-
HINTERGRUND DER ERFINDUNG
-
Gebiet der Erfindung
-
Die vorliegende Erfindung bezieht sich auf ein wärmebeständiges Leistungsmodulsubstrat zum Montieren eines große Wärme erzeugenden Leistungs-Halbleiters, einen wärmbeständigen Beschichtungsfilm und eine Beschichtungslösung.
-
Beschreibung des Standes der Technik
-
In der Vergangenheit wurde in einem Leistungsmodulsubstrat häufig ein Si-Halbleiterchip verwendet, und entsprechend einer Sicherstellung der Leistungsfähigkeit des Halbleiterchips wurde er unter der Bedingung, dass eine höchste Betriebstemperatur etwa 150°C beträgt, verwendet.
-
Um eine Korrosionsbeständigkeit einer Leiterschaltung zu verbessern, wurde in dem Leistungsmodulsubstrat eine Nickel-Phosphor-Beschichtung oder dergleichen, die imstande ist, die Betriebstemperatur auszuhalten, verwendet.
-
Beispielsweise ist in Patentliteratur 1 ein Film einer chemischen bzw. stromlosen Nickel-Phosphor-Beschichtung offenbart, der auf ein herkömmlicherweise verwendetes Harzsubstrat, ein Keramiksubstrat oder dergleichen abzielt und zumindest eine aus Eisen, Wolfram, Molybdän und Chrom ausgewählte Komponente aufweist, die an einem Lötstellenbereich in einer Leiterschaltung aufgebracht wird, um eine hohe Lötstellenfestigkeit zu erzielen.
-
Außerdem wird in Patentliteratur 2 ein Verfahren offenbart, um ein zu beschichtendes Objekt wie etwa eine Keramik oder Aluminium mittels stromlos aufgebrachten Nickel-Bors zu beschichten, das ohne eine Hochtemperaturbehandlung eine hohe Härte erreichen kann.
-
- Patentliteratur 1: JP 2002 - 256 444 A
- Patentliteratur 2: JP 3 146 065 B
-
Weiterhin beschreibt die
JP 2002 -
256 444 A eine Leiterplatte, umfassend einen stromlosen Nickel-Phosphor-Plattenfilm zumindest auf einem Lötbereich in der Schaltung aus elektrisch leitfähiger Substanz, der 0,001-20 Gew.-% mindestens einer Komponente, ausgewählt aus Eisen, Wolfram, Molybdän und Chrom, aufweist. Es wird eine Leiterplatte mit einer Schaltung aus einer elektrisch leitenden Substanz mit einer hohen Lötfestigkeit bereitgestellt, die durch ein stromloses Plattierungsverfahren gebildet werden kann.
-
Schließlich offenbart die
US 9 909 216 B2 Zusatzstoffe, die in stromlosen Metall- und Metalllegierungsbädern verwendet werden können, sowie ein Verfahren zur Verwendung dieser Beschichtungsbäder. Solche Zusätze verringern die Abscheidungsrate und erhöhen die Stabilität von stromlosen Abscheidungsbädern und daher sind solche stromlosen Abscheidungsbäder besonders für die Abscheidung des Metalls oder der Metalllegierungen in vertieften Strukturen wie Gräben und Durchgangslöcher in Leiterplatten, IC-Substraten und Halbleitersubstraten geeignet.
-
ZUSAMMENFASSUNG DER ERFINDUNG
-
Im Allgemeinen besteht ein Leistungsmodul aus einem Leistungs-Halbleiter, einem Leistungsmodulsubstrat (isolierenden Substrat) und einem Kühler. Der Leistungs-Halbleiter weist im Betrieb eine große Wärmemenge auf, während er eine hohe Spannung oder einen hohen Strom steuert. Herkömmlicherweise wird die Stromspannung gesteuert, um einen Temperaturanstieg des Leistungs-Halbleiters selbst zu steuern, und durch den Kühler und das Leistungsmodulsubstrat, auf dem der Leistungs-Halbleiter montiert ist, wird auch die Wärmeableitung gefördert, und sie wurde so gesteuert, dass eine Betriebstemperatur des Leistungs-Halbleiters nicht erhöht wird. Auf der anderen Seite weist ein Halbleiterchip einer nächsten Generation wie etwa SiC oder GaN eine hohe Wärmebeständigkeit auf, und der Betrieb des Chips selbst ist möglich, selbst wenn in einem Moment eine Wärmeentwicklung von bis zu maximal 300°C auftritt. Daher ist für das gesamte Modul eine herkömmliche Kühlung nicht notwendig, und es ist möglich, den Kühler und andere Komponenten zu verkleinern, so dass man eine Verkleinerung des gesamten Moduls erwarten kann. Auf der anderen Seite ist ein Bondingmaterial wie etwa ein Lötmetall zwischen dem Leistungsmodulsubstrat und dem Leistungs-Halbleiter vorhanden; aber auch für das Leistungsmodulsubstrat ist eine höhere Wärmebeständigkeit als die herkömmliche Wärmbeständigkeit erforderlich. In vielen Fällen wird eine Nickel-Phosphor-Beschichtung auf die Oberfläche der Verdrahtung des Leistungsmodulsubstrats aufgebracht, um die Korrosionsbeständigkeit und Bonding-Zuverlässigkeit zu verbessern. Bei der herkömmlichen Nickel-Phosphor-Beschichtung gab es das Problem, dass in einem Beschichtungsfilm Risse auftreten, wenn die Niedertemperatur-Seite auf -50°C und die Hochtemperatur-Seite auf 200°C oder höher in einem Temperaturzyklustest (im Folgenden als TCT bezeichnet), einem Test zur Bewertung der Wärmebeständigkeit , eingestellt wird.
