DE102016210382A1 - Verfahren zum Betrieb eines Fahrzeugregelsystems - Google Patents

Verfahren zum Betrieb eines Fahrzeugregelsystems Download PDF

Info

Publication number
DE102016210382A1
DE102016210382A1 DE102016210382.2A DE102016210382A DE102016210382A1 DE 102016210382 A1 DE102016210382 A1 DE 102016210382A1 DE 102016210382 A DE102016210382 A DE 102016210382A DE 102016210382 A1 DE102016210382 A1 DE 102016210382A1
Authority
DE
Germany
Prior art keywords
actuators
actuator
vehicle
switching
brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102016210382.2A
Other languages
English (en)
Inventor
Charlotte Grinenval
Stefan Wickert
Konrad Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102016210382.2A priority Critical patent/DE102016210382A1/de
Priority to PCT/EP2017/058401 priority patent/WO2017215808A1/de
Priority to CN201780036676.8A priority patent/CN109415066B/zh
Priority to US16/307,308 priority patent/US10919539B2/en
Publication of DE102016210382A1 publication Critical patent/DE102016210382A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/10Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/402Back-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/413Plausibility monitoring, cross check, redundancy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • B60W2050/0292Fail-safe or redundant systems, e.g. limp-home or backup systems

Abstract

Bei einem Verfahren zum Betrieb eines Fahrzeugregelsystems mit mindestens zwei auf eine Fahrzustandsgröße einwirkenden Aktuatoren wird zunächst ein erster Aktuator betätigt und mit zeitlichem Abstand vor dem Erreichen einer den ersten Aktuator betreffenden Randbedingung auf einen zweiten Aktuator umgeschaltet.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zum Betrieb eines Fahrzeugregelsystems in einem Fahrzeug mit mindestens zwei Aktuatoren, die auf eine gleiche Fahrzustandsgröße einwirken.
  • Stand der Technik
  • Bekannt sind Fahrzeugregelsysteme, die das Zusammenwirken verschiedener Aktuatoren im Fahrzeug steuern, welche die gleiche Fahrzustandsgröße beeinflussen. Beispielsweise sind Hybrid-Fahrzeuge mit einem elektrischen Antriebsmotor und einem Verbrennungsmotor bekannt, wobei in Abhängigkeit verschiedener Parameter und Zustandsgrößen entweder nur der elektrische Antriebsmotor, der Antriebsmotor gemeinsam mit dem Verbrennungsmotor oder nur der Verbrennungsmotor aktiv sind. Bei derartigen Hybrid-Fahrzeugen ist es des Weiteren bekannt, im Bremsbetrieb den elektrischen Antriebsmotor im Rekuperationsbetrieb als Generator einzusetzen, um die Fahrzeugbatterie wieder aufzuladen. Die Rekuperation wird bei einer Bremsanforderung durch den Fahrer durchgeführt, wobei ergänzend die hydraulische Fahrzeugbremse aktiviert werden kann, um eine geforderte Sollverzögerung zu erreichen. Sobald die Fahrzeugbatterie einen bestimmten Ladungszustand erreicht hat, wird auf die hydraulische Fahrzeugbremse als einziges Bremsmittel umgeschaltet.
  • Offenbarung der Erfindung
  • Das erfindungsgemäße Verfahren bezieht sich auf einen Betrieb eines Fahrzeugregelsystems mit mindestens zwei auf eine gemeinsame Fahrzustandsgröße oder Fahrzeugzustandsgröße einwirkenden Aktuatoren. Die Aktuatoren können alternativ betrieben werden, wobei sich der Betrieb nach limitierenden Randbedingungen richtet. Gegebenenfalls können die verschiedenen Aktuatoren auch gleichzeitig betrieben werden, wobei vorzugsweise die Gewichtung der Aktuatoren, die gemeinsam auf die gleiche Fahrzustandsgröße einwirken, einstellbar ist, so dass der Beitrag jedes Aktuatores zum Erreichen der Fahrzustandsgröße veränderlich einstellbar ist.
  • Mindestens ein Aktuator unterliegt einer limitierenden Randbedingung, welche sich von der Fahrzustandsgröße unterscheidet, die über eine Betätigung des Aktuators beeinflussbar ist. Die Randbedingung limitiert zum Beispiel die Funktionstüchtigkeit des Aktuators, wobei die volle Funktionstüchtigkeit gewährleistet ist, solange die Randbedingung noch nicht erreicht ist. Mit dem Erreichen der Randbedingung ist dagegen die Funktionstüchtigkeit des betreffenden Aktuators nicht oder zumindest nicht mehr vollständig gewährleistet.
