DE102016014001A1 - MEMS Scanmodul für einen Lichtscanner - Google Patents

MEMS Scanmodul für einen Lichtscanner Download PDF

Info

Publication number
DE102016014001A1
DE102016014001A1 DE102016014001.1A DE102016014001A DE102016014001A1 DE 102016014001 A1 DE102016014001 A1 DE 102016014001A1 DE 102016014001 A DE102016014001 A DE 102016014001A DE 102016014001 A1 DE102016014001 A1 DE 102016014001A1
Authority
DE
Germany
Prior art keywords
support
base
support elements
scan module
mirror surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102016014001.1A
Other languages
English (en)
Other versions
DE102016014001B4 (de
Inventor
Florian Petit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blickfeld De GmbH
Original Assignee
Blickfeld GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blickfeld GmbH filed Critical Blickfeld GmbH
Priority to DE102016014001.1A priority Critical patent/DE102016014001B4/de
Priority to US16/463,647 priority patent/US11143858B2/en
Priority to PCT/DE2017/101007 priority patent/WO2018095486A2/de
Priority to CN201780082641.8A priority patent/CN110312944B/zh
Priority to JP2019547758A priority patent/JP6933401B2/ja
Priority to EP17808314.3A priority patent/EP3545332A2/de
Publication of DE102016014001A1 publication Critical patent/DE102016014001A1/de
Application granted granted Critical
Publication of DE102016014001B4 publication Critical patent/DE102016014001B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/003Bistatic lidar systems; Multistatic lidar systems

Abstract

Ein Scanmodul (100) für einen Lichtscanner (99) umfasst eine Basis (141) und ein Schnittstellenelement (142), welches eingerichtet ist, um eine Spiegeloberfläche (151) zu fixieren. Das Scanmodul (100) umfasst auch mindestens ein Stützelement (101, 102), welches sich zwischen der Basis (141) und dem Schnittstellenelement (142) erstreckt und eine Ausdehnung senkrecht zur Spiegeloberfläche (151) aufweist, die nicht kleiner als 0,7 mm ist. Dabei sind die Basis (141), dass Schnittstellenelement (142) und das mindestens eine Stützelement (101) einstückig ausgebildet.

Description

  • TECHNISCHES GEBIET
  • Die Erfindung betrifft im Allgemeinen ein Scanmodul für einen Lichtscanner. Insbesondere betrifft die Erfindung ein Scanmodul mit mindestens einem Stützelement, das sich zwischen einer Basis und einem Schnittstellenelement zum Fixieren einer Spiegeloberfläche erstreckt und eine Ausdehnung senkrecht zur Spiegeloberfläche aufweist, die nicht kleiner als 0,7 mm ist.
  • HINTERGRUND
  • Die Abstandsmessung von Objekten ist in verschiedenen Technologiefeldern erstrebenswert. Zum Beispiel kann es im Zusammenhang mit Anwendungen des autonomen Fahrens erstrebenswert sein, Objekte im Umfeld von Fahrzeugen zu erkennen und insbesondere einen Abstand zu den Objekten zu ermitteln.
  • Eine Technik zur Abstandsmessung von Objekten ist die sogenannte LIDAR-Technologie (engl. Light detection and ranging; manchmal auch LADAR). Dabei wird gepulstes Laserlicht von einem Emitter ausgesendet. Die Objekte im Umfeld reflektieren das Laserlicht. Diese Reflexionen können anschließend gemessen werden. Durch Bestimmung der Laufzeit des Laserlichts kann ein Abstand zu den Objekten bestimmt werden.
  • Um die Objekte im Umfeld ortsaufgelöst zu erkennen, kann es möglich sein, das Laserlicht zu scannen. Je nach Abstrahlwinkel des Laserlichts können dadurch unterschiedliche Objekte im Umfeld erkannt werden.
  • Mikroelektromechanische (MEMS) Bauteile können dazu verwendet werden, um einen Laserscanner zu implementieren. Siehe z.B. DE 10 2013 223 937 A1 . Dabei wird ein Spiegel typischerweise über laterale Federelemente mit einem Substrat verbunden. Der Spiegel und die Federelemente sind einstückig bzw. integriert mit dem Substrat hergestellt. Der Spiegel wird durch geeignete Ätzprozesse aus einem Wafer freigestellt.
  • Solche Techniken weisen aber bestimmte Nachteile und Einschränkungen auf. Beispielsweise ist der Scanwinkel oftmals vergleichsweise beschränkt und liegt z.B. in der Größenordnung von 20° - 60°. Außerdem ist oftmals die verwendbare Spiegelfläche beschränkt; typische Spiegel können eine Seitenlänge von 1 mm - 3 mm aufweisen. Deswegen kann bei LIDAR Techniken die Detektorapertur limitiert sein; dies bewirkt, dass nur vergleichsweise nahe Objekte zuverlässig vermessen werden können.
  • Um diese Nachteile auszugleichen, ist es bekannt, mehrere Spiegel synchronisiert zu betreiben. Siehe z.B. Sandner, Thilo, et al. „Large aperture MEMS scanner module for 3D distance measurement.“ MOEMS-MEMS. International Society for Optics and Photonics, 2010. Die Synchronisation kann aber vergleichsweise aufwendig sein. Außerdem kann es dann nicht oder nur eingeschränkt möglich sein, zweidimensionales Scannen zu implementieren. Auch hier ist der Scanwinkel begrenzt.
  • KURZE ZUSAMMENFASSUNG DER ERFINDUNG
  • Deshalb besteht ein Bedarf für verbesserte Techniken zur Abstandsmessung von Objekten im Umfeld einer Vorrichtung. Insbesondere besteht ein Bedarf für solche Techniken, welche zumindest einige der oben genannten Einschränkungen und Nachteile beheben.
  • Diese Aufgabe wird von den Merkmalen des unabhängigen Patentanspruchs gelöst. Die abhängigen Patentansprüche definieren Ausführungsformen.
  • In einem Beispiel umfasst ein Scanmodul für einen Lichtscanner eine Basis und ein Schnittstellenelement. Das Schnittstellenelement ist eingerichtet, um eine Spiegeloberfläche zu fixieren. Das Scanmodul umfasst auch mindestens ein Stützelement, dass sich zwischen der Basis und dem Schnittstellenelement erstreckt und dass eine Ausdehnung senkrecht zur Spiegeloberfläche aufweist, die nicht kleiner als 0,7 mm ist. Die Basis, das Schnittstellenelement und das mindestens eine Stützelement sind einstückig ausgebildet.
  • Beispielsweise wäre es möglich, dass das mindestens eine Stützelement eine Ausdehnung senkrecht zur Basis aufweist, die nicht kleiner als 1 mm ist, optional nicht kleiner als 3,5 mm, weiter optional nicht kleiner als 7 mm.
  • Weil das mindestens eine Stützelement eine signifikante Ausdehnung senkrecht zur Spiegeloberfläche aufweist, kann dieses - anders als die lateralen Federelemente im Stand der Technik - auch als vertikal orientiertes Stützelement bezeichnet werden. Durch eine solche Anordnung lassen sich besonders große Scanwinkel erzeugen, beispielsweise im Bereich von 120° - 180°.
  • In manchen Beispielen wäre es möglich, dass das Scanmodul mindestens zwei Stützelemente aufweist. Das Scanmodul könnte mindestens drei Stützelemente umfassen, optional mindestens vier Stützelemente. Dadurch lassen sich besonders robuste und wenig vibrationsanfällige Scanmodule erzeugen.
  • Beispielsweise wäre es möglich, dass die Längsachsen der mindestens zwei Stützelemente jeweils paarweise Winkel miteinander einschließen, die nicht größer als 45° sind, optional nicht größer als 10°, weiter optional nicht größer als 1°. Dies bedeutet, dass die mindestens zwei Stützelemente parallel bzw. im Wesentlichen parallel miteinander angeordnet sein können.
  • Die mindestens zwei Stützelemente könnten eine Anordnung mit Rotationssymmetrie in Bezug auf eine Zentralachse aufweisen. Dabei wäre es möglich, dass die Rotationssymmetrie n-zählig ist, wobei n die Anzahl der mindestens zwei Stützelemente bezeichnet. Dadurch ist es möglich, nichtlineare Effekte beim resonanten Betrieb zu vermeiden.
  • Der mindestens eine Freiheitsgrad der Bewegung könnte eine Transversalmode und eine Torsionsmode umfassen, wobei die Eigenfrequenz der niedrigsten Transversalmode größer ist als die Eigenfrequenz der niedrigsten Torsionsmode .
  • Der mindestens eine Freiheitsgrad der Bewegung könnte eine Transversalmode und eine Torsionsmode umfassen, wobei die niedrigste Transversalmode entartet ist mit der niedrigsten Torsionsmode. Dadurch kann erreicht werden, dass das Scanmodul besonders robust gegenüber externen Anregungen ist.
  • Es wäre möglich, dass der Abstand zwischen zwei benachbarten Stützelementen der mindestens zwei Stützelemente im Bereich von 2 % - 50 % der Länge zumindest einer der mindestens zwei Stützelemente liegt, optional im Bereich von 10 % - 40 %, weiter optional im Bereich von 12 - 20 %. Dies kann eine kompakte Bauform und eine angepasste Frequenz der Torsionsmode ermöglichen.
  • Es wäre möglich, dass die die mindestens zwei Stützelemente Längen aufweisen, die nicht mehr als 10 % voneinander abweichen, optional nicht mehr als 2 %, weiter optional nicht mehr als 0,1 %.
  • Beispielsweise wäre es möglich, dass das Scanmodul ein Wuchtgewicht aufweist. Das Wuchtgewicht kann an zumindest eines von dem mindestens einen Schnittstellenelement angebracht sein. Das Wuchtgewicht kann insbesondere einstückig mit dem mindestens einen Schnittstellenelement ausgebildet sein. Beispielsweise wäre es möglich, dass das Wuchtgewicht durch eine Veränderung der Querschnittsfläche entlang der Längsachse des mindestens einen Schnittstellenelements implementiert ist. Durch das Wuchtgewicht kann das Massenträgheitsmoment verändert werden. Dadurch kann die Frequenz der Torsionsmode des mindestens einen Schnittstellenelements angepasst werden an die Frequenz der Transversalmoden des mindestens einen Schnittstellenelements. Je nach Ausführung des Wuchtgewichts wäre es z.B. auch möglich, dass eine Entartung der Eigenfrequenzen der orthogonalen Transversalmoden des mindestens einen Schnittstellenelements aufgehoben wird.
  • In einem Beispiel umfasst das Scanmodul einen ersten Biegepiezoaktuator, einen zweiten Biegepiezoaktuator und die Basis, die zwischen dem ersten Biegepiezoaktuator und dem zweiten Biegepiezoaktuator angeordnet ist. Die Biegepiezoaktuatoren könnten also das mindestens eine Stützelement über die Basis gekoppelt anregen.
  • Dabei könnte der erste Biegepiezoaktuator eine längliche Form entlang einer ersten Längsachse aufweisen und der zweite Biegepiezoaktuator könnte eine längliche Form entlang einer zweiten Längsachse aufweisen. Die erste Längsachse und die zweite Längsachse könnten einen Winkel miteinander einschließen, der kleiner als 20° ist, optional kleiner als 10°, weiter optional kleiner als 1°.