-
Die Aufgabe der vorliegenden Erfindung besteht hier darin, ein wärmbeständiges Leistungsmodulsubstrat, einen wärmebeständigen Beschichtungsfilm und eine Beschichtungslösung vorzusehen, um ein Auftreten eines Risses im Beschichtungsfilm zu verhindern, selbst wenn bei den obigen Temperaturen ein TCT durchgeführt wird. Die Aufgabe wird durch die Lehren der unabhängigen Ansprüche gelöst.
-
Ein wärmebeständiges Leistungsmodulsubstrat in Bezug auf eine Ausführungsform der vorliegenden Erfindung ist das wärmebeständige Leistungsmodulsubstrat zum Montieren eines Leistungs-Halbleiters, der eine große Wärme bis maximal 300°C erzeugt, welches zumindest umfasst: ein Basismaterial, das aus Aluminiumoxid, Aluminiumnitrid oder Siliziumnitrid besteht; eine Schaltung, die aus Kupfer oder Aluminium besteht und auf dem Basismaterial direkt oder über ein Hartlötmaterial ausgebildet ist; und einen auf einer Oberfläche der Schaltung ausgebildeten Beschichtungsfilm, wobei der Beschichtungsfilm ein Film einer stromlosen Nickel-Phosphor-Molybdän-Beschichtung ist und der Phosphor-Gehalt im Beschichtungsfilm 10,5 bis 13 Gew.-% beträgt.
-
Auf diese Weise ist es möglich, ein wärmebeständiges Leistungsmodulsubstrat vorzusehen, das imstande ist, ein Auftreten eines Risses im Beschichtungsfilm zu verhindern, selbst wenn ein TCT mit einer auf 200°C oder höher eingestellten Hochtemperatur-Seite durchgeführt wird.
-
Zu dieser Zeit kann in einer Ausführungsform der vorliegenden Erfindung der Molybdän-Gehalt im Beschichtungsfilm 0,01 bis 2,0 Gew.-% betragen.
-
Auf diese Weise ist es möglich, ein Auftreten eines Risses im Beschichtungsfilm noch mehr zu verhindern.
-
Außerdem kann in einer Ausführungsform der vorliegenden Erfindung der Phosphor-Gehalt im Beschichtungsfilm 11 bis 13 Gew.-% betragen.
-
Auf diese Weise ist es möglich, ein Auftreten eines Risses im Beschichtungsfilm noch mehr zu verhindern.
-
Eine andere Ausführungsform der vorliegenden Erfindung ist ferner ein wärmebeständiger Beschichtungsfilm, der auf einer Oberfläche einer Schaltung eines Leistungsmodulsubstrats zum Montieren eines Leistungs-Halbleiters gebildet ist, der eine große Wärme bis maximal 300°C erzeugt, wobei der Molybdän-Gehalt im Beschichtungsfilm 0,01 bis 2,0 Gew.-% beträgt, der Phosphor-Gehalt im Beschichtungsfilm 10,5 bis 13 Gew.-% beträgt und der Beschichtungsfilm stromlos aufgebrachtes Nickel-Phosphor-Molybdän ist.
-
Auf diese Weise ist es möglich, den wärmebeständigen Beschichtungsfilm vorzusehen, der imstande ist, ein Auftreten eines Risses im Beschichtungsfilm zu verhindern, selbst wenn ein TCT mit einer auf 200°C oder höher eingestellten Hochtemperatur-Seite durchgeführt wird.
-
Außerdem kann in einer Ausführungsform der vorliegenden Erfindung der Phosphor-Gehalt im Beschichtungsfilm 11 bis 13 Gew.-% betragen.
-
Auf diese Weise ist es möglich, ein Auftreten eines Risses im Beschichtungsfilm noch mehr zu verhindern.
-
Darüber hinaus ist eine weitere Ausführungsform der vorliegenden Erfindung eine Lösung für eine stromlose Nickel-Phosphor-Molybdän-Beschichtung, um einen wärmebeständigen Beschichtungsfilm auf einer Oberfläche einer Schaltung eines Leistungsmodulsubstrats zum Montieren eines Leistungs-Halbleiters auszubilden, der eine große Wärme bis maximal 300°C erzeugt, wobei sie zumindest enthält: Nickelsalz; dessen Komplexbildner; Hypophosphit als Reduktionsmittel; und Molybdat, wobei die Konzentration von Hypophosphit 12 bis 37 g/l als H2PO2-Ion beträgt und die Konzentration von Molybdat 0,004 bis 0,8 g/l als Mo-Ion beträgt.
-
Auf diese Weise ist es möglich, die Beschichtungslösung vorzusehen, die imstande ist, ein Auftreten eines Risses im Beschichtungsfilm zu verhindern, selbst wenn ein TCT mit einer auf 200°C oder höher eingestellten Hochtemperatur-Seite durchgeführt wird.
