DE102019003129B3 - DREIRÄDRIGES ELEKTROFAHRZEUG NACH EG-FAHRZEUGKLASSE L2e-U - Google Patents

DREIRÄDRIGES ELEKTROFAHRZEUG NACH EG-FAHRZEUGKLASSE L2e-U Download PDF

Info

Publication number
DE102019003129B3
DE102019003129B3 DE102019003129.6A DE102019003129A DE102019003129B3 DE 102019003129 B3 DE102019003129 B3 DE 102019003129B3 DE 102019003129 A DE102019003129 A DE 102019003129A DE 102019003129 B3 DE102019003129 B3 DE 102019003129B3
Authority
DE
Germany
Prior art keywords
vehicle
wheel
motor
steering angle
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102019003129.6A
Other languages
English (en)
Inventor
Robert Virant
Gorazd Artac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Virant Robert Si
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102019003129.6A priority Critical patent/DE102019003129B3/de
Priority to PCT/EP2020/000100 priority patent/WO2020221474A2/de
Priority to EP20732100.1A priority patent/EP3962762A2/de
Application granted granted Critical
Publication of DE102019003129B3 publication Critical patent/DE102019003129B3/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D61/00Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
    • B62D61/06Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern with only three wheels
    • B62D61/08Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern with only three wheels with single front wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D23/00Combined superstructure and frame, i.e. monocoque constructions
    • B62D23/005Combined superstructure and frame, i.e. monocoque constructions with integrated chassis in the whole shell, e.g. meshwork, tubes, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K25/00Axle suspensions
    • B62K25/04Axle suspensions for mounting axles resiliently on cycle frame or fork
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/02Tricycles
    • B62K5/027Motorcycles with three wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/02Tricycles
    • B62K5/06Frames for tricycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K7/00Freight- or passenger-carrying cycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/22Microcars, e.g. golf cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/463Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • B60L2250/28Accelerator pedal thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/22Standstill, e.g. zero speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/12Motorcycles, Trikes; Quads; Scooters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/12Motorcycles, Trikes; Quads; Scooters
    • B60Y2200/122Trikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K2204/00Adaptations for driving cycles by electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Automatic Cycles, And Cycles In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft ein dreirädriges Elektrofahrzeug nach EG-Fahrzeugklasse L2e-U, das zwei elektromotorisch angetriebene Hinterräder (100 und 100') hat, die je von einem, als mehrphasiger Synchronmotor mit integrierter Motorsteuerung ausgebildeten Radnabenmotor angetrieben werden, der für eine maximale Nenndauerleistung größer 2 kW und kleiner 6 kW ausgelegt ist, insbesondere für eine maximale Nenndauerleistung von etwa 4 kW ausgelegt ist. Am Vorderende der Fahrzeugkarosserie (3) ist eine Teleskopfedergabel (80) schwenkbar angelenkt, die gegenüber der Fahrzeuglängsrichtung einen maximalen Lenkwinkeleinschlag von etwa minus 80° bis etwa plus 80° auszuführen vermag, der von einem Lenkwinkelsensor erfasst wird, der ein entsprechendes Lenkwinkelsignal erzeugt. Ferner ist am Fahrzeug (2) ein, mit Datenspeicherkapazität und digitaler Datenverarbeitungskapazität ausgerüsteter Controller montiert, der die beiden Motorsteuerungen so ansteuert, dass bei einer Kurvenfahrt die beiden Antriebsräder (100 und 100') mit je unterschiedlichem Drehmoment betrieben werden.Beispielsweise kann der Controller einen Anfahr- und Hindernisüberwindungs-Modus veranlassen, der bei einer Fahrzeuggeschwindigkeit von 0 bis 2 km/h ausgeführt wird, wobei bei einem starken Lenkwinkeleinschlag bis zu 80° der am kurvenäußeren Rad montierte Motor etwa 90 % des mit der gegebenen Beschleunigungsdrehgriff-Stellung angeforderten Gesamt-Drehmoments liefert, und der am kurveninneren Rad montierte Motor etwa 10 % des angeforderten Gesamt-Drehmoments liefert, das heißt ein Drehmomentverhältnis von 90 zu 10 eingestellt wird. Bei einem geringeren Lenkeinschlag wird ein proportional entsprechend vermindertes Drehmomentverhältnis eingestellt, bis bei Geradeausfahrt ein solches Drehmomentverhältnis von 50 zu 50 erreicht ist.