  • Bei dem erfindungsgemäßen Verfahren wird prädiktiv, also vorausschauend der Zeitpunkt des Erreichens der limitierenden Randbedingung ermittelt, insbesondere aus einer Zustands- oder Kenngröße des Aktuators oder eines dem Aktuator zugeordneten Aggregats. Diese Zustands- oder Kenngröße, die beispielsweise sensorisch oder aufgrund eines mathematischen Modells ermittelt wird, wird überwacht, wobei aus dem Verlauf der Zustands- oder Kenngröße auf den Zeitpunkt des Erreichens der limitierenden Randbedingung geschlossen werden kann.
  • Von dem Zeitpunkt des Erreichens der limitierenden Randbedingung wird eine Zeitspanne zurückgerechnet, die dementsprechend mit zeitlichem Abstand vor dem Erreichen der Randbedingung liegt. Zu diesem Zeitpunkt wird von dem ersten Aktuator auf den zweiten Aktuator umgeschaltet. Die Umschaltung erfolgt somit nicht erst bei Erreichen der limitierenden Randbedingung, sondern bereits zu einem früheren Zeitpunkt, bei dem die Funktionstüchtigkeit des ersten Aktuators noch ohne Einschränkung gewährleistet ist. Diese Vorgehensweise hat den Vorteil, dass der Übergang vom ersten auf den zweiten Aktuator ohne Beschränkungen durchgeführt werden kann, so dass der Übergang beispielsweise unter Ergonomieaspekten mit geringstmöglicher Beeinflussung des Fahrgefühls vollzogen werden kann. Idealerweise erfolgt das Umschalten vom ersten auf den zweiten Aktuator in der Weise, dass dies vom Fahrer nicht bemerkt wird. Dementsprechend kann der Übergang unter einer Zusatzbedingung vollzogen werden, beispielsweise bei konstanter Fahrzustandsgröße, die von den Aktuatoren beeinflusst wird, zum Beispiel bei konstanter Fahrzeuggeschwindigkeit oder konstanter Fahrzeugverzögerung bzw. -beschleunigung. Der Übergang zwischen den Aktuatoren kann somit ruckfrei und ohne vom Fahrer bemerkt zu werden vollzogen werden.
  • Mit dem Verfahren können Regelsysteme in Fahrzeugen betrieben werden, bei denen zwei oder gegebenenfalls mehr als zwei Aktuatoren auf eine gleiche Fahrzustandsgröße einwirken. Die Aktuatoren können entweder der gleichen Baugruppe, beispielsweise einem Bremssystem, oder unterschiedlichen Baugruppen, beispielsweise dem Bremssystem und dem Antriebssystem angehören, solange erfindungsgemäß gewährleistet ist, dass die Aktuatoren auf die gleiche Fahrzustandsgröße des Fahrzeugs einwirken.
  • Bei der Fahrzustandsgröße handelt es sich zum Beispiel um eine kinematische Fahrzustandsgröße wie die Fahrzeuggeschwindigkeit oder eine Fahrzeugbeschleunigung in Längs-, Quer- und/oder Hochrichtung. Die Fahrzustandsgröße schließt auch solche Zustandsgrößen ein, welche indirekt den Fahrzustand des Fahrzeugs beeinflussen, beispielsweise der Lenkwinkel, das Lenkmoment oder das Bremsmoment.
  • Gemäß einer vorteilhaften Ausführung ist der zeitliche Abstand vor dem Umschalten zwischen den Aktuatoren so bemessen, dass der Umschaltvorgang vor dem Erreichen der limitierenden Randbedingung des ersten Aktuators abgeschlossen ist. Hierdurch ist sichergestellt, dass auch während des Umschaltvorgangs zwischen den Aktuatoren die volle Funktionstüchtigkeit jedes Aktuators gewährleistet bleibt. Erst nach Abschluss des Umschaltvorgangs würde der erste Aktuator seine die Funktionstüchtigkeit einschränkende Randbedingung erreichen; zu diesem Zeitpunkt ist jedoch der Umschaltvorgang bereits abgeschlossen und wird die Fahrzustandsgröße von dem oder den weiteren Aktuatoren beeinflusst.
  • Gemäß noch einer weiteren zweckmäßigen Ausführung erfolgt der Umschaltvorgang zwischen den Aktuatoren kontinuierlich und überschneidend. Dementsprechend wird der Umschaltvorgang nicht schlagartig durchgeführt, sondern vielmehr wird die Aktivität des ersten Aktuators kontinuierlich zurückgefahren und zugleich zeitlich überschneidend die Aktivität des zweiten Aktuators heraufgefahren. In der Überschneidungsphase summiert sich der Einfluss der Aktuatoren auf die Fahrzustandsgröße, wobei beide Aktuatoren unterhalb ihrer maximalen Leistungsfähigkeit bleiben und in der Summe vorteilhafterweise der Einfluss auf die Fahrzustandsgröße konstant bleibt, beispielsweise ein konstantes Bremsmoment erzeugt wird, das sich auf gleichem Niveau wie vor dem Umschaltvorgang befindet. Der Umschaltvorgang wird beispielsweise so durchgeführt, dass die Fahrzustandsgröße vor, während und nach dem Umschaltvorgang den gleichen, konstanten Wert einnimmt.