-
Wie oben erläutert wurde, ist es gemäß der vorliegenden Erfindung möglich, das wärmebeständige Leistungsmodulsubstrat, den wärmebeständigen Beschichtungsfilm und die Beschichtungslösung vorzusehen, die imstande sind, ein Auftreten eines Risses im Beschichtungsfilm zu verhindern, selbst wenn ein TCT mit einer auf 200°C oder höher eingestellten Hochtemperatur-Seite durchgeführt wird.
-
Figurenliste
-
- 1 ist eine Schnittansicht, die eine schematische Struktur eines wärmebeständigen Leistungsmodulsubstrats in Bezug auf eine Ausführungsform der vorliegenden Erfindung veranschaulicht.
-
DETAILLIERTE BESCHREIBUNG DER ERFINDUNG
-
Im Folgenden werden bevorzugte Ausführungsformen der vorliegenden Erfindung im Detail erläutert. Darüber sollen die im Folgenden erläuterten Ausführungsformen den Inhalt der in den Ansprüchen beschriebenen vorliegenden Erfindung nicht ungerechtfertigt einschränken, und es besteht keine Beschränkung dahingehend, dass alle in den Ausführungsformen erläuterten Strukturen als Mittel zum Lösen des Problems der vorliegenden Erfindung notwendig sind. Ein wärmebeständiges Leistungsmodulsubstrat, ein wärmebeständiger Beschichtungsfilms und eine Beschichtungslösung in Bezug auf eine Ausführungsform der vorliegenden Erfindung werden in der folgenden Reihenfolge erläutert.
- 1. Wärmebeständiges Leistungsmodulsubstrat
- 1-1. Basismaterial
- 1-2. Schaltung
- 2. Wärmebeständiger Beschichtungsfilm
- 3. Beschichtungslösung
-
[1. Wärmebeständiges Leistungsmodulsubstrat]
-
Ein wärmebeständiges Leistungsmodulsubstrat 100 in Bezug auf eine Ausführungsform der vorliegenden Erfindung ist ein Substrat zum Montieren eines Leistungs-Halbleiters, der große Wärme bis maximal 300°C erzeugt. Und wie in 1 veranschaulicht ist, weist das wärmebeständige Leistungsmodulsubstrat 100 in Bezug auf eine Ausführungsform der vorliegenden Erfindung auf: ein Basismaterial 10, das aus Aluminiumoxid, Aluminiumnitrid oder Siliziumnitrid besteht; eine Schaltung 20, die aus Kupfer oder Aluminium besteht und auf dem Basismaterial direkt oder über ein Hartlötmaterial ausgebildet ist; und einen auf einer Oberfläche der Schaltung ausgebildeten Beschichtungsfilm 30. Im Folgenden wird dies im Detail erläutert.
-
[1-1. Basismaterial]
-
Das Basismaterial 10, das für das wärmebeständige Leistungsmodulsubstrat 100 in Bezug auf eine Ausführungsform der vorliegenden Erfindung verwendet wird, besteht aus Aluminiumoxid, Aluminiumnitrid oder Siliziumnitrid.
-
Darüber hinaus besteht das Basismaterial 10, das für das wärmebeständige Leistungsmodulsubstrat 100 in Bezug auf eine Ausführungsform der vorliegenden Erfindung verwendet wird, aus Aluminiumoxid, Aluminiumnitrid oder Siliziumnitrid, so dass es verglichen mit anderen keramischen Materialien ausgezeichnete Eigenschaften in Bezug auf Kosten, Wärmedissipation, Festigkeit und anderes aufweist.
-
[1-2. Schaltung]
-
Als Nächstes wird, wie in 1 veranschaulicht ist, die Schaltung 20 auf dem Basismaterial 10 gebildet. Zu dieser Zeit kann die Schaltung 20 auf dem Basismaterial 10 durch einen direkten Prozess gebildet werden, oder die Schaltung 20 kann über ein (nicht veranschaulichtes) Hartlötmaterial auf dem Basismaterial 10 gebildet werden. Die Schaltung 20 besteht aus Kupfer oder Aluminium.
-
Als Prozess zur Ausbildung der Schaltung 20 kann ein allgemein bekannter Prozess genutzt werden, und es besteht keine besondere Beschränkung; aber in einem direkten Prozess wird eine Oxidationsbehandlung an einer Oberfläche einer Kupferplatte durchgeführt, die ein Schaltungsbauteil ist, und sie wird mit dem Basismaterial 10 gebondet, und eine Ätzung kann an einem anderen entbehrlichen Bereich als der Schaltung durchgeführt werden. Aluminium weist eine ausgezeichnete Duktilität auf, und Kupfer weist eine ausgezeichnete Wärmedissipation auf. Darüber hinaus sind diese Materialien verglichen mit anderen Metallen auch hinsichtlich der Kosten herausragend, so dass sie für das Leistungsmodulsubstrat verwendet werden.
-
Im Folgenden wird auch der auf einer Oberfläche der Schaltung 20 ausgebildete Beschichtungsfilm 30 im Detail erläutert.
-
[2. Wärmebeständiger Beschichtungsfilm]
-
Der auf einer Oberfläche der Schaltung 20 des wärmebeständigen Leistungsmodulsubstrats in Bezug auf eine Ausführungsform der vorliegenden Erfindung ausgebildete Beschichtungsfilm 30 ist ein Film einer stromlosen Nickel-Phosphor-Molybdän-Beschichtung, wobei der Phosphor-Gehalt im Beschichtungsfilm 10,5 bis 13 Gew.-% beträgt. Außerdem wird später eine Beschichtungslösung erläutert, die für den Film einer stromlosen Nickel-Phosphor-Molybdän-Beschichtung verwendet wird.
