-
Die Erfindung betrifft eine Membranpumpe mit den im Oberbegriff des Patentanspruches 1 angegebenen Merkmalen.
-
Herkömmliche Membranpumpen weisen ein Pumpengehäuse etwa im Form eines Trägerteils und einen daran gehaltenen Antriebsmotor mit einer um eine Hauptrotationsachse rotierenden Antriebswelle auf. In einem Pumpenkopf ist ein Pumporgan in Form einer Membran angeordnet, die eine Pumpenkammer begrenzt und über einen geeigneten Exzentertrieb von der Antriebswelle des Motors schwingend angetrieben ist.
-
Am Trägerteil sind ein Einlassanschluss und ein Auslassanschluss vorgesehen, die jeweils mit der Pumpenkammer über eine Wechselventilanordnung wechselseitig im Sinne eines Ansaug- und Ausstoßtaktes verbindbar sind.
-
Bei herkömmlichen Membranpumpen ist diese Wechselventilanordnung durch zwei passive Rückschlagventile in entsprechenden Einlass- und Auslasskanälen von und zur Pumpenkammer gebildet, die eine gewisse unvorteilhafte Abhängigkeit von wechselnden Umgebungsbedingungen zeigen. Eine positive Druckdifferenz zwischen Einlass und Auslass kann darüber hinaus zu einem unkontrollierten Strom von Pumpmedium über die Pumpe führen.
-
Die erwähnten Rückschlagventile sind darüber hinaus in der Regel als Membranventile ausgeführt, die hinsichtlich ihres Öffnungs- und Schließverhaltens insbesondere für Dosierpumpen wenig definiert und verschleißanfällig sind.
-
Dementsprechend sind derartige bekannte Membranpumpen insbesondere für hochpräzise Dosierpumpen nur bedingt geeignet.
-
Grundsätzlich sind bei Dosierpumpen als Ersatz für die als nachteilig erkannten Membranventile Ventilkonstruktionen mit einer Ventilscheibe bekannt, die mit einer Durchflussöffnung wechselweise mit entsprechenden nierenförmigen Ableitkanälen verbunden werden können. Solche Scheibenventil-Konstruktionen sind beispielsweise aus der
DE 10 2012 200 501 A1 , der
DE 31 22 722 A1 oder der
DE 34 16 983 A1 bekannt. Problematisch bei diesen Konstruktionen ist die schwierige Ansteuerung der Ventilscheibe, die beispielsweise bei der Konstruktion gemäß
DE 10 2012 200 501 A1 durch eine magnetisch gekoppelte Aktorscheibe erfolgt.
-
Der Erfindung liegt dementsprechend die Aufgabe zugrunde, eine Membranpumpe der eingangs beschriebenen Art so zu verbessern, dass das Pumpverhalten definierter und präziser sowie von äußeren Einflüssen unabhängiger wird.
-
Diese Aufgabe wird durch die im Kennzeichnungsteil des Anspruches 1 angegebenen Merkmale gelöst. Demnach ist die Membranpumpe dadurch charakterisiert, dass
- – der Pumpenkopf im Trägerteil rotierend gelagert und mit der Antriebswelle in einer Orientierung verbunden ist, dass die Schwingungsrichtung der Membran orthogonal zur Hauptrotationsachse der Antriebswelle gerichtet ist,
- – für die Membran ein Antriebsübertragungselement vorgesehen ist, das
- – einerseits auf dem Pumpenkopf in der Schwingungsrichtung der Membran verschiebbar gelagert und mit einem Koppelelement mit der Membran antriebskinematisch verbunden ist, sowie
- – in einer exzentrisch zur Hauptrotationsachse drehbar gelagerten Lagerscheibe orthogonal zur Schwingungsrichtung der Membran verschiebbar geführt ist, derart, dass
- – bei der von der Antriebswelle hervorgerufene Drehung der Pumpenkammer und der rotatorischen Mitnahme des Antriebsübertragungselementes durch die Pumpenkammer aufgrund der exzentritätsbedingten Verschiebungen des Antriebsübertragungselementes relativ zur Pumpenkammer und zur Lagerscheibe das Antriebsübertragungselement mit seinem Koppelelement die oszillatorische Bewegung der Membran in der Pumpenkammer erzeugt, sowie
- – durch die Rotation des Pumpenkopfes eine darin angeordnete Pumpmediumleitung wechselweise mit dem Einlass- oder Auslassanschluss verbunden ist.