Description

  • TECHNISCHES GEBIET
  • Die vorliegende Erfindung betrifft das technische Gebiet der Kraftfahrzeuge mit Elektroantrieb. Mehr im Einzelnen betrifft die Erfindung ein dreirädriges, mit Elektroantrieb ausgerüstetes Kraftfahrzeug für die Güterbeförderung, das die Forderungen der EG-Fahrzeugklasse L2e-U erfüllt. Diese Forderungen sind in der Richtlinie 2002/24/EG und in der Verordnung (EU) Nr. 168/2013 sowie in Anhängen zu dieser Verordnung niedergelegt.
  • BEHÖRDLICHE ANFORDERUNGEN AN EIN L2e-U FAHRZEUG
  • In baulicher Hinsicht besagen diese Anforderungen unter anderem, dass
    • - eine Höchstgeschwindigkeit von 45 km/h eingehalten werden muss;
    • - im Falle eines Elektroantriebs der oder die Elektromotoren gemeinsam) für eine maximale elektrische Nenndauerleistung oder Nutzleistung bis zu 4 kW ausgelegt sind;
    • - Vorgaben hinsichtlich der Ladefläche bestehen; wobei ein Fahrzeug für den Gütertransport eine (Haupt)Ladefläche hat, die typischerweise als ebene Pritsche ausgebildet sein kann;
      • - - die Breite einer solchen, als ebene Pritsche ausgebildeten Ladefläche darf die Gesamtbreite des Fahrzeugs (ohne Ladefläche) nicht übersteigen;
      • - - entspricht die Breite dieser Ladefläche der Fahrzeugbreite, dann muss die minimale Länge der Ladefläche größer/gleich 1/3 der Fahrzeuglänge sein, und die maximale Länge der Ladefläche darf das 1,4-Fache der (größeren) Fahrzeugspurweite der vorderen oder hinteren Spurweite des Fahrzeugs der Klasse L nicht überschreiten; und
      • - - die Ladefläche darf nicht höher als 1000 mm über der Fahrbahn liegen;.
    • - ferner gibt es Vorgaben, welche das zulässige Fahrzeug-Leergewicht und die maximale Zuladung begrenzen; die (bestimmt definierte) Masse eines dreirädrigen Kleinkraftrades der Klasse L2e darf 270 kg nicht übersteigen.
  • Die Fahrzeuge bedürfen einer behördlichen Zulassung (Typengenehmigung nach der Richtlinie 2002/24 EG). Wird in einem EU-Staat eine EU-Gesamtfahrzeug-Typgenehmigung gemäß der Verordnung (EU) Nr. 168/2013 erlangt, so berechtigt diese Genehmigung verbunden mit einem „Certificate of Conformity“ auch den Betrieb des baugleichen Fahrzeugs in allen anderen EU-Staaten.
  • Vorteile für die Nutzer und Betreiber derartiger L2e-U Fahrzeuge bestehen unter anderem darin, dass
    • - der Fahrer nur einen Führerschein der Klasse „S“ (= „Mopedführerschein“) benötigt;
    • - das Fahrzeug lediglich mit einem „Mopedkennzeichen“ versehen werden muss, so dass niedrige Steuern und Versicherungskosten anfallen; und
    • - das Fahrzeug nicht den für PKW üblichen TÜV-Untersuchungen unterliegt.
  • Typischerweise handelt es sich um kleine, wendige Fahrzeuge, die hervorragend für den Transport von Gütern, einschließlich Postgut, und sonstige logistische Dienstleistungen im urbanen Bereich einsetzbar sind und dabei wenig Energie benötigen.
  • ZUM STAND DER TECHNIK
  • Das Dokument EP 3 037 333 A1 betrifft ein automatisches Dreirad. Mit Anspruch 1 wird ein Motordreirad beansprucht, das aufweist:
    • - einen Fahrzeugkörper;
    • - ein einzelnes Vorderrad, welches an dem Fahrzeugkörper angebracht ist und durch eine Griffstange gelenkt ist;
    • - je ein rechtes Hinterrad und ein linkes Hinterrad, welche Hinterräder im rückwärtigen Teil des Fahrzeugkörpers angetrieben sind;
    • - ein linkes Antriebsmittel zum Antreiben des linken Hinterrads, sowie ein rechtes Antriebsmittel zum Antreiben des rechten Hinterrads;
    • - ein Lenkwinkel-Erfassungsmittel zum Erfassen eines Lenkwinkels (O) der Griffstange;
    • - ein Geschwindigkeit-Erfassungsmittel zum Erfassen einer Fahrtgeschwindigkeit (V) des Fahrzeugkörpers;
    • - wobei „ein inneres Rad“ ein solches Hinterrad ist, das in einer Kurve eine innere Position einnimmt;
    • - wobei „ein äußeres Rad“ das andere Hinterrad ist, das in einer Kurve eine äußere Position einnimmt;
    • - wobei „ein Rotationsgeschwindigkeitsverhältnis (Rd)“ definiert ist, als die Rotation des äußeren Rades pro einer Rotation des inneren Rades;
    • - wobei das Motordreirad ferner eine Regel-/Steuer-Einheit aufweist, welche dazu eingerichtet ist, das Nachstehende auszuführen:
      • - - wenn die aktuelle Fahrtgeschwindigkeit (V) nicht geringer ist, als eine vorgegebene Fahrtgeschwindigkeit (V1), und wenn der aktuelle Lenkwinkel (O) nicht geringer ist, als ein vorgegebener Lenkwinkel (O1), dann wird beim Durchfahren einer Kurve
        • - unter der Annahme, dass beim Durchfahren der Kurve kein Schlupf zwischen den Hinterrädern und der Straßenoberfläche auftritt -
      • - - die Rotation des äußeren Rades erhöht, um zu dem Rotationsgeschwindigkeitsverhältnis (Rd) ein zusätzliches Rotationsgeschwindigkeitsverhältnis (Rd1) hinzuzufügen, das zur aktuellen Fahrtgeschwindigkeit (V) und zum aktuellen Griffstangen-Lenkwinkel (O) passt,
      • - - um zu ermöglichen, dass die beiden Hinterräder von den beiden Antriebsmitteln so angetrieben werden, dass das äußere Rad mit einer Geschwindigkeit rotiert, welche aus dieser Addition der beiden Rotationsgeschwindigkeitsverhältnisse resultiert.
  • Aus der Beschreibung des Dokumentes folgt, dass die oben angegebene Erhöhung der Rotationsgeschwindigkeit des äußeren Hinterrades bei Kurvenfahrt dann angewandt wird, wenn die aktuelle Fahrtgeschwindigkeit (V) des Fahrzeugkörpers die vorgegebene Fahrtgeschwindigkeit (V1) von 5 km/h erreicht oder übertroffen hat, und wenn der aktuelle Lenkwinkeleinschlag (O) den vorgegebenen Lenkwinkeleinschlag (O1) von 5 Grad erreicht oder übertroffen hat. Unter diesen Vorrausetzungen kann das gewünschte Rotationsgeschwindigkeitverhältnis dadurch eingestellt werden, dass die Kontrolleinrichtung veranlasst, dass der Antriebsmotor am (kurven)äußeren Rad mehr Drehmoment liefert oder dass der Antriebsmotor am (kurven)inneren Rad weniger Drehmoment liefert. Ferner wird in der Beschreibung ausgeführt, dass das Motordreirad ein relativ großes Fahrzeug sein kann, mit einer Gesamthöhe von etwa 150 cm, mit einer Gesamtbreite von etwa 120 cm und mit einer Gesamtlänge von etwa 250 cm. Das sind im Wesentlichen die Maximalabmessungen für ein dreirädriges Elektrofahrzeug nach EG-Fahrzeugklasse L2e-U.
  • Das Dokument US 2009 / 0 255 747 A1 betrifft ein dreirädriges Elektrofahrzeug zur Beförderung einer stehenden Person. Das Fahrzeug hat einen modularen, aus vier Untereinheiten bestehenden Aufbau, nämlich mit einer Vorderradgabel, an der sich ein Vorderrad befindet, mit einer Lenkeranordnung, ferner mit einem, aus Skelettelementen gebildeten Hauptfahrgestell, und schließlich mit einer rückwärtigen Radaufhängungsanordnung mit zwei parallelen Längslenkern, an denen je ein motorisch angetriebenes Hinterrad angebracht ist. Diese vier Untereinheiten sind über Standard-Schraubverbindungen miteinander verbunden. Das Hauptfahrgestell trägt eine Plattform, auf welcher die zu befördernde Person stehen kann und in dieser Stellung die Lenkeranordnung bedienen kann. Zwischen den beiden Längslenkern ist ein rohrförmiger Drehstabstabilisator eingespannt. Jeder Längslenker ist über je einen Federstoßdämpfer an einem oberen Träger des Hauptfahrgestells abgestützt. Das Fahrzeug ist mit einem Bremssystem ausgerüstet, das mechanisch wirkende Bremsen und/oder elektromagnetisch und regenerativ wirkende Bremsen aufweist.
  • Das Dokument GB 2 394 701 A betrifft ein neigbares, motorisch angetriebenes Dreirad zur Beförderung einer sitzenden Person. Als Antriebsmotor dient ein wassergekühlter Verbrennungsmotor. Das Dreirad hat ein Fahrgestell, das aus einem Vorderrahmen und aus einem Hinterrahmen besteht. Am Hinterrahmen sind der Antriebsmotor und die beiden, motorisch angetriebenen Hinterräder angebracht, über welche das Dreirad eine stabile Anordnung auf der Fahrbahn einnimmt. Am Vorderrahmen ist eine lenkbare Gabel mit dem Vorderrad sowie ein Fahrersitz angebracht. Eine Besonderheit besteht darin, dass der Vorderrahmen über zwei Schwenklager mit dem Hinterrahmen verbunden ist.
  • Das tief angeordnete vordere Schwenklager befindet sich am Vorderende des Hinterrahmens, unterhalb des Vorderrahmens. Das hoch angeordnete hintere Schwenklager befindet sich am Hinterrahmen, oberhalb des Fahrersitzes. Der Vorderrahmen mit seinen Komponenten ist gegenüber dem Hinterrahmen um eine gerade Schwenkachse neigbar, kippbar oder schwenkbar angeordnet, die sich vom Berührungspunkt des Vorderrades auf der Fahrbahnoberfläche weg durch das vordere Schwenklager bis zum hinteren Schwenklager erstreckt; entsprechend einer Seitenansicht-Darstellung des Dreirads kann diese Schwenkachse mit der Richtung der Fahrbahn einen Winkel von 25 Grad einschließen. Weil der Schwerpunkt des Fahrergewichtes unterhalb dieser Schwenkachse liegt, wird die vom Fahrergewicht erzeugte, nach unten gerichtete Kraft den Fahrersitz immer in die tiefste Position drücken, und damit das Dreirad in eine aufrechte Position bringen. Ein Lenkung des Dreirads erfolgt analog zum herkömmlichen Motorrad durch Lenkung des Vorderrades und durch seitliche Verlagerung des Fahrergewichtes, was eine Neigung des Vorderrades gegenüber den stabil gehaltenen Hinterrädern bewirkt. Mit dieser Bauweise sollen höhere Kurvenfahrt-Geschwindigkeiten möglich sein, als mit einem herkömmlichen Motorrad.
  • Eine erkennbare Gemeinsamkeit mit dem Gegenstand der vorliegenden Anmeldung besteht darin, dass sowohl der Vorderrahmen wie der Hinterrahmen in Skelettbauweise ausgeführt sind und aus miteinander verbundenen, rohrförmigen Skelettelementen aufgebaut sind, wie den Zeichnungen entnommen werden kann.
  • Das Dokument DE 20 2018 106 199 U1 beschreibt unter der Bezeichnung „dreirädriges Mopedauto“ ein für den Gütertransport geeignetes Fahrzeug, das mit Elektroantrieb ausgestattet sein kann. Unter „Mopedautos“ werden hier kleine Fahrzeuge verstanden, die mit maximal 45 km/h über die Straße fahren dürfen. Das hier im Einzelnen beschriebene Mopedauto ist mit drei Rädern ausgerüstet und hat eine Karosserie, die eine dem Vorderrad zugeordnete Fahrerkabine, sowie eine den Hinterrädern zugeordnete Ladefläche trägt; hierbei ist das Vorderrad in Fahrtrichtung vor der Fahrerkabine angeordnet; und Vorderrad und Hinterräder sind mit je einem Antriebsaggregat verbindbar ausgebildet; hierbei kann insbesondere dem Vorderrad ein elektrischer Radnabenmotor als Antriebsaggregat zugeordnet sein. Die Besonderheit besteht darin, dass die Fahrerkabine einen Vorbau aufweist, der über das Vorderrad hinausreichend ausgebildet ist, und dass das Fahrzeug eine in Skelettbauweise ausgebildete Karosserie hat, die eine Ladefläche bzw. einen Strukturkasten trägt. Der Vorbau kann eine gewölbte Haube bilden, die eine LKW-gemäße Front hat und die mit einer Stoßstange versehen ist. Der Strukturkasten kann in Fahrtrichtung hinter der Fahrerkabine angeordnet und in die Karosserie integriert sein und kann ganz oder teilweise aus Hohlrohren bestehen. Das Dokument beschränkt das hier beschriebene Mopedauto nicht auf die Merkmale eines Fahrzeugs, das für die Güterbeförderung bestimmt ist, und das die Forderungen der EG-Fahrzeugklasse L2e-U erfüllt.
  • Die vRbikes.ch AG, CH-6301 Zug, Schweiz vertreibt unter der Bezeichnung vR3 mehrere Ausführungsformen eines modularen Elektrofahrzeugs der EG-Fahrzeugklasse L2e. Diese vR3-Elektrofahrzeuge werden im Internet beworben und sind zumindest im April 2019 auf einer, unter der URL https://www.vrbikes.ch/de/elektrodreirad.html erreichbaren Website beschrieben. Hier interessiert die Standardausführung des vR3-Elektrofahrzeugs (bei einer „Widebody-Version“ wäre die Breite der Ladefläche wesentlich größer, als die Fahrzeugbreite, was für die EG-Fahrzeugklasse L2e-U nicht in Betracht kommt).
    Die Standardversion des vR3-Elektrofahrzeugs hat eine, an einen Motorroller erinnernde Vorderfront, die mit einer gefederten Teleskopfedergabel zur Führung und Lenkung eines nicht motorisch angetriebenen Vorderrades ausgestattet ist. An dieser Vorderfront ist ein nach vorne abstehender Träger montiert, der eine Nutzlast bis zu 30 kg tragen kann. Beide Hinterräder werden motorisch angetrieben; hierzu dient je ein bürstenloser Gleichstrommotor, der je für eine Leistung von 2 kW ausgelegt und je im Abstand vor dem angetriebenen Rad angeordnet ist; die Kraftübertragung erfolgt - mit Übersetzung - über Zahnriemen. Alle drei Reifen sind auf einer 3.5 x 13 Zoll Felge aus Aluminium montiert. Diese reguläre Ausführungsform des vR3-Fahrzeugs ist für eine Nutzlast von 120 kg (vorne 30 kg und hinten 90 kg) ausgelegt.
  • Das Dokument DE 10 2017 116 733 A1 betrifft eine Kontrolleinrichtung für mindestens einen Radnabenmotor an einem Fahrzeug. Fährt das Fahrzeug über unebenen Untergrund, dann können am Fahrzeug schwingende oder oszillierende Aufbaubewegungen stattfinden, welche durch Unebenheiten der Fahrbahnoberfläche oder fahrdynamische Effekte verursacht werden. Die vom Radnabenmotor bewirkte Momenteinleitung verursacht nicht nur eine Beschleunigung des Fahrzeugs in der oder gegen die Fahrtrichtung, sondern wegen der Abstützung des Radnabenmotors am Fahrzeugchassis wird durch solche Momenteinleitung das Fahrzeug zusätzlich in Höhenrichtung beschleunigt und/oder mit sonstigen Kräften beaufschlagt. Durch eine entsprechende Ansteuerung des Radnabenmotors soll durch den Radnabenmotor eine Kraft in der und/oder gegen die Höhenrichtung eingestellt werden, um auf diese Weise Schwingungen zu dämpfen, die beispielsweise durch Befahren eines unebenen Untergrundes auftreten. Die Kontrolleinrichtung soll eine solche Ansteuerung des Radnabenmotors bewirken.
  • Hierzu kann die Kontrolleinrichtung als digitale Datenverarbeitungseinrichtung ausgebildet sein, insbesondere als ein Computer, ein Mikrocontroller, ein FPGA oder dergleichen realisiert sein. Die Kontrolleinrichtung weist eine Eingangsschnittstelle zur Übernahme eines Zustandssignals zur Beschreibung einer aktuellen Aufbaubewegung des Fahrzeugs auf. Ferner weist die Kontrolleinrichtung eine Ausgangsschnittstelle zur Ausgabe des Radnabensignals auf. Weiterhin weist die Kontrolleinrichtung ein Kontrollmodul auf, welches programmtechnisch und/oder schaltungstechnisch so ausgebildet ist, um das Radnabenmotorsignal als Antwort auf die Aufbaubewegung zu bestimmen, insbesondere zu berechnen. Wie eine solche Berechnung ausgeführt werden könnte, wird nicht weiter ausgeführt.
  • AUFGABE DER VORLIEGENDEN ERFINDUNG
  • Die Aufgabe der vorliegenden Erfindung besteht darin, ein dreirädriges, für den Gütertransport geeignetes Elektrofahrzeug bereitzustellen, das innerhalb der L2e-U Regeln für eine höhere Nutzlast ausgelegt ist, als das oben beschriebene vR3-Fahrzeug. Auch ohne Fahrerkabine soll ein verbesserter Schutz für den Fahrzeugfahrer gewährleistet sein. Das Fahrzeug soll - auch bei voller Beladung - ein sicheres und komfortables Kurvenfahrverhalten, auch auf unebenem Untergrund ermöglichen. Weil das Fahrzeug insbesondere für Transportdienstleistungen im urbanen Bereich vorgesehen ist, soll eine hohe Manövrierfähigkeit unter den dort anzutreffenden Bedingungen gewährleistet sein, einschließlich der Überwindung von Stufen an Bordsteinkanten und dergleichen.
  • DIE ERFINDUNGSGEMÄSSE LÖSUNG DIESER AUFGABE(N)
  • Mit der vorliegenden Erfindung wird ein dreirädriges Kleinkraftrad für die Güterbeförderung bereitgestellt, das für reinen Elektroantrieb ausgelegt ist, und das die Bedingungen aus der Verordnung (EU) Nr. 168/13 des Europäischen Parlaments und des Rates vom 15. Januar 2013 für Fahrzeuge der EG-Fahrzeugklasse L2e, hier insbesondere der Unterklasse L2e-U erfüllt.
  • Ausgehend von einem dreirädrigen Elektrofahrzeug dieser Art, wobei
    • - das Elektrofahrzeug eine steife, selbstragende, in Skelettkarosserie-Bauweise ausgeführte Karosserie hat, deren Skelettelemente überwiegend aus metallischen, runden Rohren und hohlen Vierkantprofilen bestehen, die zumeist miteinander verschweißt sind;
    • - das Elektrofahrzeug zwei elektromotorisch angetriebene Hinterräder hat, die je über eine Radaufhängung an der Karosserie gehalten sind, und die bezüglich einer horizontalen Fahrzeugebene vertikal und in Längsrichtung ausgerichtet sind und in allen Fahrsituationen in dieser Ausrichtung verbleiben, und die Vertikalbewegungen bezüglich der Karosserie und deren Nutzlast auszuführen vermögen;