  • Die erste Längsachse und/oder die zweite Längsachse könnten einen Winkel mit einer Längsachse des mindestens einen Stützelements einschließen, der kleiner als 20° ist, optional kleiner als 10°, weiter optional kleiner als 1°. Die Basis könnte eine Längsausdehnung entlang einer ersten Längsachse des ersten Biegepiezoaktuators aufweisen, die im Bereich von 2 - 20 % der Länge des ersten Biegepiezoaktuators entlang der ersten Längsachse ist, optional im Bereich von 5 - 15 %. Derart können besonders große Scanwinkel erreicht werden und eine effiziente Anregung verschiedener Freiheitsgrade der Bewegung des mindestens einen Stützelements.
  • Die Basis könnte eine Längsausdehnung entlang einer zweiten Längsachse des zweiten Biegepiezoaktuators aufweisen, die im Bereich von 2 - 20 % der Länge des zweiten Biegepiezoaktuators entlang der zweiten Längsachse ist, optional im Bereich von 5 - 15 %. Dadurch kann erreicht werden, dass der Biegepiezoaktuator eine genügend große Kraft auf die Basis zur effizienten Anregung verschiedener Freiheitsgrade der Bewegung des mindestens einen Stützelements aufbringen kann.
  • Der erste Biegepiezoaktuator könnte eine längliche Form entlang einer ersten Längsachse aufweisen. Der zweite Biegepiezoaktuator könnte auch eine längliche Form entlang einer zweiten Längsachse aufweisen. Der erste Biegepiezoaktuator könnte sich entlang der ersten Längsachse und der zweite Biegepiezoaktuator könnte sich entlang der zweiten Längsachse entlang einer Längsachse des mindestens einen Stützelements hin zu einem frei beweglichen Ende des mindestens einen Stützelements erstrecken.
  • Die Vorrichtung könnte auch einen Treiber umfassen, der eingerichtet ist, um den ersten Biegepiezoaktuator mit einer ersten Signalform anzusteuern und um den zweiten Biegepiezoaktuator mit einer zweiten Signalform anzusteuern. Dabei könnte die erste Signalform und die zweite Signalform gegenphasige Signalbeiträge aufweisen.
  • Es wäre optional auch möglich, dass die zweite Signalform gleichphasige weitere Signalbeiträge aufweisen, die optional amplitudenmoduliert sind. Beispielsweise könnte die Amplitude der gleichphasigen Signalbeiträge während der Zeitdauer, die Abscannen des Scanbereichs benötigt wird (korreliert mit der Bildwiederholfrequenz), monoton steigen oder sinken. Eine lineare Zeitabhängigkeit der Hüllkurve wäre möglich.
  • Dabei könnten die Signalbeiträge eine erste Frequenz aufweisen, wobei die weiteren Signalbeiträge eine zweite Frequenz aufweisen, wobei die erste Frequenz im Bereich von 95 - 105 % der zweiten Frequenz liegt oder im Bereich von 45 - 55 % der zweiten Frequenz liegt.
  • Es wäre möglich, dass die erste Signalform und/oder die zweite Signalform einen DC-Anteil aufweisen.
  • Die oben dargelegten Merkmale und Merkmale, die nachfolgend beschrieben werden, können nicht nur in den entsprechenden explizit dargelegten Kombinationen verwendet werden, sondern auch in weiteren Kombinationen oder isoliert, ohne den Schutzumfang der vorliegenden Erfindung zu verlassen.
  • Figurenliste
    • 1A illustriert schematisch ein Scanmodul für einen Lichtscanner gemäß verschiedener Beispiele, wobei das Scanmodul im Beispiel der 1A zwei parallel zueinander angeordnete Stützelemente aufweist, sowie einen nicht einstückig ausgebildeten Spiegel.
    • 1B illustriert schematisch ein Scanmodul für einen Lichtscanner gemäß verschiedener Beispiele, wobei das Scanmodul im Beispiel der 1B zwei parallel zueinander angeordnete Stützelemente aufweist, sowie einen einstückig ausgebildeten Spiegel.
    • 1C illustriert schematisch ein Scanmodul für einen Lichtscanner gemäß verschiedener Beispiele, wobei das Scanmodul im Beispiel der 1C zwei parallel zueinander angeordnete Stützelemente aufweist, sowie eine Spiegeloberfläche, die auf einem Schnittstellenelement des Scanmoduls aufgebracht ist.
    • 2 illustriert schematisch ein Scanmodul für einen Lichtscanner gemäß verschiedener Beispiele, wobei das Scanmodul zwei parallel zueinander angeordnete Stützelemente aufweist, sowie einen nicht einstückig ausgebildeten Spiegel, der gegenüber der Längsachse der Stützelemente verkippt ist.
    • 3 ist eine schematische Perspektivansicht eines Scanmoduls gemäß verschiedener Beispiele, welches eine Basis, ein Schnittstellenelement, sowie zwei sich zwischen der Basis und dem Schnittstellenelement erstreckende Stützelemente aufweist.
    • 4 ist eine schematische Perspektivansicht eines Scanmoduls gemäß verschiedener Beispiele, welches eine Basis, ein Schnittstellenelement, sowie zwei sich zwischen der Basis und dem Schnittstellenelement erstreckende Stützelemente aufweist, wobei die Basis zwei Randbereiche aufweist, die eingerichtet sind, um mit Piezoaktuatoren verbunden zu werden.
    • 5A ist eine schematische Aufsicht auf ein Scanmodul gemäß verschiedener Beispiele, wobei die Basis mit zwei Biegepiezoaktuatoren verbunden ist.
    • 5B ist eine schematische Aufsicht auf ein Scanmodul gemäß verschiedener Beispiele, wobei die Basis mit zwei Biegepiezoaktuatoren verbunden ist.
    • 6 ist eine schematische Seitenansicht von Biegepiezoaktuatoren gemäß verschiedener Beispiele.
    • 7 illustriert schematisch einen Lichtscanner gemäß verschiedener Beispiele.
    • 8 illustriert schematisch gegenphasige Signalformen, die zum Betreiben von Biegepiezoaktuatoren gemäß verschiedener Beispiele verwendet werden können.
    • 9 illustriert schematisch gleichphasige Signalformen, die zum Betreiben von Biegepiezoaktuatoren gemäß verschiedener Beispiele verwendet werden können.
    • 10 illustriert schematisch gegenphasigen Signalformen mit DC-Anteil, die zum Betreiben von Biegepiezoaktuatoren gemäß verschiedener Beispiele verwendet werden können.
    • 11 illustriert schematisch gleichphasige Signalformen mit DC-Anteil, die zum Betreiben von Biegepiezoaktuatoren gemäß verschiedener Beispiele verwendet werden können.
    • 12 illustriert schematisch eine Amplitudenmodulation von gleichphasigen Signalformen als Funktion der Zeit gemäß verschiedener Beispiele.
    • 13 illustriert schematisch eine Überlagerungsfigur für zwei Freiheitsgrade der Bewegung von mindestens einem Stützelement und einen durch die Überlagerungsfigur definierten Scanbereich gemäß verschiedener Beispiele.
    • 14 illustriert ein Spektrum der Anregung von mindestens einem Stützelement, wobei 14 eine Entartung zwischen einer Torsionsmode und einer Transversalmode gemäß verschiedener Beispiele darstellt.
    • 15 illustriert ein Spektrum der Anregung von mindestens einem Stützelement, wobei 15 eine aufgehobene Entartung zwischen einer Torsionsmode und einer Transversalmode gemäß verschiedener Beispiele darstellt.
    • 16 illustriert schematisch ein Scanmodul für einen Lichtscanner gemäß verschiedener Beispiele, wobei das Scanmodul im Beispiel der 15 zwei parallel zueinander angeordnete Stützelemente mit jeweiligem Wuchtgewicht aufweist.
    • 17 ist eine Perspektivansicht eines Scanmoduls für einen Lichtscanner gemäß verschiedener Beispiele, wobei das Scanmodul zwei Paare von Stützelementen in unterschiedlichen Ebenen aufweist.
    • 18 illustriert schematisch eine Torsionsmode für das Scanmodul gemäß dem Beispiel der 17.
    • FIGs. 19 und 20 illustrieren schematisch eine Transversalmode eines Scanmoduls mit einem einzelnen Stützelement gemäß verschiedener Beispiele.
    • FIGs. 21 und 22 illustrieren schematisch eine Transversalmode eines Scanmoduls mit zwei parallelen Stützelementen gemäß verschiedener Beispiele.
    • 23 illustriert schematisch ein Scanmodul für einen Lichtscanner gemäß verschiedener Beispiele, wobei das Scanmodul im Beispiel der 23 zwei parallel zueinander angeordnete Stützelemente mit jeweiligem Piezomaterial aufweist.
    • 24 ist ein Flussdiagramm eines beispielhaften Verfahrens zur Herstellung eines Scanmoduls.
  • DETAILLIERTE BESCHREIBUNG VON AUSFÜHRUNGSFORMEN
  • Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenhang mit den Zeichnungen näher erläutert werden.
  • Nachfolgend wird die vorliegende Erfindung anhand bevorzugter Ausführungsformen unter Bezugnahme auf die Zeichnungen näher erläutert. In den Figuren bezeichnen gleiche Bezugszeichen gleiche oder ähnliche Elemente. Die Figuren sind schematische Repräsentationen verschiedener Ausführungsformen der Erfindung. In den Figuren dargestellte Elemente sind nicht notwendigerweise maßstabsgetreu dargestellt. Vielmehr sind die verschiedenen in den Figuren dargestellten Elemente derart wiedergegeben, dass ihre Funktion und genereller Zweck dem Fachmann verständlich wird. In den Figuren dargestellte Verbindungen und Kopplungen zwischen funktionellen Einheiten und Elementen können auch als indirekte Verbindung oder Kopplung implementiert werden. Funktionale Einheiten können als Hardware, Software oder eine Kombination aus Hardware und Software implementiert werden.
  • Nachfolgend werden verschiedene Techniken zum Scannen von Licht beschrieben. Die nachfolgend beschriebenen Techniken können zum Beispiel das zweidimensionale Scannen von Licht ermöglichen. Das Scannen kann wiederholtes Aussenden des Lichts unter unterschiedlichen Abstrahlwinkeln bezeichnen. Dazu kann das Licht durch eine Umlenkeinheit umgelenkt werden. Das Scannen kann das wiederholte Abtasten von unterschiedlichen Punkten in der Umgebung mittels des Lichts bezeichnen. Z.B. kann die Menge der unterschiedlichen Punkte in der Umgebung und/oder die Menge der unterschiedlichen Abstrahlwinkel einen Scanbereich festlegen.
  • In verschiedenen Beispielen kann das Scannen von Licht durch die zeitliche Überlagerung und optional eine örtliche Überlagerung von zwei Bewegungen entsprechend unterschiedlicher Freiheitsgrade mindestens eines beweglichen Stützelements erfolgen. Dadurch kann in verschiedenen Beispielen eine Überlagerungsfigur abgefahren werden. Manchmal wird die Überlagerungsfigur auch als Lissajous-Figur bezeichnet. Die Überlagerungsfigur kann eine Abfolge, mit der unterschiedliche Abstrahlwinkel durch die Bewegung des Stützelements umgesetzt werden, beschreiben.