-
Wie oben erwähnt wurde, weist ein Halbleiterchip einer nächsten Generation wie etwa SiC, GaN eine hohe Wärmebeständigkeit auf, und er kann bei 200°C oder höher arbeiten. Gleichzeitig wird eine ähnliche Wärmebeständigkeit auch für ein Leistungsmodulsubstrat gefordert; aber in einer herkömmlichen Nickel-Phosphor-Beschichtung bestand ein Makel, dass in einem Beschichtungsfilm ein Riss auftritt, wenn in einem TCT, der ein Auswertungstest einer Wärmebeständigkeit ist, eine Niedertemperatur-Seite auf -50°C eingestellt wird und wenn eine Hochtemperatur-Seite auf 200°C oder höher eingestellt wird.
-
Überdies gibt es herkömmlicherweise in einer stromlosen Nickel-Phosphor-Beschichtung einen Film, der Eisen, Wolfram, Chrom oder dergleichen im Film enthält, indem anstelle von Molybdän die obigen Metalle verwendet werden. Selbst wenn herkömmliches Metall wie etwa Eisen, Wolfram oder Chrom enthalten ist, gibt es jedoch keinen Effekt, um ein Auftreten eines Risses im Leistungsmodulsubstrat gegen TCT mit einer auf 200°C oder höher eingestellten Hochtemperatur-Seite zu hemmen bzw. zu unterdrücken.
-
Hier ist der Beschichtungsfilm 30, der auf dem Leistungsmodulsubstrat in Bezug auf eine Ausführungsform der vorliegenden Erfindung gebildet wird, imstande, ein Auftreten eines Risses selbst für einen TCT mit einer auf 200°C oder höher eingestellten Hochtemperatur-Seite zu unterdrücken. Und der Beschichtungsfilm 30 ist ein Film einer stromlosen Nickel-Phosphor-Molybdän-Beschichtung, und der Phosphor-Gehalt im Beschichtungsfilm beträgt 10,5 bis 13 Gew.-%.
-
Falls ein Phosphor-Gehalt im Beschichtungsfilm 30 geringer als 10,5 Gew.-% ist, tritt, wenn ein TCT bei den obigen Temperaturen durchgeführt wird, im Beschichtungsfilm ein Riss auf. Falls auf der anderen Seite der Phosphor-Gehalt im Beschichtungsfilm 30 mehr als 13 Gew.-% beträgt, wird die Produktivität verringert.
-
Ferner ist es vorzuziehen, dass der Phosphor-Gehalt im Beschichtungsfilm 30 11 bis 13 Gew.-% beträgt. Auf diese Weise ist es möglich, ein Auftreten eines Risses noch mehr zu verhindern.
-
Darüber hinaus ist es vorzuziehen, dass der Molybdän-Gehalt im Beschichtungsfilm 30 0,01 bis 2,0 Gew.-% beträgt. Vorzugsweise beträgt der Molybdän-Gehalt eher 0,2 bis 2,0 Gew.%.
-
Falls der Molybdän-Gehalt im Beschichtungsfilm 30 geringer als 0,01 Gew.-% ist, besteht, wenn ein TCT bei den obigen Temperaturen durchgeführt wird, eine Möglichkeit, dass im Beschichtungsfilm ein Riss auftritt. Falls auf der anderen Seite der Molybdän-Gehalt im Beschichtungsfilm 30 mehr als 2,0 Gew.-% beträgt, wird die Molybdänkonzentration in einer Beschichtungslösung extrem hoch, so dass die Möglichkeit besteht, dass die Produktivität verringert wird, da eine Abscheidungsrate der Beschichtung abnimmt. Ferner besteht die Möglichkeit, dass es eine blanke bzw. freigelegte Stelle gibt.
-
Darüber hinaus ist der wärmebeständige Beschichtungsfilm in Bezug auf eine Ausführungsform der vorliegenden Erfindung ein Film, der auf einer Oberfläche der Schaltung des Leistungsmodulsubstrats zum Montieren des Leistungs-Halbleiters, der eine große Wärme bis maximal 300°C erzeugt, gebildet ist, und ein Molybdän-Gehalt und Phosphor-Gehalt im Beschichtungsfilm liegen im obigen Bereich, und der Beschichtungsfilm ist stromlos aufgebrachtes Nickel-Phosphor-Molybdän.
-
Wie oben erwähnt wurde, ist es gemäß dem wärmebeständigen Leistungsmodulsubstrat und dem wärmebeständigen Beschichtungsfilm in Bezug auf eine Ausführungsform der vorliegenden Erfindung möglich, ein Auftreten eines Risses im Beschichtungsfilm zu verhindern, selbst wenn ein TCT mit einer auf 200°C oder höher eingestellten Hochtemperatur-Seite durchgeführt wird. Im Folgenden wird eine Beschichtungslösung zum Bilden des wärmebeständigen Beschichtungsfilms aus stromlos aufgebrachtem Nickel-Phosphor-Molybdän erläutert.