    • - jedes Hinterrad zum elektromotorischen Antrieb je einen, als mehrphasigen Synchronmotor mit integrierter Motorsteuerung ausgebildeten Radnabenmotor aufweist;
    • - am Vorderende der Karosserie eine Teleskopfedergabel schwenkbar angelenkt ist, an der ein Vorderrad und ein, mit einem Beschleunigungsdrehgriff ausgerüsteter Fahrzeuglenker montiert ist, und diese Teleskopfedergabel gegenüber einer Fahrzeuglängsrichtung einen maximalen Lenkwinkeleinschlag von etwa minus 80° bis etwa plus 80° auszuführen vermag, der von einem Lenkwinkelsensor erfasst wird, der ein entsprechendes Lenkwinkel signal erzeugt; und
    • - am Elektrofahrzeug ein, mit Datenspeicherkapazität und digitaler Datenverarbeitungskapazität ausgerüsteter Controller montiert ist, der nachstehende Fahrparameter erfasst und auswertet, nämlich
      • - - den Lenkwinkeleinschlag des Vorderrades,
      • - -die von der Beschleunigungsdrehgriff-Stellung geforderte SOLL-Beschleunigung,
      • - - die aktuelle IST-Drehzahl der beiden Hinterräder, und
      • - - die momentane Fahrzeuggeschwindigkeit
    und dieser Controller anhand dieser Auswertung verschiedene Antriebsmodi veranlasst, bei deren Ausführung die beiden Motorsteuerungen so angesteuert werden, dass bei einer Kurverfahrt die beiden Hinterräder mit je unterschiedlichem Drehmoment angetrieben werden,
    ist die erfindungsgemäße Lösung obiger Aufgabe(n)
    dadurch gekennzeichnet, dass
    jeder Radnabenmotor für eine maximale Nenndauerleistung größer 2 kW und kleiner 6 kW ausgelegt ist, insbesondere für eine maximale Nenndauerleistung von etwa 4 kW ausgelegt ist;
    die Radnabenmotoren kein Getriebe besitzen;
    der Controller dafür sorgt, dass das aktuelle, von beiden Radnabenmotoren gemeinsam erzeugte Drehmoment eine Nennndauerleistung von 4 kW nicht übersteigt; und
    zu diesen Antriebsmodi ein Anfahr- und Hindernisüberwindungs-Modus gehört, der bei einer Fahrzeuggeschwindigkeit von 0 bis 2 km/h ausgeführt wird, wobei bei einem starken Lenkwinkeleinschlag bis zu 80° der am kurvenäußeren Rad montierte Motor etwa 90 % des mit der gegebenen Beschleunigungsdrehgriff-Stellung angeforderten Gesamt-Drehmoments liefert, und
    der am kurveninneren Rad montierte Motor etwa 10 % des angeforderten Gesamt-Drehmoments liefert, das heißt ein Drehmomentverhältnis von 90 zu 10 eingestellt wird, und
    bei einem geringeren Lenkeinschlag ein proportional entsprechend vermindertes Drehmomentverhältnis eingestellt wird, bis bei Geradeausfahrt ein solches Drehmomentverhältnis von 50 zu 50 erreicht ist.
  • „etwa“ beschreibt hier und an anderen ähnlichen Stellen einen Bereich, der von minus 3 % bis zu plus 3 % des angegebenen Zahlenwertes reicht. Die hier vorgesehene Drehmomentverteilung ermöglicht, dass lediglich ein motorisch angetriebenes Hinterrad - unter nahezu voller Nutzung der Drehmomentleistung seines Motors - ein Hindernis überwindet.
  • Dieser Fahrmodus ist besonders hilfreich zum Überwinden eines Hindernisses: Beispielsweise wenn das Elektrofahrzeug eine Bordsteinkante überwinden soll und schräg, beispielsweise unter einem Winkel von 45° an die Bordsteinkante heranfährt. Es wird eine Situation erreicht, bei der:
    • - das Vorderrad sich bereits auf dem Bordstein befindet,
    • - das linke Hinterrad die Bordsteinkante berührt, und
    • - das rechte Hinterrad noch von der Bordsteinkante entfernt ist.
  • Ein starker Lenkeinschlag nach links auf die Bordsteinkante zu und eine angepasste Betätigung des Beschleunigungsdrehgriffes bewirken, dass das linke Hinterrad nicht längs der Bordsteinkante rutscht, sondern dass praktisch nur das rechte Hinterrad zu rollen beginnt, rollt bis es an der Bordsteinkante anstößt, die Bordsteinkante erklimmt, überwindet und schließlich auf den Bordstein gelangt. Ein anschließender starker Lenkeinschlag nach rechts und eine angepasste Betätigung des Beschleunigungsdrehgriffes bewirken, dass auch das linke Hinterrad in gleicher Weise die Bordsteinkante überwindet. In der Praxis kann auf diese Weise ohne weiteres eine bis zu 15 cm hohe Bordsteinkante überwunden werden. Die Fähigkeit, lediglich mit einem Hinterrad unter nahezu voller Nutzung von dessen Motorleistung ein Hindernis zu überwinden, verleiht dem Fahrzeug eine hohe Manövrierfähigkeit, welche insbesondere bei Transportdienstleistungen im urbanen Bereich hilfreich ist, weil dort die beschriebene Situation häufig auftritt, und mit dem erfindungsgemäßen Fahrzeug - insbesondere auch bei erheblicher Zuladung - problemlos und sicher überwunden werden kann.
  • Ein erfindungsgemäßes L2e-U Fahrzeug mit diesen Merkmalen und gegebenenfalls mit weiteren, entsprechend den Unteransprüchen ausgebildeten Merkmalen
    • - kann eine Gesamtnutzlast von bis zu 250 kg befördern; bis zu etwa 50 kg auf einem vorne an der Teleskopfedergabel angebrachten Träger; bis zu etwa 120 kg auf einer hinteren über den beiden Hinterrädern angeordneten Hauptladeplattform; und bis zu etwa 80 kg in einem dauerhaften Transportbehälter, der unterhalb der Hauptladeplattform zwischen den beiden Hinterrädern eingehängt ist; „etwa“ beschreibt hier und an anderer ähnlicher Stelle einen Bereich, der von minus 3 % bis zu plus 3 % des angegebenen Zahlenwertes reicht;
    • - verfügt über eine spezielle Radaufhängung mit je dreifach gelagerten Radträgern, die je mit einem Längslenker versehen sind, die ihrerseits über einen Drehstabstabilisator miteinander gekoppelt sind, was beim Fahren eines dreirädrigen Fahrzeugs über unebenen Untergrund Wankbewegungen des Fahrzeugs reduziert;
    • - verfügt über ein besonderes, elektronisches Antriebsmanagement, das verschiedene Antriebsmodi vorsieht, was auch bei Beladung mit voller Nutzlast ein sicheres und komfortables Kurvenfahrverhalten ermöglicht;
    • - ermöglicht abhängig von Fahrzeuggeschwindigkeit und Lenkeinschlag einen besonderen Hindernisüberwindungs-Modus, der hohe Manövrierfähigkeit verschafft und ein stabiles Überwinden von Bordsteinkanten und anderen Hindernissen ermöglicht; und
    • - verfügt über besondere Sicherheitsmaßnahmen, wie eine verstärkte Karosserievorderfront und einen Überrollbügel hinter dem Fahrersitz.
  • Ein erfindungsgemäßes Elektrofahrzeug mit diesen Merkmalen löst die der Erfindung zugrunde liegende(n) Aufgabe und Teilaufgaben.
  • Das erfindungsgemäß vorgesehene und im Rahmen dieser Unterlagen beschriebene dreirädrige Elektrofahrzeug für Gütertransporte, nach EG-Fahrzeugklasse L2e-U, wird nachstehend kurz als „das Fahrzeug“ bezeichnet.
  • VORTEILHAFTE AUSGESTALTUNGEN
  • Vorteilhafte und bevorzugte Ausführungsformen der Erfindung ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung und den beigefügten Zeichnungen.
  • Am Fahrzeug ist ein, mit Datenspeicherkapazität und digitaler Datenverarbeitungskapazität ausgerüsteter Controller montiert; typischerweise ist der Controller in Form einer Platine ausgeführt, auf der sich ein Mikrokontroller mit Mikroprozessor sowie Peripheriegeräte und weitere übliche Komponenten befinden, hier insbesondere die Niedrigstromversorgung für den Mikrokontroller, Analog-nach-digital-Wandler, sowie Filter und Schutzvorrichtungen, welche den Mikrokontroller vor gefährlichen Signalstärken der zugeführten Signale schützen. Der Mikrokontroller kann ein handelsüblicher Chip sein. Im Mikrokontroller ist speziell für das Fahrzeug entwickelte Software gespeichert, welche die verschiedenen Eingangssignale verarbeitet und Ausgangssignale bildet, mit denen die verschiedenen Funktionen gesteuert und ausgeführt werden, hier insbesondere auch die Motorsteuerung durchgeführt wird. Der Controller verfügt über Eingangsschnittstellen zur Übernahme des Lenkwinkelsignals, des vom Beschleunigungshandgriff gelieferten Beschleunigungssignals, des Bremssignals, von Zustandssignalen zum Zustand der Batterien, von Betriebssignalen zum IST-Betrieb der beiden Motoren und von weiteren Signalen, wie etwa Fahrzeugbeleuchtung-AN, Blinker-AN und dergleichen. Diese Eingangssignale werden im Mikrokontroller entsprechend den Vorgaben der gespeicherten Software verarbeitet, um (An)-Steuersignale zur Steuerung der Fahrzeugfunktionen zu erhalten. Diese (An)-Steuersignale werden über Ausgangsschnittstellen am Controller ausgegeben, etwa zur Darstellung der Anzeigen auf einer Displayeinrichtung am Fahrzeug, für die Betätigung der Bremslichter an der Fahrzeugrückwand, für die Motorsteuerungen der beiden Motoren und dergleichen.
  • So sorgt der Controller unter anderem dafür, dass mit Hilfe dieser Motorsteuersignale unter anderem bewirkt wird, dass
    • - das aktuelle, von beiden Motoren gemeinsam erzeugte Drehmoment eine Dauernennleistung von 4 kW nicht übersteigt;
    • - bei Aktivierung des Bremssignals beide Motoren in den Rekuperations-Betriebsmodus umgesteuert werden; und
    • - bei Vorliegen eines Rückwärtsfahr-Signales beide Motoren in den Rückwärtsfahr-Modus umgesteuert werden.
  • Die Communication zwischen Controller und Motorsteuerungen erfolgt über das übliche CAN-Bussystem.
  • Ferner gehört es zu den Funktionen des Controllers, ein elektronisches Antriebsmanagement für die Hinterräder bereitzustellen und auszuführen. Eine besonders wichtige Aufgabe des Controllers ist die Durchführung eines, mit der vorliegenden Erfindung bereitgestellten elektronischen Antriebsmanagement.
  • Im Rahmen der vorliegenden Erfindung ist hier vorgesehen, dass der Controller
    • - nachstehende Fahrparameter, nämlich
      • - - den Lenkwinkeleinschlag des Vorderrades,
      • - - die von der Beschleunigungsdrehgriff-Stellung geforderte SOLL-Beschleunigung,
      • - - die aktuelle IST-Drehzahl der beiden Hinterräder, und
      • - - die momentane Fahrzeuggeschwindigkeit
      erfasst und auswertet, und anhand dieser Auswertung
    • - mit Hilfe seiner Elektronik eine Differentialgetriebe-ähnliche Betriebsweise der beiden Motoren steuert und veranlasst, wozu bei Kurvenfahrt nicht nur die Drehzahlen von kurvenäußerem Rad und kurveninnerem Rad an die in Kurven unterschiedlichen Laufwege angepasst werden, sondern zusätzlich eine, von Lenkwinkeleinschlag und Fahrzeuggeschwindigkeit abhängige Drehmomentverteilung der Art vorgenommen wird, dass der am kurvenäußeren Rad montierte Motor mehr Drehmoment liefert, als der am kurveninneren Rad montierte Motor.
  • Mehr im Einzelnen soll nachstehendes elektronisches Antriebsmanagement ausgeführt werden:
    • Elektronisches Antriebsmanagement Der Controller führt ein elektronisches Antriebsmanagement aus, wozu am Fahrzeug nachstehende Fahrparameter
      • - der Lenkwinkeleinschlag des Vorderrades;
      • - die von der Beschleunigungsdrehgriff-Stellung geforderte SOLL-Beschleunigung;
      • - die aktuelle IST-Drehzahl der beiden Motoren; und
      • - die momentane Fahrzeuggeschwindigkeit
      erfasst und ausgewertet werden. Abhängig von der momentanen Fahrzeuggeschwindigkeit wird mit Hilfe einer elektronischen Steuereinheit im Controller auf die jeweilige Motorsteuerung jedes Motors so eingewirkt, damit beide Motoren
      • - aufeinander abgestimmt - einen ausgewählten Fahrmodus aus drei vorgegebenen und gespeicherten Fahrmodi ausführen. Hierzu gehören der bereits oben im Kennzeichen des Patentanspruches angesprochene:
    • Anfahr- und Hindernisüberwindungs-Modus, der bei einer Fahrzeuggeschwindigkeit von 0 bis 2 km/h ausgeführt wird. Bei einem starken Lenkeinschlag von bis zu 80° liefert der am kurvenäußeren Rad montierte Motor etwa 90 % des mit der Beschleunigungsdrehgriff-Stellung angeforderten Drehmoments, und der am kurveninneren Rad montierte Motor liefert etwa 10 % dieses angeforderten Drehmoments.
    • Ein Langsamfahr-Modus, der bei einer Fahrzeuggeschwindigkeit größer 2 km/h und bis zu 12 km/h des motorisch angetriebenen oder des (wegen einer Untergrundneigung) antriebslos rollenden Fahrzeugs ausgeführt wird. Beim antriebslos rollenden Fahrzeug wird mit Hilfe des am kurvenäußeren Rad montierten Motors eine Motorbremsung durchgeführt; beim motorisch angetriebenen Fahrzeug wird bei leichter Beschleunigung der am kurveninneren Rad montierte Motor geringfügig mehr Drehmoment liefern, als der am kurvenäußeren Rad montierte Motor. Der Fahrmodus soll das Fahrzeug möglichst rasch in eine stabile Geradeausfahrt zwingen, insbesondere auch dann, wenn der Fahrer „versehentlich“ die Hände vom Fahrzeuglenker genommen hat, und das Fahrzeug - unbeaufsichtigt - einen starken Lenkeinschlag ausführen könnte.
    • Ein Normalfahr-Modus, der bei einer Fahrzeuggeschwindigkeit größer 12 km/h ausgeführt wird. Hier wird zum Einen bei Kurvenfahrt die vom klassischen mechanischen Differentialgetriebe ausgeführte Anpassung der Drehzahlen von kurvenäußerem Rad und kurveninnerem Rad an die in einer Kurve unterschiedlichen Laufwege durchgeführt. Zusätzlich wird eine (mit dem klassischen mechanischen Differentialgetriebe nicht mögliche) Unterstützung der Kurvenfahrt durch Drehmomentanpassung vorgenommen, indem der am kurvenäußeren Rad montierte Motor mehr Drehmoment liefern wird, als der am kurveninneren Rad montierte Motor.
  • Im Einzelnen wird bei diesem Normalfahrt-Modus bei einem starken Lenkwinkeleinschlag bis zu 80° der am kurvenäußeren Rad montierte Motor etwa 70 % des mit der gegebenen Beschleunigungsdrehgriff-Stellung angeforderten Gesamt-Drehmoments liefern, und der am kurveninneren Rad montierte Motor wird etwa 30 % des angeforderten Gesamt-Drehmoments liefern, das heißt, dass ein Drehmomentverhältnis von 70 zu 30 eingestellt wird, und bei einem geringeren Lenkeinschlag ein proportional entsprechend vermindertes Drehmomentverhältnis eingestellt wird, bis bei Geradeausfahrt ein solches Drehmomentverhältnis von 50 zu 50 erreicht ist.
  • Das insgesamt mit der Beschleunigungsdrehgriff-Stellung für beide Motoren vorgegebene, erzeugte und wirkende Gesamt-Drehmoment bleibt unverändert, jedoch wird bei Kurvenfahrt dem kurvenäußeren Rad mehr Drehmoment zugeführt, als dem kurveninneren Rad. Die Lenkung drängt nach außen (Untersteuerung), womit dem Fahrer die Beherrschung der bei Kurvenfahrt, insbesondere mit erheblicher Zuladung, auftretenden Kräfte erleichtert wird. Auch bei höheren Geschwindigkeiten kann bei Kurvenfahrt eine komfortable und sichere Fahrweise - auch bei erheblicher Zuladung - erzielt werden.
  • Insgesamt nutzt die vorliegende Erfindung die mit der Anwendung von zwei, unabhängig voneinander ansteuerbaren und je ein Rad antreibenden Elektromotoren geschaffenen Möglichkeiten, bei Kurvenfahrten zusätzlich zu der mit dem klassischen mechanischen Differentialgetriebe möglichen Anpassung der Radumdrehungszahlen an die in Kurven unterschiedlichen Laufwege zusätzlich eine an die Fahrsituation angepasste unterschiedliche Verteilung des jedem Rad zugeführten Drehmoments vorzunehmen. Diese Drehmomentanpassung ist insbesondere für dreirädrige Fahrzeuge für die Güterbeförderung bedeutsam, weil das in Kurvenfahrten bei erheblicher Zuladung problematische Fahrverhalten sicherer und verbessert wird. Zusätzlich wird die Möglichkeit geschaffen, ein Hindernis, wie etwa eine Bordsteinkante, lediglich mit einem Hinterrad unter Nutzung von nahezu dessen voller Motorleistung zu überwinden.
  • Am erfindungsgemäßen Fahrzeug ist vorzugsweise vorgesehen, dass jeder Radnabenmotor
    • - ein Statorteil aufweist, das über einen horizontal ausgerichteten und drehfest mit dem Statorteil verbundenen Achszapfen stationär und drehfest mit einem Radträger der Radaufhängung verbunden ist; und
    • - ein, das Statorteil topfförmig umfassendes Drehteil hat, das in einstückiger Bauweise ein dem Topfumfang entsprechende Ringteil und eine dem Topfboden entsprechende Außenwand hat, wobei am Innenumfang des drehbar gehaltenen Ringteils um die Statorpole rotierbare Permanentmagnete montiert sind; und wobei von der Außenwand Bolzen abstehen, an denen eine, an der Außenwand anliegende und mit einem Radreifen, vorzugsweise einem Motorradreifen, versehene Felge so montierbar ist, dass der Radreifen den Radnabenmotor umfasst und beide in radialer Richtung gemeinsam fluchtend angeordnet sind.