  • In verschiedenen Beispielen ist es möglich, Laserlicht zu scannen. Dabei kann zum Beispiel kohärentes oder inkohärentes Laserlicht verwendet werden. Es wäre möglich, polarisiertes oder unpolarisiertes Laserlicht zu verwenden. Beispielsweise wäre es möglich, dass das Laserlicht gepulst verwendet wird. Zum Beispiel können kurze Laserpulse mit Pulsbreiten im Bereich von Femtosekunden oder Pikosekunden oder Nanosekunden verwendet werden. Beispielsweise kann eine Pulsdauer im Bereich von 0,5 - 3 Nanosekunden liegen. Das Laserlicht kann eine Wellenlänge im Bereich von 700 - 1800 nm aufweisen. Aus Gründen der Einfachheit wird nachfolgend vornehmlich Bezug genommen auf Laserlicht; die verschiedenen hierin beschriebenen Beispiele können aber auch zum Scannen von Licht aus anderen Lichtquellen, zum Beispiel Breitbandlichtquellen oder RGB-Lichtquellen, angewendet werden. RGB-Lichtquellen bezeichnen hierin im Allgemeinen Lichtquellen im sichtbaren Spektrum, wobei der Farbraum durch Überlagerung mehrerer unterschiedlicher Farben - beispielsweise rot, grün, blau oder cyan, magnta, gelb, schwarz - abgedeckt wird.
  • In verschiedenen Beispielen wird zum Scannen von Licht mindestens ein Stützelement verwendet werden, das eine form- und/oder materialinduzierte Elastizität aufweist. Deshalb könnte des mindestens eine Stützelement auch als Federelement bezeichnet werden. Dann kann mindestens ein Freiheitsgrad der Bewegung des mindestens einen Stützelements angeregt werden, beispielsweise eine Torsionsmode und/oder eine Transversalmode. Dadurch kann ein Spiegel, der mit einem beweglichen Ende des mindestens einen Stützelemente verbunden ist, bewegt werden. Deshalb definiert das bewegliche Ende des mindestens einen Stützelements ein Schnittstellenelement. Dadurch kann Licht gescannt werden. Es wäre beispielsweise möglich, dass mehr als ein einzelnes Stützelement verwendet wird, z.B. zwei oder drei oder vier Stützelemente. Diese können optional symmetrisch in Bezug zueinander angeordnet sein.
  • Beispielsweise könnte das bewegliche Ende in einer oder zwei Dimensionen bewegt werden. Dazu können ein oder mehrere Aktuatoren verwendet werden. Beispielsweise wäre es möglich, dass das bewegliche Ende gegenüber einer Fixierung des mindestens einen Stützelements verkippt wird; dies resultiert in einer Krümmung des mindestens einen Stützelements. Dies kann einem ersten Freiheitsgrad der Bewegung entsprechen; dieser kann als Transversalmode (oder manchmal auch als wiggle mode) bezeichnet werden. Alternativ oder zusätzlich wäre es möglich, dass das bewegliche Ende entlang einer Längsachse des Stützelements verdreht wird (Torsionsmode). Dies kann einem zweiten Freiheitsgrad der Bewegung entsprechen. Durch das Bewegen des beweglichen Endes kann erreicht werden, dass Laserlicht unter verschiedenen Winkeln abgestrahlt wird. Dazu kann eine Umlenkeinheit wie beispielsweise ein Spiegel vorgesehen sein. Dadurch kann ein Umfeld mit dem Laserlicht gescannt werden. Je nach Stärke der Bewegung des beweglichen Endes können unterschiedlich große Scanbereiche implementiert werden.
  • In den verschiedenen hierin beschriebenen Beispielen ist es jeweils möglich, die Torsionsmode alternativ oder zusätzlich zur Transversalmode anzuregen, d.h. es wäre eine zeitliche und örtliche Überlagerung der Torsionsmode und der Transversalmode möglich. Diese zeitliche und örtliche Überlagerung kann aber auch unterdrückt werden. In anderen Beispielen könnten auch andere Freiheitsgrade der Bewegung implementiert werden.
  • Beispielsweise kann die Umlenkeinheit als Prisma oder Spiegel implementiert sein. Beispielsweise könnte der Spiegel durch einen Wafer, etwa einen Silizium-Wafer, oder ein Glassubstrat implementiert sein. Beispielsweise könnte der Spiegel eine Dicke im Beriech von 0,05 µm - 0,1 mm aufweisen. Beispielsweise könnte der Spiegel eine Dicke von 25 µm oder 50 µm aufweisen. Beispielsweise könnte der Spiegel eine Dicke im Bereich von 25 µm bis 75 µm aufweisen. Beispielsweise könnte der Spiegel quadratisch, rechtecksförmig oder kreisförmig ausgebildet sein. Beispielsweise könnte der Spiegel einen Durchmesser von 3 mm bis 12mm aufweisen oder insbesondere 8 mm.
  • Im Allgemeinen können solche Techniken zum Scannen von Licht in unterschiedlichsten Anwendungsgebieten eingesetzt werden. Beispiele umfassen Endoskope und RGB-Projektoren und Drucker. In verschiedenen Beispielen können LIDAR-Techniken angewendet werden. Die LIDAR-Techniken können dazu genutzt werden, um eine ortsaufgelöste Abstandsmessung von Objekten im Umfeld durchzuführen. Zum Beispiel kann die LIDAR-Technik Laufzeitmessungen des Laserlichts zwischen dem Spiegel, dem Objekt und einem Detektor umfassen. Im Allgemeinen können solche Techniken zum Scannen von Licht in unterschiedlichsten Anwendungsgebieten eingesetzt werden. Beispiele umfassen Endoskope und RGB-Projektoren und Drucker. In verschiedenen Beispielen können LIDAR-Techniken angewendet werden. Die LIDAR-Techniken können dazu genutzt werden, um eine ortsaufgelöste Abstandsmessung von Objekten im Umfeld durchzuführen. Zum Beispiel kann die LIDAR-Technik Laufzeitmessungen des Laserlichts umfassen.
  • Verschiedenen Beispielen liegt die Erkenntnis zugrunde, dass es erstrebenswert sein kann, das Scannen des Laserlichts mit einer hohen Genauigkeit bezüglich des Abstrahlwinkels durchzuführen. Zum Beispiel kann im Zusammenhang mit LIDAR-Techniken eine Ortsauflösung der Abstandsmessung durch eine Ungenauigkeit des Abstrahlwinkels begrenzt sein. Typischerweise wird eine höhere (niedrigere) Ortsauflösung erreicht, je genauer (weniger genau) der Abstrahlwinkel des Laserlichts bestimmt werden kann.
  • Nachfolgend werden Techniken beschrieben, um einen besonders robusten Laserscanner bereitzustellen. Dies wird in verschiedenen Beispielen dadurch erreicht, dass ein Scanmodul bereitgestellt wird, welches ein Stützelement umfasst. Dabei ist das Stützelement einstückig mit einer Basis und einem Schnittstellenelement, das eingerichtet ist, um die Spiegel Oberfläche zu fixieren, ausgebildet.
  • Durch das einstückige Ausbilden kann erreicht werden, dass ein besonders großer Kraftfluss über die Basis auf das Stützelement übertragen werden kann. Dadurch können ein oder mehrere Freiheitsgrade der Bewegung des Stützelements besonders effizient angeregt werden. Dadurch kann wiederum erreicht werden, dass das Stützelement eine Bewegung mit einer besonders großen Amplitude durchführt. Dadurch können große Scanwinkel implementiert werden. Außerdem wird vermieden, dass z.B. ein Kleber oder andere Verbindungsmittel - die bei der nicht einstückigen Ausbildung verwendet werden müssten - reißt oder nachgibt und dadurch das Scanmodul beschädigt wird.
  • Um die verschiedenen Teile des Scanmoduls einstückig auszubilden, können MEMS-Techniken verwendet werden. Beispielsweise könnte das Scanmodul mittels Ätztechniken aus einem Wafer hergestellt werden. Zum Beispiel könnten Techniken des nasschemischen Ätzens oder des Trockenätzens verwendet werden, beispielsweise reaktives lonenätzen (engl. reactive ion etching, RIE). Der Wafer kann zum Beispiel ein Silizium-Wafer oder ein Silizium-auf-Isolator (silicon on insulator, SOI) Wafer sein. Der Isolator könnte ca. 100 µm unterhalb einer Oberfläche des Wafers angeordnet sein. Dabei kann der Isolator beispielsweise als Ätzstopp wirken. Hierbei ist es möglich, dass Vorderseiten-Ätzen und/oder Rückseiten-Ätzen eingesetzt wird, um die verschiedenen Teile des Scanmoduls freizusetzen. Zum Beispiel wäre es möglich, dass mittels Lithographie Ätzmasken auf dem Wafer definiert werden. Derart kann es insbesondere möglich sein, dass die verschiedenen Teile des Scanmoduls einstückig und optional sogar einkristallin ausgebildet sind.
  • Nachfolgend werden auch Techniken beschrieben, um einen Laserscanner bereitzustellen, der besonders große Scanwinkel implementieren kann. Dies wird in verschiedenen Beispielen dadurch erreicht, dass das Stützelement eine Ausdehnung senkrecht zur Spiegeloberfläche aufweist, die nicht kleiner als 0,7 mm ist. Im Vergleich zu herkömmlichen MEMS-basierten Mikrospiegeln erstreckt sich daher das Stützelement nicht lediglich in der Ebene der Spiegeloberfläche, sondern weist auch eine signifikante Ausdehnung vertikal zur Spiegeloberfläche auf. Beispielsweise könnte das Stützelement stabförmig entlang einer Längsachse ausgebildet sein, wobei die Längsachse eine Komponente senkrecht zur Spiegeloberfläche aufweist. Dabei könnte das Stützelement aber lokale Veränderungen der Querschnittsfläche aufweisen, um ein Wuchtgewicht zu implementieren.
  • Durch solche Techniken kann erreicht werden, dass sich die Spiegeloberfläche besonders frei bewegen kann. Dadurch können große Amplituden der Bewegung erzielt werden, wodurch wiederum große Scanwinkel ermöglicht werden.
  • 1A illustriert Aspekte in Bezug auf ein Scanmodul 100. Das Scanmodul 100 umfasst eine Basis 141, zwei Stützelemente 101, 102, sowie ein Schnittstellenelement 142. Dabei sind die Basis 141, die Stützelemente 101, 102, sowie das Schnittstellenelement 142 einstückig ausgebildet. Die Stützelemente 101, 102 sind in einer Ebene ausgebildet (Zeichenebene der 1A).
  • Beispielsweise wäre es möglich, dass die Basis 141, die Stützelemente 101, 102, sowie das Schnittstellenelement 142 mittels MEMS-Prozessen durch Ätzen eines Silizium-Wafers (oder eines anderen Halbleiter-Substrats) erhalten werden. In einem solchen Fall können die Basis 141, die Stützelemente 101, 102, sowie das Schnittstellenelement 142 insbesondere einkristallin ausgebildet sein.
