology (AREA)
  • Toxicology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Steroid Compounds (AREA)
  • Pens And Brushes (AREA)
  • Closures For Containers (AREA)

Abstract

Die Erfindung lehrt eine Kugelaktivkohle mit einer Porengrößenverteilung wie folgt: a) 1,2-1,7 nm: 20-50%, b) 1,7-2,1 nm: 20-50%, c) 2,1-2,5 nm: 10-25%, d) 2,5-2,9 nm: 3-15%, e) 2,9-3,3 nm: 1-10%, wobei die Summe aus a) bis e) zumindest 88% ergibt, wobei die Differenz der Summe aus a) bis e) zu 100% einen Anteil Poren mit einem Durchmesser < 1,2 NM UND/ODER > 3,3 nm definiert und wobei die fraktale Dimension der offenen Porosität zumindest 2,30 beträgt.

Description

  • Gebiet der Erfindung.
  • Die Erfindung betrifft eine Kugelaktivkohle mit verbesserten Eigenschaften. Kugelaktivkohlen im Sinne der Erfindung sind Aktivkohlepartikel mit im wesentlichen ähnlichen Erstreckungen in allen drei Raumdimensionen. Neben der Kugelform kommen insofern auch die Würfelform, Quaderform oder Zylinderform in Frage, sofern die Erstreckungen in zwei verschiedenen Raumdimensionen sich nicht um mehr als den Faktor 3, besser weniger als den Faktor 2, unterscheiden.
  • Hintergrund der Erfindung und Stand der Technik.
  • Neben Anwendungen, in welchen klassische Aktivkohlen als Massenprodukt eingesetzt werden, gewinnen Anwendungen zunehmend an Bedeutung, die spezielle Hochleistungsaktivkohlen erfordern. Dies sind zu einen Anwendungen, bei welchen die erforderlichen Menge an Aktivkohle für einen bestimmten Zweck und eine bestimmte Einsatzdauer niedrig zu halten sind und dennoch hervorragende Adsorptionsleistungen (Adsorptionskinetik, Kapazität) verlangt werden. Dies sind insbesondere mobile Anwendungen, wie in Filtern in Fahrzeugen (Kfz, Flugzeuge, etc.) oder in Gasmasken, aber auch in Gebäudeluftfiltern. Neben einem günstigen Leistungsgewicht spielen dabei auch andere Anforderungen eine Rolle, wie beispielsweise geringer Druckabfall über einen die Aktivkohle enthaltenden Filter. Dies bedeutet aber auch, daß es aus insofern zusätzlichen Anforderungen nicht immer möglich ist, hinsichtlich der BET Oberfläche maximierte Aktivkohlen einzusetzen; es kann vielmehr notwendig sein, Aktivkohlen einzusetzen, die trotz moderater BET Oberfläche dennoch überragende Absorptionseigenschaften aufweisen. In jedem Fall sind ausgezeichnete Adsorptionsleistungen verlangt, insbesondere im Falle von Filtern, die vor Giftgasen Personenschutz bieten sollen.
  • Aus der Literaturstelle EP 0 326 271 ist eine Aktivkohle bekannt, die aus einem polysulfonierten Copolymer herstellbar ist. Sie besitzt eine multimodale Porengrößenverteilung, i.e. einen hohen Anteil an Meso- und Makroporen.
  • Aus der Literaturstelle WO 96/21616 ist eine aus monosulfonierten Copolymeren hergestellte Aktivkohle bekannt. Auch diese Aktivkohle weist einen relativ hohen Anteil an Meso- und Makroporen auf.
  • Aus der Literaturstelle WO 99/28234 ist ein Verfahren zur Herstellung einer Aktivkohle aus einem Styrol-Divinylbenzol-Copolymeren bekannt, wobei durch Variation verfahrensmäßiger Parameter die Porengrößenverteilung in weiten Bereichen eingestellt werden kann. Die im Rahmen dieser Literaturstelle gezielt hergestellten Aktivkohlen weisen allerdings einen Anteil von Poren > 3 nm oberhalb von 13 Vol% der gesamten offenen Porosität auf.
  • Allen vorstehend beschriebenen bekannten Aktivkohlen ist der Nachteil gemeinsam, daß die Adsorptionsleistung noch nicht allen Anforderungen, welche an Hochleistungsadsorbenzien, insbesondere im mobilen Bereich, gestellt werden, genügt.
  • Technisches Problem der Erfindung.
  • Der Erfindung liegt das technische Problem zu Grunde, eine Aktivkohle zur Verfügung zu stellen, die allen Anforderungen eines Hochleistungsadsorbens genügt.
  • Grundzüge der Erfindung und bevorzugte Ausführungsformen.
  • Zur Lösung dieses technischen Problems lehrt die Erfindung eine Kugelaktivkohle mit vorzugsweise einem Partikeldurchmesser im Bereich von 0,1 bis 5 mm und mit einer Porengrößenverteilung (Vol-% des Gesamtporenvolumens im Porendurchmesserbereich), gemessen gemäß Beispiel 2, wie folgt: a) 1,2 – 1,7 nm: 20 – 50 %, b) 1,7 – 2,1 nm: 20 – 50 %, c) 2, 1 – 2, 5 nm: 10 – 25 %, d) 2, 5 – 2, 9 nm: 3 – 15 %, e) 2, 9 – 3, 3 nm: 1 – 10 %, wobei die Summe aus a) bis e) zumindest 88 % ergibt, wobei die Differenz der Summe aus a) bis e) zu 100 einen Anteil Poren mit einem Durchmesser < 1,2 nm und/oder > 3,3 nm definiert, und wobei die fraktale Dimension der offenen Porosität, gemessen gemäß Beispiel 3, zumindest 2,30 beträgt.
  • Angaben zu Porenvolumina beziehungsweise Volumenanteile beziehen sich stets auf die offene Porosität, was sich auch unmittelbar aus den in den Beispielen erläuterten Messverfahren ergibt. Geschlossene Porosität, wie beispielsweise mittels der Neutronenkleinwinkelstreuung enmittelbar, ist dagegen aus der angenommenen Gesamtporosität ausgeschlossen.