  • Gemäß noch einer weiteren zweckmäßigen Ausführung ist im Ausgangszustand – vor dem Durchführen des Umschaltvorgangs – nur ein Teil der Aktuatoren aktiv, die nach Beendigung des Umschaltvorgangs deaktiviert sind, wobei nach dem Umschaltvorgang ein oder mehrere weitere Aktuatoren aktiv sind. Es handelt sich somit um einen vollständigen Wechsel der Aktivität von einem Aktuator zu einem weiteren Aktuator.
  • In einer alternativen Ausführung ist dagegen vorgesehen, dass sowohl vor dem Umschaltvorgang als auch nach dem Umschaltvorgang mindestens zwei Aktuatoren zeitgleich aktiv sind, jedoch mit dem Umschalten die Gewichtung zwischen den Aktuatoren verändert wird. Diese Ausführung hat den Vorteil, dass sich die Einhaltung der Fahrzustandsgröße auf verschiedene Aktuatoren verteilt, wobei lediglich der Aktivitätszustand zwischen den Aktuatoren mit dem Umschalten verändert wird. Es ist beispielsweise möglich, im Bremsbetrieb eines Hybridfahrzeugs vor dem Umschaltvorgang zur Durchführung der Rekuperation den größeren Teil der angeforderten Bremsleistung über den elektrischen Antriebsmotor im Generatorbetrieb zu erzeugen und den kleineren Teil über die hydraulische Fahrzeugbremse, wobei nach dem Umschaltvorgang die Verhältnisse umgekehrt werden.
  • Gemäß noch einer weiteren zweckmäßigen Ausführung sind vor dem Umschaltvorgang mehrere Aktuatoren aktiv und werden nach dem Umschaltvorgang von einem oder mehreren Aktuatoren abgelöst, wobei gegebenenfalls auch eine geänderte Gewichtungsverteilung in Betracht kommt.
  • Das erfindungsgemäße Verfahren wird, gemäß weiterer vorteilhafter Ausführung, beim Bremsen des Fahrzeugs eingesetzt, indem verschiedene, das Bremsverhalten beeinflussende Aktuatoren angesteuert werden. In der hydraulischen Fahrzeugbremse wird beispielsweise eine Hydraulikpumpe als Aktuator zur Erzeugung von Bremskraft eingesetzt, beispielsweise eine ESP-Pumpe (elektronisches Stabilitätsprogramm). Die Hydraulikpumpe kann vor, während und nach dem Umschaltvorgang in unterschiedlicher Weise angesteuert werden.
  • Als weiterer Aktuator, der einen Einfluss auf den Bremsvorgang des Fahrzeugs hat und in der Lage ist, eine Bremskraft zu generieren, kann auch eine Brennkraftmaschine im Fahrzeug eingesetzt werden, die im Schubbetrieb Schleppmomente erzeugt. Die Brennkraftmaschine im Schubbetrieb, die hydraulische Fahrzeugbremse und/oder ein elektrischer Antriebsmotor im Generatorbetrieb können jeweils als Aktuator, der Bremskraft erzeugt und Einfluss auf die Fahrzeuggeschwindigkeit als Fahrzustandsgröße hat, eingesetzt werden, wobei ein Umschalten zwischen diesen Aktuatoren möglich ist.
  • Es kann zum Beispiel zweckmäßig sein, zur Vermeidung einer unzulässig hohen Bremstemperatur in der hydraulischen Fahrzeugbremse mit zeitlichem Abstand vor dem Erreichen einer kritischen Bremstemperatur vom Betrieb mit einer Betätigung der hydraulischen Fahrzeugbremse auf einen Betrieb mit der Brennkraftmaschine im Schubbetrieb umzuschalten. Dabei wird vorteilhafterweise der Umschaltvorgang kontinuierlich und überschneidend durchgeführt, um einen Bremsruck während des Umschaltens zu vermeiden.
  • Gemäß einer weiteren vorteilhaften Ausführung wird das Verfahren zum Lenken des Fahrzeugs eingesetzt, wobei als ein Aktuator im Lenksystem ein elektrischer Servomotor zur Erzeugung von Lenkmoment verwendet wird. Unterliegt das Lenksystem hohen mechanischen Belastungen, beispielsweise aufgrund einer wiederholten oder dauerhaften Ansteuerung der Lenkung im Stillstand des Fahrzeugs oder im Offroad-Betrieb im unwegsamen Gelände, so kann beispielsweise die Temperatur im elektrischen Servomotor ansteigen. Bevor diese einen Temperaturgrenzwert erreicht, kann mit zeitlichem Abstand davor ein zusätzlicher, die Lenkung beeinflussender Aktuator angesteuert werden. Beispielsweise kann das Lenksystem während der Fahrt durch einseitige Bremseingriffe im Fahrzeug unterstützt werden, wodurch die Belastung für den elektrischen Servomotor reduziert wird.