  • Es wäre möglich, dass der Abstand zwischen zwei benachbarten Stützelementen 101, 102 im Bereich von 2 % - 50 % der Länge 211 zumindest einer der mindestens zwei Stützelemente liegt, optional im Bereich von 10 % - 40 %, weiter optional im Bereich von 12 - 20 %. Es wäre möglich, dass die die mindestens zwei Stützelemente Längen 211 aufweisen, die nicht mehr als 10 % voneinander abweichen, optional nicht mehr als 2 %, weiter optional nicht mehr als 0,1 %. Dadurch kann eine besonders große Amplitude von entsprechenden Freiheitsgraden der Bewegung erzielt werden. Beispielsweise wäre es möglich, dass die Längsachsen 111, 112 der Stützelemente 101, 102 jeweils paarweise Winkel miteinander einschließen, die nicht größer als 45° sind, optional nicht größer als 10°, weiter optional nicht größer als 1°. Die Stützelemente 101, 102 weisen eine Anordnung mit Rotationssymmetrie in Bezug auf eine Zentralachse 220 auf. Im Beispiel der 1A ist das eine zweizählige Rotationssymmetrie.
  • Es wäre auch möglich, dass das Scanmodul 100 nur ein einziges Stützelement aufweist oder mehr als zwei Stützelemente aufweist.
  • 1A illustriert auch Aspekte in Bezug auf einen Laserscanner 99. Der Laserscanner 99 umfasst das Scanmodul 100, sowie einen Spiegel 150. In dem Beispiel der 1A ist der Spiegel 150, der auf der Vorderseite eine Spiegeloberfläche 151 mit hoher Reflektivität (beispielsweise größer als 95 % bei einer Wellenlänge von 950 µm, Optional >99 %, weiter optional >99,999 %; z.B. Alu oder Gold in einer Dicke von 80 - 250 nm) für Licht 180 ausbildet, nicht einstückig mit der Basis 141, den Stützelementen 101, 102, sowie dem Schnittstellenelement 142 ausgebildet. Beispielsweise könnte der Spiegel 150 auf das Schnittstellenelement 142 aufgeklebt sein. Das Schnittstellenelement 142 kann nämlich dazu eingerichtet sein, um die Spiegeloberfläche 151 zu fixieren. Zum Beispiel könnte das Schnittstellenelement 142 für diesen Zweck eine Anlagefläche aufweisen, die eingerichtet ist, um eine entsprechende Anlagefläche des Spiegels 150 zu fixieren. Um den Spiegel 150 mit dem Schnittstellenelement 142 zu verbinden, könnten beispielsweise ein oder mehrere der folgenden Techniken verwendet werden: Kleben; Löten.
  • Mittels solchen Techniken können große Spiegeloberflächen realisiert werden, z.B. nicht kleiner als 10 mm^2, optional nicht kleiner als 15 mm^2. Dadurch kann im Zusammenhang mit LIDAR-Techniken, die die Spiegeloberfläche 151 auch als Detektorapertur verwenden, eine hohe Genauigkeit und Reichweite erzielt werden.
  • In dem Beispiel der 1A weisen die Stützelemente 101, 102 eine Ausdehnung senkrecht zur Spiegeloberfläche 151 auf; diese Ausdehnung könnte z.B. ca. 2 - 8 mm betragen, im Beispiel der 1A. Die Stützelemente sind insbesondere stabförmig entlang entsprechender Längsachsen 111, 112 ausgebildet. In 1A ist die Oberflächennormale 155 der Spiegeloberfläche 151 dargestellt; die Längsachsen 111, 112 sind parallel zu der Oberflächennormalen 155 orientiert, d. h. schließen mit dieser einen Winkel von 0° ein.
  • Deshalb ist die Ausdehnung der Stützelemente 101, 102 senkrecht zur Spiegeloberfläche 151 gleich der Länge 211 der Stützelemente 101, 102. Im Allgemeinen wäre es möglich, dass die Länge 211 der Stützelemente 101, 102 nicht kürzer als 2 mm ist, optional nicht kürzer als 4 mm, weiter optional nicht kürzer als 6 mm. Zum Beispiel wäre es möglich, dass die Länge der Stützelemente 101, 102 nicht größer als 20 mm ist, optional nicht größer als 12 mm, weiter optional nicht größer als 7 mm. Wenn mehrere Stützelemente verwendet werden, können diese alle dieselbe Länge aufweisen.
  • Je nach relativer Orientierung der Längsachsen 111, 112 in Bezug auf die Spiegeloberfläche 151 wäre es aber möglich, dass die Ausdehnung der Stützelemente 101, 102 senkrecht zur Spiegeloberfläche 151 kürzer ist, als deren Länge 211 (weil lediglich die Projektion parallel zur Oberflächenormalen 155 berücksichtigt wird). Im Allgemeinen wäre es möglich, dass die Ausdehnung der Stützelemente 101, 102 senkrecht zur Spiegeloberfläche 151 nicht kleiner als 0,7 mm ist. Ein solcher Wert ist größer als die typische Dicke eines Wafers, aus welchem das Scanmodul 100 hergestellt werden kann. Dadurch können besonders große Scanwinkel für das Licht 180 implementiert werden.
  • Die Stützelemente 101, 102 könnten beispielsweise einen rechteckigen Querschnitt aufweisen. Die Stützelemente 101, 102 könnten auch einen quadratischen Querschnitt aufweisen. Es wären aber auch andere Querschnittsformen, wie beispielsweise kreisförmig, dreiecksförmig, etc., möglich. Typische Seitenlängen des Querschnitts der Stützelemente 101, 102 können im Bereich von 50 µm bis 200 µm liegen, optional ca. 100 µm betragen. Die kurze Seite des Querschnitts könnte im Allgemeinen nicht kleiner als 50 % der langen Seite des Querschnitts sein; das bedeutet, dass die Stützelemente 101, 102 nicht als flache Elemente ausgebildet sein können. Derart kann sichergestellt werden, dass das Material im Bereich der Stützelemente 101, 102 genügend große Spannungen absorbieren kann, ohne Schaden zu nehmen. Gleichzeitig kann jedoch eine forminduzierte Elastizität des Materials im Bereich der Stützelemente 101, 102 genügend große Werte annehmen, um eine Bewegung des Schnittstellenelements 142 gegenüber der Basis 141 zu ermöglichen.
  • Beispielsweise könnte eine Torsionsmode und/oder eine Transversalmode der Stützelemente 101, 102 verwendet werden, um das Schnittstellenelement 142 - und damit den Spiegel 150 - zu bewegen. Dadurch kann das Scannen von Licht implementiert werden (in 1A ist der Ruhezustand der Stützelemente 101, 102 dargestellt).
  • In dem Beispiel der 1A umfasst das Scanmodul 102 Stützelemente 101, 102 die in einer Ebene angeordnet sind (die Zeichenebene der 1A). Durch das Verwenden von zwei Stützelementen 101, 102 kann das Scanmodul 100 mit einer besonders großen Robustheit implementiert werden. Insbesondere kann dadurch die Spannung pro Stützelement 101, 102 reduziert werden. Andererseits kann es bei einem einzelnen Stützelement möglich sein, besonders gut zweidimensionales Scannen des Lichts 180 zu ermöglichen.
  • 1B illustriert Aspekte in Bezug auf ein Scanmodul 100. Das Scanmodul 100 umfasst eine Basis 141, zwei Stützelemente 101, 102, sowie ein Schnittstellenelement 142. Dabei sind die Basis 141, die Stützelemente 101, 102, sowie das Schnittstellenelement 142 einstückig ausgebildet.
  • Das Beispiel der 1B entspricht dabei grundsätzlich dem Beispiel der 1A. Jedoch ist in dem Beispiel der 1B der Spiegel 150 einstückig mit dem Schnittstellenelement 142 bzw. den Stützelementen 101, 102 sowie der Basis 141 ausgebildet. Um eine möglichst große Spiegeloberfläche 151 zu erreichen, ist in dem Beispiel der 1B ein Überstand über einen Zentralbereich des Schnittstellenelement 142 vorgesehen. Dadurch kann erreich werden, dass der Kraftfluss zwischen dem Scanmodul 100 und dem Spiegel 150 nicht über einen Kleber übertragen werden muss.
  • 1C illustriert Aspekte in Bezug auf ein Scanmodul 100. Das Scanmodul 100 umfasst eine Basis 141, zwei Stützelemente 101, 102, sowie ein Schnittstellenelement 142. Dabei sind die Basis 141, die Stützelemente 101, 102, sowie das Schnittstellenelement 142 einstückig ausgebildet.
  • Das Beispiel der 1C entspricht dabei grundsätzlich dem Beispiel der 1B. In dem Beispiel der 1C sind der Spiegel 150 und das Schnittstellenelement 142 durch ein und dasselbe Element implementiert. Die Spiegeloberfläche 151 ist auf dem Schnittstellenelement 142 direkt aufgebracht. Dies ermöglicht einen besonders einfachen Aufbau.
  • 2 illustriert Aspekte in Bezug auf ein Scanmodul 100. Das Scanmodul 100 umfasst eine Basis 141, zwei Stützelemente 101, 102, sowie ein Schnittstellenelement 142. Dabei sind die Basis 141, die Stützelemente 101,102, sowie das Schnittstellenelement 142 einstückig ausgebildet.
  • Das Beispiel der 2 entspricht dabei grundsätzlich dem Beispiel der 1A. In dem Beispiel der 2 sind jedoch die Längsachsen 111, 112 der Stützelemente 101, 102 nicht senkrecht zur Spiegeloberfläche 151 orientiert. In 2 ist der Winkel 159 zwischen der Oberflächennormalen 155 der Spiegeloberfläche 151 und den Längsachsen 111, 112 dargestellt. Der Winkel 159 beträgt in dem Beispiel der 2 45°, könnte aber im Allgemeinen im Bereich von -60° bis +60° liegen.
  • Eine solche Verkippung der Spiegeloberfläche 151 gegenüber den Längsachsen 111, 112 kann insbesondere dann vorteilhaft sein, wenn die Torsionsmode der Stützelemente 101, 102 zur Bewegung des Spiegels 150 verwendet wird. Dann kann ein Periskop-artiges Scannen des Lichts 180 implementiert werden.
  • 3 illustriert Aspekte in Bezug auf ein Scanmodul 100. Das Scanmodul 100 umfasst eine Basis 141, zwei Stützelemente 101, 102, sowie ein Schnittstellenelement 142. Dabei sind die Basis 141, die Stützelemente 101, 102, sowie das Schnittstellenelement 142 einstückig ausgebildet. 3 ist eine Perspektivansicht des Scanmoduls 100.
  • In 3 ist insbesondere eingezeichnet, wie eine Richtung 1901 des Vorderseite-Ätzens und eine Richtung 1902 des Rückseite-Ätzens orientiert sind. Zum Beispiel könnte das Scanmodul 100 durch geeignetes zweistufiges Ätzen eines SOI-Wafers entlang der Richtungen 1901, 1902 hergestellt werden. Die Grenzflächen zwischen Isolator und Silizium könnten die Stützelemente 101, 102 definieren.
  • Beispielsweise könnte dabei die Wafer-Oberfläche senkrecht zu den Richtungen 1901, 1902 orientiert sein. Aus einem Vergleich der FIGs. 1A, 1B, 1C, 2 mit 3 folgt, dass die Spiegeloberfläche 151 nicht senkrecht zur Wafer-Oberfläche orientiert ist. Dadurch können besonders große Längen 211 des mindestens einen Stützelements 101, 102 ermöglicht werden. Dies ermöglicht wiederum große Scanwinkel.