  • Die Erfindung beruht auf der Erkenntnis, daß eine allen Anforderungen genügende Aktivkohle dadurch erhalten wird, daß gezielt einerseits eine relativ hohe Mikroporosität eingestellt wird und andererseits gezielt eine definierte Oberflächenrauhigkeit innerer Oberflächen erzeugt wird. Letztere läßt sich beschreiben über die fraktale Dimension, wie folgend erläutert. Überraschenderweise ist entgegen den Vermutungen im Stand der Technik ein größerer Teil an Meso- und Makroporen zur Verbesserung der Transportkinetik nicht erforderlich.
  • Aufgrund der Komplexität einer rauben, insbesondere mikrorauhen, Oberfläche sind Angaben über die Fläche der Oberfläche problematisch. Denn die Fläche hängt von der verwendeten Auflösung bei der Flächenermittelung ab. Die topologische Dimension einer Fläche beträgt stets 2 (topologische Dimensionen sind stets ganzzahlig). Dagegen kann die Hausdorff-Besicovitsch-Dimension oder fraktale Dimension aufgrund der Szpilrajn-Ungleichung einen Wert > 2 annehmen, sofern die Fläche eine Struktur, insbesondere eine Mikrostruktur aufweist. Die fraktale Dimension ist im Falle einer Fläche jedoch stets kleiner 3, da die Raumdimensionen gequantelt sind, und folglich nicht beliebig kleine selbstähnliche Strukturen existieren können. In der Praxis der Gasadsorption ist die Obergrenze durch Dimensionen adsorbierender Probenmoleküle gegeben. Je näher die fraktale Dimension an 3 herankommt, umso feiner strukturiert und folglich umso "mikrorauher" ist die Oberfläche. Im Falle von Kohlenstoffoberflächen führt eine solche Mikrorauhigkeit dazu, daß vermehrt bindungsfähige oder zumindest attraktiv wirkende Unregelmäßigkeiten der elektronischen Zustanddichtefunktionen an der (inneren) Oberfläche auftreten mit der Folge einer verbesserten Bindung von zu adsorbierenden Molekülspezies. Die Verbesserung der Bindung umfaßt einerseits eine Erhöhung der Packungsdichte innerhalb einer adsorbierten Monolage und andererseits eine erhöhte Bindungsfestigkeit.
  • Mit der Erfindung wurde u.a. erkannt, daß die Einstellung einer möglichst hohen fraktalen Dimension in Verbindung mit einer hohen Mikroporosität zu verbesserten Adsorptionsleistungen führt. Dies ist auch nicht widersprüchlich, weil geringe Meso- und Makroporosität die fraktale Dimension zwar theoretisch reduziert, jedoch der Beitrag der Meso- und Makroporosität insgesamt zur fraktalen Dimension recht gering ist.
  • Die Einstellung einerseits der Porenstruktur und andererseits der fraktalen Dimension ist dem Durchschnittsfachmann unschwer möglich, beispielsweise durch Herstellungsparametervariation gemäß der Literaturstelle WO 99/28234. Hierzu wird zumindest ein Parameter variiert und der Einfluß auf die genannten Größen bestimmt, wie in den Beispielen erläutert. Nach Maßgabe des ermittelten Einflusses werden die Parameter definiert so gesteuert bzw. verändert (im Falle des Verfahrens nach WO 99/28234 ist Extrapolation notwendig), daß die erfindungsgemäßen Eigenschaften erhalten werden. Selbstverständlich kann entsprechend im Rahmen anderer Herstellungsverfahren verfahren werden, wobei i.w. solche Verfahren in Frage kommen, die überhaupt grundsätzlich zur Herstellung von Aktivkohle-Hochleistungsadsorbentien geeignet sind.
  • Vorzugsweise weist eine erfindungsgemäße Kugelaktivkohle eine Porengrößenverteilung wie folgt auf: a) 1,2 – 1,7 nm: 30 – 40 %, insbesondere 32 – 36 %, b) 1,7 – 2,1 nm: 30 – 40 %, insbesondere 32 – 36 % c) 2,1 – 2,5 nm: 15 – 20 %, insbesondere 15 – 20 % d) 2,5 – 2,9 nm: 5 – 10 %, insbesondere 5 – 10 % e) 2,9 – 3,3 nm: 1 – 5 %, insbesondere 3 – 5 %. Die Summe aus a) bis e) kann zumindest 90 o, vorzugsweise zumindest 93% bis 95 %, ergeben. Die fraktale Dimension beträgt vorzugsweise zumindest 2,70, vorzugsweise zumindest 2,80, höchstvorzugsweise zumindest 2,90 bis 2,92.
  • Der Partikeldurchmesser ist grundsätzlich beliebig. Für Anwendungen in Gasfiltern, insbesondere Giftgasfiltern in Gasmasken, Gasschutzanzügen, oder dergleichen ist es bevorzugt, wenn der Partikeldurchmesser 0,5 bis 2 mm beträgt. Gasschutzanzüge sind aus textilen Materialien gefertigt, in welche ein Adsorptionsmittel eingebaut ist. Dies kann auf verschiedenste Weise erfolgen, beispielsweise durch Einweben oder durch Herstellung eines Multilayer-Textils, wobei eine Schicht ein Adsorptionsmittel enthält bzw. ummantelt. Gasschutzanzüge dienen insbesondere dem Schutz vor Kontaktgiften und/oder vor Mikroorganismen. In einer besonderen Ausführungsform der Erfindung, beispielsweise für Giftgasfilter, aber auch für andere Anwendungen, sind die Kugelaktivkohle-Partikel mit einem gasdurchlässigen, beispielsweise porösen, Mantel aus abriebfestem Werkstoff versehen. Hierdurch wird störender Kohlenstoffabrieb bei der Handhabung und in der Anwendung verhindert, ohne daß die Adsorptionsleistung nennenswert reduziert wird. Ein solcher Mantel läßt sich beispielsweise dadurch schaffen, daß die Kugelaktivkohle vor oder nach der Aktivierung mit beispielsweise einem fluiden natürlichen oder synthetischen organischen Bindemittel besprüht wird, welches sich nach anschließender thermischer Behandlung zu einem abriebfesten, aber pörosen Kohlenstoffbinder umsetzt.