-
Durch die Kombination der im Kennzeichnungsteil des Anspruches 1 angegebenen Merkmale wird eine vom Stand der Technik völlig abweichende Ventilsteuerung erzielt. Praktisch wird die Rotation der Wechselventilanordnung durch die rotierende Lagerung des Pumpenkopfes erzeugt, wobei von dieser Rotationsbewegung gleichzeitig der Antrieb der Membran über das exzentrisch dazu in einer Lagerscheibe angeordnete und relativ zu dieser und den Pumpenkopf verschiebbare Antriebsübertragungselement abgeleitet wird. Zusammenfassend ergibt sich dadurch ein definiertes Pumpverhalten, das von den äußeren Bedingungen am Einlass- und Auslassanschluss praktisch unabhängig ist. Die Ventilanordnung selbst ist verschleißarm, da auf Membranventile verzichtet werden kann.
-
In den abhängigen Ansprüchen sind bevorzugte Weiterbildungen des Erfindungsgegenstandes angegeben. So kann das Antriebsübertragungselement als käfigartiges Teil ausgebildet, das mit Gleitführungen gegenüber dem Pumpenkopf einerseits und der Lagerplatte andererseits verschiebbar geführt ist. Dies stellt eine konstruktiv einfache Ausführung für dieses Bauteil dar, mit dem die durch die Exzentrizität der Lagerung des Antriebsübertragungselements gegenüber dem Pumpenkopf hervorgerufene, umlaufende Relativverschiebung des Antriebsübertragungselementes problemlos ermöglicht wird.
-
Das Koppelelement des Antriebsübertragungselements kann als nach innen in den Pumpenkopf hineinragender Koppelzapfen ausgebildet sein, der mit der Membran verbunden und somit die Bewegung des Antriebsübertragungselementes während der Rotation auf die Membran im Sinne einer Oszillationsbewegung überträgt.
-
Gemäß einer weiteren bevorzugten Ausführungsform kann die Lagerscheibe in einem Wälzlagerring am Trägerteil drehbar gelagert sein. Dies stellt eine besonders exakte und leicht laufende Lagerung der Lagerscheibe dar, die sich insbesondere im Zusammenhang mit dem Einsatzzweck der erfindungsgemäßen Membranpumpe als Dosierpumpe im Sinne eines exakten Rotationslaufes als besonders vorteilhaft erweist.
-
Für die Exzentrizität der Lagerung der Lagerscheibe gegenüber der Hauptrotationsachse können Maße bis 1/3, vorzugsweise bis 1/5 des Membraneinspanndurchmessers angegeben werden, wobei für flache Membranen etwa 1/10 als Obergrenze gelten kann. Für andersartige Membranen, wie Sicken- oder Rollmembranen, kommen dann die größeren Exzentrizitäten in Frage.
-
Zur Integration der eingangs beschriebenen Bauart eines Scheibenventils in die erfindungsgemäße Membranpumpe ist als bevorzugte Weiterbildung vorgesehen, dass der Pumpmediumkanal von der Pumpenkammer parallel mit Abstand zur Hauptrotationsachse im Pumpenkopf zu einer zwei nierenförmige Teilringkanäle aufweisenden Wechselventilanordnung im Trägerteil führt, über die der Pumpmediumkanal wechselweise im Sinne eines Ansaug- und Ausstoßtaktes mit dem Einlassanschluss oder Auslassanschluss der Pumpe verbindbar ist. Von der Rotation der Pumpkammer wird also nicht nur der Antrieb der Membran, sondern auch die Steuerung der Wechselventilanordnung abgeleitet.