  • 4 illustriert Aspekte in Bezug auf ein Scanmodul 100. Das Scanmodul 100 umfasst eine Basis 141, zwei Stützelemente 101, 102, sowie ein Schnittstellenelement 142. Dabei sind die Basis 141, die Stützelemente 101, 102, sowie das Schnittstellenelement 142 einstückig ausgebildet. 4 ist eine Perspektivansicht des Scanmoduls 100.
  • Das Beispiel der 4 entspricht grundsätzlich dem Beispiel der 3. In dem Beispiel der 4 umfasst die Basis 141 einen Zentralbereich 145 und zwei auf unterschiedlichen Seiten des Zentralbereichs 145 angeordnete Randbereiche 146. Die Stützelemente 101, 102 sind mit dem Zentralbereich 145 verbunden. Der Zentralbereich 145, sowie die Randbereiche 146 sind allesamt einstückig ausgebildet.
  • Die Randbereiche 146 weisen eine wesentlich geringere Dicke auf als der Zentralbereich 145. Beispielsweise könnte die Dicke der Randbereiche 146 nicht größer als 30 % der Dicke des Zentralbereichs 145 sein. Durch die reduzierte Dicke der Randbereiche 146 kann erreicht werden, dass diese eine größere forminduzierte Elastizität aufweisen, als der Zentralbereich 145. Im Allgemeinen könnten auch andere Maßnahmen getroffen werden, um zu erreichen, dass die Randbereiche 146 eine größere forminduzierte Elastizität aufweisen, als der Zentralbereich 145. Beispielsweise könnten Vertiefungen oder Gräben vorgesehen sein, welche die Elastizität bereitstellen.
  • Die Randbereiche 146 können dazu verwendet werden, um eine Verbindung mit Piezoaktuatoren herzustellen. Der Zentralbereich 145 stellt dabei die Verbindung mit den Stützelementen 101, 102 her.
  • 5A illustriert Aspekte in Bezug auf einen Laserscanner 99. Der Laserscanner 99 umfasst das Scanmodul 100, welches zum Beispiel gemäß den verschiedenen anderen hierin beschriebenen Beispielen konfiguriert sein könnte (jedoch ist in 5A beispielhaft ein Scanmodul 100 mit lediglich einem einzelnen Stützelement 101 dargestellt).
  • 5A illustriert insbesondere Aspekte in Bezug auf Piezoaktuatoren 310, 320. In verschiedenen Beispielen können zur Anregung des Stützelements 101 Biegepiezoaktuatoren 310, 320 verwendet werden.
  • Zum Beispiel können im Allgemeinen ein erster und ein zweiter Biegepiezoaktuator verwendet werden. Es wäre möglich, dass der erste Biegepiezoaktuator und/oder der zweite Biegepiezoaktuator plattenförmig ausgebildet sind. Im Allgemeinen kann eine Dicke der Biegepiezoaktuatoren z.B. im Bereich von 200 µm - 1 mm liegen, optional im Bereich von 300 µm - 700 µm. Es wäre beispielsweise möglich, dass der erste Biegepiezoaktuator und/oder der zweite Biegepiezoaktuator eine Schichtstruktur umfassend eine alternierende Anordnung mehrerer piezoelektrischer Materialien aufweist. Diese können einen unterschiedlich starken piezoelektrischen Effekt aufweisen. Dadurch kann eine Verbiegung bewirkt werden, ähnlich einem Bimetallstreifen bei Temperaturänderungen. Beispielsweise ist es möglich, dass der erste Biegepiezoaktuator und/oder der zweite Biegepiezoaktuator an einer Fixierstelle fixiert sind: ein der Fixierstelle gegenüberliegendes Ende kann dann aufgrund einer Verbiegung bzw. Krümmung des ersten Biegepiezoaktuators und/oder des zweiten Biegepiezoaktuators bewegt werden.
  • Durch die Verwendung von Biegepiezoaktuatoren kann eine besonders effiziente und starke Anregung erreicht werden. Die Biegepiezoaktuatoren können nämlich die Basis 141 bewegen und insbesondere - zum Anregen einer Torsionsmode des mindestens einen Stützelements - verkippen. Außerdem kann es möglich sein, eine hohe Integration der Vorrichtung zur Anregung zu erzielen. Dies kann bedeuten, dass der benötigte Bauraum besonders gering dimensioniert werden kann.
  • Insbesondere in dem Beispiel der 5A sind die Piezoaktuatoren 310, 320 als Biegepiezoaktuatoren ausgebildet. Dies bedeutet, dass das Anlegen einer Spannung an elektrischen Kontakten der Biegepiezoaktuatoren 310, 320 eine Krümmung bzw. Verbiegung der Biegepiezoaktuatoren 310, 320 entlang deren Längsachsen 319, 329 bewirkt. Dazu weisen die Biegepiezoaktuatoren 310, 320 eine Schichtstruktur auf (in 5A nicht dargestellt und senkrecht zur Zeichenebene orientiert). Derart wird ein Ende 315, 325 der Biegepiezoaktuatoren 310, 320 gegenüber einer Fixierstelle 311, 321 senkrecht zur jeweiligen Längsachse 319, 329 ausgelenkt (die Auslenkung ist in dem Beispiel der 5A senkrecht zur Zeichenebene orientiert). Die Auslenkung 399 der Biegepiezoaktuatoren 310, 320 aufgrund der Verbiegung ist in 6 dargestellt.
  • 6 ist eine Seitenansicht der Biegepiezoaktuatoren 310, 320. 6 zeigt die Biegepiezoaktuatoren 310, 320 in einer Ruhelage, zum Beispiel ohne Treiber-Signal bzw. Verspannung/Krümmung.
  • Wieder Bezug nehmend auf 5A: Beispielsweise könnten die Fixierstelle in 311, 321 eine starre Verbindung zwischen den Biegepiezoaktuatoren 310, 320 und einem Gehäuse des Laserscanners 99 (in 5A nicht dargestellt) herstellen.
  • Die Basis 141 könnte eine Längsausdehnung der Längsachsen 319, 329 aufweisen, die im Bereich von 2 - 20 % der Länge der Biegepiezoaktuatoren 310, 320 entlang der Längsachsen 319, 329 ist, optional im Bereich von 5 - 15 %. Dadurch kann eine genügen starke Anregung erreicht werden; die Basis 141 dämpft die Bewegung der Biegepiezoaktuatoren 310, 320 dann nur vergleichsweise schwach.
  • Im Beispiel der 5A sind die Biegepiezoaktuatoren 310, 320 im Wesentlichen parallel zueinander angeordnet. Es wären auch Verkippungen der Längsachsen 319, 329 zueinander möglich, insbesondere solange diese in einer Ebene liegen.
  • Aus dem Beispiel der 5A ist ersichtlich, dass die Verbindung der Biegepiezoaktuatoren 310, 320 mit dem Stützelement 101 über die Randbereiche 146 der Basis 141 implementiert wird. Weil diese Randbereiche 146 eine Elastizität aufweisen, kann die Verbiegung 399 aufgenommen werden und führt zu einer Auslenkung der Basis 141. Dadurch können ein oder mehrere Freiheitsgrade der Bewegung des Schnittstellenelement 101 gekoppelt über die Basis 141 angeregt werden. Dadurch wird eine besonders effiziente und platzsparende Anregung erzielt.
  • In dem Beispiel der 5A erstrecken sich die Biegepiezoaktuatoren 310, 320 weg von dem Schnittstellenelement 142. Es wäre aber auch möglich, dass die Biegepiezoaktuatoren 310, 320 sich entlang zumindest 50 % Ihrer Länge hin zu dem Schnittstellenelement 142 erstrecken. Dadurch kann eine besonders kompakte Anordnung erreicht werden. Das ist in 5B gezeigt.
  • 5B illustriert Aspekte in Bezug auf einen Laserscanner 99. Der Laserscanner 99 umfasst das Scanmodul 100, welches zum Beispiel gemäß den verschiedenen anderen hierin beschriebenen Beispielen konfiguriert sein könnte (jedoch ist in 5B ein Scanmodul 100 mit lediglich einem einzelnen Stützelement 101 dargestellt).
  • Das Beispiel der 5B entspricht dabei grundsätzlich dem Beispiel der 5A. Dabei erstrecken sich aber die Biegepiezoaktuatoren 310, 320 hin zum Schnittstellenelement 142 bzw. hin zu einem frei beweglichen Ende des mindestens einen Stützelements 101. Dadurch kann ein besonders kompakter Aufbau des Lichtscanners 99 erreicht werden.
  • 7 illustriert Aspekte in Bezug auf einen Laserscanner 99. Der Laserscanner 99 umfasst eine Steuereinheit 4001, die beispielsweise als Mikroprozessor oder applikationsspezifischer integrierter Schaltkreis (ASIC) implementiert werden könnte. Die Steuereinheit 4001 könnte auch als feldprogrammierbares Array (FPGA) implementiert werden. Die Steuereinheit 4001 ist eingerichtet, um Steuersignale an einen Treiber 4002 auszugeben. Beispielsweise könnten die Steuersignale in digitaler oder analoger Form ausgegeben werden.
  • Der Treiber 4002 ist wiederum eingerichtet, um ein oder mehrere Spannungssignalen zu erzeugen, und diese an entsprechende elektrische Kontakte der Piezoaktuatoren 310, 320 auszugeben. Typische Amplituden der Spannungssignalen liegen im Bereich von 50 V bis 250 V.
  • Die Piezoaktuatoren 310, 320 sind wiederum mit dem Scanmodul 100 gekoppelt, wie beispielsweise voranstehenden Bezug auf die FIGs. 5 und 6 beschrieben. Dadurch können ein oder mehrere Freiheitsgrade der Bewegung des Scanmoduls 100, insbesondere von einem oder mehreren Stützelementen 101, 102 des Scanmoduls 100 angeregt werden. Dadurch wird die Spiegeloberfläche 151 ausgelenkt. Dadurch kann der Umfeldbereich des Laserscanners 99 mit Licht 180 gescannt werden.
  • 8 illustriert Aspekte in Bezug auf Signalformen 800, die dazu verwendet werden können, um die Piezoaktuatoren 310, 320 gemäß verschiedener hierin beschriebener Beispiele anzusteuern. Beispielsweise könnten die Signalformen 800 von dem Treiber 4002 ausgegeben werden. 8 illustriert insbesondere den Verlauf der Amplitude der Signalformen 800 als Funktion der Zeit.
  • In dem Beispiel der 8 ist ein Signalbeitrag 811 (durchgezogene Linie) dargestellt, der dazu verwendet wird, um den Biegepiezoaktuatoren 310 anzusteuern. Außerdem ist in dem Beispiel der 8 ein Signalbeitrag 821 (gestrichelte Linie) dargestellt, der dazu verwendet wird, um den Biegepiezoaktuatoren 320 anzusteuern. Aus dem Beispiel der 8 ist ersichtlich, dass die Signalbeiträge 811, 821 gegenphasig konfiguriert sind. Dies bedeutet im Beispiel der 8, dass die Signalbeiträge 811, 821 dieselbe Frequenz aufweisen, sowie einen Phasenversatz von 180°.