  • Die BET Oberfläche, gemessen gemäß Beispiel 4, liegt vorzugsweise im Bereich von 800 bis 1500, insbesondere 1000 bis 1300.
  • Eine erfindungsgemäße Kugelaktivkohle ist grundsätzlich dadurch erhältlich, daß als Edukt Polymerkugeln, insbesondere Ionenaustauscherkugeln, deren Polymergerüst abspaltbare funktionelle Gruppen, insbesondere Sulfonylgruppen und/oder Carboxylgruppen, enthalten, verwendet werden, daß die funktionellen Gruppen von dem Polymergerüst abgespalten werden und das Abspaltungsprodukt aus den Polymerkugeln ausgetrieben wird, daß die so erhaltenen porösen Polymerkugeln pyrolysiert werden, und daß optional die pyrolysierten Polymerkugeln einer Aktivierungsverfahrenstufe unterworfen werden. Die Abspaltung der funktionellen Gruppen erfolgt vorzugsweise bis zu einem Restgehalt (bezogen auf den Gewichtsanteil der funktionellen Gruppen, wie eingesetzt) von 5% bis 15%. Die Temperatur bei dieser ersten Wärmebehandlung liegt zweckmäßigerweise im Bereich von 200 °C bis 350 °C für 10 min. bis 60 min.. Die Atmosphäre ist hierbei grundsätzlich beliebig. Die anschließende Pyrolyseverfahrensstufe beginnt bei einer Temperatur, welche im wesentlichen der Endtemperatur der ersten Wärembehandlung entspricht und endet vorzugsweise bei 600 °C bis 800 °C. Die Aufheizrate liegt zweckmäßigerweise im Bereich von 5 K/min. bis 0,5 K/min., woraus sich die Dauer der Pyrolyseverfahrensstufe unmittelbar berechnen läßt. Die Aktivierungsverfahrenstufe ist unkritisch und erfolgt in üblicher Weise.
  • Eine erfindungsgemäße Kugelaktivkohle ist beispielsweise in Mitteln zur Filterung von Gasen, insbesondere Luftfiltern und Gasmasken bzw. Gasschutzanzügen, einsetzbar.
  • Weitere Einsatzgebiete sind: Gastrennung, Gasspeicherung, Latentwärmetauscher, Filtereinrichtungen in Klimaanlagen, insbesondere auch im Ansaugbereich zur Adsorption unberechtigt im Ansaugbereich freigesetzter toxischer Gase, Träger für pharmazeutische Wirkstoffe.
  • Im Folgenden wird die Erfindung anhand von lediglich Ausführungsformen darstellenden Beispielen näher erläutert.
  • Beispiel 1: Herstellung einer erfindungsgemäßen Kugelaktivkohle.
  • Eingesetzt wird ein starksaurer, gelförmiger Kationenaustauscher aus sulfoniertem Styrol-Divinylbenzol Copolymerisat in der H-Form, wobei die Matrix mit ca. 8% Divinylbenzol-Anteil vernetzt ist, in Kugelform und einer Partikelgröße (Durchmesser) von 1 mm. Dieses handelsübliche Produkt (C100x10H, Purolite) wird zunächst dreimal mit entionisiertem Wasser gewaschen (30 min., 40 °C). Nach dem Waschen erfolgt eine Zentrifugation unter Vakuum (8000 g, 10 min., 10 mBar). Hieran schließt sich eine erste Wärmebehandlung in einer beheizten Schnecke zur Zersetzung und Austreibung der Sulfonylgruppen an, und zwar bis zu einem Restschwefelgehalt von 10 Gew.-%, bezogen auf den eingesetzten Gesamtschwefel. Diese erste Wärmebehandlung erfolgt unter Argon-Schutzgas bei 285 °C für 20 min.. Hieran anschließend erfolgt eine Pyrolyseverfahrensstufe in einem separaten Drehrohrofen mit indirekter Heizung und unter Argon-Schutzgas. Die Pyrolyseverfahrensstufe wird mit einem Rufheizgradienten von ca. 1 K/min., beginnend bei 285 °C und endend bei 680 °C durchgeführt. Hieraus ergibt sich eine Verweilzeit von ca. 400 min.. Nach der Pyrolyseverfahrensstufe wird eine Aktivierungsverfahrenstufe durchgeführt, wobei die pyrolysierten Kugeln in einer Aktivierungsgasatmosphäre (Ar 65 Vol.-%, CO2 7 Vol.-%, H2O 28 Vol.-%) für 240 min. auf 910 °C gehalten werden.
  • Die erhaltenen Kugelaktivkohlepartikel weisen einen Durchmesser von ca. 0,55 mm auf. Man erhält eine Kugelaktivkohle mit hohem Mikroporenanteil und vergleichsweise sehr geringem Meso- und Makroporenanteil sowie mit einer sehr hohen fraktalen Dimension. Die Porenverteilung sowie die fraktale Dimension werden gemäß den folgenden Beispielen bestimmt.
  • Beispiel 2: Bestimmung der BET Oberfläche.