  • Die verschiedenen Verfahrensschritte werden in einem Regel- bzw. Steuergerät durchgeführt und koordiniert, das Stellsignale zur Ansteuerung der Aktuatoren erzeugt.
  • Weitere Vorteile und zweckmäßige Ausführungen sind den weiteren Ansprüchen, der Figurenbeschreibung und den Zeichnungen zu entnehmen. Es zeigen:
  • 1 ein Ablaufschema mit Verfahrensschritten zum Umschalten im Bremsbetrieb zwischen einem elektrischen Antriebsmotor, der im Generatorbetrieb eingesetzt wird, und einer hydraulischen Fahrzeugbremse,
  • 2 ein Zeitdiagramm mit dem Verlauf verschiedener Zustands- und Kenngrößen im Fahrzeug beim Bremsen mit der hydraulischen Fahrzeugbremse und einer Brennkraftmaschine, die im Schubbetrieb mit Schleppmomenten betrieben wird.
  • Im Ablaufschema gemäß 1 ist eine Fahrsituation in einem Fahrzeug während des Bremsens dargestellt. Zunächst wird im Verfahrensschritt 1 ein Fahrerbremswunsch erzeugt, insbesondere durch Betätigen des Bremspedals. Der Fahrerbremswunsch wird im nächsten Verfahrensschritt 2 in einem Regel- bzw. Steuergerät verarbeitet, in welchem Stellsignale zur Ansteuerung von Aktuatoren erzeugt werden, über die Einfluss auf die zu erzeugende Bremskraft genommen werden kann. Es handelt sich beispielsweise um einen elektrischen Antriebsmotor 3, der im Generatorbetrieb gefahren wird, sowie eine hydraulische Fahrzeugbremse 4, die mit einer elektrisch ansteuerbaren Hydraulikpumpe zur Modulierung des hydraulischen Bremsdrucks ausgestattet ist, beispielsweise mit einer ESP-Pumpe.
  • In dem Steuergerät wird im Schritt 2 eine Verteilung der zu erzeugenden Bremskraft bzw. des Bremsmomentes auf den elektrischen Antriebsmotor 3 und die hydraulische Fahrzeugbremse 4 durchgeführt. Hierbei können Randbedingungen sowohl in dem elektrischen Antriebsmotor 3 als auch in der Fahrzeugbremse 4 berücksichtigt werden, die bei Überschreitung von Grenzwerten zu Funktionsbeeinträchtigungen in dem jeweiligen Aktuator führen.
  • Im Ausgangszustand wird eine definierte Verteilung zwischen dem elektrischen Antriebsmotor 3 und der Fahrzeugbremse 4 durchgeführt. Zur Rekuperation wird das Fahrzeug bevorzugt über den Generatorbetrieb des elektrischen Antriebsmotors 3 gebremst, wobei die Fahrzeugbremse 4 nur für den Fall aktiviert wird, dass das angeforderte Bremsmoment nicht ausschließlich über den Generatorbetrieb bereitgestellt werden kann.
  • Im Schritt 5 wird der Spannungszustand der Fahrzeugbatterie überwacht, die im Generatorbetrieb des elektrischen Antriebsmotors 3 aufgeladen wird. Der Generatorbetrieb kann maximal so lange aufrechterhalten werden, bis die Batterie vollständig aufgeladen ist. Der aktuelle Ladezustand in der Fahrzeugbatterie wird überwacht, wobei zeitlich vor dem Erreichen des maximalen Ladezustandes, der einen Grenzwert darstellt, auf die Fahrzeugbremse als allein wirksamen Aktuator während des Bremsens umgeschaltet wird.
  • Bei der Erfindung erfolgt die Umschaltung mit zeitlichem Abstand vor dem Erreichen des maximalen Ladezustandes der Fahrzeugbatterie. Der zeitliche Abstand bemisst sich hierbei unter anderem nach der Dauer des Umschaltvorgangs, der vorzugsweise kontinuierlich und gleichmäßig durchgeführt wird, indem die Bremsaktivität des elektrischen Antriebsmotors kontinuierlich heruntergefahren und die Bremsaktivität der Fahrzeugbremse zeitgleich kontinuierlich hochgefahren wird.
  • Ergibt die Abfrage im Schritt 5, dass der Ladezustand der Fahrzeugbatterie einen Wert erreicht hat, der in einem definierten zeitlichen Abstand vor dem maximalen Ladezustand liegt, wird der Ja-Verzweigung („Y“) folgend zum Steuergerät 2 zurückgekehrt, in welchem der Umschaltvorgang zwischen elektrischem Antriebsmotor 3 und Fahrzeugbremse 4 eingeleitet wird. Ergibt dagegen die Abfrage im Schritt 5, dass der Ladezustand erst in einem Zeitraum erreicht werden wird, der länger ist als der definierte zeitliche Abstand, wird der Nein-Verzweigung („N“) folgend wieder zum Beginn der Abfrage gemäß Schritt 5 zurückgekehrt und diese in zyklischen Abständen wiederholt.