  • Dadurch kann erreicht werden, dass sich der Biegepiezoaktuatoren 310 nach oben krümmt bzw. bewegt (nach unten krümmt bzw. bewegt), während sich der Biegepiezoaktuatoren 320 nach unten krümmt bzw. bewegt (nach oben krümmt bzw. bewegt). Dadurch kann wiederum erreicht werden, dass sich die Basis 141 abwechselnd nach links und nach rechts verkippt (in Bezug auf eine Zentralachse 220 des einen oder der mehreren Stützelemente 101, 102). Deshalb kann mit einer solchen Konfiguration der Signalformen 800 eine besonders effiziente Anregung der Torsionsmode des Stützelements oder der Stützelemente 101, 102 erzielt werden. 9 illustriert Aspekte in Bezug auf Signalformen 800, die dazu verwendet werden können, um die Biegepiezoaktuatoren 310, 320 gemäß verschiedener hierin beschriebener Beispiele anzusteuern. 9 illustriert insbesondere den Verlauf der Amplitude der Signalformen 800 als Funktion der Zeit.
  • In dem Beispiel der 9 ist ein Signalbeitrag 812 (durchgezogene Linie) dargestellt, der dazu verwendet wird, um den Biegepiezoaktuatoren 310 anzusteuern. Außerdem ist in dem Beispiel der 9 ein Signalbeitrag 822 (gestrichelte Linie) dargestellt, der dazu verwendet wird, um den Biegepiezoaktuatoren 320 anzusteuern. Aus dem Beispiel der 9 ist ersichtlich, dass die Signalbeiträge 812, 822 gleichphasig konfiguriert sind. Dies bedeutet dem Beispiel der 9, dass die Signalbeiträge 812, 822 dieselbe Frequenz aufweisen, sowie einen Phasenversatz von 0°. In manchen Beispielen wäre es möglich, dass die gleichphasigen Signalbeiträge 812, 822 eine Amplitudenmodulation aufweisen.
  • Durch die gleichphasigen Signalbeiträge 812, 822 kann erreicht werden, dass sich der Biegepiezoaktuatoren 310 nach oben krümmt bzw. bewegt (nach unten krümmt bzw. bewegt), während sich der Biegepiezoaktuatoren 320 nach oben krümmt bzw. bewegt (nach unten krümmt bzw. bewegt). Dadurch kann wiederum erreicht werden, dass die Basis 141 abwechselnd nach oben und unten bewegt wird (in Bezug auf die Zentralachse 220). Deshalb kann mit einer solchen Konfiguration der Signalformen 800 eine besonders effiziente Anregung von Transversalmoden des Stützelements oder der Stützelemente 101, 102 erfolgen.
  • In manchen Beispielen wäre es möglich, dass die Signalbeiträge 811, 821 zeitlich überlagert mit den Signalbeiträge in 812, 822 angewendet werden. Dies kann insbesondere dann erstrebenswert sein, wenn lediglich ein einzelnes Stützelement verwendet wird. Dann kann eine zeitliche und räumliche Überlagerung einer Torsionsmode und einer Transversalmode des mindestens einen Stützelements erhalten werden. Dadurch kann erreicht werden, dass ein zweidimensionaler Scanbereich abgescannt wird, wobei das Licht an der einzelnen Spiegeloberfläche umgelenkt wird. Dies kann eine besonders platzsparende Integration des Laserscanners 99 erreichen.
  • In anderen Beispielen wäre es aber auch möglich, dass entweder die gegenphasigen Signalbeiträge 811, 821 oder aber die gleichphasigen Signalbeiträge 812, 822 angewendet werden. Dies kann insbesondere erstrebenswert sein, wenn mehr als ein einzelnes Stützelement verwendet wird. Dann kann entweder die Torsionsmode oder die Transversalmode des mindestens einen Stützelements angeregt werden. Dadurch kann durch Umlenken an der Spiegeloberfläche ein eindimensionaler Scanbereich abgescannt werden. Um dennoch einen zweidimensionalen Scanbereich zu scannen wäre es beispielsweise möglich, dass zwei Laserscanner das Licht sequenziell umlenken; dabei können die beiden Laserscanner synchronisiert betrieben werden.
  • Nachfolgend wird jedoch vornehmlich auf Szenarien Bezug genommen, bei denen eine zeitliche und örtliche Überlagerung unterschiedlicher Freiheitsgrade der Bewegung des mindestens einen Stützelements dazu verwendet wird, um einen zweidimensionalen Scanbereich abzuscannen.
  • Eine typische Frequenz der Signalbeiträge 811, 812, 821, 822 liegt zum Beispiel im Bereich von 50 Hz bis 1,5 kHz, optional im Bereich von 200 Hz bis 1 kHz, weiter optional im Bereich von 500 Hz bis 700 Hz. Derart können angemessene Scanfrequenzen erzielt werden.
  • In den Beispielen der FIGs. 8 und 9 sind Szenarien illustriert, in welchen die gegenphasigen Signalbeiträge 811, 821 zum Anregen der Biegepiezoaktuatoren 310, 320 in etwa dieselbe Frequenz aufweisen, wie die gleichphasigen Signalbeiträge 812, 822. Im Allgemeinen wäre es möglich, dass die gegenphasigen Signalbeiträge 811, 821 eine erste Frequenz im Bereich von 95-105 % einer zweiten Frequenz der gleichphasigen Signalbeiträge 812, 822 aufweisen. Mittels einer solchen Implementierung der Frequenzen der Signalformen 800 kann erreicht werden, dass eine besonders effiziente Überlagerungsfigur der verschiedenen Freiheitsgrade der Bewegung des mindestens einen Stützelements 101, 102 erzielt werden kann.
  • Insbesondere kann dadurch erreicht werden, dass eine hohe Bildwiederholrate erzielt werden kann, ohne dass bestimmte Bereiche des Scanbereichs durch Knoten in der Überlagerungsfigur mehrfach gescannt werden. Insbesondere können solche Implementierungen der Frequenzen der Signalformen 800 ausnutzen, dass eine Entartung der verschiedenen angeregten Freiheitsgrade der Bewegung des mindestens einen Stützelements 101, 102 im Frequenzraum vorliegt. Zum Beispiel kann es möglich sein, eine Entartung der Frequenz der Torsionsmode des mindestens einen Stützelements 101, 102 und der Frequenz der Transversalmode des mindestens einen Stützelements 101, 102 durch geeignetes Konfigurieren ein oder mehrere der folgenden Parameter zu erreichen: Länge 211 des mindestens einen Stützelements 101, 102; Massenträgheitsmoment des mindestens einen Stützelements 101, 102 und/oder eines Wuchtgewichts, welches an dem mindestens einen Stützelement 101, 102 angebracht ist; und Massenträgheitsmoment des Schnittstellenelement 142 und/oder des Spiegels 150.
  • In anderen Beispielen wäre es jedoch auch möglich, dass die gegenphasigen Signalbeiträge 811, 821 eine andere erste Frequenz aufweisen, als die zweite Frequenz der gleichphasigen Signalbeiträge 812, 822. Beispielsweise könnte die erste Frequenz der gegenphasigen Signalbeiträge 811, 821 im Bereich von 45-55 % der zweiten Frequenz der gleichphasigen Signalbeiträge 812, 822 liegen, d. h. in etwa die Hälfte der zweiten Frequenz betragen. In anderen Beispielen könnte die erste Frequenz auch in etwa doppelt so groß sein wie die zweite Frequenz und einen ganz anderen Wert annehmen. Durch eine solche Aufhebung der Entartung zwischen den verschiedenen durch die gegenphasigen Signalbeiträge 811, 821 und gleichphasigen Signalbeiträge 812, 822 angeregten Freiheitsgrade der Bewegung des mindestens einen Stützelements 101, 102 können nichtlineare Wechselwirkungen zwischen den entsprechenden Freiheitsgraden der Bewegung vermieden werden. Zum Beispiel kann das Ausbilden eines parametrischen Oszillators durch die Transversalmoden und/oder die Torsionsmode vermieden werden. Dadurch kann ein besonders gezieltes Anregen des mindestens einen Stützelements 101, 102 erreicht werden.
  • Durch die Überlagerung der gleichphasigen Signalbeiträge 811, 821 mit den gegenphasigen Signalbeiträge 812, 822 kann erreicht werden, dass die Signalformen 800 am Biegepiezoaktuatoren 810 eine bestimmte Phasenverschiebung gegenüber der Signalformen 800 am Biegepiezoaktuatoren 820 aufweist. Diese Phasenverschiebung kann variiert werden, zum Beispiel in Abhängigkeit der relativen Amplitude der gleichphasigen Signalbeiträge 811, 821 und gegenphasigen Signalbeiträge 812, 822 zueinander. In anderen Worten können die tatsächlichen Signalformen 800 zerlegt werden in die gleichphasigen Signalbeiträge 811, 821 und die gegenphasigen Signalbeiträge 812, 822. In manchen Beispielen kann ein zur Erzeugung der Signalformen 800 verwendeter Treiber bereits die Überlagerung der gleichphasigen Signalbeiträge 811, 821 mit den gegenphasigen Signalbeiträge 812, 822 erzeugen.
  • 10 illustriert Aspekte in Bezug auf Signalformen 800, die dazu verwendet werden können, um die Biegepiezoaktuatoren 310, 320 gemäß verschiedener hierin beschriebener Beispiele anzusteuern. 10 illustriert insbesondere den Verlauf der Amplitude der Signalformen 800 als Funktion der Zeit.
  • Das Beispiel der 10 entspricht grundsätzlich dem Beispiel der 8. Jedoch weisen in dem Beispiel der 10 die Signalbeiträge 811, 821 jeweils einen DC-Anteil 801 auf. In manchen Beispielen wäre es auch möglich, dass lediglich einer der Signalbeiträge 811, 821 einen DC-Anteil 801 (horizontal gestrichelte Linie in 10) aufweist. In manchen Beispielen wäre es auch möglich, dass die beiden Signalbeiträge 811, 821 unterschiedlich dimensionierte DC-Anteile 801 aufweisen, zum Beispiel in Größe und/oder Vorzeichen.
  • Durch das Vorsehen des DC-Anteils 801 kann erreicht werden, dass eine Vorspannung (englisch bias) des mindestens einen Stützelements 101, 102 - d. h. eine DC-Auslenkung des mindestens einen Stützelements 101, 102 - erreicht wird. Dadurch können zum Beispiel ein Versatz des mindestens einen Stützelements und/oder Vorgaben für das Sichtfeld des entsprechenden Scanners kompensiert oder berücksichtigt werden.
  • 11 illustriert Aspekte in Bezug auf Signalformen 800, die dazu verwendet werden können, um die Biegepiezoaktuatoren 310, 320 gemäß verschiedener hierin beschriebener Beispiele anzusteuern. 11 illustriert insbesondere den Verlauf der Amplitude der Signalformen 200 als Funktion der Zeit.
  • Das Beispiel der 11 entspricht grundsätzlich dem Beispiel der 9. Jedoch weisen in dem Beispiel der 11 die Signalbeiträge 812, 822 jeweils einen DC-Anteil 801 auf. Im Allgemeinen ist es möglich, dass lediglich einzelne der Signalbeiträge 812, 822 einen DC-Anteil 801 aufweisen. Unterschiedliche Signalbeiträge können auch unterschiedliche DC-Anteile aufweisen.