  • Kugelaktivkohle aus Beispiel 1 wurde mit der Methode zur Ermittlung der BET-Oberfläche nach Brunauer, Emmett, Teller untersucht. Die Adsorption beruht im wesentlichen auf der Wechselwirkung elektrisch geladener Partikeln oder Dipole des Adsorbens (der adsorbierende Stoff) und des Adsorptivs (der Stoff, der adsorbiert wird). Verfolgt man bei konstanter Temperatur und konstnatem Druck die von einem festen Adsorbens im Gleichgewichtszustand adsorbierte Menge an Adsorptiv, so erhält man die Adsorptionsisotherme. Die adsorbierte Menge, das Adsorpt, wird auf die Masse des Adsorbens bezogen. Der analysierte Verlauf entspricht dem Isothermentypen II (entsprechend der Klassifikation von Brunauer, L.S. Deming, W.S. Deming und Teller) mit der adsorbierten Menge auf der Ordinate und dem Gleichgewichtsdruck auf der Abszisse. Für die Auswertung derartiger Isothermen, welche besonders auch bei höheren Gasdrücken und tieferen Temperaturen auftreten, stellt die von Brauner, Emmett und Teller eingeführte Verallgemeinerung des Langmurischen Mechanismus den in diesem Messverfahren beschrittene Weg dar. Hierbei wird die Adsorption elektrisch neutraler Partikeln vorausgesetzt und weiterhin angenommen, dass sich bei Sättigung nur eine monomolekulare Schicht bilden kann. Alle über das Adsorbensvolumen besetzbaren Plätze, lokalisiert sowie energetisch gleichwertig werden hierbei als Adsorptionszentren betrachtet. Die Desorptionshäufigkeit ist unbeeinflusst von der Belegung der benachbarten Plätze. Der BET Mechanismus hält die Vorstellung bestimmter Adsorptionszentren bei, bezieht aber die Bildung von Polyschichten mit ein. Die mathematischen Grundlagen der Auswertung sind wie folgt: p/[Γ(p0 – p)] = 1/(Γ∝·C) + (C – 1)·p/(Γ∝·C·p0)
  • Hierbei sind p0 der Sättigungsdruck des Adsorptivs bei der Temeratur der Isotherme, Γ∝ die einer vollständigen Monoschicht entsprechende Adsorptionsdichte und C ist exp[(QA – QK)/(R·T)], wobei QA die Adsorptionsenthalpie der Moleküle der ersten Schicht und QK die Kondensationsenthalpie sind. Wird p/[Γ(p0 – p)] gegen p0/p aufgetragen, so wird eine Gerade erhalten, aus deren Steigung und Ordinatenabschnitt Γ∝ und C bestimmt werden können. Ist dann der Bedarf an innerer Oberfläche für ein adsorbiertes Molekül bekannt, so kann mit Hilfe von Γ∝ die innere Oberfläche berechnet werden.
  • Entsprechende Untersuchung einer Aktivkohle aus Beispiel 1 ergab einen Wert von 1050 m2/g.
  • Beispiel 3: Ermittlung der Porengrössen- Verteilung
  • Zur Ermittlung der Poren-Grössen-Verteilung benötigt man aus thermodynamischen Gründen die Desorptionsisotherme. Für Stickstoff als Adsorbat an seinem normalen Siedepunkt von 77,4 K wird die Kelvin-Gleichnung wie folgt genutzt, rk = 4,15/logp0/punter Einbeziehung der physikalischen Grössen aus der Ermittlung der größten Porenradii r aus folgender Gleichung: r = –(2·8, 85·34, 6)/(8, 314·107·77, 4·2, 303·log0, 99) = 950·10–8 cmwobei 8,85 erg cm2 die Oberflächenspannung von N2 bei 77,4 K, 34,6 cm3 das molare Volumen von N2 bei 77,4 K, 950·10–8 cm die Porengrenzgröße und 0,99 das Verhältnis p/p0 sind.
  • Der Ausdruck rk gibt den Radius der Poren an, in welchen bei erforderlichem relativ Druck die Kondensation stattfindet. Dieser Radius (Kelvin-Radius o. krit. Radius) ist nicht der tatsächliche Porenradius. Nach einigen angefahrenen Adsorptionspunkten ist die Porenwandung schon vor der nächsten Kondensation besetzt und rk gibt den Radius nach Verdampfen des Stickstoffs des "entkernten Zentrums" an. Wenn die Dicke des adsorbierten Filmes bei Kondensation oder Verdampfung t ist, dann ist der tatsächliche Porenradius rp gegeben durch: rp = rk + t.
  • Um rP zu errechnen, ist noch eine Ermittlung der Filmstärke t nötig. Unter der Annahme, dass die adsorbierte Filmstärke für jeden Wert des relativ Druckes in einer Pore die gleiche ist wie auf einer ebenen Fläche, gilt nachfolgende Beziehung. t = (Wa/Wmwobei Wa und Wm jeweils die Adsorptionsquantität an definiertem relativ Druck und der Menge der diesem BET-Wert zugehörigen Monoschicht entsprechen. Im wesentlichen sagt diese Gleichung aus, dass die Stärke des adsorbierten Films gleich der Anzahl der Schichten mal der Stärke einer einzelnen Schicht ist, ungeachtet dessen, ob sich der Film in einer Pore oder auf einer ebenen Fläche befindet. Der Wert kan berechnet werden , indem man das Volumen V und die Fläche S einer Oberfläche betrachtet, welche von einem Mol flüssigen Stickstoffs in einer monomolekularen Schicht benetzt ist. S = 16, 2·6, 02·1023 = 97,5 1023 A2 (A = Angström) V = 34,6·1023 A3
  • Daraus folgt: τ = V/S = 3,54 A
  • Der Wert 3,54 A entspricht nicht ganz dem Durchmesser eines Stickstoffmoleküls. Dies folgt, wenn man die Flüssigkeitsstruktur betrachtet, aus der Tatsache, dass Flüssigkeiten dazu neigen in hexagonal geschlossenen Verbänden angeordnet zu sein, wobei jedes Molekül in Depression zwischen drei Molekülen in der darunter und darüber befindlichen Schicht positioniert ist. Mit dieser Kenntnis kann die Berechnung von t wie folgt durchgeführt werden. t = (Wa/Wm)·3,54 A
  • Auf nichtporösen Oberflächen wurde nachgewiesen, dass wenn man Wa/Wm gegen p/p0 aufträgt, alle Daten annähernd der allgemeinen Typ II Isotherme an einem relativ Druck von 0,3 entsprechen. Dies deutete wiederum daraufhin, wenn zum Beispiel Wa Wm= 3 ist, dass die adsorbierte Schichtstärke t = 10,62 A beträgt, ungeachtet welches Adsorbent eingesetzt wird. Die allgemeine Kurve wird exakt durch die Halsey Gleichung beschrieben. t = 3,54·(5/[2, 303·logp0/p])1/3