-
Bevorzugte Weiterbildungen der Wechselventilanordnung sehen die Ausrüstung mit einer rotierenden Dichtscheibe mit einer Ventilöffnung vor, über die der Pumpmediumkanal mit dem Einlassanschluss oder Auslassanschluss wechselweise verbindbar ist. Insbesondere wenn die Wechselventilanordnung am Trägerteil unter Federbeaufschlagung in Richtung auf die Dichtscheibe angeordnet ist, weist die Ventilanordnung dauerhaft eine hohe Dichtigkeit auf. Ferner kann durch die Dichtscheibe bei entsprechend reibungsarmer Auslegung ein verschleißfreier, ruhiger Lauf der Membranpumpe erzielt werden.
-
Eine weitere bevorzugte Ausführungsform der Erfindung betrifft den Pumpenkopf, der aus einem Unterteil und einem Oberteil mit dazwischen eingespannter Membran zusammengesetzt sein kann. Das Koppelelement des Antriebsübertragungselementes, also insbesondere der Koppelzapfen, ragt dann durch eine Öffnung im Unterteil in den Pumpenkopf zur Anbindung an die Membran hindurch.
-
Wenn bisher von einem Pumpenkopf mit einer Pumpenkammer und entsprechend einem Pumpenorgan die Rede war, so können vorteilhafte Weiterbildungen dahingehend realisiert werden, dass zwei oder auch mehr Pumpenkammern nebeneinander mit bezogen auf ihren Takt gegen- oder versetzt laufenden Pumporganen vorgesehen sind. Diese können dann gemeinsam von dem Antriebsübertragungselement über gesonderte Koppelelemente angetrieben sein. Durch mehrfache Pumpkammern und Membranen kann das Förderverhalten der Membranpumpe ohne Einbußen bei der Dosiergenauigkeit beispielsweise bei einer Mikrodosierpumpe vergleichmäßigt werden, da die einzelnen Pumpenkammern taktversetzt arbeiten, so dass, wenn eine Pumpenkammer beispielsweise im Ansaugtakt arbeitet, die andere Pumpenkammer gerade im Ausstoßtakt läuft.
-
Die Vorteile der erfindungsgemäßen Membranpumpe mit ihren bevorzugten Ausbildungen lassen sich wie folgt zusammenfassen:
- – Es handelt sich um eine kompakte Membranpumpe mit gesteuerten Ventilen und einem geregelten Motor.
- – Durch den speziellen Exzenterantrieb wird die Membran streng linear betätigt, was ein sehr steifes Design und eine PTFE-Beschichtung der Membran erlaubt.
- – Die Ventilkonstruktion erfordert nur eine statische Abdichtung und keine sich biegenden Elastomeren. Dies führt zu Pumpen mit sehr hoher chemischer Widerstandsfähigkeit und einer langen Lebensdauer. Weiterhin zeigt die Pumpe keine Neigung zur Leckage gegenüber der Umwelt.
- – Unabhängig vom Motorlauf oder jeglicher Anhalteposition des Motors besteht zu keiner Zeit ein offener Strömungsweg zwischen dem Einlass und Auslass der Pumpe in jedweder Richtung.
- – Die Konstruktion der Pumpenkammer und der Ventile vermeidet Volumenbereiche ohne direkten Kontakt mit dem Flüssigkeitsstrom. Dementsprechend ist das Spülen und Reinigen des Pumpenkopfes einfach realisierbar.
- – Eine steife Membran in Verbindung mit gesteuerten Ventilen führt zu optimierten Druck- und Saugeigenschaften für Gase, Flüssigkeiten und Mischungen von Gasen und Flüssigkeiten.
- – In Verbindung mit einem geschwindigkeits- und richtungsgesteuerten Motor, wie er beispielsweise durch eine Schrittmotor realisiert werden kann, ist der Pumpstrom exakt einstellbar und kann ferner durch eine Richtungsumkehr der Motorrotation einfach reversiert werden. Aufgrund der geringen Elastizitäten im gesamten Aufbau ist die Strömungsrate zeitlich sehr konstant und Umwelteinflüsse werden minimiert. Die Strömung ist nahezu unabhängig von sich änderndem Rück- oder Einlassdruck und bleibt sogar dann konstant, wenn am Einlass der Pumpe ein Überdruck herrscht.