  • Parallel kann in der Fahrzeugbremse in einem Schritt 6 die Bremsentemperatur, insbesondere der Bremsscheibentemperatur überwacht werden. Die Bremsentemperatur darf einen Grenzwert nicht überschreiten. Im Schritt 6 wird überwacht, ob sich die Temperatur einem Wert nähert, der bei einem weiteren Anstieg in einem definierten zeitlichen Abstand die Grenztemperatur erreichen würde. Ist dies nicht der Fall, wird der Nein-Verzweigung folgend wieder zum Beginn der Abfrage gemäß Schritt 6 zurückgekehrt und diese in zyklischen Abständen erneut durchlaufen. Ist dagegen der definierte zeitliche Abstand vor dem Erreichen der kritischen Temperatur erreicht, wird der Ja-Verzweigung folgend zum Schritt 2 zurückgekehrt und im Steuergerät eine erneute Umverteilung der zu erzeugenden Bremskraft mit einer Umschaltung zwischen den Aktuatoren durchgeführt.
  • Das gezeigte Schema in 1 ist prinzipiell auf verschiedene Fahrzeugregelsysteme anwendbar, die mindestens zwei Aktuatoren umfassen, mit denen die gleiche Fahrzustandsgröße beeinflusst werden kann. Es kann sich hier auch um Stabilitätssysteme handeln, beispielsweise um Wankstabilisierungen im Fahrzeug, oder um Lenksysteme.
  • In 2 ist zeitabhängig der Verlauf von verschiedenen Kenngrößen bei Bergabfahrt des Fahrzeugs dargestellt, das sich im Bremsbetrieb befindet. Die oben liegende Kurve s kennzeichnet die Bergabfahrt des dargestellten Fahrzeugs. Die Fahrstrecke ist prädiktiv aus Informationen eines Navigationssystems im Fahrzeug bekannt.
  • Der Fahrer gibt einen Verzögerungswunsch adr über die Betätigung des Bremspedals vor. Im Ausführungsbeispiel soll die Verzögerung adr konstant sein.
  • Der Bremswunsch führt in einem Bremspedalschalter SW zu einem erhöhten, konstanten Wert, der den Fahrerbremswunsch adr sowie die Bergabfahrt widerspiegelt, die aus den Informationen des Navigationssystems bekannt ist.
  • Zum Zeitpunkt t0 wird das Fahrzeug sowohl mit einer Bremskraft Fbr der hydraulischen Fahrzeugbremse als auch – auf niedrigerem Bremskraftniveau – mit einer Bremskraft Fice aus einem Motorschleppmoment der Brennkraftmaschine, die im Schubbetrieb gefahren wird, abgebremst. Dieser Bremsvorgang dauert bis zum Zeitpunkt t1.
  • Während der Betätigung der hydraulischen Fahrzeugbremse steigt die Bremsentemperatur Tbr kontinuierlich an. Erreicht die Temperatur der Fahrzeugbremse einen Grenzwert Tbr,lim, so sinkt das Potenzial der Fahrzeugbremse Pbr schlagartig auf den Wert null ab, so dass über die hydraulische Fahrzeugbremse keine Bremskraft mehr erzeugt werden kann.
  • Der Temperaturgrenzwert Tbr,lim wird zum Zeitpunkt t2 erreicht. Durch Überwachen der aktuellen Bremsentemperatur Tbr kann der Zeitpunkt t1 in einem definierten zeitlichen Abstand davor identifiziert werden, bei dem der Bremsbetrieb kontinuierlich auf die Brennkraftmaschine im Schubbetrieb zur Erzeugung von Schleppmomenten umgeschaltet wird. Zum Zeitpunkt t1 befindet sich die Bremsentemperatur noch nicht im kritischen Bereich. Dementsprechend kann die Zeitspanne zwischen t1 und t2 für einen kontinuierlichen Übergang bei der Erzeugung von Bremskraft mit einem Absenken der Bremskraft Fbr der Fahrzeugbremse auf den Wert null und einem gleichzeitigen Erhöhen des Motorschleppmomentes Fice auf einen erhöhten Wert durchgeführt werden, so dass die gewünschte Bremskraft erreicht wird. Dies gilt auch für den Übergang der hydraulischen Bremskraft im Zeitraum zwischen t1 und t2, in welchem die hydraulische Bremskraft kontinuierlich abgesenkt und das Motorschleppmoment kontinuierlich erhöht wird; in der Summe aus hydraulischer Bremskraft und Motorschleppmoment ergibt sich auch während des Übergangs die geforderte Bremskraft.
  • Wie der Kurve Pice zu entnehmen, die das Potenzial des Motorschleppmomentes kennzeichnet, bleibt dieses über den gesamten betrachteten Zeitraum konstant, so dass das Motorschleppmoment in allen betrachteten Situationen zur Verfügung steht.