  • Um die Poren-Grössen-Verteilung zu berechnen, nutzt man die Daten der Tabelle 1. Die hier angegebenen adsorbierten Volumina entstammen einer hypothetischen Isotherme. Das genutzte Verfahren ist die numerische Integrationsmethode nach Pierce, von Orr und Dalla Valle modifiziert in Hinblick auf die Berechnung der Stärke des adsorbierten Films. Diese Methode sowie auch die numerische Integartionsmethode nach Barett, Joyner und Halenda nutzte Wheeler für seine Theorie, dass die Kondensation in den Poren genau dann geschieht, wenn der dem entsprechenden Kelvin-Radius rk zugehörige kritische relativ Druck erreicht ist. Dieses Modell nimmt ebenfalls an, dass eine adsorbierte multimolekulare Schicht der Stärke t, sowohl auf einer Poreninnenwand als auch auf einer nichtporösen Oberfläche in der gleichen Stärke existieren würde. Um nach dieser Methode vorzugehen, kann Tabelle 1 genutzt werden. Diese Tabelle 1 beinhaltet gebräuchliche Daten der Adsorptions- und Desorptionsisotherme. Gewöhnlich wird zur Ermittlung die Desorptionsisotherme herangezogen, außer in jenen Fällen, bei denen die Adsorption der thermodynamisch stabilere Zustand ist. In beiden Fällen werden die Daten absteigend von hohen zu niedrigen Drücken berechnet. Spalten 1 und 2 der Tabelle 1 enthalten Daten, welche direkt der Isotherme entstammen, wobei das adsorbierte Volumen generell auf ein Gramm Adsorbent bezogen wird. Alle anderen Daten können errechnet werden. Daraus ergibt nachfolgende Gleichung die Möglichkeit der exakten Ermittlung der Porenvolumina bei veränderlichem relativ Druck.
  • Figure 00140001
  • Die mit einer Aktivkohle gemäß Beispiel 1 erhaltene Porengrößenverteilung ist in der 1 dargestellt. Nach Integration ergeben sich die folgenden Werte: 1,2 – 1,7: ca. 33 %, 1,7 – 2,1 : ca. 34 %, 2,1 – 2,5: ca. 16%, 2,5 – 2,9: ca. 6%, 2,9 – 3,3: ca. 4%. Die Poren < 4 nm bilden ca. 94% des gesamten (offenen) Porenvolumens.
  • Beispiel 4: Bestimmung der fraktalen Dimension
  • Die fraktale Dimension dient zur Charakterisierung von Oberflächen und basiert auf der fraktalen Geometrie zur Beschreibung der Topographie wirklicher Oberflächen. Dabei ist die fraktale Dimension D ein idealer Parameter zur Beschreibung der Rauheit realer Oberflächen. Zurückzuführen ist diese Grösse auf die Mathematiker Hausdorff und Besicovitch, welche nachgewiesen haben, dass D für nicht Standardfiguren (Oberflächen) nicht ganzzahlig sein muß und für jede mathematische Menge eine reelle Zahl D existiert. Hausdorff hat die einfachste Kategorie dieser reellen Zahlen (positiv und endlich) nachgewiesen, dass sie sowohl die Cantor-Menge als auch Koch-Kurve enthält. Bezüglich der Ermittlung der fraktalen Dimension D für innere Oberflächen von Adsorbentien haben sich zwei Methoden als praktikabel erwiesen, da sie für ihre Berechnung mit einer Gassorptions-Isotherme auskommen. Dies ist zum einem die Methode nach Neimark-Kiselev (NK Methode) und zum anderen nachfolgend näher beschrieben, die Frenkel-Halsey-Hill (FHH) Methode.
  • Die FHH-Methode wird wie folgt angewandt. Aufgrund der Erkenntnis, dass in Regionen, in denen die Adsorption in Multischichten geschieht, der Einfluss von Kräften der inneren Oberfläche abnimmt, leiteten unabhängig voneinander mehrere Autoren folgende Isothermengleichung ab. logp0/p = B/VS wobei B ein Parameter ist, welcher Wechselwirkungen zwischen Adsorbent-Adsorbat und zwischen Adsorbat-Adsorbat widerspiegelt. V ist die Menge an Adsorbat und s gibt eine konstante Eigenschaft des genutzten Adsorbents an. Nach heutiger Erkenntnis korreliert s mit der fraktalen Dimension D des Adsorbens durch die Beziehung D = 3(1 + s), wobei unter Berücksichtigung von Oberflächenspannungseffekten in der Praxis mit D = 3 + s gearbeitet wird.
  • In beiden Fällen für fraktale Oberflächen ergibt V gegen p0/p aufgetragen innerhalb der Grenzen der Multischichtadsorption der Isotherme eine Gerade mit negativer Steigung, welche dem Wert von s entspricht.
  • Die Analyse wird wie folgt durchgeführt. Zur Aufnahme der Adsorptions- und Desorptions-Isothermen der unter Prüfung befindlichen Adsorbenzien wird ein High speed gas sorption analyzer der Fa. Quantachrome eingesetzt. Die Probenmenge beschränkt sich bei den zu erwartenden Adsorptionsleistungen auf 100 mg Adsorbent (nicht aufgemahlen). Die Aufnahme der Isothermen erfolgt bei einer Temperatur von 77,4 K mit Stickstoff (reinst) als Adsorptiv. Zur Auswertung werden die vorstehend genannten Methoden, insbesondere die FHH Methode, genutzt.
  • Kugelaktivkohle aus Beispiel 1 wurde demgemäß auf die fraktale Dimension untersucht. Als Wert wurde D = 2,926 erhalten.