- – Mit einer optionalen Positionserfassung können Fehlschritte, wie beispielsweise ausgelassene Schritte, des Schrittmotors kompensiert werden. Dies erlaubt ferner ein ganz bestimmtes, definiertes Volumen durch Zählung der Motorumdrehungen abzugeben.
- – Insgesamt zeigt die erfindungsgemäße Pumpe eine hohe Strömungspräzision von beispielsweise 1 Prozent und darunter auf. Sie ist ruhig und arbeitet mit sehr geringen Vibrationen.
- – Die reale Konstruktion der Membranpumpe für die Serienproduktion ist in hohem Maße an die jeweiligen Anforderungen der Anwendung anpassbar. So sind die Strömungsraten in Größenordnungen zwischen µl/min bis l/min skalierbar. Das Material der benetzten Bereiche kann der erforderlichen chemischen Widerstandsfähigkeit entsprechen. Die Flüssigkeitsanschlüsse sind oben am Kopf der Pumpe angeordnet, wobei deren Detailposition und -ausrichtung frei wählbar sind. Für die benetzten Teile der Pumpe kann eine hohe Wartungsfreundlichkeit, beispielsweise für einen leichten Austausch, erzielt werden. Durch das robuste Design der Pumpenteile können auch Medien mit hohen Viskositäten gefördert werden.
-
Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels anhand der beigefügten Zeichnungen. Es zeigen:
-
1 eine perspektivische Darstellung einer Membranpumpe,
-
2 einen ausschnittsweisen Axialschnitt der Pumpe gemäß Schnittlinie II-II nach 1,
-
3 einen Radialschnitt durch die Pumpe gemäß Schnittlinie III-III nach 2,
-
4 eine Seitenansicht einer schematisiert dargestellten Membranpumpe,
-
5 eine Ansicht der Membranpumpe gemäß Pfeilrichtung V nach 4 in einer Neutralposition der Membran,
-
6 einen Axialschnitt entlang der Schnittlinie VI-VI nach 5,
-
7 einen Radialschnitt entlang der Schnittlinie VII-VII nach 4,
-
8 bis 10 Darstellungen der Membranpumpe analog den 5 bis 7 in einer gegenüber der Neutralposition um 45° gedrehten Position des Pumpenkopfes mit Antriebskäfig,
-
11 bis 13 Darstellungen der Membranpumpe analog den 5 bis 7 im oberen Totpunkt des Pumpenkopfes mit Antriebskäfig,
-
14 bis 16 Darstellungen der Membranpumpe analog den 5 bis 7 im unteren Totpunkt des Pumpenkopfes mit Antriebskäfig,
-
17 eine perspektivische Explosionsdarstellung der Wechselventilanordnung der Membranpumpe,
-
18 und 19 Darstellungen analog den 6 und 7 einer Membranpumpe mit doppelter Pumpenkammer, und
-
20 eine perspektivische Darstellung einer Wechselventilanordnung für die Membranpumpe gemäß 18 mit doppelter Pumpenkammer.
-
Wie aus 1 und 2 deutlich wird, weist die gezeigte Membranpumpe ein als Pumpengehäuse fungierendes, rahmenartiges Trägerteil 1 auf, an dem ein elektrischer Antriebsmotor 2 angebracht ist. Der in den 4 ff. lediglich schematisch angedeutete Antriebsmotor 2 weist eine um eine Hauptrotationsachse HR rotierende Antriebswelle 3 auf. Ein als Ganzes mit 4 bezeichneter Pumpenkopf ist aus einem Oberteil 5 und einem Unterteil 6 zusammengesetzt, die einen üblichen, linsenförmigen Arbeitsraum begrenzen. In diesem ist zwischen Ober- und Unterteil 5, 6 eine Membran 7 eingespannt, die zusammen mit dem Oberteil 5 die Pumpenkammer 8 begrenzt. Der Pumpenkopf 4 ist im Trägerteil 1 in noch näher zu erläuternder Weise rotierend gelagert und dabei mit der Antriebswelle 3 in einer Orientierung verbunden, so dass die Schwingungsrichtung SR der Membran 7 orthogonal zur Hauptrotationsachse HR der Antriebswelle 3 gerichtet ist.