-
[3. Beschichtungslösung]
-
Die Beschichtungslösung in Bezug auf eine Ausführungsform der vorliegenden Erfindung ist eine Beschichtungslösung, um den wärmebeständigen Beschichtungsfilm auf einer Oberfläche der Schaltung des Leistungsmodulsubstrats zum Montieren des Leistungs-Halbleiters zu bilden, der eine große Wärme bis maximal 300°C erzeugt, und sie ist eine Lösung für eine stromlose Nickel-Phosphor-Molybdän-Beschichtung.
-
Die Beschichtungslösung ist hier eine Lösung, die zum Beschichten verwendet werden soll, und sie ist eine Lösung, in der verschiedene Metalle und Additive in einem Behälter kondensiert sind, eine Lösung, in der verschiedene Metalle und Additive auf eine Vielzahl von Behältern aufgeteilt sind und in der verschiedene Metalle und Additive in jedem Behälter kondensiert sind, eine Lösung, in der die obige kondensierte Lösung oder dergleichen mittels Wasser eingestellt wird, um einen anfänglichen Ansatz eines elektrolytischen Bades vorzubereiten, und eine Lösung, in der verschiedene Metalle und Additive zugesetzt werden, um die Lösung einzustellen, um einen anfänglichen Ansatz eines elektrolytischen Bades vorzubereiten.
-
Die Beschichtungslösung in Bezug auf eine Ausführungsform der vorliegenden Erfindung enthält zumindest Nickelsalz, dessen Komplexbildner, Hypophosphit als Reduktionsmittel und Molybdat, wobei die Konzentration von Hypophosphit 12 bis 37 g/l als H2PO2-Ion beträgt und die Konzentration von Molybdat 0,004 bis 0,8 g/l als Mo-Ion beträgt.
-
Falls die Konzentration von Hypophosphit, das das Reduktionsmittel ist, geringer als 12 g/l als H2PO2-Ion ist, wird ein Phosphor-Gehalt im Beschichtungsfilm nicht hoch sein, und, wenn ein TCT durchgeführt wird, tritt im Beschichtungsfilm ein Riss auf. Falls auf der anderen Seite die Konzentration von Hypophosphit mehr als 37 g/l als H2PO2-Ion beträgt, wird die Beschichtungslösung instabil, und die Beschichtungslösung wird zersetzt werden, oder die Zersetzungsrate der Beschichtung wird langsam sein und die Produktivität wird verringert. Ferner beträgt die bevorzugte Konzentration von Hypophosphit 18 bis 37 g/l als H2PO2-Ion. Als ein Prozess zum Einstellen des Phosphor-Gehalts im Beschichtungsfilm kann, zum Beispiel wenn der Phosphor-Gehalt erhöht wird, er erhöht werden, indem die Konzentration von Hypophosphit in der Beschichtungslösung erhöht wird oder indem der pH der Beschichtungslösung verringert wird. Wenn der Phosphor-Gehalt verringert wird, wird die umgekehrte Verfahrensweise durchgeführt.
-
Falls außerdem die Konzentration von Molybdat geringer als 0,004 g/l als Mo-Ion ist, wird der Molybdän-Gehalt im Beschichtungsfilm nicht hoch sein, und, wenn ein TCT durchgeführt wird, tritt im Beschichtungsfilm ein Riss auf. Falls auf der anderen Seite die Konzentration von Molybdat mehr als 0,8 g/l als Mo-Ion beträgt, wird eine Zersetzungsrate der Beschichtung langsam sein und wird die Produktivität verringert. Ferner beträgt die bevorzugte Konzentration von Molybdat 0,04 bis 0,8 g/l als Mo-Ion. Als ein Prozess zum Einstellen des Molybdän-Gehalts im Beschichtungsfilm kann, zum Beispiel wenn ein Molybdän-Gehalt erhöht wird, er erhöht werden, indem die Konzentration von Molybdat in der Beschichtungslösung erhöht wird. Wenn der Molybdän-Gehalt verringert wird, wird eine umgekehrte Operation durchgeführt.
-
Somit liegt die Konzentration des H2PO2-Ions von Hypophosphit und des Mo-Ions von Molybdat, die für die Beschichtungslösung in Bezug auf eine Ausführungsform der vorliegenden Erfindung verwendet werden, im obigen Bereich, und auf diese Weise ist es möglich, ein Auftreten eines Risses im Beschichtungsfilm zu verhindern.
-
Es besteht keine Beschränkung auf Hypophosphit als Reduktionsmittel, das für die Beschichtungslösung in Bezug auf eine Ausführungsform der vorliegenden Erfindung verwendet wird; sondern Natriumhypophoshit, Kaliumhypophosphit, Nickelhypophosphit oder dergleichen kann verwendet werden.
-
Es besteht keine Beschränkung auf für die Beschichtungslösung in Bezug auf eine Ausführungsform der vorliegenden Erfindung verwendetes Molybdat; sondern Natriummolybdat, Kaliummolybdat, Ammoniummolybdat oder dergleichen kann verwendet werden.
-
Es besteht keine Beschränkung auf für die Beschichtungslösung in Bezug auf eine Ausführungsform der vorliegenden Erfindung verwendetes Nickelsalz; sondern beispielsweise können ein anorganisches wasserlösliches Nickelsalz wie Nickelsulfat, Nickelchlorid und Nickelhypophosphit und organisches wasserlösliches Nickelsalz wie etwa Nickelacetat und Nickelmalat verwendet werden. Außerdem können diese wasserlöslichen Nickelsalze allein oder, indem mehr als zwei Arten von Nickelsalzen gemischt werden, verwendet werden.