  • 12 illustriert Aspekte in Bezug auf eine Amplitudenmodulation der Signalbeiträge 812, 822. Insbesondere illustriert 12 die Amplitude der Signalbeiträge 812, 822 als Funktion der Zeit.
  • In dem Beispiel der 12 ist die Zeitdauer 860 dargestellt, die zum Abtasten einer Überlagerungsfigur benötigt wird. Dies bedeutet, dass die Zeitdauer 860 einer Bildwiederholfrequenz des Laserscanners 99 entsprechen kann.
  • Aus 12 ist ersichtlich, dass die Amplitude der gleichphasigen Signalbeiträge 812, 822 als Funktion der Zeit monoton und konstant während der Zeitdauer 860 vergrößert wird. Die Amplitude könnte aber auch stufenweise vergrößert werden. Die Amplitude könnte auch monoton verringert werden.
  • 12 illustriert auch Aspekte in Bezug auf eine Amplitudenmodulation der Signalbeiträge 811, 821. Aus 12 ist ersichtlich, dass die Amplitude der gegenphasigen Signalbeiträge 811, 821 nicht variiert.
  • Durch solche Techniken kann ein besonders effizientes Scannen des Laserlichts implementiert werden. Insbesondere kann es möglich sein, dass eine Überlagerungsfigur erhalten wird, die keine oder zumindest wenige Knoten aufweist. Dadurch kann ein großer Scanbereich mit einer großen Bildwiederholfrequenz gescannt werden.
  • Es wurde beobachtet, dass besonders gute Ergebnisse erzielt werden können, wenn eine kontinuierliche Amplitudenmodulation ohne Sprünge gewählt wird. Besonders gute Ergebnisse können insbesondere für eine Sinus-förmige oder Cosinus-förmige Amplitudenmodulation erhalten werden. Dann werden nämlich nichtlineare Effekte besonders gut unterdrückt. Es kann eine besonders gut definierte Überlagerungsfigur erhalten werden.
  • 13 illustriert Aspekte in Bezug auf eine Überlagerungs900. 13 illustriert insbesondere Aspekte in Bezug auf einen Scanbereich 915 (gestrichelte Linie in 13), der durch die Überlagerungs900 definiert wird. 13 zeigt dabei den Scanwinkel 901, der durch einen ersten Freiheitsgrad der Bewegung 501 des mindestens einen Stützelements 101, 102 erreicht werden kann. 13 zeigt auch den Scanwinkel 902, der durch einen zweiten Freiheitsgrad der Bewegung 502 des mindestens einen Stützelements 101, 102 erreicht werden kann (die Scanwinkel sind beispielsweise auch in 1 indiziert).
  • Beispielsweise wäre es möglich, dass der erste Freiheitsgrad der Bewegung 501 einer Transversalmode des mindestens einen Stützelements 101, 102 entspricht. Dann wäre es möglich, dass die Transversalmode 501 durch die gleichphasigen Signalbeiträge 812, 822 angeregt wird. Entsprechend wäre es möglich, dass der Freiheitsgrad der Bewegung 902 einer Torsionsmode des mindestens einen Stützelements 101, 102 entspricht. Dann wäre es möglich, dass die Torsionsmode 502 durch die gegenphasigen Signalbeiträge 811, 821 angeregt wird.
  • Die Überlagerungs900 gemäß dem Beispiel der 13 wird erhalten, wenn die Transversalmode 501 und die Torsionsmode 902 die gleiche Frequenz aufweisen. Außerdem wird die Überlagerungs900 gemäß dem Beispiel der 13 dann erhalten, wenn die Amplitude der Transversalmode 501 durch die Amplitudenmodulation der gleichphasigen Signalbeiträge 812, 822 (vergleiche 12) während der Zeitdauer 860 vergrößert wird. Dadurch wird nämlich erreicht, dass die Überlagerungs900 als „sich öffnendes Auge“ erhalten wird, d. h. mit zunehmender Amplitude der Transversalmode 501 größere Scanwinkeln 901 erhalten werden (durch die vertikalen gepunkteten Pfeile in 13 dargestellt). Dadurch können Scanzeilen erhalten werden (horizontal gepunktete Pfeile in 13), mit welchen das Umfeld des Laserscanners 99 abgetastet werden kann. Durch wiederholtes Aussenden von Lichtpulsen können dann unterschiedliche Bildpunkte 951 erhalten werden. Überlagerungsfiguren mit vielen Knoten werden vermieden, wodurch eine besonders große Bildwiederholfrequenz erzielt werden kann. Außerdem wird vermieden, dass bestimmte Bereiche zwischen den Knoten nicht gescannt werden.
  • 14 illustriert Aspekte in Bezug auf Resonanzkurven 1301, 1302 der Freiheitsgrade der Bewegung 501, 502, welche beispielsweise die Überlagerungs900 gemäß dem Beispiel der 13 implementieren können. 14 illustriert dabei die Amplitude der Anregung des jeweiligen Freiheitsgrads der Bewegung 501, 502. Ein Resonanzspektrum gemäß dem Beispiel der 14 kann insbesondere dann erstrebenswert sein, wenn eine zeitliche und örtliche Überlagerung der verschiedenen Freiheitsgrade der Bewegung 501, 502 des mindestens einen Stützelements 101, 102 für das zweidimensionale Scannen gewünscht ist
  • Die Resonanzkurve 1301 der Transversalmode 501 weist ein Maximum 1311 auf (durchgezogene Linie). In 14 ist auch die Resonanzkurve 1302 der Torsionsmode 502 dargestellt (gestrichelte Linie). Die Resonanzkurve 1302 weist ein Maximum 1312 auf.
  • Das Maximum 1312 der Torsionsmode 502 ist bei einer geringeren Frequenz als das Maximum 1311 der Transversalmode 501, die z.B. die Transversalmode 501 niedrigster Ordnung sein könnte. Dadurch kann erreicht werden, dass das Scanmodul besonders robust gegenüber äußeren Störeinflüssen wie Vibrationen etc. ist. Dies ist der Fall, da solche äußeren Anregungen typischerweise die Transversalmode 501 besonders effizient anregen, jedoch die Torsionsmode 502 nicht besonders effizient anregen.
  • Beispielsweise könnten die Resonanzkurven 1301, 1302 Lorentz-förmig sein. Dies wäre der Fall, wenn die entsprechenden Freiheitsgrade der Bewegung 501, 502 durch einen harmonischen Oszillator beschrieben werden können.
  • Die Maxima 1311, 1312 sind gegeneinander in der Frequenz verschoben. Beispielsweise könnte der Frequenzabstand zwischen den Maxima 1311, 1312 im Bereich von 5 Hz bis 20 Hz liegen.
  • In 14 sind auch die Halbwertsbreiten 1321, 1322 der Resonanzkurven 1301, 1302 dargestellt. Typischerweise wird die Halbwertsbreite durch die Dämpfung des entsprechenden Freiheitsgrads der Bewegung 501, 502 definiert. In dem Beispiel der 14 sind die Halbwertsbreiten 1321, 1322 gleich; im Allgemeinen könnten die Halbwertsbreiten 1321, 1322 jedoch verschieden voneinander sein. In manchen Beispielen können unterschiedliche Techniken angewendet werden, um die Halbwertsbreiten 1321, 1322 zu vergrößern. Zum Beispiel könnte ein entsprechender Kleber vorgesehen sein, deren bestimmten Stellen, zum Beispiel zwischen den Biegepiezoaktuatoren 310, 320 und der Basis 141, angeordnet ist.
  • In dem Beispiel der 14 weisen die Resonanzkurven 1301, 1302 einen Überlappbereich 1330 auf (dunkel dargestellt). Dies bedeutet, dass die Transversalmode 501 und die Torsionsmode 502 entartet sind. In dem Überlappbereich 1330 weist sowohl die Resonanzkurve 1301 eine signifikante Amplituden auf, als auch die Resonanzkurve 1302. Beispielsweise wäre es möglich, dass die Amplituden der Resonanzkurven 1301, 1302 in dem Überlappbereich jeweils nicht kleiner als 10 % der entsprechenden Amplituden am jeweiligen Maximum 1311, 1312 sind, optional jeweils nicht <5 %, weiter optional jeweils nicht < 1 %. Durch den Überlappbereich 1330 kann erreicht werden, dass die beiden Freiheitsgrade der Bewegung 501, 502 gekoppelt angeregt werden können, nämlich jeweils semiresonant bei einer Frequenz 1399. Die Frequenz 1399 liegt zwischen den beiden Maxima 1311, 1312 Dadurch kann die zeitliche und örtliche Überlagerung erzielt werden. Andererseits können aber nichtlineare Effekte durch Kopplung zwischen den beiden Freiheitsgraden der Bewegung 501, 502 unterdrückt bzw. vermieden werden.
  • 15 illustriert Aspekte in Bezug auf Resonanzkurven 1301, 1302 der Freiheitsgrade der Bewegung 501, 502. In dem Beispiel der 15 weisen die beiden Freiheitsgrade der Bewegung 501, 502 keinen Überlappbereich auf. Es liegt eine aufgehobene Entartung vor. Deshalb wird bei Verwendung der Anregungsfrequenz 1399 lediglich die Torsionsmode 502 angeregt. Dies kann erstrebenswert sein, wenn das Scanmodul lediglich eindimensionales Scannen implementieren soll. Das kann insbesondere bei der Verwendung von mehr als einem Stützelement erstrebenswert sein.
  • Durch das semi-resonante Anregen abseits des Maximums 1312 können nichtlineare Effekte vermieden werden.
  • Zum Einstellen bzw. verschieben der Resonanzkurven 1301, 1302 können ein oder mehrere Wuchtgewichte vorgesehen sein, die zum Beispiel einstückig mit dem mindestens einen Stützelements 101, 102 ausgebildet sein können. Ein entsprechendes Beispiel ist in 16 dargestellt.
  • Das Beispiel der 16 entspricht grundsätzlich dem Beispiel der 1. Jedoch sind in dem Beispiel der 16 Wuchtgewichte 1371, 1372 an den Stützelementen 101, 102 vorgesehen. Die Wuchtgewichte 1371, 1372 sind insbesondere einstückig mit den Stützelementen 101, 102 ausgebildet. Durch die Wuchtgewichte 1371, 1372 kann die Frequenz der Torsionsmode 502 verändert werden. Die Wuchtgewichte 1371, 1372 entsprechen einer lokalen Vergrößerung des Querschnitts der stabförmigen Stützelemente 101, 102.
  • 17 illustriert Aspekte in Bezug auf einen Laserscanner 99. In dem Beispiel der 17 ist ein Scanmodul 100 dargestellt, welches ein erstes Paar von Stützelementen 101-1, 102-1 aufweist, sowie ein zweites Paar von Stützelementen 102-1, 102-2. Das erste Paar von Stützelementen 101-1, 102-1 ist in einer Ebene angeordnet; das zweite Paar von Stützelementen 101-2, 102-2 ist auch in einer Ebene angeordnet. Diese Ebenen sind parallel zueinander und versetzt zueinander angeordnet.