Claims (9)

  1. Kugelaktivkohle mit einer Porengrößenverteilung (Vol-% des Gesamtporenvolumens im Porendurchmesserbereich), gemessen gemäß Beispiel 2, wie folgt: a) 1,2 – 1,7 nm: 20 – 50 % b) 1,7 – 2,1 nm: 20 – 50 % c) 2,1 – 2,5 nm: 10 – 25 % d) 2,5 – 2,9 nm: 3 – 15 % e) 2,9 – 3,3 nm: 1 – 10 % wobei die Summe aus a) bis e) zumindest 88 % ergibt, wobei die Differenz der Summe aus a) bis e) zu 100 einen Anteil Poren mit einem Durchmesser < 1,2 nm und/oder > 3,3 nm definiert, und wobei die fraktale Dimension der offenen Porosität, gemessen gemäß Beispiel 3, zumindest 2,30 beträgt.
  2. Kugelaktivkohle nach Anspruch 1 mit einer Porengrößenverteilung wie folgt: a) 1,2 – 1,7 nm: 30 – 40 % b) 1,7 – 2,1 nm: 30 – 40 % c) 2,1 – 2,5 nm: 15 – 20 % d) 2,5 – 2,9 nm: 5 – 10 % e) 2,9 – 3,3 nm: 1 – 5 %
  3. Kugelaktivkohle nach Anspruch 1 mit einer Porengrößenverteilung wie folgt: a) 1,2 – 1,7 nm: 32 – 36 % b) 1,7 – 2,1 nm: 32 – 36 % c) 2,1 – 2,5 nm: 15 – 20 % d) 2,5 – 2,9 nm: 5 – 10 % e) 2,9 – 3,3 nm: 3 – 5 %
  4. Kugelaktivkohle nach einem der Ansprüche 1 bis 3, wobei die Summe aus a) bis e) zumindest 90 %, vorzugsweise zumindest 93 %, ergibt.
  5. Kugelaktivkohle, nach einem der Ansprüche 1 bis 4, wobei die fraktale Dimension zumindest 2,70, vorzugsweise zumindest 2,80, höchstvorzugsweise zumindest 2, 90 bis 2, 92, beträgt.
  6. Kugelaktivkohle nach einem der Ansprüche 1 bis 5, wobei der Partikeldurchmesser 0,1 bis 3 mm, vorzugsweise 0,5 bis 1 mm, beträgt.
  7. Kugelaktivkohle nach einem der Ansprüche 1 bis 6, wobei die BET Oberfläche, gemessen gemäß Beispiel 4, im Bereich von 800 bis 1500, insbesondere 1000 bis 1300, beträgt.
  8. Kugelaktivkohle nach einem der Ansprüche 1 bis 7, dadurch erhältlich, daß als Edukt Polymerkugeln, insbesondere Ionenaustauscherkugeln, deren Polymergerüst abspaltbare funktionelle Gruppen, insbesondere Sulfonylgruppen und/oder Carboxylgruppen, enthalten, verwendet werden, daß die funktionellen Gruppen von dem Polymergerüst abgespalten werden und das Abspaltungsprodukt aus den Polymerkugeln ausgetrieben wird, daß die so erhaltenen porösen Polymerkugeln pyrolysiert werden, und daß optional die pyrolysierten Polymerkugeln einer Aktivierungsverfahrenstufe unterworfen werden.
  9. Verwendung einer Kugelaktivkohle nach einem der Ansprüche 1 bis 8 in Mitteln zur Filterung von Gasen, insbesondere Luftfiltern, Gasmasken und/oder Gasschutzanzügen.
DE10254241A 2002-11-20 2002-11-20 Kugelaktivkohle Ceased DE10254241A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE10254241A DE10254241A1 (de) 2002-11-20 2002-11-20 Kugelaktivkohle
DE20221998U DE20221998U1 (de) 2002-11-20 2002-11-20 Kugelaktivkohle
DE50311527T DE50311527D1 (de) 2002-11-20 2003-11-20 Kugelaktivkohle
AT03785528T ATE431316T1 (de) 2002-11-20 2003-11-20 Kugelaktivkohle
PCT/DE2003/003866 WO2004046033A1 (de) 2002-11-20 2003-11-20 Kugelaktivkohle
EP03785528A EP1562855B1 (de) 2002-11-20 2003-11-20 Kugelaktivkohle
US10/535,954 US7538069B2 (en) 2002-11-20 2003-11-20 Spherical active carbon
AU2003294632A AU2003294632A1 (en) 2002-11-20 2003-11-20 Spherical active carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10254241A DE10254241A1 (de) 2002-11-20 2002-11-20 Kugelaktivkohle