-
Darüber hinaus beträgt die Konzentration des Nickelions in der Beschichtungslösung beispielsweise vorzugsweise 2 bis 8 g/l als metallisches Nickel und bevorzugter 4 bis 6 g/l. Falls die Nickelkonzentration zu niedrig ist, kann eine Beschichtungsrate langsam sein, so dass sie nicht vorzuziehen ist. Falls außerdem die Nickelkonzentration zu hoch ist, kann die Beschichtungslösung trübe werden oder kann eine Viskosität der Beschichtungslösung hoch werden, so dass eine Gleichmäßigkeit einer Abscheidung verringert werden kann und eine Grube (engl.: pit) im ausgebildeten Beschichtungsfilm auftreten kann, so dass sie nicht vorzuziehen ist.
-
Es besteht keine Beschränkung auf einen Komplexbildner, der für die Beschichtungslösung in Bezug auf eine Ausführungsform der vorliegenden Erfindung verwendet wird; sondern verschiedene Komplexbildner, die in einer allgemein bekannten Lösung für eine stromlose Nickel-Beschichtung verwendet werden, können verwendet werden. Als konkrete Beispiele des Komplexbildners können zitiert werden: Aminosäure wie etwa Glycin, Alanin, Arginin, Asparaginsäure, Glutaminsäure, Lysin oder Phenylalanin; Monocarbonsäure wie etwa Milchsäure, Propionsäure, Glykolsäure oder Glukonsäure; Dicarbonsäure wie etwa Weinsäure, Oxalsäure, Bernsteinsäure oder Apfelsäure; und Tricarbonsäure wie etwa Zitronensäure. Darüber hinaus können deren Salze, zum Beispiel Natriumsalz oder Kaliumsalz, als Komplexbildner verwendet werden. Weiter können diese Komplexbildner allein oder, indem mehr als zwei Arten von Komplexbildnern gemischt werden, verwendet werden.
-
Die Konzentration eines Komplexbildners in der Beschichtungslösung unterscheidet sich außerdem gemäß Typen eines zu verwendenden Komplexbildners; aber sie beträgt vorzugsweise 10 bis 200 g/l, bevorzugter 30 bis 100 g/l. Falls die Konzentration eines Komplexbildners zu niedrig ist, tritt tendenziell eine Ausfällung von Nickelhydroxid auf, so dass sie nicht vorzuziehen ist. Falls außerdem eine Konzentration eines Komplexbildners zu hoch ist, wird die Viskosität der Beschichtungslösung hoch, so dass eine Gleichmäßigkeit einer Abscheidung verringert werden kann und sie nicht vorzuziehen ist.
-
Ein Masseverhältnis der Konzentration des Nickelsalzes, dessen Komplexbildners, des H2PO2-Ions von Hypophosphit und Mo-Ions von Molybdat beträgt ferner vorzugsweise 1 : 1,25 bis 100 : 1,5 bis 18,5 : 0,0005 bis 0,4. Dies ist ein geeignetes Konzentrationsverhältnis, und es ist möglich, ein Auftreten eines Risses im Beschichtungsfilm zu verhindern.
-
In der Beschichtungslösung in Bezug auf eine Ausführungsform der vorliegenden Erfindung wird außerdem das Molybdän als von Nickel verschiedenes Additivmetall zugesetzt; aber Eisen, Wolfram, Chrom und Zinn werden nicht anstelle des Molybdäns enthalten sein, und Eisen, Wolfram, Chrom und Zinn werden nicht zusätzlich zum Molybdän enthalten sein.
-
Außerdem können ein allgemein bekanntes Stabilisierungsmittel und Reduktionsmittel verwendet werden. Ferner beträgt der pH 3 bis 7, vorzugsweise 4 bis 6. Die Beschichtungszeit kann gemäß einer Zieldicke des Films eingestellt werden.
-
Wie oben erwähnt wurde, ist es gemäß der Beschichtungslösung in Bezug auf eine Ausführungsform der vorliegenden Erfindung möglich, ein Auftreten eines Risses im Beschichtungsfilm zu verhindern, selbst wenn ein TCT mit einer auf 200°C oder höher eingestellten Hochtemperatur-Seite durchgeführt wird.
-
Beispiele
-
Als Nächstes werden unter Verwendung von Beispielen das wärmebeständige Leistungsmodulsubstrat, der wärmebeständige Beschichtungsfilm und die Beschichtungslösung in Bezug auf eine Ausführungsform der vorliegenden Erfindung im Detail erläutert. Darüber hinaus ist die vorliegende Erfindung nicht auf diese Beispiele beschränkt.
-
[Beispiel 1]
-
In Beispiel 1 wurde als Basismaterial, das in einem wärmebeständigen Leistungsmodulsubstrat verwendet werden soll, ein DAB-Substrat (Keramik: Aluminiumnitrid 50 mm * 50 mm - 0,8 mm (Dicke), Aluminium: 40 mm * 40 mm - 0,6 mm (Dicke) * 2 (beide Seiten), Gesamtdicke: 2,0 mm (Dicke)) verwendet. Außerdem wurde direkt auf dem Basismaterial eine Kupferschaltung gebildet. Und auf der Schaltung wurde ein Film einer stromlosen Nickel-Phosphor-Molybdän-Beschichtung, der gemäß folgenden Bedingungen gebildet wurde, aufgebracht.