  • Eine solche Bauweise ist raumsparend und schafft die Möglichkeit, in dem so geschaffenen freien Raum zwischen den beiden Hinterrädern einen zusätzlichen dauerhaften Transportbehälter anzuordnen. Der Radnabenmotor treibt das zugeordnete Rad unmittelbar und direkt an. Es gibt kein Getriebe am Motor, keine Kraftübertragung zwischen Motor und angetriebenem Rad mittels Kette oder Zahnriemen, und keine Übersetzung bei der Kraftübertragung. Der Motor rotiert mit der gleichen Umdrehungszahl, wie das angetriebene Rad.
  • Nach einer weiteren vorteilhaften Ausgestaltung ist vorzugsweise vorgesehen, dass
    • - der Radträger einen Radträgerkörper hat, dessen Kontur an ein Drachenviereck erinnert, das eine lange Diagonale hat, die am Elektrofahrzeug in dessen Längsrichtung und im Wesentlichen horizontal ausgerichtet ist, so dass der Radträgerkörper vier Ecken hat, nämlich - bei dieser Anordnung - eine hintere Ecke, eine obere Ecke, eine vordere Ecke und eine untere Ecke;
    • - in der hinteren Ecke eine Bohrung ausgespart ist, in welche der Achszapfen am Statorteil des Radnabenmotors eingesetzt ist; und
    • - dieser Radträger zusammen mit dem Rad gegenüber der Karosserie dreifach schwenkbar gelagert ist, nämlich:
      • - - in einem an der vorderen Ecke des Radträgers befindlichen Schwenklager, das unmittelbar und direkt mit einer vertikalen Stütze eines unteren Tragelementes der Karosserie verbunden ist;
      • - - in einem weiteren, an der oberen Ecke des Radträgers ausgebildeten Gelenk, an dem ein unteres Ende eines Federdämpfers schwenkbar anliegt, dessen oberes Ende an einem oberen äußeren Längsträger der Karosserie gelenkig angebracht ist; und
      • - - in einem an der unteren Ecke des Radträgers ausgebildeten Lager, das schwenkbar eine Welle aufnimmt, die mit einem Fuß eines Längslenkers verbunden ist.
  • Die beiden Hinterräder können eine Vertikalverstellung gegenüber der Karosserie und der wesentlichen Ladung am Fahrzeug ausführen. Der Federdämpfer dämpft Vertikalverstellungen der Hinterräder insbesondere gegenüber der erheblichen Nutzlast auf der Hauptladeplattform. Der Längslenker sorgt für eine Aufnahme von Zug- und Druckkräften in Fahrzeuglängsrichtung. Die Welle im Fuß des Längslenkers ist parallel zur Drehachse des Drehstabstabilisators ausgerichtet.
  • Nach einer weiteren vorteilhaften Ausgestaltung der vorliegenden Erfindung sind die Radträger der beiden Hinterräder über einen Drehstabstabilisator miteinander gekoppelt, der als gerader, sich in Querrichtung über nahezu die gesamte Fahrzeugbreite erstreckenden Stab aus Federstahl ausgebildet ist, der in zwei zueinander beabstandeten Drehstablagern abgestützt und drehbar gehalten ist, die je an einem unteren hinteren Längsträger der Karosserie befestigt sind;
    dieser Drehstab je einen, über das jeweilige Drehstablager hinausstehenden Drehstabendabschnitt hat, der je drehfest in einem Kopf des zugeordneten Längslenkers eingespannt ist; und
    dieser Drehstabstabilisator bei einer Vertikalverstellung des Hinterrades auf Torsion beansprucht wird und einen Teil des angreifenden Drehmoments auf den gegenüberliegenden Radträger überträgt, an dem des andere Hinterrad montiert ist.
  • Dieser Drehstabstabilisator kann vorzugsweise als gerader Stab aus Federstahl ausgebildet sein; beispielsweise mit einem Durchmesser von 15 mm; alternativ kann ein gerades, U-förmiges Profil oder ein gerades Rohr vorgesehen werden.
  • Eine, beim Fahren über unebenen Untergrund verursachte Vertikalverstellung des einen Hinterrades wird über dessen Längslenker auf den Endabschnitt des Drehstabstabilisators übertragen und dreht den gesamten Drehstab teilweise gegenüber den Drehstablagern. Der gesamte Drehstabstabilisator wird auf Torsion beansprucht und überträgt einen Teil des auf der einen Seite angreifenden Drehmoments auf den gegenüberliegenden Drehstabendabschnitt und über den dort angreifenden Längslenker auf den anderen, gegenüber angeordneten Radträger, an dem das andere Hinterrad montiert ist. Auch das andere Hinterrad wird wenigstens teilweise eine ähnliche Vertikalverstellung ausführen, selbst wenn es vom Untergrund her nicht in diese Richtung beeinflusst wird. Auf diese Weise reduziert der Drehstabstabilisator beim Befahren von unebenem Untergrund Wankbewegungen des Fahrzeugs und verbessert das Kurvenfahrverhalten. Da der Drehstabstabilisator rechtwinkelig zu den beiden Längslenkern ausgerichtet ist, und diese nur Zug- oder Druckkräfte in Fahrzeuglängsrichtung aufnehmen, kann eine hohe Stabilisatorübersetzung erzielt werden.
  • Das Fahrzeug hat einen Fahrzeugaufbau, zu dem eine, vorzugsweise in Skelettbauweise ausgeführte Karosserie gehört, die ihrerseits ein je aus Skelettelementen gefertigtes oberes Tragelement und unteres Tragelement aufweist, die im Bereich der Fahrzeugmitte überlappend angeordnet sind, und in diesem Überlappungsbereich von einem vertikalen Stützrahmen durchsetzt werden. Hier ist insbesondere vorgesehen, dass:
    • - Skelettelemente am unteren Tragelement an einem Vorderende der Karosserie gemeinsam eine nach vorne schützende Barriere für einen Fußraum eines Fahrzeugfahrers am Elektrofahrzeug bilden; und
    • - weitere Skelettelemente am vertikalen Stützrahmen einen Überrollbügel bilden, der hinter einem Fahrersitz-Rückenteil angeordnet ist und weit über den Kopf des auf einem Fahrersitz sitzenden Fahrers hinaus nach oben empor ragt.
  • Auch wenn das Fahrzeug keine geschlossene Fahrerkabine aufweist, wird im Falle eines Unfalls die Gefahr von Verletzungen des Fahrzeugfahrers reduziert.
  • Zu den Skelettelementen des oberen Tragelementes der Karosserie gehören vorzugsweise obere äußere Längsträger sowie obere innere Längsträger, die gemeinsam eine Halterung für eine ebene, horizontal ausgerichtete, hinten über den Hinterrädern angeordnete Hauptladeplattform bilden, die eine rechteckige Ladefläche mit einer Fläche von etwa 8880 cm2 hat, die mit einer Nutzlast bis zu 120 kg belastbar ist.
  • Ein typisches erfindungsgemäßes Fahrzeug hat eine Breite von 120 cm, und die Ladefläche der Hauptladeplattform erstreckt sich über diese gesamte Breite. Eine reguläre Ausführungsform dieses Fahrzeugs
    • - hat eine Gesamt-Fahrzeuglänge von 245 cm;
    • - die Länge der Ladefläche der Hauptladeplattform beträgt 74 cm;
    • - die Hinterräder sind in einer Spurweite von etwa 105 cm zueinander angeordnet; damit erfüllt dieses reguläre Fahrzeug die behördliche Anforderung, dass die maximale Ladeflächenlänge eine L2e-U Fahrzeugs das 1,4-Fache von dessen Spurweite nicht übersteigen darf.
    Eine Langversion dieses Fahrzeugs
    • - hat eine Gesamt-Fahrzeuglänge von 275 cm; und
    • - dessen Länge der Ladefläche der Hauptladeplattform beträgt 102 cm;
    damit erfüllt diese Ausführungsform die behördliche Anforderung, dass die minimale Ladeflächenlänge eine L2e-U Fahrzeugs größer/gleich 1/3 von dessen Gesamt-Fahrzeuglänge sein muss.
  • Am erfindungsgemäßen Fahrzeug erstreckt sich die Ladefläche dieser ebenen Hauptladeplattform in horizontaler Richtung in einem Abstand von etwa 75 cm zur ebenen horizontalen Fahrbahn. Auch eine erhebliche Zuladung befindet sich vergleichsweise nahe an der Fahrbahn, so dass ein sicheres Kurvenfahrverhalten erreicht werden kann. Die Ladefläche dieser Hauptladeplattform kann mit einem Rahmen versehen sein und bildet dann eine übliche offene Pritsche zum Transport von Gütern, Arbeitsgeräten und anderen Gerätschaften. Alternativ kann auf dieser Hauptladeplattform ein geschlossener Ladeaufbau vorgesehen sein, der typischerweise eine Höhe von bis zu 80 cm erreichen kann; damit wird auf der Hauptladeplattform ein geschlossenes Transportvolumen von nahezu 1 m3 erreicht. Mit Hilfe von Schnellverschlusssystemen kann ein rascher Austausch eines solchen Ladeaufbaus vorgesehen und erreicht werden.
  • Nach einer weiteren vorteilhaften Ausgestaltung kann an der Karosserie zwischen den beiden oberen inneren Längsträgern und damit auch zwischen den beiden Hinterrädern am Fahrzeug ein freier Raum vorgesehen werden, in den unterhalb der hinteren Hauptladeplattform ein dauerhafter, allseitig geschlossener Transportbehälter eingesetzt ist, der einen Innenraum hat, der über eine schwenkbare Türe in einer vertikalen Fahrzeugrückwand zugänglich ist.
  • Das Transportvermögen des Fahrzeugs kann noch weiter gesteigert werden. Bei Bedarf können am Boden dieses Transportbehälters teleskopartig ineinander verschiebliche Schienen vorgesehen werden auf denen ein Schlitten verfahrbar ist, der mit Transportgut beladen werden kann; damit kann die gesamte verfügbare Länge von bis zu 80 cm dieses dauerhaften Transportbehälters zur Aufnahme von Transportgut genutzt werden.
  • Mit einer Zuladung von insgesamt bis zu 250 kg kann das erfindungsgemäße Fahrzeug mehr als die doppelte Nutzlast des regulären vR3-Fahrzeugs transportieren, das eingangs als nächstkommender Stand der Technik gewürdigt ist.
  • Vorzugsweise haben die drei Räder des erfindungsgemäßen Fahrzeugs je eine 15 Zoll Felge, auf denen je ein Motorradreifen der Größe 120/70 R 15 aufgezogen ist.
  • Folglich ist je eine vergleichsweise große Reifentype realisiert. Die erfindungsgemäß eingesetzten Radnabenmotoren haben einen optimierten Wirkungsgrad, was wiederrum einen engen Luftspalt zwischen Statorpolen und darüber rotierenden Permanentmagneten voraussetzt. Ein Radnabenmotor an einem Straßenfahrzeug leidet notorisch unter einer gewissen Stoßempfindlichkeit. Erfahrungsgemäß kann ein erfindungsgemäß bevorzugter, in das Hinterrad des Fahrzeugs eingebauter Radnabenmotor ohne weiteres den resultierenden mechanischen Belastungen standhalten, wenn auf das Rad an der Radaufstandsfläche auf der Fahrbahn einzeln oder gleichzeitig nominelle Kräfte bis zu je 2.200 N in axialer Richtung, in radialer Richtung und/oder in Fahrzeuglängsrichtung auftreten. Solche Kräfte werden beim normalen Fahrbetrieb und dem üblichen Überwinden von Hindernissen, wie Bordsteinkanten und dgl. nicht erreicht. Die einzige und wesentliche Abhilfe bildet die vom Radreifen ausgehende Dämpfung und Federung, weshalb erfindungsgemäß mit einer 15 Zoll Felge und der Reifentype 120/70 R15 ein vergleichsweise großer Reifen eingesetzt wird, der verhindert, dass beim Anfahren einer Bordsteinkante ein unmittelbarer Kontakt zwischen Felge und Bordsteinkante erfolgt, der eine schädliche Stoßwirkung auf den Radnabenmotor ausüben könnte. Auch das besondere Antriebsmanagement vermindert die Gefahr solcher Stoßeinwirkungen auf den Radnabenmotor.
  • Das Vorderrad ist über eine Teleskopfedergabel schwenkbar und lenkbar am Fahrzeugaufbau angelenkt. Diese Teleskopfedergabel hat eine Lenkachse. Die Ausrichtung dieser Lenkachse mit einer Horizontalen bildet einen Winkel, den sogenannten Lenkkopfwinkel. Nach einer bevorzugten, vorteilhaften Ausgestaltung der vorliegenden Erfindung beträgt dieser Lenkkopfwinkel 68° bis 72°, insbesondere 70°.
  • Damit ist ein vergleichsweise großer Lenkkopfwinkel vorgesehen, der eine agile, leichtgängige Lenkung des Fahrzeugs auch dann ermöglicht, wenn ein vorderer Lastenkorb über dem Vorderrad das Vorderrad mit einer nicht unerheblichen Nutzlast belastet.
  • Jedes der drei Fahrzeugräder ist mit einer eigenen Scheibenbremse ausgerüstet, die hydraulisch betrieben wird; es ist eine zentrale Hydraulikbremseinrichtung vorgesehen, deren Kolben/Zylinder-Anordnung am Fahrzeuglenker befestigt ist. Ein Anziehen des Bremshandgriffes verstellt einen gelenkig am Handgriffkörper angebrachten Stößel, der auf den Kolben der Kolben/Zylinder-Anordnung einwirkt. Hier ist eine zweistufige Bremswirkung vorgesehen. Zuerst aktiviert eine Verstellung dieses Stößels einen Bremsschalter, der daraufhin ein elektrisches Bremssignal erzeugt, das dem Controller zugeführt wird, der daraufhin die Motorsteuerungen veranlasst, jeden Motor in den Rekuperationsmodus zu steuern. Die Fahrzeuggeschwindigkeit wird mit Hilfe einer Motorbremsung reduziert. Bei einem weiteren Anziehen des Bremshandgriffes drückt der Stößel auf den Kolben, was den Hydraulikmitteldruck im Zylinder erhöht; der erhöhte Hydraulikmitteldruck wird über Hydraulikmittelleitungen den Bremsbacken der Scheibenbremsen zugeführt, und es wird zusätzliche Bremskraft und Bremswirkung durch Betätigung der Scheibenbremsen erhalten.
  • Wenn der Hinterradreifen auf einer 5 Zoll Felge montiert ist, hat er einen Umfang von etwa 160 cm und führt bei einen Fahrzeuggeschwindigkeit von 2 km/h etwa 20 Umdrehungen pro Minute aus. Bei der maximal zulässigen Fahrzeuggeschwindigkeit von 45 km/h dreht ein Hinterrad etwa mit 480 Umdrehungen/min. Auch bei dieser vergleichsweise geringen Umdrehungszahl leistet ein erfindungsgemäß eingesetzter Radnabenmotor ein Nenn-Drehmoment von 145 Nm; für wenige Sekunden (typischerweise bis zu 20 sec.) wird eine Spitzenleistung bis zu 5,5 kW bereitgestellt; die kann beim Fahren im Hindernisüberwindungs-Modus abgerufen werden.
  • DETAILLIERTE BESCHREIBUNG
  • Nachstehend wird das erfindungsgemäße Fahrzeug mehr im Einzelnen anhand einer bevorzugten Ausführungsform mit Bezugnahme auf Zeichnungen beschrieben; die letzteren zeigen:
    • 1A anhand eines Schrägbildes einen Blick von vorne auf Vorderfront und Seite eines erfindungsgemäßen Fahrzeugs;
    • 1B eine Seitenansicht des Fahrzeugs;
    • 1C anhand eines Schrägbildes einen Blick von hinten auf Heck und Seite des Fahrzeugs;
    • 2 schematisch verschiedene Bestandteile des Fahrzeugs;
    • 3A eine Seitenansicht des von der Verkleidung befreiten Fahrzeugs;
    • 3B ein Blick von oben auf das Fahrzeug nach 3A;
    • 3C ein Blick von hinten auf das Heck des Fahrzeugs nach 3A;
    • 3D einen Ausschnitt aus 3A, der in größerer Darstellung insbesondere einen Radträger und dessen dreifache Lagerung zeigt;
    • 3E einen Ausschnitt aus 3B, der in größerer Darstellung insbesondere einen Blick auf einen Drehstabstabilisator und dessen Lagerung zeigt;
    • 4A eine Seitenansicht eines erfindungsgemäß eingesetzten Radnabenmotors;
    • 4B die an dem Radnabenmotor nach 4A zu befestigende Felge mit Radreifen; und
    • 5 anhand eines Schrägbildes einen Abschnitt des Fahrzeuglenkers mit Beschleunigungsdrehgriff und Bremshandgriff.
  • Die nachstehende Beschreibung des Fahrzeugs und seiner Komponenten verwendet Orts- und Richtungsangaben. Hierbei wird von einem, auf einem ebenen, horizontal ausgerichteten Untergrund stehenden oder fahrenden Fahrzeug ausgegangen. Dann definieren die Achsen der drei Fahrzeugräder eine Ebene, die parallel zu diesem Untergrund ausgerichtet ist. Auf dieser Ebene wird ein kartesisches Koordinatensystem errichtet, dessen X-Richtung in dieser Ebene in Fahrtrichtung ausgerichtet ist; entsprechend ist die Y-Richtung in dieser Ebene quer oder senkrecht zur Fahrtrichtung ausgerichtet und bezeichnet eine Seitenrichtung; die Z-Richtung erstreckt sich senkrecht zu dieser Ebene und bezeichnet eine Hoch- oder Höhenrichtung. Folglich bedeutet „unten“ oder „untere“ in Z-Richtung näher oder benachbart zum Untergrund; „oben“ oder „obere“ bedeutet in Z-Richtung ferner oder entfernt(er) zum Untergrund; „vorne“, „vordere“ oder „vorwärts“ zielt in X-Richtung auf die Fahrzeugfront; „hinten“, „hintere“ oder „rückwärts“ zielt entgegen der X-Richtung auf das Fahrzeugheck.
  • Die 1A, 1B und 1C vermitteln ein Bild vom optischen Eindruck eines erfindungsgemäßen Fahrzeugs 2, dessen wesentliche Bestandteile mit 2 angedeutet sind. Das Fahrzeug 2 ist ein dreirädriges Fahrzeug mit einem lenkbaren Vorderrad 70 und zwei elektromotorisch angetriebenen Hinterrädern 100 und 100'. Das Fahrzeug 2 hat einen Fahrzeugaufbau mit einer Karosserie 3, an der eine Fahrzeugverkleidung 4 aufgehängt ist. Ferner gehört zum Fahrzeugaufbau ein Fahrgestell mit den Radaufhängungen für die beiden Hinterräder 100 und 100'. Schließlich umfasst der Fahrzeugaufbau eine, schwenkbar an der Karosserie 3 angebrachte Teleskopfedergabel 80, an der ein Fahrzeuglenker 81 befestigt ist, mit dem das Vorderrad 70 lenkbar ist.