Claims (13)

  1. Verfahren zum Betrieb eines Fahrzeugregelsystems mit mindestens zwei auf eine Fahrzustandsgröße einwirkenden Aktuatoren, wobei zur Beeinflussung einer Fahrzustandsgröße zunächst ein erster Aktuator betätigt und mit zeitlichem Abstand vor dem Erreichen einer Randbedingung des ersten Aktuators auf einen zweiten Aktuator umgeschaltet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der zeitliche Abstand vor dem Umschalten zwischen den Aktuatoren so bemessen ist, dass der Umschaltvorgang vor dem Erreichen der Randbedingung des ersten Aktuators abgeschlossen ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Umschaltvorgang zwischen den Aktuatoren kontinuierlich und überschneidend durchgeführt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass im Ausgangszustand nur ein Teil der Aktuatoren aktiv ist und mit dem Umschalten diese Aktuatoren deaktiviert und ein oder mehrere weitere Aktuatoren aktiviert werden.
  5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass im Ausgangszustand mindestens zwei Aktuatoren zeitgleich aktiv sind und mit dem Umschalten die Gewichtung zwischen den Aktuatoren verändert wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, gekennzeichnet durch einen Einsatz des Verfahrens beim Bremsen des Fahrzeugs.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass ein elektrischer Antriebsmotor im Fahrzeug im Generatorbetrieb als Aktuator zur Erzeugung von Bremskraft eingesetzt wird.
  8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass eine Hydraulikpumpe in einer hydraulischen Fahrzeugbremse als Aktuator zur Erzeugung von Bremskraft eingesetzt wird.
  9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass eine Brennkraftmaschine im Schubbetrieb als Aktuator zur Erzeugung von Schleppmomenten eingesetzt wird.
  10. Verfahren nach einem der Ansprüche 1 bis 9, gekennzeichnet durch einen Einsatz des Verfahrens beim Lenken des Fahrzeugs.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass ein elektrischer Servomotor im Lenksystem des Fahrzeugs als Aktuator zur Erzeugung von Lenkmoment eingesetzt wird.
  12. Fahrzeugregelsystem zum Durchführen des Verfahrens nach einem der Ansprüche 1 bis 11, wobei das Fahrzeugregelsystem mindestens zwei auf eine Fahrzustandsgröße einwirkenden Aktuatoren umfasst, zwischen denen über Stellsignale eines Regel- bzw. Steuergeräts umgeschaltet wird.
  13. Regel- bzw. Steuergerät zur Ansteuerung der einstellbaren Komponenten des Fahrzeugregelsystems nach Anspruch 12.
DE102016210382.2A 2016-06-13 2016-06-13 Verfahren zum Betrieb eines Fahrzeugregelsystems Pending DE102016210382A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102016210382.2A DE102016210382A1 (de) 2016-06-13 2016-06-13 Verfahren zum Betrieb eines Fahrzeugregelsystems
PCT/EP2017/058401 WO2017215808A1 (de) 2016-06-13 2017-04-07 Verfahren zum betrieb eines fahrzeugregelsystems
CN201780036676.8A CN109415066B (zh) 2016-06-13 2017-04-07 用于运行车辆调节系统的方法
US16/307,308 US10919539B2 (en) 2016-06-13 2017-04-07 Method for operating a vehicle control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016210382.2A DE102016210382A1 (de) 2016-06-13 2016-06-13 Verfahren zum Betrieb eines Fahrzeugregelsystems