-
Wie aus 1 und 3 erkennbar ist, ist am Trägerteil 1 an der dem Antriebsmotor 2 abgewandten Seite eine Lagerbrücke 9 vorgesehen, von der stutzenartige Auslass- 10 und Einlassanschlüsse 11 in einander abgewandter Richtung abstehen. Diese Anschlüsse 10, 11 sind mit einer als Ganzes mit 12 bezeichneten Wechselventilanordnung versehen, die wechselweise im Sinne eines Ansaug- und Ausstoßtaktes mit der Pumpenkammer 8 verbindbar ist. Deren Funktion wird im Folgenden noch näher erläutert.
-
Zum Antrieb der Membran 7 im Pumpenkopf 4 ist ein Antriebsübertragungselement 13 vorgesehen, das im Folgenden der Einfachheit halber als Antriebskäfig 13 bezeichnet wird. Dieser Antriebskäfig 13 ist zum einen, wie beispielsweise aus 3 und 7 deutlich wird, mit seitlichen Streben 14, 15 über Gleitführungen 16 auf dem Pumpenkopf 4 in der Schwingungsrichtung SR der Membran 7 verschiebbar gelagert. Ferner sitzt der Antriebskäfig 13 in einer Lagerscheibe 17, die am Trägerteil 1 in einem als Drehlager dienenden Wälzlagerring 18 drehbar gelagert ist. Der Antriebskäfig 13 ist wiederum über Gleitführungen 19 in der Lagerscheibe 17 in einer Richtung verschiebbar gelagert, die orthogonal zu seiner Führungsrichtung am Pumpenkopf 4 gerichtet ist. Dazu ist die Aufnahme 20 der Gleitführung 19 in der Lagerscheibe 17 für den Antriebskäfig 13 breiter ausgeführt, als die entsprechende Dimension des Antriebskäfigs. Genauso ist die im Antriebskäfig 13 vorhandene Öffnung mit den Gleitführungen 16 zur Führung auf dem Pumpenkopf 4 breiter ausgeführt als die entsprechende Dimension des Pumpenkopfs 4. Es können sich also der Antriebskäfig 13 innerhalb der Aufnahme 20 und der Pumpenkopf 4 relativ zueinander in Schwingungsrichtung SR der Membran 7 und orthogonal dazu verschieben.
-
Wie aus 3, aber besonders deutlich aus 9, 12 und 15 erkennbar ist, ist die Lagerscheibe 17 mit ihrem Wälzlagerring 18 so am Trägerteil 1 angeordnet, dass die Drehachse DA der Lagerscheibe 17 zwar parallel zur Hauptrotationsachse HR, allerdings mit einer Exzentrizität EX demgegenüber versetzt angeordnet ist.
-
Schließlich ist festzuhalten, dass der Antriebskä13 als Koppelelement mit der Membran 7 einen nach innen in den Pumpenkopf 4 ragenden Koppelzapfen 21 aufweist, an dessen Ende die Membran 7 mittig befestigt ist. Der Koppelzapfen 21 greift über eine Öffnung 28 im Unterteil 6 des Pumpenkopfes 4 auf die Membran 7 zu.
-
Wie aus 2, 6, 9, 12 und 15 deutlich wird, geht von der Pumpenkammer 8 auf der dem Koppelzapfen 21 abgewandten Seite ein Pumpmediumkanal 22 ab, der parallel zur Hauptrotationsachse HR mit Abstand davon versetzt zur Wechselventilanordnung 12 hin verläuft und in die Ventilöffnung 23 einer Ventilscheibe 24 mündet. Letztere rotiert zusammen mit dem Pumpenkopf 4, der auf dieser Seite über einen Achsstummel 25 im Trägerteil 1 rotierend gelagert ist.
-
Die Ventilscheibe 24 mit der Ventilöffnung 23 kooperiert mit der Wechselventilanordnung 12, in der – wie aus 3 und 17 deutlich wird – auf einen dem Umlaufdurchmesser der Ventilöffnung 23 entsprechenden Kreislinie zwei nierenförmige Teilringkanäle 26, 27 eingebracht sind, die mit dem Einlassanschluss 11 bzw. Auslassanschluss 10 fluidverbunden sind.