  • An der Karosserie 3 ist ein Fahrersitz 12 für einen Fahrzeugfahrer angebracht. Die Elektromotoren des Fahrzeugs werden mit elektrischer Energie aus einer Batterie 60 versorgt, die in einem Abteil unterhalb eines Fahrersitzes 12 untergebracht ist. Das Fahrzeug 2 ist für die Güterbeförderung bestimmt und verfügt
    • - an der Teleskopfedergabel 80 über eine Halterung 63 für eine vordere Ladefläche 37, auf der ein Ladekorb 38 befestigt werden kann;
    • - über eine ebene hintere Ladefläche 31 auf einer Hauptladeplattform 30 über den beiden Hinterrädern 100 und 100';
    • - sowie über einen dauerhaften Transportbehälter 35, der in einen freien Raum zwischen den beiden Hinterrädern 100 und 100' eingesetzt ist.
    Bei Bedarf kann auf der Ladefläche 31 der Hauptladeplattform 30 ein leicht austauschbarer, geschlossener, mobiler Ladeaufbau 32 angebracht sein. Mit Ladekorb 38, dauerhaftem Transportbehälter 35 und Pritsche oder Ladeaufbau auf der Hauptladeplattform 30 kann das Fahrzeug 2 insgesamt eine Nutzlast bis zu 250 kg befördern.
  • Am Fahrzeug 2 gibt es eine Platine 15, auf der sich ein Mikrokontroller mit Mikroprozessor, sowie übliche elektronische Bauteile und Komponenten befinden, mit denen Datenspeicherkapazität und digitale Datenverarbeitungskapazität bereitgestellt wird; diese gesamte Einrichtung wird nachstehend als „Controller“ bezeichnet. Der Controller kann in einem Fach unterhalb der Batterien 60 untergebracht sein.
  • Mit Bezugnahme auf die 3A, 3B und 3C wird nachstehend die Karosserie 3 des Fahrzeugs 2 im Einzelnen erläutert. Die Karosserie 3 ist in Skelettkarosserie-Bauweise ausgeführt und hat ein Skelett, dessen wesentliche Elemente aus einem metallischen Werkstoff bestehen, wie er typischerweise im Fahrzeugbau eingesetzt wird. Zu typischen Werkstoffen gehören hier Eisen und Stahl, sowie Leichtmetalllegierungen auf der Basis von Aluminium oder Magnesium. Zu wesentlichen Elementen gehören Rohre, Stäbe und Profile, die direkt oder über Knoten miteinander verbunden sind; im Falle einer Direktverbindung sind solche Elemente typischerweise miteinander verschweißt. Rohre aus Eisen und Stahl haben typischerweise einen Durchmesser von 40 mm und eine Wandstärke von 2 mm; Rohre aus einem Aluminiumwerkstoff haben typischerweise einen Durchmesser von 40 mm und eine Wandstärke von 6 mm. Die Karosserie 3 hat drei wesentliche Bestandteile, nämlich ein oberes Tragelement 20, ein unteres Tragelement 40, und einen vertikalen Stützrahmen 50.
  • Das obere Tragelement 20 bildet einen geschlossenen, aus Rohren und Rohrabschnitten bestehenden Rahmen, mit einem, vor der Fahrzeugmitte angeordneten, sich horizontal in Querrichtung erstreckenden, aus geraden Rohrabschnitten gebildeten, U-förmig gekrümmten oberen Querholm 21, an dessen Enden je ein sich horizontal nach hinten erstreckender, oberer äußerer Längsträger 22 und 22' angesetzt ist, an deren Hinterenden je ein vertikal abfallendes Rohr 24 bzw. 24' angesetzt ist, deren Enden über einen, unteren, horizontal ausgerichteten Querträger 25 miteinander verbunden sind. Dieser untere Querträger 25 markiert die Unterkante einer vertikalen Fahrzeugrückwand 8. An diesem unteren Querträger 25 kann wahlweise ein abstehender Hals 27 einer Kugelkopfkupplung 28 angebracht sein.
  • An die beiden oberen äußeren Längsträger 22 und 22' sind die beiden Enden eines vorderen oberen Querträgers 26 angeschweißt, an dem wiederum obere innere Längsträger 23 und 23' angeschweißt sind. Obere äußere Längsträger 22 und 22' sowie obere innere Längsträger 23 und 23' bilden zusammen eine Halterung für eine ebene, horizontal ausgerichtete, über den Hinterrädern befindliche Hauptladeplattform 30, die eine hintere Ladefläche 31 hat, die sich über die gesamte Fahrzeugbreite erstreckt. Ein typisches erfindungsgemäßes Fahrzeug 2 hat eine Breite von 120 cm, und die Länge der hinteren Ladefläche 31 kann etwa 74 cm betragen, so dass eine hintere, ebene, rechteckige Ladefläche 31 von etwa 8880 cm2 erhalten wird.
    Eine Langversion des erfindungsgemäßen Fahrzeugs hat
    • - eine Gesamt-Fahrzeuglänge von 275 cm; und
    • - eine Länge der hinteren Ladefläche 31 von etwa 102 cm;
    damit ist die behördliche Anforderung an ein L2e-U Fahrzeug erfüllt, dass dessen minimale Länge der (Haupt)Ladefläche größer/gleich 1/3 der Fahrzeuglänge sein muss.
    Die Ladefläche 31 auf dieser Hauptladeplattform 30 befindet sich in einem Abstand von etwa 75 cm über der Fahrbahn.
  • An der Karosserie 3 befindet sich zwischen den oberen inneren Längsträgern 23 und 23' freier Raum. Hier ist unterhalb der Hauptladeplattform 30 ein dauerhafter geschlossener Transportbehälter 35 eingesetzt, der einen Innenraum hat, der über eine schwenkbare Türe 36 in einer vertikalen Fahrzeugrückwand 8 zugänglich ist. Bei Bedarf kann auf einem Boden dieses dauerhaften Transportbehälters 35 eine paarweise Anordnung von teleskopartig ineinander verschiebbaren Schienen angeordnet sein, auf denen ein Schlitten fährt, der durch die geöffnete Türe 36 hindurch aus dem Transportbehälter-Innenraum herausgefahren werden kann, um mit Transportgut beladen zu werden.
  • Das untere Tragelement 40 bildet einen geschlossenen Rahmen mit einem hinter der Fahrzeugmitte und vor den beiden Hinterrädern 100 und 100' angeordneten, sich horizontal in Querrichtung über die gesamte Fahrzeugbreite erstreckenden, unteren hinteren Querträger 41, an dessen Enden je ein unterer, horizontal ausgerichteter, äußerer Doppelrohr-Längsträger 42 und 42' angesetzt ist, die beide nach vorne aufeinander zu laufen. Die Karosseriefront 6 hat eine verminderte Breite von etwa der halben Fahrzeugbreite, und hier bilden die beiden äußeren unteren Längsträger 42 und 42' je einen ansteigenden, einrohrigen Pfeiler 43 und 43' einer nach rückwärts gewölbten Brücke 44. An deren Brückenwölbung ist ein, sich nach vorne erstreckender massiver Block 45 angesetzt und befestigt. Zusätzlich hat das untere Tragelement 40 einen, sich etwa in Fahrzeugmitte befindlichen und in Querrichtung erstreckenden unteren mittigen Querträger 46, dessen Enden mit je einem Rohr der unteren äußeren Längsträger 42 und 42' verschweißt ist; unterer hinterer Querträger 41 und unterer mittiger Querträger sind je als hohles Vierkantprofil ausgeführt. In der Mitte des mittigen Querträgers 46 ist ein weiterer, sich in Fahrzeuglängsrichtung horizontal nach vorne erstreckender unterer mittiger Längsträger 47 angesetzt, der einen ansteigenden vorderen Endabschnitt 48 hat, der ebenfalls am Block 45 endet und mit diesem verschweißt ist. Die beiden ansteigenden Brückenpfeiler 43 und 43' und der mittig dazwischen sich in gleicher Richtung erstreckende Vorderendabschnitt 48 des mittigen unteren Längsträgers 47 bilden gemeinsam eine nach vorne schützende Barriere 49 für einen Fußraum 11 eines Fahrzeugfahrers am Fahrzeug 2.
  • Unteres Tragelement 40 und oberes Tragelement 20 überlappen sich in der Fahrzeugmitte und werden hier von einem vertikalen Stützrahmen 50 durchsetzt. Dieser weist einen U-förmigen Bügel mit einem oberen, horizontal ausgerichteten Querstab 51 auf, an den auf beiden Seiten je ein vertikal abfallender Ast 52 und 52' anschließt, deren jeweiliges Ende mit dem jeweiligen unteren äußeren Längsträger 42 bzw. 42 verschweißt ist; ferner ist ein mittiger, horizontal ausgerichteter Querstab 53 zwischen die beiden Äste 52 und 52' eingesetzt und je mit den beiden oberen äußeren Längsträgern 22 und 22' verbunden. Ein Überrollbügel 55 hat zwei vertikale Stützen 54 und 54', die je mit dem oberen Querstab 51 und mit dem unteren mittigen Querstab 53 verbunden sind und je an den unteren hinteren Querträger 41 des unteren Tragelementes 40 angesetzt sind. Der Überrollbügel 55 ist hinter einem Fahrersitz-Rückenteil 13 angeordnet und ragt vertikal weit über den Kopf eines auf einem Fahrersitz 12 sitzenden Fahrers hinaus empor, beispielsweise bis zu einer Höhe von etwa 150 cm über der Fahrbahn empor, und schützt den Fahrer bei einem Unfall.
  • Zwischen den oberen gebogenen Querholm 22 und den mittigen unteren Querstab 53 sind zwei parallel zueinander und horizontal in Längsrichtung ausgerichtete Längsstäbe 56 und 56' eingespannt, an denen später ein Fahrersitz 12 mit Hilfe von Bolzen befestigt wird, die durch eine Fahrzeugauskleidung 9 einer Fahrerzelle 10 geführt werden.
  • Am unteren Rohr der beiden unteren äußeren Doppelrohr-Längsträger 42 und 42' ist ein, mit einer rutschfesten Profilierung versehenes Bodenblech 57 befestigt, das einen Fußraum 11 des Fahrers begrenzt und schützt. Ein weiteres Bodenblech 58 ist zwischen unterem mittigem Querträger 46 und unterem hinterem Querträger 41 eingesetzt und begrenzt und schützt ein Abteil 59, in dem ein oder zwei Fahrzeugbatterien 60 untergebracht werden. Typischerweise sind zwei Lithium/Ionen-Fahrzeugbatterien vorgesehen, die je ein Gewicht von ca. 30 kg haben und zusammen eine Stromspeicherkapazität von etwa 5 kWh bereitstellen, womit das Fahrzeug 2 im normalen Fahrbetrieb eine Reichweite von rund 100 km erreicht. Die 2 zeigt schematisch eine dieser Batterien, nämlich die Fahrzeugbatterie 60. Die beiden Batterien können auf einer oder zwei, sich in Querrichtung erstreckenden und auf Rollen gelagerten Schienen befestigt sein, die nach Öffnung des Abteils 59 seitlich herausgezogen werden können, um die Batterien zu entnehmen und an einer externen Ladestation aufzuladen. Typischerweise verbleiben die beiden Batterien zusammen mit einem dazwischen angeordneten Ladesystem auf den Schienen im Fahrzeugabteil 59, und die Aufladung erfolgt über einen Ladeanschluss 29, der an der vertikalen Fahrzeugrückwand 8 angebracht ist. Zum Aufladen kann ein übliches Ladesystem dienen, das an eine übliche öffentlich zugängliche 16-Ampere Stromversorgung angeschlossen werden kann.
  • Zusätzlich zu den vorstehend benannten und beschriebenen Elementen kann die Skelettkarosserie 3 des Fahrzeugs 2 zu Verstärkungszwecken weitere Stützen und Streben enthalten, die insbesondere aus den 3B und 3C ersichtlich sind, hier aber aus Gründen der Übersicht nicht im Einzelnen aufgeführt sind. Insgesamt verfügt das Fahrzeug 2 über eine selbsttragende, in Karosserie-Skelett-Bauweise ausgeführte, selbsttragende, biegesteife und stabile Karosserie 3, an der die drei Fahrzeugräder 70, 100 und 100' angebracht sind.
  • An der Karosserie 3 ist eine Fahrzeugverkleidung 4 bzw. die Fahrzeughaut oder das Fahrzeuggehäuse aufgehängt. Typischerweise wird diese Fahrzeugverkleidung 4 aus mehreren Kunststoffformteilen zusammengesetzt, die ihrerseits vorzugsweise aus Polyethylen bestehen. Zu diesen Verkleidungsteilen gehören Fahrzeugseitenteile 5 und 5', die vertikale Fahrzeugrückwand 8, eine Auskleidung 9 der Fahrerzelle 10 mit Fußraum 11 und Fahrersitzrücken 13, sowie eine Fahrzeugvorderfront 6. Innerhalb der Fahrerzelle 10 befindet sich ein, an der Karosserie 3 befestigter Fahrersitz 12, dem ein Sicherheitsgurt zugeordnet sein kann.
  • Das Leergewicht des Fahrzeugs 10 - ohne Batterien und Ladeaufbau - beträgt etwa 230 kg, sofern die Skelett-Karosserie 3 überwiegend aus Aluminiumwerkstoff gefertigt ist und etwa 270 kg, sofern die Skelett-Karosserie 3 überwiegend aus Stahl gefertigt ist. Ein Fahrzeug 2 mit der vorstehend beschriebenen Karosserie 3 verfügt über eine Gesamtladekapazität von etwa 250 kg; im Einzelnen kann ein Ladekorb 38 am Vorderrad 70 mit etwa 50 kg belastet werden; die hintere Ladefläche 31 auf der Hauptladeplattform 30 kann 120 kg tragen, und der geschlossene dauerhafte Transportbehälter 35 zwischen den beiden Hinterrädern 100 und 100' kann typischerweise Transportgut mit einem Gewicht von bis zu 80 kg aufnehmen. Die hintere Ladefläche 31 kann mit einem Rahmen versehen sein und dann als offene Plattform bzw. Pritsche zum Transport von Transportgut, Arbeitsgeräten und sonstigen Gerätschaften dienen. Alternativ kann auf dieser hinteren Ladefläche 31 ein geschlossener mobiler Ladeaufbau 32 vorgesehen werden, der auf einer Grundfläche von knapp 9.000 cm2 eine Standardhöhe bis zu 80 cm erreichen kann. Folglich kann mit dem mobilen Ladeaufbau 32 ein Transportvolumen bis zu 0,7 cm3 bereitgestellt werden.
  • Das Fahrzeug 2 hat ein nicht motorisch angetriebene Vorderrad 70 mit einer 15 Zoll Felge 71, auf der ein Radreifen 72 sitzt; vorzugsweise kann ein typischer Motorradreifen der Reifentype 120/70 R15 vorgesehen werden. Mit der Felge 71 ist eine Vorderrad-Bremsscheibe 73 drehfest verbunden; Felge 71 und Bremsscheibe 73 sitzen auf einer Radnabe, die drehbar um eine Vorderradachse angeordnet ist, die in Form einer Welle ausgebildet ist, die von Beinen 74 und 74' einer Teleskopfedergabel 80 gehalten wird. Jedes Bein 74 und 74' besteht aus einer Kombination aus unterem Standrohr 75, 75' und oberem Standrohr 76, 76', in die je ein dazwischen angeordnetes Tauchrohr einführbar ist; innerhalb dieser Rohre befinden sich Feder- und Dämpfungsmittel. Die Welle ist zwischen die beiden unteren Standrohre 75 und 75' eingesetzt und daran befestigt. An dem einen unteren Standrohr 75 ist ein Ansatz angeschweißt, an dem ein Bremssattel befestigt ist, der zwei Bremsbacken hält, die bei Betätigung auf die Bremsscheibe 73 pressen. Diese beiden Bremsbacken werden hydraulisch betätigt; die dazu gehörige hydraulische Kolben/Zylinder-Anordnung ist am Fahrzeuglenker 81 befestigt. Die beiden oberen Standrohre 76 und 76' werden von einer unteren Gabelbrücke 77 und einer oberen Gabelbrücke 78 zusammengehalten, zwischen die mittig ein Gabelschaft eingesetzt ist, der schwenkbar in einem Gabelschaftrohr 79 geführt ist, das seinerseits an der Vorderkante des massiven Blocks 55 angeschweißt ist. Über diese Kombination aus Gabelschaft und Gabelschaftrohr 79 ist die Teleskopfedergabel 80 schwenkbar an der Fahrzeugkarosserie 3 gehalten. An der oberen Gabelbrücke 78 ist ein gekröpft ausgeführter Fahrzeuglenker 81 drehfest befestigt. Die gesamte Teleskopfedergabel 80 ist schräg nach vorne gestellt, und die Ausrichtung des Gabelschaftes definiert die Richtung einer Lenkachse und bildet mit einer Horizontalen den in 3A angedeuteten Lenkkopfwinkel W; erfindungsgemäß ist ein Lenkkopfwinkel W von 68° bis 72°, insbesondere ein solcher Lenkkopfwinkel W von 70° vorgesehen. Ein solcher Lenkkopfwinkel W gewährleistet auch bei erheblicher Last auf dem Vorderrad 70 ein agiles und gut kontrollierbares Lenkverhalten.
  • Die 5 zeigt mehr im Einzelnen die rechte Hälfte des Fahrzeuglenkers 81 an der Teleskopfedergabel 80. Hier sind die Bedienungselemente Beschleunigungsdrehgriff 82 und ein schwenkbar angelenkter, federbelasteter Bremshandgriff 83 angebracht. Am Bremshandgriffkörper ist ein Stößel 84 schwenkbar angesetzt, und ein Anziehen des Bremshandgriffes 83 lässt diesen Stößel 84 in eine Hülse 85 eintauchen, in der sich eine Kolben/Zylinder-Anordnung einer hydraulischen Bremseinrichtung befindet. Hier ist eine zweistufige Wirkungsweise realisiert. Zuerst wird der Stößel 84 einen elektrischen Schalter betätigen, der daraufhin ein elektrisches Bremssignal generiert, das dem Controller zugeführt wird, der daraufhin ein Motorbremssignal erzeugt, das den beiden Motorsteuerungen zugeführt wird, die daraufhin jeden Motor in einen Motorbremsmodus steuern, in welchem Fahrzeugbewegungsenergie rekuperativ in elektrische Energie gewandelt wird, die den Fahrzeugbatterien zugeführt wird. Erst bei einem weiteren Anziehen des Bremshandgriffes 83 drückt der Stößel 84 auf den Kolben der Kolben/Zylinder-Anordnung der hydraulischen Bremseinrichtung und erhöht den hydraulischen Bremsdruck im Zylinder, der dann über eine Hydraulikmittelleitung 86 und weitere Leitungen dieser Art den Bremsbacken an allen drei Fahrzeugrädern 70, 100 und 100' zugeführt wird. Daraufhin erfolgt zusätzlich zu der Motorbremsung eine gleichmäßige Verminderung der Fahrzeuggeschwindigkeit über die Aktivierung der Bremsscheiben an allen drei Fahrzeugrädern 70, 100 und 100'.