Publications (1)

Publication Number Publication Date
DE102016210382A1 true DE102016210382A1 (de) 2017-12-14

Family

ID=58536971

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016210382.2A Pending DE102016210382A1 (de) 2016-06-13 2016-06-13 Verfahren zum Betrieb eines Fahrzeugregelsystems

Country Status (4)

Country Link
US (1) US10919539B2 (de)
CN (1) CN109415066B (de)
DE (1) DE102016210382A1 (de)
WO (1) WO2017215808A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114228718B (zh) * 2022-01-18 2024-03-19 潍柴动力股份有限公司 一种混合动力牵引车制动的控制方法及其控制系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3482486A (en) 1967-11-29 1969-12-09 United Aircraft Corp Redundant control method and apparatus
JP3417453B2 (ja) * 1997-03-27 2003-06-16 三菱自動車工業株式会社 電気自動車の制動制御装置
DE19881999D2 (de) * 1997-12-23 2000-06-15 Luk Getriebe Systeme Gmbh Getriebe
JP2000225935A (ja) * 1999-02-03 2000-08-15 Toyota Motor Corp 電気制御ブレーキシステム
US20040239180A1 (en) * 2003-05-27 2004-12-02 Delphi Technologies Inc. Antilock electro-hydraulic hybrid brake system and method
DE102004048366B4 (de) * 2004-10-01 2007-10-25 Auma Riester Gmbh & Co. Kg Stellantrieb zur Betätigung einer Armatur in der Prozessautomatisierung
JP4376882B2 (ja) * 2006-09-01 2009-12-02 トヨタ自動車株式会社 車両の制御装置
GB0802212D0 (en) * 2008-02-06 2008-03-12 Meritor Heavy Vehicle Braking A brake system and method
JP5567854B2 (ja) * 2010-02-12 2014-08-06 トヨタ自動車株式会社 ブレーキ制御装置
DE102011003494A1 (de) * 2011-02-02 2012-08-02 Robert Bosch Gmbh Verfahren zum Bremsen eines Fahrzeugs mit einem Hybrid-Bremssystem
DE102012216089A1 (de) * 2012-09-11 2014-03-13 Siemens Aktiengesellschaft Verfahren und Steuereinheit zur Ansteuerung von Aktoren eines Fahrzeugs in einem Notbetrieb
DE102013100187A1 (de) * 2013-01-10 2014-07-10 Zf Lenksysteme Gmbh Lenksystem in einem Fahrzeug mit elektrischem Servomotor
CN105228870B (zh) * 2013-05-21 2017-07-11 丰田自动车株式会社 制动装置
JP5796607B2 (ja) * 2013-07-19 2015-10-21 トヨタ自動車株式会社 車線維持支援装置
DE102014013744B3 (de) * 2014-09-22 2015-10-01 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Verfahren, Parkbremssystem und Fahrzeug zur Parkbremskrafterzeugung