-
Als Zusammensetzung der Lösung für eine stromlose Nickel-Phosphor-Molybdän-Beschichtung betrug die Konzentration von Nickelsulfat-(II)-Hexahydrat 27,0 g/l, mit anderen Worten betrug die Konzentration von Nickelionen 6 g/l, die Konzentration von Natriumhypophosphit 30 g/l (18,4 g/l als H2PO2-Ion), die Konzentration von Bleiacetat-(II)-Trihydrat 1 mg/l, die Konzentration von Natriummolybdat 0,1 g/l (0,040 g/l als Mo-Ion), die Konzentration von Apfelsäure 20 g/l, die Konzentration von Bernsteinsäure 15 g/l und die Konzentration von Natriumhydroxid 5 g/l. Außerdem betrug die Beschichtungszeit 35 Minuten, betrug die Flüssigkeitstemperatur 90°C, und der pH betrug 4,5.
-
Darüber hinaus wurde eine Zusammensetzung nach Ausbilden des Beschichtungsfilms analysiert. Konkreter wurde der Film einer stromlosen Beschichtung nach einer Beschichtungsabscheidung in Salpetersäure zersetzt, und an dieser Lösung wurde eine quantitative Analyse von Phosphor und Molybdän oder Wolfram oder Zinn mittels ICP (hergestellt von HORIBA, Produktname: Ultima Expert) durchgeführt, und aus einem Gewicht des zersetzten Beschichtungsfilms wurde ein Masse-% jeder Komponente im Beschichtungsfilm berechnet.
-
Und der Effekt einer Risshemmung des durch den obigen Beschichtungsprozess gebildeten Beschichtungsfilms wurde untersucht, indem ein Temperaturzyklustest (TCT) unter Verwendung einer kleinen Kälteprüfungs-Testvorrichtung (hergestellt von ESPEC CORP., Produktname: TSE-11) zur Bestätigung eines Effekts einer Risshemmung durchgeführt wurde. Konkreter wurde, nachdem der Beschichtungsfilm in einem Zustand hoher Temperatur, 200°C für 40 Minuten, belassen wurde, er in einem Zustand niedriger Temperatur, -50°C für 20 Minuten, belassen, und dies war ein Zyklus. Diese Kälteprüfung wurde bis zum Auftreten eines Risses im Beschichtungsfilm wiederholt. Er wurde bis maximal 1000 Zyklen untersucht. Ein Auftreten eines Risses wurde unter Verwendung eines optischen Mikroskops bestätigt.
-
[Beispiel 2]
-
In Beispiel 2 betrug die Konzentration von Natriummolybdat 0,5 g/l (0,198 g/l als Mo-Ion). Die anderen Bedingungen waren die gleichen wie im Beispiel 1.
-
[Beispiel 3]
-
In Beispiel 3 betrug die Konzentration von Natriummolybdat 1,0 g/l (0,397 g/l als Mo-Ion). Die anderen Bedingungen waren die gleichen wie im Beispiel 1.
-
[Beispiel 4]
-
In Beispiel 4 betrug die Konzentration von Natriummolybdat 0,5 g/l (0,198 g/l als Mo-Ion). Außerdem betrug die Beschichtungszeit 25 Minuten, und der pH betrug 4,8. Die anderen Bedingungen waren die gleichen wie im Beispiel 1.
-
[Beispiel 5]
-
In Beispiel 5 betrug die Konzentration von Natriummolybdate 0,5 g/l (0,198 g/l als Mo-Ion), von Apfelsäure 40 g/l und von Bernsteinsäure 30 g/l. Außerdem betrug die Beschichtungszeit 60 Minuten, und der pH betrug 4,4. Die anderen Bedingungen waren die gleichen wie im Beispiel 1.
-
[Beispiel 6]
-
In Beispiel betrug die Konzentration von Natriummolybdat 0,01 g/l (0,004 g/l als Mo-Ion). Die anderen Bedingungen waren die gleichen wie im Beispiel 1.
-
[Vergleichsbeispiel 1]
-
In Vergleichsbeispiel 1 wurde Natriummolybdat nicht zugesetzt. Die anderen Bedingungen waren die gleichen wie im Beispiel 1.
-
[Vergleichsbeispiel 2]
-
In Vergleichsbeispiel 2 betrug die Konzentration von Natriummolybdat 5 g/l (1,983 g/l als Mo-Ion). Die anderen Bedingungen waren die gleichen wie im Beispiel 1.
-
[Vergleichsbeispiel 3]
-
In Vergleichsbeispiel 3 betrug die Konzentration von Natriummolybdat 0,5 g/l (0,198 g/l als Mo-Ion) und von Natriumhypophosphit 15 g/l (9,2 g/l als H2PO2-Ion). Darüber hinaus betrug die Beschichtungszeit 60 Minuten, und der pH betrug 4,6. Die anderen Bedingungen waren die gleichen wie im Beispiel 1.