  • Am Fahrzeuglenker 81 ist neben dem Beschleunigungshandgriff 82 ein Signalkranz 87 fest montiert, an dem elektrische Schalter angebracht sind; unter anderem ein Kippschalter 88, der die Funktion eines Notschalters hat; bei Betätigung dieses Kippschalters 88 werden sämtliche elektrischen Aktivitäten am Fahrzeug 10 augenblicklich gestoppt. Unterhalb des Kippschalter 88 - und in 5 nicht zu erkennen - ist am Signalkranz 87 ein Schieberegeler angebracht, der zwei verschiedene Stellungen einnehmen kann und mit dem am Fahrzeug 2 ein Vorwärtsfahr- oder ein Rückwärtsfahr-Modus eingestellt wird. Um das Fahrzeug 2 in den Rückwärtsfahr-Modus zu steuern, müssen gleichzeitig der Bremshandgriff 83 angezogen und der Schieberegler entsprechend verstellt werden. Zu weiteren Bedienungselementen am Fahrzeuglenker 81 gehören Schalter zur Betätigung von Licht und Fernlicht sowie der Blinker.
    Vor der oberen Gabelbrücke 78 und dem Fahrzeuglenker 81 befindet sich ein, an der U-förmigen Halterung 63 befestigtes Display 67, auf dem Betriebsdaten angezeigt werden, wie aktuelle Fahrzeuggeschwindigkeit, Spannung und Ladezustand der Batterien, Motortemperatur, sowie eine Aktivierung von Lampe und Blinkern. Ferner ist an der U-förmigen Halterung 63 hängend eine Lampe 68 angebracht.
  • Mit Hilfe des Lenkers 81 und der Teleskopfedergabel 80 kann ein Lenkwinkel des Vorderrades 70 von + 80° (nach rechts) bzw. von - 80° (nach links) bezüglich der Fahrzeuglängsrichtung eingeschlagen werden. Dieser Lenkwinkel bzw. Lenkwinkeleinschlag wird von einem Lenkwinkelsensor erfasst, der an der unteren Gabelbrücke 77 angebracht sein kann; typischerweise kann der Lenkwinkelsensor einen, bezüglich des Gabelschaftes radial ausgerichteten Stabmagneten enthalten, dessen Feldlinien von einem Magnetfeldsensor, typischerweise einem Hallsensor, erfasst werden, der gegenüber ortsfest am Fahrzeuggestell angebracht ist. Es ist ausreichend, den Lenkwinkel auf einige Grad genau zu ermitteln. Ein dem momentanen Lenkwinkel entsprechendes Lenkwinkelsignal wird dem Controller zugeführt und wird bei der Ausführung bestimmter Fahrmodi verwendet, die auch vom Lenkwinkeleinschlag des Vorderrades abhängig sind.
  • Vor der Teleskopfedergabel 80 ist eine vordere Ladefläche 37 vorgesehen, die auf der U-förmigen Halterung 63 abgestützt ist, diese hat Arme 64 und 64, die je an den ansteigenden einrohrigen Pfeilern 43 bzw. 43' des unteren Tragelementes 40 angeschweißt sind; diese Arme 64 und 64' werden zusätzlich von Stützen 65 und 65' abgestützt, die ebenfalls an den Pfeilern 43 bzw. 43' angesetzt sind. Auf dieser vorderen Ladefläche 37 kann ein Ladekorb 38 oder sonstiger Gepäckträger vorgesehen werden der mit einer Nutzlast bis zu 50 kg belastet werden kann; beispielsweise kann hier ein speziell für Aufnahme und Beförderung von Postgut entwickelter Transportbehälter vorgesehen werden, wie er in dem Dokument EP 2433854 A2 beschrieben ist. An der U-förmigen Halterung 63 ist hängend die Lampe 68 angebracht. Ferner ist an dieser U-förmigen Halterung 63 die Displayeinrichtung 67 abgestützt auf der Daten zum Betrieb des Fahrzeugs darstellbar sind.
  • Am Fahrzeug 2 sind die beiden Hinterräder 100 und 100' motorisch angetrieben. Als Antrieb dient je ein Radnabenmotor 90 - nachstehend kurz: der Motor 90 - der für eine Nennleistung größer 2 kW und kleiner 6 kW ausgelegt ist. Gut geeignet ist und vorzugsweise eingesetzt wird ein handelsüblich erhältliches Produkt, nämlich der von GEM motors d.o.o., SI - 1241 Kamnik, Slowenien unter der Handelsbezeichnung Type G2.4 vertriebene Standardmotor; hierbei handelt es sich um einen mehrphasigen Synchronmotor, der über eine integrierte Motorsteuerung verfügt und dessen Rotor mit Permanentmagneten ausgerüstet ist; weitere Details lassen sich im Internet unter www.gemmotors.si abrufen.
  • Dieser Motor 90 ist in den 4A und 4B dargestellt. Der Motor 90 bildet im Wesentlichen einen kreisrunden scheibenförmigen Körper mit einem Durchmesser von 281 mm und einer Breite von 140 mm; dieser Körper hat ein ortsfest zu montierendes Statorteil 91, das von einem topfförmigen Drehteil 94 umfasst wird, das in einstückiger Bauweise aus einem, dem Topfumfang entsprechenden Ringteil 95 und einer dem Topfboden entsprechenden Außenwand 96 besteht; am Innenumfang des Ringteils 95 sind Permanentmagnete montiert, die um Statorpole am Statorteil 91 rotieren. Der Motor 90 ist für einseitige Befestigung ausgelegt; hierzu steht von dem Statortteil 91 - bezüglich des Fahrzeugs 2 - ein Achszapfen 92 radial nach innen ab, der drehfest mit dem Statorteil 91 verbunden ist. Zuerst wird am Achszapfen 92 eine Bremsscheibe drehfest montiert; anschließend wird der Achszapfen 92 in eine passende Bohrung 107 an einem Radträger 103 eingeführt (vgl. 3D); ein abstehender Steg am Achszapfen 92 taucht in eine angepasste Nut an der Bohrung 107 ein, um einen drehfesten Sitz zwischen Achszapfen 92 und Radträger 103 zu gewährleisten; auf ein endständiges Gewinde 93 am Achszapfen 92 wird eine Mutter geschraubt und gesichert. Zwischen Statorteil 91 und Drehteil 94 ist eine Dichtung in Form eines Simmerings eingesetzt, die das Eindringen von Staub und Wasser verhindert. Von der Außenwand 96 stehen Bolzen 97 ab, an denen eine Hinterradfelge 98 montiert und festgelegt wird, auf der ein Hinterradreifen 99 aufgezogen wird. Vorzugsweise ist als Hinterradreifen 99 ein üblicher 15 Zoll Motorradreifen der Reifentype 120/70 R15 vorgesehen. Felge 98, deren Felgenhorn und die Anbringung des Reifens 99 am Felgenhorn gewährleisten eine Anordnung, bei welcher der Hinterradreifen 99 den scheibenförmigen Motor 90 umfasst, so dass Motor 90 und Hinterradreifen 99 gemeinsam in radialer Ausrichtung fluchtend angeordnet sind. Der Motor 90 bildet ein an der Fahrzeugradaufhängung stationär und dauerhaft montiertes Teil, von dem Felge 98 und Hinterradreifen 99 leicht getrennt und ausgetauscht werden können, wie das für einen Pkw-Reifen üblich ist. Der Achszapfen 92 ist hohl ausgebildet, und durch die resultierende Bohrung sind Kabel geführt, über welche der Motor 90 mit Strom, Spannung und Signalen versorgt wird.
  • Der Motor 90 wird mit einer Gleichspannung von 48 V betrieben, die von den Fahrzeugbatterien 60 bereitgestellt wird. Der Motor ist für ein Nenn-Drehmoment von 145 Nm ausgelegt; das Fahrzeug 2 erreicht mit den 15 Zoll Hinterradreifen bei einer Motorumdrehungsgeschwindigkeit von etwa 480 Umdrehungen/Minute eine Höchstgeschwindigkeit von 45 km/h. Der Motor 90 ist mit einer integrierten Motorsteuerung versehen, die über ein üblichen CAN-Netzwerk mit dem Controller an der Fahrzeugkarosserie kommuniziert. Zwischen Controller und jeder Motorsteuerung findet ein wechselseitiger Datenaustausch statt. Der Controller kontrolliert an jedem Motor dessen Motorsteuerung, die daraufhin den zugehörigen Motor veranlasst, die vom Controller vorgegebene Betriebsweise einzunehmen und auszuführen. Der hier eingesetzte Radnabenmotor kann beide Laufrichtungen in gleicher Weise ausführen, so dass an beiden Hinterrädern 100 und 100' des Fahrzeugs 2 der gleiche Motor eingesetzt werden kann, der dann lediglich die Hauptlaufrichtung tauscht.
  • Mit Bezugnahme auf die 3D und 3E wird nachstehend das Fahrwerk mit den Radaufhängungen für die beiden Hinterräder im Einzelnen erläutert. Zu diesem Fahrwerk gehören zwei Radaufhängungen 102 und 102, die je einen Radträger 103 und 103' haben, an denen je ein Hinterrad 100, 100' angebracht ist; die jeweiligen Anordnungen aus Hinterrad 100, bzw. 100' mit dazu gehöriger Radaufhängung 102 bzw. 102' sind identisch ausgeführt; nachstehend wird nur das Hinterrad 100 und dessen Radaufhängung 102 beschrieben; diese Ausführungen gelten in gleicher Weise auch für das andere Hinterrad 100' und dessen Radaufhängung 102'.
  • Die Radaufhängung 102 enthält einen Radträger 103 in Form eines Radträgerkörpers mit einer Kontur, die an ein Drachenviereck erinnert, das eine lange, in Fahrzeuglängsrichtung ausgerichtete Diagonale hat. Dieser Radträgerkörper hat vier Ecken, nämlich - in dieser Anordnung - eine hintere Ecke 105, eine obere Ecke 105', eine vordere Ecke 105" und eine untere Ecke 105'". In der hinteren Ecke 105 ist eine Bohrung 107 ausgespart, in welche der Achszapfen 92 eingesetzt wird. In der vorderen Ecke 105" ist eine weitere Bohrung ausgespart, durch die eine Welle 108 geführt ist, die in zwei, zueinander beabstandeten Wangen 109 einer Konsole gehalten ist, die an vertikalen Stützen des Stützrahmens 50 angeschweißt ist. An dieser Welle 108 ist der Radträger 103 schwenkbar angelenkt. In der oberen Ecke 105' des Radträgerkörpers ist ein weiteres Gelenk 110 ausgebildet, an dem schwenkbar ein unteres Ende 115 eines Federdämpfers 112 angelenkt ist. Dieser Federdämpfer 112 hat ein oberes Ende 113, das schwenkbar in einem Lager 114 gehalten ist, das am oberen äußeren Längsträger 22 des oberen Tragelementes 20 der Fahrzeugkarosserie 3 angebracht ist. An der unteren Ecke 105'" des Radträgerkörpers ist ein weiteres Lager 116 ausgebildet, in dem eine Welle 117 steckt, an welcher ein Fuß 118 eines Längslenkers 120 schwenkbar angelenkt ist. Der Längslenker 120 hat einen gegenüber befindlichen Kopf 119, in den ein Endabschnitt 123 eines Drehstabes 122 drehfest eingespannt ist.
  • Somit ist der Radträger 103 der Radaufhängung 102 gegenüber der Fahrzeugkarosserie 3 dreifach gelenkig gelagert. Das am Radträger 103 befestigte Hinterrad 100 vermag eine Vertikalverstellung gegenüber der Fahrzeugkarosserie 3 auszuführen. Führt ein Hinterrad 110 infolge einer Untergrundunebenheit eine Hubbewegung aus, dann wird das resultierende Moment vom Federdämpfer 112 insbesondere gegenüber der Hauptladeplattform 30 gedämpft, die sich über den beiden Hinterrädern 100 und 100' befindet.
  • Die beiden Radträger 103 und 103' sind über einen Drehstabstabilisator 122 miteinander gekoppelt, der sich in Querrichtung nahezu über die gesamte Fahrzeugbreite erstreckt, und der zwei entfernte Drehstabendabschnitte 123 und 123' hat. Vorzugsweise wird ein Drehstabstabilisator 122 eingesetzt, der aus einem geraden massiven Stab aus hochwertigem Federstahl mit einem Durchmesser von etwa 15 mm besteht. Der Drehstabstabilisator 122 ist in zwei zueinander beabstandeten Drehstablagern 124 und 124' abgestützt und drehbar gehalten, die je an zwei unteren hinteren Längsträgern125 und 125' des unteren Tragelementes 40 befestigt sind; jeder Längsträger 125 und 125' hat ein Ende, das wiederum am unteren horizontalen Querträger 25 angeschweißt ist. Jeder Drehstabendabschnitt 123, 123' ist drehfest im Kopf 119 des zugeordneten Längslenkers 120, 120' eingespannt und schafft somit auch ein Schwenklager für diesen Längslenkerkopf 119. Folglich ist der Drehstabstabilisator 122 um eine in Fahrzeug-Querrichtung verlaufende Drehachse schwenkbar angeordnet; jeder Drehstabendabschnitt 123, 123' drehfest in dem vom Radträger 103 abgewandten Kopf 119 des Längslenkers 120 eingespannt. Bei einer, durch eine Untergrundunebenheit verursachten Hubbewegung des einen Hinterrades 100 wird der beidseitig abgestützte Drehstabstabilisator 122 auf Torsion beansprucht und wird einen Teil des Hubmomentes auf das andere Hinterrad 100' übertragen. Der Drehstabstabilisator 122 verbindet auf diese Weise die beiden Spurseiten des Fahrzeugs 2 miteinander und reduziert damit eine Wankneigung des Fahrzeugs beim Befahren von unebenem Untergrund.
  • Die 5 zeigt mehr im Einzelnen eine rechte Hälfte des Fahrzeuglenkers 81 an der Teleskopfedergabel 80. Hier sind die Bedienungselemente Beschleunigungsdrehgriff 82 und schwenkbar angelenkter, federbelasteter Bremshandgriff 83 angebracht. Eine Verschwenkung des Bremshandgriffes 83 schiebt einen beweglich angelenkten Stößel 84 in eine Hülse 85 hinein, in der sich eine Kolben/Zylinder-Anordnung einer hydraulischen Bremseinrichtung befindet. Hier ist eine zweistufige Wirkungsweise realisiert. Zuerst wird der Stößel 84 einen elektrischen Schalter betätigen, der daraufhin ein elektrisches Bremssignal generiert, das dem Controller zugeführt wird, der daraufhin ein Motorbremssignal erzeugt, das den beiden Motorsteuerungen zugeführt wird, die daraufhin jeden Motor in einen Motorbremsmodus steuern, in welchem Fahrzeugbewegungsenergie rekuperativ in elektrische Energie gewandelt wird, die den Fahrzeugbatterien zugeführt wird. Erst bei einer weiteren Verschwenkung des Bremshandgriffes 83 drückt der Stößel 84 auf den Kolben der Kolben/Zylinder-Anordnung und erhöht den hydraulischen Bremsdruck in einem Bremszylinder, woraufhin hydraulischer Druck aufgebaut wird, der über Hydraulikmittelleitungen 86 den Bremsbacken der Scheibenbremsen an allen drei Fahrzeugrädern 70, 100 und 100' zugeführt wird.
  • Bezugszeichenliste
  • 2
    Fahrzeug, Elekrofahrzeug
    3
    Karosserie
    4
    Verkleidung
    5, 5'
    Seitenteile
    6
    Vorderfront
    7
    Rückseite
    8
    vertikale Fahrzeugrückwand
    9
    Auskleidung Fahrerzelle
    10
    Fahrerzelle
    11
    Fahrerfußraum
    12
    Fahrersitz
    13
    Fahrersitz-Rückenteil
    15
    Platine
    20
    oberes Tragelement
    21
    oberer Querholm
    22, 22'
    obere äußere Längsträger
    23, 23'
    obere innere Längsträger
    24, 24'
    abfallendes Rohr
    25
    unterer horizontaler Querträger
    26
    vorderer oberer Querträger
    27
    Hals (einer Kugelkopfkupplung)
    28
    Kugelkopfkupplung
    29
    Ladeanschluss für Batterie(en)
    30
    (hintere) Hauptladeplattform
    31
    Ladefläche auf der Hauptladeplattform
    32
    mobiler Ladeaufbau auf der Ladefläche
    35
    dauerhafter Transportbehälter
    36
    schwenkbare Türe des dauerhaften Transportbehälters
    37
    vordere Ladefläche
    38
    (vorderer) Ladekorb
    40
    unteres Tragelement
    41
    unterer hinterer Querträger
    42, 42'
    unterer äußerer Doppelrohr-Längsträger
    43, 43'
    einrohriger Pfeiler
    44
    rückwärts gewandte Brücke
    45
    massiver Block
    46
    unterer mittiger Querträger
    47
    unterer mittiger Längsträger
    48
    vorderer Endabschnitt des unteren mittigen Längsträgers
    49
    nach vorne schützende Barriere
    50
    vertikaler Stützrahmen
    51
    oberer horizontaler Querstab
    52, 52'
    vertikal abfallender Ast
    53
    unterer mittiger Querstab
    54, 54'
    vertikale Stützen (eines Überrollbügels)
    55
    Überrollbügel
    56, 56'
    horizontal ausgerichtete Längsstäbe
    57
    Bodenblech
    58
    weiteres Bodenblech
    59
    Abteil (für Batterie(en))
    60
    Batterie(en)
    63
    U-förmige Halterung
    64, 64'
    Arme
    65, 65'
    weitere Stütze
    67
    Display
    68
    hängende Lampe
    70
    lenkbares Vorderrad
    71
    Felge
    72
    Vorderrad reifen
    73
    Vorderrad-Bremsscheibe
    74, 74'
    Beine der Federgabel
    75, 75'
    untere Standbeine der Federgabel
    76, 76'
    obere Standbeine der Federgabel
    77
    untere Gabelbrücke
    78
    obere Gabelbrücke
    79
    Gabelschaftrohr
    80
    Teleskopfedergabel
    W
    Lenkkopfwinkel
    81
    Fahrzeuglenker
    82
    Beschleunigungsdrehgriff
    83
    Bremshandgriff
    84
    Stößel (am Bremshandgriffkörper angelenkt)
    85
    Hülse
    86
    Hydraulikmittelleitung
    87
    Signalkranz
    88
    Kippschalter
    90
    Radnabenmotor, auch kurz „Motor“
    91
    Statorteil (des Motors)
    92
    Achszapfen am Statorteil
    93
    endständiges Gewinde am Achszapfen
    94
    Drehteil
    95
    Ringteil
    96
    Außenwand (des Drehteils)
    97
    Bolzen
    98
    Hinterradfelge
    99
    Hinterradreifen
    100, 100'
    Hinterrad
    102
    Radaufhängung
    103
    Radträger
    105, 105', 105" und 105"'
    vier Ecken am Radträger(körper)
    107
    Bohrung (für Achszapfen)
    108
    Welle (eines Schwenklagers des Radträgers)
    109
    Wangen einer das Radträger-Schwenklager bildenden Konsole)
    110
    weiteres Gelenk (an dem Federdämpfer 112 angelenkt ist)
    112
    Federdämpfer
    113
    oberes Ende des Federdämpfers
    114
    Lager für oberes Federdämpferende
    115
    unteres Ende des Federdämpfers
    116
    weiteres Lager (für Längslenkerwelle)
    117
    Welle (im Fuß des Längslenkers)
    118
    Fuß (des Längslenkers)
    119
    Kopf (des Längslenkers)
    120
    Längslenker
    122
    Drehstabstabilisator
    123, 123'
    Drehstabendabschnitte
    124, 124'
    zueinander beabstandete Drehstablager
    125, 125'
    untere hintere Längsträger