Publications (1)

Publication Number Publication Date
DE10254241A1 true DE10254241A1 (de) 2004-06-09

Family

ID=32308617

Family Applications (3)

Application Number Title Priority Date Filing Date
DE10254241A Ceased DE10254241A1 (de) 2002-11-20 2002-11-20 Kugelaktivkohle
DE20221998U Expired - Lifetime DE20221998U1 (de) 2002-11-20 2002-11-20 Kugelaktivkohle
DE50311527T Expired - Lifetime DE50311527D1 (de) 2002-11-20 2003-11-20 Kugelaktivkohle

Family Applications After (2)

Application Number Title Priority Date Filing Date
DE20221998U Expired - Lifetime DE20221998U1 (de) 2002-11-20 2002-11-20 Kugelaktivkohle
DE50311527T Expired - Lifetime DE50311527D1 (de) 2002-11-20 2003-11-20 Kugelaktivkohle

Country Status (6)

Country Link
US (1) US7538069B2 (de)
EP (1) EP1562855B1 (de)
AT (1) ATE431316T1 (de)
AU (1) AU2003294632A1 (de)
DE (3) DE10254241A1 (de)
WO (1) WO2004046033A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202011108802U1 (de) 2011-09-02 2012-09-03 BLüCHER GMBH Wundauflage mit antimikrobieller Wirkung
DE202011108806U1 (de) 2011-09-02 2012-09-03 BLüCHER GMBH Wundauflage mit luftdurchlässiger Lage
DE202011108805U1 (de) 2011-09-02 2012-09-03 BLüCHER GMBH Wundauflage
DE202014101137U1 (de) 2013-12-09 2014-12-12 BLüCHER GMBH Katalysatorsystem
DE202014102497U1 (de) 2014-04-17 2015-04-23 BLüCHER GMBH Adsorptive Filtereinheit mit verlängerter Einsatz- und/oder Standzeit
DE202021100461U1 (de) 2020-09-25 2022-01-07 Blücher Gesellschaft mit beschränkter Haftung Geträgerte Katalysatoren
DE202020107404U1 (de) 2020-11-27 2022-03-01 Blücher Gesellschaft mit beschränkter Haftung Strahlmittel auf Basis von kornförmiger Aktivkohle

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0019417D0 (en) 2000-08-09 2000-09-27 Mat & Separations Tech Int Ltd Mesoporous carbons
US8591855B2 (en) 2000-08-09 2013-11-26 British American Tobacco (Investments) Limited Porous carbons
GB0506278D0 (en) 2005-03-29 2005-05-04 British American Tobacco Co Porous carbon materials and smoking articles and smoke filters therefor incorporating such materials
DE102005038554A1 (de) * 2005-08-12 2007-02-15 Cernius Holding Gmbh Verfahren zur Herstellung von Kugelaktivkohle
DE102005038555A1 (de) 2005-08-12 2007-02-15 Cernius Holding Gmbh Verfahren zur Herstellung von Kugelaktivkohle
DE202006016898U1 (de) * 2006-10-12 2007-11-22 BLüCHER GMBH Hochleistungsadsorbentien auf der Basis von Aktivkohle mit hoher Mikroporosität
DE202007014890U1 (de) * 2007-03-14 2008-04-17 BLüCHER GMBH Hochleistungsadsorbentien auf der Basis von Aktivkohle mit hoher Meso- und Makroporosität
US20110082024A1 (en) * 2008-06-10 2011-04-07 Hansan Liu Controllable Synthesis of Porous Carbon Spheres, and Electrochemical Applications Thereof
JP5471142B2 (ja) * 2008-09-29 2014-04-16 ソニー株式会社 多孔質炭素材料複合体及びその製造方法、並びに、吸着剤、化粧料、浄化剤及び光触媒複合材料
US8394277B2 (en) 2009-12-11 2013-03-12 Beta Renewables, S.p.A. Regenerative purification of a pretreated biomass stream
JP2012188402A (ja) * 2011-03-11 2012-10-04 Sony Corp 口腔用組成物、チューインガム及び口腔清涼菓子
DE102013213548A1 (de) * 2013-07-10 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schallabsorber aus Aktivkohle-Granulat
CN103641115A (zh) * 2013-11-19 2014-03-19 苏州丹百利电子材料有限公司 球形活性炭的制备方法
KR102398719B1 (ko) 2014-11-06 2022-05-16 메르크 파텐트 게엠베하 침출물 및/또는 추출물 제거용 활성탄
US11180610B2 (en) 2016-03-17 2021-11-23 Merck Patent Gmbh Method for purifying poloxamers
CN108444895B (zh) * 2018-06-14 2020-08-25 长安大学 一种高效黄土体非饱和渗透参数获取方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028234A1 (de) * 1997-11-27 1999-06-10 Helsa-Werke Helmut Sandler Gmbh & Co. Kg Herstellung von aktivkohle aus polymeren mit aromatischen kernen
DE19930732A1 (de) * 1999-07-05 2001-01-18 Sandler Helmut Helsa Werke Verfahren zur gesteuerten Herstellung von Kugelaktivkohle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131989A (en) * 1977-04-22 1978-11-17 Takeda Chem Ind Ltd Molecular sieving organic gas removing agent
US4839331A (en) 1988-01-29 1989-06-13 Rohm And Haas Company Carbonaceous adsorbents from pyrolyzed polysulfonated polymers
US5094754A (en) 1988-01-29 1992-03-10 Rohm And Haas Company Carbonaceous adsorbents from pyrolyzed polysulfonated polymers
WO1996021616A1 (de) 1995-01-11 1996-07-18 Bluecher Hasso Von Verfahren zur herstellung von körniger aktivkohle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028234A1 (de) * 1997-11-27 1999-06-10 Helsa-Werke Helmut Sandler Gmbh & Co. Kg Herstellung von aktivkohle aus polymeren mit aromatischen kernen
DE19930732A1 (de) * 1999-07-05 2001-01-18 Sandler Helmut Helsa Werke Verfahren zur gesteuerten Herstellung von Kugelaktivkohle