-
Die Funktionsweise der in den 1 bis 17 gezeigten Membranpumpe ist wie folgt zu erläutern:
In den 5 bis 7 ist die Membranpumpe in der Neutralstellung der Membran 7, also der Mittenstellung zwischen dem unteren und oberen Totpunkt gezeigt. Bei einer Rotation des Pumpenkopfes 4 bedingt durch den Antriebsmotor 2 dreht sich der Pumpenkopf 4 und nimmt über die Gleitführungen 16 den Antriebskäfig 13 mit. Aufgrund der Exzentrizität EX dessen Lagerung in der Lagerscheibe 17 gegenüber der Hauptrotationsache HR, um die der Pumpenkopf 4 rotiert, verschiebt sich bei dieser Rotation der Antriebskäfig 13 entlang der Gleitführungen 16 und 19 relativ zum Pumpenkopf 4 und Lagerscheibe 17, wodurch der Antriebskäfig 13 mit seinem Kuppelzapfen 21 tiefer in den Pumpenkopf 4 eingreift und dementsprechend die Membran 7 in Richtung oberer Totpunkt bewegt. Eine 45°-Zwischenstellung bei dieser Bewegung ist in den 8 bis 10 gezeigt.
-
Bei weiterer Drehung der Antriebswelle 3 des Pumpenkopfs 4 wird der Antriebskäfig relativ zum Pumpenkopf 4 weiter verschoben, bis die Membran am oberen Totpunkt angekommen ist, wie dies in 11 bis 13 dargestellt ist. Der Pumpenkopf 4 hat sich gegenüber der in den 5 bis 7 gezeigten Neutralstellung um 90° gedreht. Die entsprechende Bewegung der Membran 7 entspricht dem Ausstoßtakt der Membranpumpe, während dem der Pumpmediumkanal 22 über die Ventilöffnung 23 mit dem einen Teilringkanal 27, der mit dem Auslassanschluss 10 verbunden ist, führt. Das in der Pumpenkammer 8 befindliche Medium wird also durch den Auslassanschluss 10 ausgestoßen. Bei Erreichen des oberen Totpunktes der Membran 7 ist der Rotationswinkel des Pumpenkopfs 4 auch so, dass der Pumpmediumkanal 22 mit der Ventilöffnung 23 in der Ventilscheibe 24 die Überdeckung mit dem Teilringkanal 27 verlässt, so dass der Pumpmediumkanal 22 in diesem Moment dicht abgeschlossen ist.
-
Bei Weiterdrehung der Antriebswelle 3 mit Pumpenkopf 4 um 180° erfolgt eine Umkehr der Relativbewegung von Antriebskäfig 13 zu Pumpenkopf 4 und es wird wieder die Neutralstellung durchlaufen, bis die in den 14 bis 16 gezeigte untere Totpunktstellung des Antriebskäfigs 13 mit der Membran 7 erreicht ist. Während dieser Rotationsbewegung ist der Pumpmediumkanal 22 mit der Ventilöffnung 23 in der Ventilscheibe 24 mit dem zweiten Teilringkanal 26 in Überdeckung, so dass bei diesem Ansaugtakt über den Einlassanschluss 11 Pumpmedium in die Pumpkammer 8 eingesaugt werden kann. Bei Erreichen des unteren Totpunktes sind dann der Pumpmediumkanal 22 mit der Ventilöffnung 23 wieder außerhalb des Überdeckungsbereichs mit dem Teilringkanal 26 und die Pumpenkammer 8 im gefüllten Zustand abgeschlossen.
-
Die aufgrund der Exzentrität EX der Lagerung des Antriebskäfigs 13 innerhalb der drehbaren Lagerscheibe 17, der Mitnahme des Antriebskäfigs 13 durch den Pumpenkopf 4 und die gegenseitige Verschiebbarkeit dieser Elemente in Schwingungsrichtung SR und orthogonal dazu erfolgende Oszillationsbewegung des Antriebskä13 ist bei einem Vergleich der 6, 7, 9, 10, 12, 13, 15 und 16 gut erkennbar, so dass der Antriebsmechanismus klar ist. Die Amplitude dieser Oszillationsbewegung der Membran 7 entspricht dabei dem Doppelten der Exzentrizität EX.