Claims (11)

  1. Dreirädriges Elektrofahrzeug nach EG-Fahrzeugklasse L2e-U, wobei - das Elektrofahrzeug (2) eine steife, selbsttragende, in Skelettkarosserie-Bauweise ausgeführte Karosserie (3) hat, deren Skelettelemente überwiegend aus metallischen, runden Rohren und hohlen Vierkantprofilen bestehen, die zumeist miteinander verschweißt sind; - das Elektrofahrzeug (2) zwei elektromotorisch angetriebene Hinterräder (100 und 100') hat, die je über eine Radaufhängung (102,102') an der Karosserie (3) gehalten sind, und die bezüglich einer horizontalen Fahrzeugebene vertikal ausgerichtet sind und in allen Fahrsituationen vertikal ausgerichtet bleiben, und die Vertikalverstellungen bezüglich der Karosserie (3) und deren Nutzlast auszuführen vermögen; - jedes Hinterrad (100 und 100') zum elektromotorischen Antrieb je einen, als mehrphasigen Synchronmotor mit integrierter Motorsteuerung ausgebildeten Radnabenmotor (90, 90') aufweist; - an einem Vorderende (6) der Karosserie (3) eine Teleskopfedergabel (80) schwenkbar angelenkt ist, an der ein Vorderrad (70) und ein, mit einem Beschleunigungsdrehgriff (82) ausgerüsteter Fahrzeuglenker (81) montiert ist, und diese Teleskopfedergabel (80) gegenüber einer Fahrzeuglängsrichtung einen maximalen Lenkwinkeleinschlag von etwa minus 80° bis etwa plus 80° auszuführen vermag, der von einem Lenkwinkelsensor erfasst wird, der ein entsprechendes Lenkwinkelsignal erzeugt; und - am Elektrofahrzeug (2) ein, mit Datenspeicherkapazität und digitaler Datenverarbeitungskapazität ausgerüsteter Controller montiert ist, der nachstehende Fahrparameter, nämlich - - den Lenkwinkeleinschlag des Vorderrades (70), - - die von der Beschleunigungsdrehgriff-Stellung geforderte SOLL-Beschleunigung, - - die aktuelle IST-Drehzahl der beiden Hinterräder (100 und 100'), und die momentane Fahrzeuggeschwindigkeit erfasst und auswertet, und anhand dieser Auswertung verschiedene Antriebsmodi veranlasst, bei deren Ausführung die beiden Motorsteuerungen so angesteuert werden, dass bei einer Kurverfahrt die beiden Hinterräder (100 und 100') mit je unterschiedlichem Drehmoment angetrieben werden, dadurch gekennzeichnet, dass jeder Radnabenmotor (90, 90') für eine maximale Nenndauerleistung größer 2 kW und kleiner 6 kW ausgelegt ist, insbesondere für eine maximale Nenndauerleistung von etwa 4 kW ausgelegt ist; die Radnabenmotoren (90, 90') kein Getriebe besitzen; der Controller dafür sorgt, dass das aktuelle, von beiden Radnabenmotoren (90, 90') gemeinsam erzeugte Drehmoment eine Nenndauerleistung von 4 kW nicht übersteigt; und zu diesen Antriebsmodi ein Anfahr- und Hindernisüberwindungs-Modus gehört, der bei einer Fahrzeuggeschwindigkeit von 0 bis 2 km/h ausgeführt wird, wobei bei einem starken Lenkwinkeleinschlag bis zu 80° der am kurvenäußeren Rad montierte Motor etwa 90 % des mit der gegebenen Beschleunigungsdrehgriff-Stellung angeforderten Gesamt-Drehmoments liefert, und der am kurveninneren Rad montierte Motor etwa 10 % des angeforderten Gesamt-Drehmoments liefert, das heißt ein Drehmomentverhältnis von 90 zu 10 eingestellt wird, und bei einem geringeren Lenkeinschlag ein proportional entsprechend vermindertes Drehmomentverhältnis eingestellt wird bis bei Geradeausfahrt ein solches Drehmomentverhältnis von 50 zu 50 erreicht ist.
  2. Dreirädriges Elektrofahrzeug nach Anspruch 1, dadurch gekennzeichnet, dass der Controller bei einer Fahrzeuggeschwindigkeit größer 12 km/h einen Normalfahr-Modus ausführen lässt, wobei bei einem starken Lenkwinkeleinschlag bis zu 80° der am kurvenäußeren Rad montierte Motor etwa 70 % des mit der gegebenen Beschleunigungsdrehgriff-Stellung angeforderten Gesamt-Drehmoments liefert, und der am kurveninneren Rad montierte Motor etwa 30 % des angeforderten Gesamt-Drehmoments liefert, das heißt ein Drehmomentverhältnis von 70 zu 30 eingestellt wird, und bei einem geringeren Lenkeinschlag ein proportional entsprechend vermindertes Drehmomentverhältnis eingestellt wird, bis bei Geradeausfahrt ein solches Drehmomentverhältnis von 50 zu 50 erreicht ist.
  3. Dreirädriges Elektrofahrzeug nach Anspruch 1, dadurch gekennzeichnet, dass jeder Radnabenmotor (90, 90') - ein Statorteil (91) aufweist, das über einen horizontal ausgerichteten und drehfest mit dem Statorteil (91) verbundenen Achszapfen (92) stationär und drehfest mit einem Radträger (103) der Radaufhängung (102) verbunden ist; und - ein, das Statorteil (91) topfförmig umfassendes Drehteil (94) hat, das in einstückiger Bauweise ein dem Topfumfang entsprechendes Ringteil (95) und eine, dem Topfboden entsprechende Außenwand (96) hat, wobei am Innenumfang des drehbar gehaltenen Ringteils (95) um die Statorpole rotierbare Permanentmagnete montiert sind, und wobei von der Außenwand (96) Bolzen (97) abstehen, an denen eine, mit einem Radreifen (99) versehene Felge (98) so montierbar ist, dass der Radreifen (99) den Radnabenmotor (90) umfasst, und beide in radialer Richtung gemeinsam fluchtend angeordnet sind.
  4. Dreirädriges Elektrofahrzeug nach Anspruch 3, dadurch gekennzeichnet, dass der Radträger (103) einen Radträgerkörper hat, dessen Kontur an ein Drachenviereck erinnert, das eine lange Diagonale hat, die am Elektrofahrzeug (2) in dessen Längsrichtung und im Wesentlichen horizontal ausgerichtet ist, so dass der Radträgerkörper vier Ecken hat, nämlich - bei dieser Anordnung - eine hintere Ecke (105), eine obere Ecke (105'), eine vordere Ecke (105") und eine untere Ecke (105'"); in der hinteren Ecke (105) eine Bohrung (107) ausgespart ist, in die der Achszapfen (92) am Statorteil (91) des Radnabenmotors (90, 90') eingesetzt ist; und dieser Radträger (103) gegenüber der Karosserie (3) dreifach schwenkbar gelagert ist, nämlich: - in einem an der vorderen Ecke (105") des Radträgers (103) befindlichen Schwenklager (110), das unmittelbar und direkt mit einer vertikalen Stütze eines unteren Tragelementes (40) der Karosserie (3) verbunden ist; - in einem weiteren, an der oberen Ecke (105') des Radträger (103) ausgebildeten Gelenk (111), an dem ein unteres Ende (115) eines Federdämpfers (112) schwenkbar anliegt, der ein oberes Ende (113) hat, das an einem oberen äußeren Längsträger (22) eines oberen Tragelementes (20) der Karosserie (3) gelenkig angebracht ist; und - in einem an der unteren Ecke (105"') des Radträgers (103) ausgebildeten Lager (116), das schwenkbar eine Welle (117) aufnimmt, die mit einem Fuß (118) eines Längslenkers (120) verbunden ist.
  5. Dreirädriges Elektrofahrzeug nach einem der Ansprüche 1, 3 und 4, dadurch gekennzeichnet, dass zur Radaufhängung (102) ein Drehstabstabilisator (122) gehört, der als gerader, sich in Querrichtung über nahezu die gesamte Fahrzeugbreite erstreckenden Stab aus Federstahl ausgebildet ist, der in zwei zueinander beabstandeten und je an einem unteren hinteren Längsträger (125, 125') der Karosserie (3) befestigten Drehstablager (124, 124') abgestützt und drehbar gehalten, ist; dieser Drehstab (122) je einen, über das jeweilige Drehstablager (124, 124') hinausstehenden Drehstabendabschnitt (123, 123') hat, der je drehfest in einem Kopf (119) des zugeordneten Längslenkers(120) eingespannt ist; und dieser Drehstabstabilisator (122) bei einer Vertikalverstellung des Hinterrades (100) auf Torsion beansprucht wird und einen Teil des angreifenden Drehmoments auf den gegenüberliegenden Radträger (103') überträgt, an dem des andere Hinterrad (100') montiert ist.
  6. Dreirädriges Elektrofahrzeug nach Anspruch 4, dadurch gekennzeichnet, dass je das obere Tragelement (20) und das untere Tragelement (40) der Karosserie (3) Skelettelemente aufweisen, die im Bereich der Fahrzeugmitte überlappend angeordnet sind und in diesem Überlappungsbereich von einem vertikalen Stützrahmen (50) durchsetzt werden, wobei: - Skelettelemente (43, 43', 48) am unteren Tragelement (40) an einem Vorderende (6) der Karosserie (3) gemeinsam eine nach vorne schützende Barriere (49) für einen Fußraum (11) eines Fahrzeugfahrers am Elektrofahrzeug (2) bilden; und - Skelettelemente (51, 53, 54, 54') einen Überrollbügel (55) bilden, der hinter einem Fahrersitz-Rückenteil (13) angeordnet ist und weit über den Kopf des auf einem Fahrersitz (12) sitzenden Fahrzeugfahrers hinaus empor ragt.
  7. Dreirädriges Elektrofahrzeug nach Anspruch 6, dadurch gekennzeichnet, dass zum oberen Tragelement (20) der Karosserie (3) die Skelettelemente obere äußere Längsträger (22 und 22') und obere innere Längsträger (23 und 23') gehören; und diese Längsträger (22, 22', 23, 23') eine Halterung für eine ebene, horizontal ausgerichtete, hintere Hauptladeplattform (30) bilden, die eine rechteckige LadeFläche (31) mit einer Fläche von etwa 8880 cm2 hat, die mit einer Nutzlast bis zu 120 kg belastbar ist.
  8. Dreirädriges Elektrofahrzeug nach Anspruch 7, dadurch gekennzeichnet, dass sich an der Karosserie (3) zwischen den beiden oberen inneren Längsträgern (23 und 23') und damit auch zwischen den beiden Hinterrädern (100 und 100') ein freier Raum befindet, in den unterhalb der hinteren Hauptladeplattform (30) ein dauerhaft angebrachter, geschlossener Transportbehälter (35) eingesetzt ist, der einen Innenraum hat, der über eine schwenkbare Türe (36) in einer vertikalen Fahrzeugrückwand (8) zugänglich ist.
  9. Dreirädriges Elektrofahrzeug nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass am Fahrzeug (10) das lenkbare Vorderrad (70) und zwei elektromotorisch angetriebene Hinterräder (100 und 100') angebracht sind; und jedes Rad (70, 100, 100') mit je einer 15 Zoll Felge ausgestattet ist.
  10. Dreirädriges Elektrofahrzeug nach Anspruch 1, dadurch gekennzeichnet, dass die Teleskopfedergabel (80) an der Fahrzeugkarosserie (3) um eine Lenkachse schwenkbar und lenkbar angebracht ist, deren Ausrichtung mit der Horizontalen einen Lenkkopfwinkel (W) von 68° bis 72° einschließt, insbesondere einen solchen Lenkkopfwinkel (W) von 70° einschließt.
  11. Dreirädriges Elektrofahrzeug nach Anspruch 1 und Anspruch 10, dadurch gekennzeichnet, dass an der Teleskopfedergabel (80) ein Fahrzeuglenker (81) befestigt ist, an dem ein Bremshandgriff (83) auslenkbar angebracht ist, dessen Auslenkung eine zweifache Bremswirkung verursacht, nämlich - zuerst eine Verminderung der Fahrzeuggeschwindigkeit durch die in den Rekuperations-Modus gesteuerten Motoren (90, 91', Motorbremsung); und - anschließend eine weitere Verminderung der Fahrzeuggeschwindigkeit durch eine Betätigung der Scheibenbremsen an allen drei Fahrzeugrädern (70, 100 und 100').
DE102019003129.6A 2019-05-02 2019-05-02 DREIRÄDRIGES ELEKTROFAHRZEUG NACH EG-FAHRZEUGKLASSE L2e-U Active DE102019003129B3 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102019003129.6A DE102019003129B3 (de) 2019-05-02 2019-05-02 DREIRÄDRIGES ELEKTROFAHRZEUG NACH EG-FAHRZEUGKLASSE L2e-U
PCT/EP2020/000100 WO2020221474A2 (de) 2019-05-02 2020-04-30 Dreirädriges elektrofahrzeug nach eg-fahrzeugklasse l2e-u
EP20732100.1A EP3962762A2 (de) 2019-05-02 2020-04-30 Dreirädriges elektrofahrzeug nach eg-fahrzeugklasse l2e-u