-
[Vergleichsbeispiel 4]
-
In Vergleichsbeispiel 4 betrug die Konzentration von Natriummolybdat 0,05 g/l (0,020 g/l als Mo-Ion) und von Natriumhypophosphit 15 g/l (9,2 g/l als H2PO2-Ion). Außerdem wurde Glycin anstelle von Apfelsäure und Bernsteinsäure zugesetzt, welche Komplexbildner sind, und die Konzentration von Glycin betrug 12 g/l. Ferner betrug der pH 6,2. Die anderen Bedingungen waren die gleichen wie im Beispiel 1.
-
[Vergleichsbeispiel 5]
-
In Vergleichsbeispiel 5 wurde anstelle einer Zugabe von Natriummolybdat Natriumwolframat zugesetzt, und die Konzentration von Natriumwolframat betrug 20 g/l. Die anderen Bedingungen waren die gleichen wie im Beispiel 1.
-
[Vergleichsbeispiel 6]
-
In Vergleichsbeispiel 6 wurde anstelle einer Zugabe von Natriummolybdat Zinnmethansulfonat zugesetzt, und die Konzentration von Zinnmethansulfonat betrug 0,3 g/l. Die anderen Bedingungen waren die gleichen wie im Beispiel 1.
-
Die obigen Bedingungen wurden in Tabelle 1 angegeben. Außerdem wurden Konzentrationen von Natriummolybdat und Natriumhypophosphite durch MO-Ion bzw. H
2PO
2-Ion in Tabelle 1 angegeben. In Tabelle 2 wurden darüber hinaus ein Gehalt des unter den Bedingungen vom Tabelle 1 erhaltenen Films und ein Zykluszahl-Ergebnis einer Rissbildung angegeben. Eine in Tabelle 2 angegebene Zykluszahl gibt weiter eine Zykluszahl an, bei der im Beschichtungsfilm ein Riss auftrat. Ferner gibt > 1000 an, dass selbst nach Durchführung von 1000 TCT-Zyklen kein Riss aufgetreten ist.
-
In allen Beispielen trat im Beschichtungsfilm kein Riss auf, wenn weniger als 900 TCT-Zyklen durchgeführt wurden. Somit kann man verstehen, dass der Beschichtungsfilm mit einem ausgezeichneten Effekt einer Risshemmung durch Verbessern einer Wärmebeständigkeit gebildet worden ist. Außerdem trat in den Beispielen 1, 2, 3 und 5, in denen die Phosphorkonzentration im Beschichtungsfilm 11 bis 13 Gew.-% betrug und auch ein Molybdän-Gehalt 0,2 bis 2,0 Gew.-% betrug, im Beschichtungsfilm kein Riss auf, selbst nachdem mehr als 1000 TCT-Zyklen durchgeführt wurden. Somit war der Beschichtungsfilm in dem obigen Konzentrationsbereich gegenüber einem Riss wirksamer.
-
Auf der anderen Seite trat in den Vergleichsbeispielen im Beschichtungsfilm ein Riss auf, wenn 300 bis 500 TCT-Zyklen durchgeführt wurden. Außerdem wurde im Vergleichsbeispiel 2 keine Beschichtung gebildet, da zu viel Natriummolybdat in der Beschichtungslösung zugesetzt wurde. Ferner trat im Vergleichsbeispiel 1, in welchem Natriummolybdat nicht zugesetzt wurde, und in den Vergleichsbeispielen 5 und 6, in denen anstelle von Natriummolybdat Natriumwolframat oder Zinnmethansulfonat zugesetzt wurden, ein Riss im Beschichtungsfilm auf, wenn 400 bis 500 TCT-Zyklen durchgeführt wurden.
-
Nach dem Obigen war es gemäß dem wärmebeständigen Leistungsmodulsubstrat, dem wärmebeständigen Beschichtungsfilm und der Beschichtungslösung in Bezug auf eine Ausführungsform der vorliegenden Erfindung möglich, ein Auftreten eines Risses im Beschichtungsfilm zu verhindern, selbst wenn ein TCT mit einer auf 200°C oder höher eingestellten Hochtemperatur-Seite durchgeführt wurde.
-
Außerdem wurde jede Ausführungsform und jedes Beispiel der vorliegenden Erfindung wie die Obigen im Detail erläutert; der Fachmann kann aber leicht verstehen, dass verschiedene Modifikationen möglich sind, ohne von neuen Sachverhalten und einem Effekt der vorliegenden Erfindung praktisch abzuweichen. Daher sollen alle derartigen Varianten im Umfang der vorliegenden Erfindung einbezogen sein.
-
Beispielsweise können Begriffe, die mit unterschiedlichen Begriffen mit einer breiteren oder äquivalenten Bedeutung zumindest einmal in der Beschreibung und den Zeichnungen beschrieben wurden, in jedem beliebigen Teil einer Beschreibung und Zeichnungen durch diese unterschiedlichen Begriffe ersetzt werden. Außerdem sind Betrieb und Konfigurationen des wärmebeständigen Leistungsmodulsubstrats, des wärmebeständigen Beschichtungsfilms und der Beschichtungslösung nicht auf jene beschränkt, die in jeder Ausführungsform und jedem Beispiel der vorliegenden Erfindung erläutert wurden, und verschiedene Modifikationen können vorgenommen werden.
-
Bezugszeichenliste
-
- 10
- Basismaterial
- 20
- Schaltung
- 30
- Beschichtungsfilm
- 100
- wärmebeständiges Leistungsmodulsubstrat