-
Der Vollständigkeit halber ist noch zu ergänzen, dass das die Wechselventilanordnung 12 mit dem Auslass- und Einlassanschluss 10, 11 realisierende Bauteil durch eine Druckfederanordnung 29 in der Lagerbrücke 9 in Richtung auf die Ventilscheibe 24 und den Pumpenkopf 4 kraftbeaufschlagt ist, so dass eine dichte Aneinanderlage dieser Bauteile und ein entsprechend dichter Verschluss der Wechselventilanordnung 12 unabhängig von den Druckverhältnissen an Ein- und Auslass der Pumpe gewährleistet ist.
-
Anhand der 18 bis 20 kann eine alternative Membranpumpe mit einem Doppel-Pumpenkopf 4‘ erläutert werden, der zwei parallel zur Hauptrotationsachse HR nebeneinanderliegende Pumpenkammern 8, 8‘ mit jeweils einer Membran 7, 7‘ aufweist. Letztere sind zwischen den gemeinsam beide Membranen 7, 7‘ gegenlagernden Oberteil 5‘ und den beiden Unterteilen 6, 6‘ eingespannt. Die Antriebskinematik entspricht der oben geschilderten Pumpenmembran, wobei der Antriebskäfig 13 lediglich in Entgegenstellung zum ersten Koppelzapfen 21 einen zweiten Koppelzapfen 21‘ aufweist, der die zweite Membran 7‘ antreibt. Wie aus 18 deutlich wird, sind die Pumpmediumkanäle 22, 22‘ der beiden Pumpenkammern 8, 8‘ jeweils auf den einander zugewandten Seiten der Pumpenkammern 8, 8‘ angeordnet und führen zu einer Ventilscheibe 24‘, bei der um 180° versetzt zwei Ventilöffnungen 23, 23‘ vorgesehen sind – siehe 20. Bei der in 18 und 19 gezeigten Auslenkung der Membranen 7, 7‘ in die gleiche Raumrichtung ist in der 18 unten gezeigten Pumpenkammer 8 die obere Totpunktstellung, also das Ende des Ausstoßtaktes erreicht, während bei der oben dargestellten Pumpenkammer 8‘ die Membran 7‘ sich in der unteren Totpunktstellung, also am Ende des Einlasstaktes befindet. In dieser Position nimmt die Ventilscheibe 24‘ die in 20 dargestellte Position der Wechselventilanordnung 12‘ im Übergangsbereich zwischen den beiden Teilringkanälen 26, 27 ein. Beim Weiterdrehen des Pumpenkopfes 4‘ und der entsprechenden Verschiebung des Antriebskäfigs 13‘ unter Weiterbewegung der beiden Membranen 7, 7‘ gelangen die beiden Ventilöffnungen 23, 23‘ in Verbindung zum jeweils anderen Anschluss, so dass erkennbar während einer vollständigen Umdrehung des Pumpenkopfes 4‘ am Einlassanschluss 11 mit kurzen Unterbrechungen beim Übergang der Ventilöffnungen 23, 23‘ von einem Teilringkanal 26 zum anderen Teilringkanal 27 immer Ansaugbedingungen und am Auslassanschluss 10 immer Druckbedingungen herrschen.
-
Im Übrigen ist die Membranpumpe gemäß den 18 bis 20 in ihrem Aufbau und der Funktionsweise in Übereinstimmung mit der Membranpumpe gemäß 1 bis 17, so dass sich eine nochmalige Beschreibung erübrigt. Übereinstimmende Bauelemente sind mit identischen Bezugszeichen versehen.
-
ZITATE ENTHALTEN IN DER BESCHREIBUNG
-
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
-
Zitierte Patentliteratur
-
- DE 102012200501 A1 [0007, 0007]
- DE 3122722 A1 [0007]
- DE 3416983 A1 [0007]