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019003129.6A DE102019003129B3 (de) 2019-05-02 2019-05-02 DREIRÄDRIGES ELEKTROFAHRZEUG NACH EG-FAHRZEUGKLASSE L2e-U

Publications (1)

Publication Number Publication Date
DE102019003129B3 true DE102019003129B3 (de) 2020-06-25

Family

ID=70969360

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019003129.6A Active DE102019003129B3 (de) 2019-05-02 2019-05-02 DREIRÄDRIGES ELEKTROFAHRZEUG NACH EG-FAHRZEUGKLASSE L2e-U

Country Status (3)

Country Link
EP (1) EP3962762A2 (de)
DE (1) DE102019003129B3 (de)
WO (1) WO2020221474A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111791689A (zh) * 2020-07-27 2020-10-20 长春汽车工业高等专科学校 一种商用车集成式轮毂电机及其控制方法
DE102020004287B3 (de) 2020-07-16 2021-11-04 Robert Virant DREIRÄDRIGES ELEKTROFAHRZEUG NACH EG-FAHRZEUGKLASSE L2e-U
EP4177142A1 (de) * 2021-11-05 2023-05-10 Jumug Vehicles GmbH Lastenfahrzeug
US12030583B2 (en) * 2020-07-16 2024-07-09 Robert Virant Three-wheeled electric vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2394701A (en) 2002-10-29 2004-05-05 Stuart Mills Tilt trike
US20090255747A1 (en) 2008-04-10 2009-10-15 Ridevehicles Llc 3-Wheeled stand-up personal mobility vehicle and components therein
JP2009248887A (ja) * 2008-04-10 2009-10-29 Viewtec Japan Co Ltd 自動三輪車
EP2433854A2 (de) 2010-09-24 2012-03-28 Ing. Büro M. Kyburz AG Transportbehälter zur Postverteilung mittels Zustellvehikel
DE102014207760A1 (de) * 2014-04-24 2015-10-29 Continental Teves Ag & Co. Ohg Bremswunscherfassung an einem Fahrrad mit einem Geberfeld
EP3037333A1 (de) 2013-06-19 2016-06-29 Electrike Japan Co. Ltd Automatisches dreirad
DE102016115803A1 (de) * 2016-01-21 2017-07-27 Herbert Weber Lasten-Fahrrad
DE202018106199U1 (de) 2018-10-30 2019-01-15 Daniel Riebartsch Dreirädiges Mopedauto
DE102017116733A1 (de) 2017-07-25 2019-01-31 Schaeffler Technologies AG & Co. KG Kontrolleinrichtung für mindestens einen Radnabenmotor sowie Fahrzeug mit der Kontrolleinrichtung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY115442A (en) * 1994-08-04 2003-06-30 Honda Motor Co Ltd Motor with gear reducer
JP2009190649A (ja) * 2008-02-18 2009-08-27 Viewtec Japan Co Ltd 自動三輪車
US11198482B2 (en) * 2017-06-27 2021-12-14 Honda Motor Co., Ltd. Oscillation-type vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2394701A (en) 2002-10-29 2004-05-05 Stuart Mills Tilt trike
US20090255747A1 (en) 2008-04-10 2009-10-15 Ridevehicles Llc 3-Wheeled stand-up personal mobility vehicle and components therein
JP2009248887A (ja) * 2008-04-10 2009-10-29 Viewtec Japan Co Ltd 自動三輪車
EP2433854A2 (de) 2010-09-24 2012-03-28 Ing. Büro M. Kyburz AG Transportbehälter zur Postverteilung mittels Zustellvehikel
EP3037333A1 (de) 2013-06-19 2016-06-29 Electrike Japan Co. Ltd Automatisches dreirad
DE102014207760A1 (de) * 2014-04-24 2015-10-29 Continental Teves Ag & Co. Ohg Bremswunscherfassung an einem Fahrrad mit einem Geberfeld
DE102016115803A1 (de) * 2016-01-21 2017-07-27 Herbert Weber Lasten-Fahrrad
DE102017116733A1 (de) 2017-07-25 2019-01-31 Schaeffler Technologies AG & Co. KG Kontrolleinrichtung für mindestens einen Radnabenmotor sowie Fahrzeug mit der Kontrolleinrichtung
DE202018106199U1 (de) 2018-10-30 2019-01-15 Daniel Riebartsch Dreirädiges Mopedauto

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EUROPÄISCHE UNION: Richtlinie 2002/24/EG des Europäischen Parlaments und des Rates vom 18. März 2002 über die Typgenehmigung für zweirädrige oder dreirädrige Kraftfahrzeuge und zur Aufhebung der Richtlinie 92/61/EWG des Rates. In: Amtsblatt der Europäischen Union. Reihe C & L, Bd. 45, 2002, H. 124, S. 1-44. - ISSN 1977-0642 (E); 0376-9453 (P). URL: https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32002L0024&from=DE [abgerufen am 2019-08-26] *
EUROPÄISCHE UNION: Verordnung (EU) Nr. 168/2013 des Europäischen Parlaments und des Rates vom 15. Januar 2013 über die Genehmigung und Marktüberwachung von zwei- oder dreirädrigen und vierrädrigen Fahrzeugen. In: Amtsblatt der Europäischen Union. Reihe C & L, Bd. 56 , 2013, H. 60, S. 52-128. - ISSN 1977-0642; 0376-9453 (P). URL: https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32013R0168&from=DE [abgerufen am 2019-08-07] *
vRbikes.ch ag: vR3 Das modulare Elektrofahrzeug [2016]. URL: https://www.vrbikes.ch/de/elektrodreirad.html *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020004287B3 (de) 2020-07-16 2021-11-04 Robert Virant DREIRÄDRIGES ELEKTROFAHRZEUG NACH EG-FAHRZEUGKLASSE L2e-U
WO2022012772A1 (de) * 2020-07-16 2022-01-20 Robert Virant Dreirädriges elektrofahrzeug
US12030583B2 (en) * 2020-07-16 2024-07-09 Robert Virant Three-wheeled electric vehicle
CN111791689A (zh) * 2020-07-27 2020-10-20 长春汽车工业高等专科学校 一种商用车集成式轮毂电机及其控制方法
CN111791689B (zh) * 2020-07-27 2023-08-15 吉林大学 一种商用车集成式轮毂电机的控制方法
EP4177142A1 (de) * 2021-11-05 2023-05-10 Jumug Vehicles GmbH Lastenfahrzeug

Also Published As

Publication number Publication date
WO2020221474A3 (de) 2021-01-28
EP3962762A2 (de) 2022-03-09
WO2020221474A9 (de) 2021-03-25
WO2020221474A2 (de) 2020-11-05

Similar Documents

Publication Publication Date Title
EP2755886B1 (de) Transportfahrzeug mit dreirad-fahrwerk
DE102019003129B3 (de) DREIRÄDRIGES ELEKTROFAHRZEUG NACH EG-FAHRZEUGKLASSE L2e-U
EP3205564B1 (de) Lasten-fahrrad
EP3099556B1 (de) Fahrzeug mit neigerahmen
DE102016120697B4 (de) Auflieger-Lastenfahrrad
EP1993899B1 (de) Kurvenneigendes fahrzeug, insbesondere dreirad
DE2707562A1 (de) Plattform-stabilisiertes, kurvenneigendes motorfahrzeug
EP3317172B1 (de) Fahrzeug mit geneigter lenkachse
DE202019001921U1 (de) Dreirädriges Elektrofahrzeug nach der EG-Fahrzeugklasse L2e-U
DE102012107154B4 (de) Fahrzeug
EP4182212B1 (de) Dreirädriges elektrofahrzeug
DE202013001865U1 (de) Elektrisch angetriebener Roller
DE102020120818A1 (de) Fahrradartiges Fahrzeug
EP2366604B1 (de) Geländegängiges Personenkraftfahrzeug
DE102006062678B4 (de) Kurvenneigendes Dreirad
DE102015118777A1 (de) Dreirad-Fahrzeug
DE102019126096A1 (de) Fahrzeug
CN205202980U (zh) 两轮摩托车驻车移动架
CN204825597U (zh) 一种临时路面铺设车的锁紧装置
EP4077112B1 (de) Dreirad
AT12641U1 (de) Kippsicheres fahrrad
DE102010032976A1 (de) Elektro-Transportfahrzeug-Baukastensystem aus Fahrradteilen
CN2797128Y (zh) 一种轿车尾部行李承载装置
EP4177142A1 (de) Lastenfahrzeug
DE202020104426U1 (de) Vierrädriges Fahrzeug mit Tretkurbelantrieb und einem elektrischen Antrieb sowie Lade- und Parkstation für das Fahrzeug

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R083 Amendment of/additions to inventor(s)
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R081 Change of applicant/patentee

Owner name: VIRANT, ROBERT, SI

Free format text: FORMER OWNER: LUMENOVA SOIUTIONS GMBH, 83026 ROSENHEIM, DE

R082 Change of representative

Representative=s name: BREHM, HANS-PETER, DIPL.-CHEM. DR.PHIL.NAT., DE

R020 Patent grant now final