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202011108806U1 (de) 2011-09-02 2012-09-03 BLüCHER GMBH Wundauflage mit luftdurchlässiger Lage
DE202011108805U1 (de) 2011-09-02 2012-09-03 BLüCHER GMBH Wundauflage
WO2013029796A1 (de) 2011-09-02 2013-03-07 BLüCHER GMBH Mehrschichtige wundauflage enthaltend ein hydrocolloid und aktivkohle
DE102011120487A1 (de) 2011-09-02 2013-03-07 BLüCHER GMBH Wundauflage mit antimikrobieller Wirkung
WO2013029797A1 (de) 2011-09-02 2013-03-07 BLüCHER GMBH Wundauflage mit antimikrobieller wirkung
WO2013029798A1 (de) 2011-09-02 2013-03-07 BLüCHER GMBH Wundauflage mit luftdurchlässiger lage
DE102011120491A1 (de) 2011-09-02 2013-03-07 BLüCHER GMBH Wundauflage
DE102011120492A1 (de) 2011-09-02 2013-03-07 BLüCHER GMBH Wundauflage mit luftdurchlässiger Lage
DE202011108802U1 (de) 2011-09-02 2012-09-03 BLüCHER GMBH Wundauflage mit antimikrobieller Wirkung
WO2015086109A1 (de) 2013-12-09 2015-06-18 BLüCHER GMBH Katalysatorsystem basierend auf kugelförmiger aktivkohle als träger und dessen verwendung
DE202014101137U1 (de) 2013-12-09 2014-12-12 BLüCHER GMBH Katalysatorsystem
DE102014103351A1 (de) 2013-12-09 2015-06-11 BLüCHER GMBH Katalysatorsystem und dessen Verwendung
DE202014102497U1 (de) 2014-04-17 2015-04-23 BLüCHER GMBH Adsorptive Filtereinheit mit verlängerter Einsatz- und/oder Standzeit
WO2015158450A1 (de) 2014-04-17 2015-10-22 BLüCHER GMBH Adsorptive filtereinheit mit verlängerter einsatz- und/oder standzeit
DE102014107489A1 (de) 2014-04-17 2015-10-22 BLüCHER GMBH Adsorptive Filtereinheit mit verlängerter Einsatz- und/oder Standzeit
EP3131669B1 (de) 2014-04-17 2018-06-13 Blücher GmbH Verwendung eines partikulären adsorptionsmaterials zur verlängerung der einsatz- und/oder standzeit einer adsorptiven filtereinheit
DE202021100461U1 (de) 2020-09-25 2022-01-07 Blücher Gesellschaft mit beschränkter Haftung Geträgerte Katalysatoren
DE102021102078A1 (de) 2020-09-25 2022-03-31 Blücher Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung von geträgerten Katalysatoren
WO2022063447A1 (de) 2020-09-25 2022-03-31 BLüCHER GMBH Verfahren zur herstellung von geträgerten metall-katalysatoren mit einer als katalysatorträger eingesetzten kornförmigen aktivkohle
DE202020107404U1 (de) 2020-11-27 2022-03-01 Blücher Gesellschaft mit beschränkter Haftung Strahlmittel auf Basis von kornförmiger Aktivkohle
DE102020134238A1 (de) 2020-11-27 2022-06-02 Blücher Gesellschaft mit beschränkter Haftung Strahlmittel auf Basis von kornförmiger Aktivkohle

Also Published As

Publication number Publication date
WO2004046033A1 (de) 2004-06-03
EP1562855B1 (de) 2009-05-13
EP1562855A1 (de) 2005-08-17
ATE431316T1 (de) 2009-05-15
DE20221998U1 (de) 2010-05-12
US7538069B2 (en) 2009-05-26
US20060148645A1 (en) 2006-07-06
DE50311527D1 (de) 2009-06-25
AU2003294632A1 (en) 2004-06-15

Similar Documents

Publication Publication Date Title
EP1562855B1 (de) Kugelaktivkohle
DE60317994T2 (de) Parallelfluss-Kontaktoren mit blattförmigen Adsorbentmaterial
DE69505396T2 (de) Verbundmembranen fuer festphasenextraktionen und -reaktionen
DE60319275T2 (de) Mehrschichtige, hohle und nanoskalige kohlenstoffkugel zur desodorisierung
EP0146740B1 (de) Formkörper mit poröser Struktur
DE69208405T2 (de) Gegen Durchdringung von Flüssigkeit beständiger saugfähiger Schichtstoff
DE4442713C2 (de) Adsorptions-Luftfilter und Verfahren zu dessen Herstellung
DE102009003522A1 (de) Verfahren zum Herstellen einer Mischung für eine PTFE-Membran mit anorganischen Materialien und damit im Zusammenhang stehende Zusammensetzungen
DE3852812T2 (de) Porige zusammengesetzte Werkstoffe und Verfahren zu deren Herstellung.
WO2017016694A1 (de) Neuartiges textiles schutzmaterial und verfahren zu dessen herstellung
DE2641548A1 (de) Mikrosphaeroidpulver und seine herstellung
DE202007014890U1 (de) Hochleistungsadsorbentien auf der Basis von Aktivkohle mit hoher Meso- und Makroporosität
DE19544912A1 (de) PTFE-Körper aus mikroporösem Polytetrafluorethylen mit Füllstoff und Verfahren zu dessen Herstellung
EP2718008B1 (de) Verbundmaterial aus fluorhaltigem polymer, hydrophoben zeolith-partikeln und metallischem werkstoff
EP1283820B1 (de) Keramisches material mit hoher porösität in gekörnter form
EP2982492B1 (de) Sinterverfahren, Sinterprodukt, Filtrationsmodul und Verwendung
DE102005038554A1 (de) Verfahren zur Herstellung von Kugelaktivkohle
WO2010112136A1 (de) Biozide schicht enthaltend kupfer
DE202017105594U1 (de) Verbundmaterial für die thermochemische Speicherung
DE19529332B4 (de) Anorganische Filtrierstrukturen und ihre Herstellung
DE4241605A1 (de) Adsorptionsfilter
DE19505174B4 (de) Adsorptionsfilter
DE112015005651T5 (de) Feuchtespeicherndes Stoffgemisch und Bauplatte daraus
DE4340277C2 (de) Verwendung eines keramischen Körpers zur Aufnahme von Flüssigkeiten
DE2244617A1 (de) Bindemittelfreie formlinge aus aktivem aluminiumoxid und molekularsiebzeolithen

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: BLUECHER GMBH, 40699 ERKRATH, DE

R082 Change of representative

Representative=s name: VON ROHR PATENTANWAELTE PARTNERSCHAFT MBB, DE

R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final
R003 Refusal decision now final

Effective date: 20141007