Also Published As

Publication number Publication date
WO2017215808A1 (de) 2017-12-21
US10919539B2 (en) 2021-02-16
CN109415066B (zh) 2023-04-07
US20190135301A1 (en) 2019-05-09
CN109415066A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
EP2646305B1 (de) Verfahren zum betreiben eines fahrzeugs und fahrerassistenzeinrichtung
EP3256355B1 (de) Steuervorrichtung und verfahren zum betreiben eines bremssystems eines fahrzeugs
DE102015120038A1 (de) System und Verfahren zum Optimieren von regenerativem Bremsen bei adaptiver Fahrgeschwindigkeitsregelung
DE102005058829A1 (de) Aktives Einstellen der Verlustleistung einer elektrischen Maschine im Rekuperationsbetrieb eines Hybrid-Fahrzeugs
DE102015106746B4 (de) Verfahren zum steuern der bremsvorspannung in einem fahrzeugbremssystem
DE102011088312A1 (de) Verzögerung und Beschleunigen eines Elektrofahrzeugs mit einem Fahrpedal
EP4008579A1 (de) Verfahren und vorrichtung zur steuerung einer bremsleistung eines elektro- oder hybridfahrzeugs
DE102011122205A1 (de) Verfahren und Vorrichtung zur Rekuperation bei Hybrid- oder Elektrofahrzeugen
WO2014029548A1 (de) Steuervorrichtung für ein generatorisches bremssystem eines fahrzeugs und verfahren zum betreiben eines generatorischen bremssystems eines fahrzeugs
WO2009115358A2 (de) Verfahren zum regenerativen bremsen eines fahrzeugs
EP2337715B1 (de) Verfahren zum betrieb eines bremssystems in einem fahrzeug
DE102017113016A1 (de) Verfahren und baugruppe zur antriebsstrang- und reibungsbremsung eines fahrzeugs
EP2603410B1 (de) Verfahren zum betreiben eines bordnetzes, steuerung und computerprogrammprodukt
DE102017219563B4 (de) Steuervorrichtung und Steuerverfahren für eine Antriebsstrangeinheit
DE102008020842A1 (de) Kraftfahrzeug mit Hybridantrieb
DE102013201691A1 (de) Verfahren zum Bremsen eines Fahrzeuges und ein ein solches Verfahren verwendendes Bremssystem
DE102016206621A1 (de) Verfahren und Vorrichtung zum Betreiben eines Elektro- und/oder Hybridfahrzeugs, Computerprogramm und Computerprogrammprodukt
EP2703238A1 (de) Steuervorrichtung für ein rekuperatives Bremssystem und Verfahren zum Betreiben eines rekuperativen Bremssystems
DE102016210382A1 (de) Verfahren zum Betrieb eines Fahrzeugregelsystems
DE102015210297B4 (de) Kraftfahrzeug mit Rekuperationsbremse
DE102015215532A1 (de) Verfahren und Vorrichtung zum Betreiben eines Bremssystems eines Kraftfahrzeugs, Bremssystem
DE102021125892A1 (de) Steuervorrichtung für Fahrzeug; Steuerprogramm für Fahrzeug speicherndes computerlesbares Medium und Steuerverfahren für Fahrzeug
DE102010045005B4 (de) Vorrichtung zum Bremsen eines Fahrzeuges
DE102017200384A1 (de) Verfahren zum Verzögern eines Fahrzeugs
DE102016105399A1 (de) System und verfahren zum steuern von rekuperationsbremsung in einem fahrzeug

Legal Events

Date Code Title Description
R012 Request for examination validly filed