  • Jedes Paar von Stützelementen ist dabei einer entsprechenden Basis 141-1, 141-2, sowie einem entsprechenden Schnittstellenelement 142-1, 142-2 zugeordnet. Beide Schnittstellenelemente 142-1, 142-2 stellen dabei eine Verbindung mit einem Spiegel 150 her. Derart kann erreicht werden, dass ein besonders stabiles Scannermodul 100 bereitgestellt werden kann, welches eine große Anzahl von Stützelementen aufweist. Insbesondere kann das Scannermodul 100 Stützelemente aufweisen, die in unterschiedlichen Ebenen angeordnet sind. Dies kann eine besonders große Robustheit ermöglichen.
  • Aus 17 ist auch ersichtlich, dass die Basis 141-1 nicht einstückig mit der Basis 141-2 ausgebildet ist. Außerdem ist das Schnittstellenelement 142-1 nicht einstückig mit dem Schnittstellenelement 142-2 ausgebildet. Auch die Stützelemente 101-1, 102-1 sind nicht einstückig mit den Stützelementen 102-1, 102-2 ausgebildet. Insbesondere wäre es möglich, dass die verschiedenen vorgenannten Teile aus unterschiedlichen Bereichen eines Wafers gefertigt werden und anschließend beispielsweise durch Kleben oder anodisches Bonden miteinander verbunden werden. Andere Beispiele für Verbindungstechniken umfassen: Fusionsbonden; Fusion- bzw. Direkt-Bonden; Eutektisches Bonden; Thermokompressions Bonden; und Adhäsives Bonden. Entsprechende Verbindungsflächen 160 sind in 17 gekennzeichnet. Durch solche Techniken kann erreicht werden, dass das Scannermodul 100 besonders einfach hergestellt werden kann. Insbesondere ist es nicht erforderlich, dass das komplette Scannermodul 100 einstückig bzw. integriert aus einem Wafer hergestellt werden muss. Vielmehr kann das Scannermodul 100 in einem zweistufigen Herstellungsprozess erzeugt werden. Gleichzeitig kann dies jedoch die Robustheit nicht signifikant herabsetzen: aufgrund der großflächigen Verbindungsflächen 160 kann eine besonders stabile Verbindung zwischen der Basis 141-1 und der Basis 141-2 bzw. dem Schnittstellenelement 142-1 und dem Schnittstellenelement 142-2 hergestellt werden.
  • Dabei ist es jedoch möglich, dass die Basis 141-1, die Stützelemente 101-1, 102-1, sowie das Schnittstellenelement 142-1 durch Spiegelung an einer Symmetrieebene (in welcher auch die Verbindungsflächen 160 liegen) auf die Basis 141-2, die Stützelemente 102-1, 102-2, sowie das Schnittstellenelement 142-2 abgebildet werden kann. Dadurch kann ein hochsymmetrischer Aufbau erreicht werden. Insbesondere kann ein rotationssymmetrischer Aufbau erreicht werden. Die Rotationssymmetrie kann dabei eine Zähligkeit von n=4 aufweisen; d.h. gleich der Anzahl der verwendeten Stützelemente 101-1, 101-2, 102-1, 102-2. Ein solcher symmetrischer Aufbau in Bezug auf die Zentralachse 220 kann insbesondere Vorteile in Bezug auf die Anregung der Torsionsmode 502 aufweisen. Nichtlinearitäten können vermieden werden.
  • 18 illustriert Aspekte in Bezug auf die Torsionsmode 502. 18 illustriert schematisch die Auslenkung der Torsionsmode 502 für das Scannermodul 100 gemäß dem Beispiel der 17 (in 18 ist der ausgelenkte Zustand mit den durchgezogenen Linien dargestellt und der Ruhezustand mit den gestrichelten Linien dargestellt).
  • In 18 ist auch die Drehachse 220 der Torsionsmode 502 dargestellt. Die Drehachse 220 liegt in der Symmetrieebene 221, welche die Basis 141-1 auf die Basis 141-2 abbildet bzw. die Stützelemente 101-1, 101-2 auf die Stützelemente 102-1, 102-2.
  • In dem Beispiel der 18 sind die Stützelemente 101-1, 102-1, 101-2, 102-2 rotationssymmetrischer in Bezug auf eine Zentralachse 220 angeordnet. Insbesondere liegt eine vierzählige Rotationssymmetrie vor. Das Vorhandensein einer Rotationssymmetrie bedeutet beispielsweise, dass das System der Stützelemente 101-1, 102-1, 101-2, 102-2 durch Rotation in sich selbst überführt werden kann. Die Zähligkeit der Rotationssymmetrie bezeichnet, wie häufig pro 360° Drehwinkel das System der Stützelemente 101-1, 102-1, 101-2, 102-2 in sich selbst überführt werden kann. Im Allgemeinen könnte die Rotationssymmetrie n-zählig sein, wobei n die Anzahl der verwendeten Stützelemente bezeichnet.
  • Durch die rotationssymmetrische Anordnung mit hoher Zähligkeit kann folgender Effekt erzielt werden: Nichtlinearitäten bei der Anregung der Torsionsmode 502 können reduziert bzw. unterdrückt werden. Dies kann durch folgendes Beispiel plausibilisiert werden: zum Beispiel könnten die Stützelemente 101-1, 102-1, 101-2, 102-2 derart angeordnet werden, dass die Längsachsen und die Zentralachse 220 alle in einer Ebene liegen. Dann würde die Rotationssymmetrie zweizählig sein (und nicht vierzählig, wie in dem Beispiel der 18). In einem solchen Fall weisen die orthogonalen Transversalmoden 501 (unterschiedliche Richtungen senkrecht zur Zentralachse 220) unterschiedliche Frequenzen auf - aufgrund unterschiedlicher Trägheitsmomente. Damit dreht sich beispielsweise die Richtung der niederfrequenten Transversalmode zusammen mit der Rotation bei Anregung der Torsionsmode 502. Dadurch wird ein parametrischer Oszillator ausgebildet, denn die Eigenfrequenzen variieren als Funktion des Drehwinkels bzw. damit als Funktion der Zeit. Das Übertragen von Energie zwischen den verschiedenen Zuständen des parametrischen Oszillators bewirkt Nichtlinearitäten. Indem eine Rotationssymmetrie mit hoher Zähligkeit verwendet wird, kann das Ausbilden des parametrischen Oszillators verhindert werden. Vorzugsweise können die Stützelemente so angeordnet werden, dass keine Abhängigkeit der Eigenfrequenzen vom Torsionswinkel auftreten.
  • Indem Nichtlinearitäten bei der Anregung der Torsionsmode der Stützelemente 101-1, 102-1, 101-2, 102-2 vermieden werden, kann erreicht werden, dass besonders große Scanwinkel des Lichts durch die Torsionsmode 502 erzielt werden können.
  • 19 illustriert Aspekte in Bezug auf ein Scanmodul 100. In dem Beispiel der 19 umfasst das Scanmodul 101 einzelnes Stützelement 101 mit einem optionalen Wuchtgewichte 1371. Deshalb erfolgt bei Anregung der Transversalmode 501 eine Verkippung der Spiegeloberfläche 151. Das ist in 20 dargestellt. In 20 ist insbesondere die Transversalmode 501 niedrigster Ordnung dargestellt. In anderen Beispielen wäre es auch möglich, dass zum Scannen von Licht 180 eine Transversalmode höherer Ordnung verwendet wird, wobei dann die Auslenkung des Stützelements 101 an bestimmten Positionen entlang der Länge 211 des Stützelements 101 gleich Null wäre (sog. Knoten oder Bauch der Auslenkung).
  • 21 illustriert Aspekte in Bezug auf ein Scanmodul 100. In dem Beispiel der 21 umfasst das Scanmodul 101 ein Paar von Stützelementen 101, 102. Diese sind in einer Ebene angeordnet (der Zeichenebene in 21). Bei Anregung der Transversalmode 502 mit Auslenkung in dieser Ebene erfolgt keine Verkippung der Spiegeloberfläche 151. Deshalb wird das Umlenken des Lichts 180 nicht durch die Anregung der Transversalmode 502 beeinflusst. Das ist in 22 dargestellt. Dadurch kann eine System-inhärente Stabilisierung gegenüber Vibrationen erreicht werden. Eine besonders starke Stabilisierung kann zum Beispiel dann erreicht werden, wenn mehr als zwei Stützelemente verwendet werden, die nicht alle in derselben Ebene liegen. Dies wäre zum Beispiel für das Scanmodul 100 gemäß dem Beispiel der 17 der Fall.
  • 23 illustriert Aspekte in Bezug auf ein Scanmodul 100. In dem Beispiel der 23 sind die Piezoaktuatoren 310, 320 direkt an den Stützelementen 101, 102 aufgebracht, zum Beispiel durch Aufdampf-Prozesse. Derart kann erreicht werden, dass die Anregung der Freiheitsgrade der Bewegung 501, 502 nicht über die Basis 141 erfolgt; sondern vielmehr direkt im Bereich der Stützelemente 101, 102. Dies kann eine besonders effiziente und platzsparende Anregung ermöglichen.
  • Alternativ oder zusätzlich zur Anregung könnte die entsprechende piezoelektrische Schicht auch dazu verwendet werden, die Krümmung der Stützelemente zu detektieren. Dadurch kann der Umlenkwinkel 901, 902 besonders genau bestimmt werden. Beispielsweise könnten mehrere piezoelektrische Schichten auf unterschiedlichen Seiten der Stützelemente 101, 102 angebracht sein, um unterschiedliche Richtungen der Krümmung zu detektieren.
  • 24 ist ein Flussdiagramm eines beispielhaften Verfahrens zur Herstellung eines Scanmoduls. Zum Beispiel könnte mit dem Verfahren gemäß 24 das Scanmodul 100 gemäß verschiedene hierin beschriebener Beispiele hergestellt werden.
  • Zunächst wird in Schritt 5001 auf einem Wafer - beispielsweise ein Si-Wafer oder ein SOI-Wafer - eine Ätzmaske mittels Lithographie definiert. Der Wafer kann eine Dicke von beispielsweise 500 µm aufweisen.
  • Dann wird in Schritt 5002 der Wafer geätzt. Dabei kann zum Beispiel von der Vorderseite und/oder von der Rückseite des Wafers geätzt werden. Derart wird das Scanmodul bzw. Teile des Scanmoduls als einstückige und freistehende Struktur erhalten.
  • Optional könnten anschließend mehrere geätzte Strukturen durch Kleben oder anodisches Bonden miteinander verbunden werden (vergleiche 17). Dadurch kann das Scanmodul - sofern in Schritt 5002 nur Teile hergestellt werden - komplettiert werden.
  • In Schritt 5003 wird die Spiegeloberfläche am Scanmodul 100 befestigt. Die Spiegeloberfläche könnte dann einen Winkel mit der ungeätzten Waferoberfläche einschließen, z.B. im Bereich von -60° bis +60°, optional von 45° oder 0°.
  • In einem einfachen Fall könnte das Befestigen der Spiegeloberfläche das Abschneiden von Aluminium oder Gold auf einer entsprechenden Oberfläche des Scanmoduls 100 bzw. des Schnittstellenelement 142 umfassen. In anderen Beispielen könnte beispielsweise mittels Kleber einen Spiegel 150 auf der Schnittstellenelement 142 aufgeklebt werden. Der Spiegel 150 könnte auch aus einem Halbleiter-Material gefertigt sein oder aber aus Glas. Auch anodisches Bonden wäre möglich, um den Spiegel 150 zu befestigen.
  • In Schritt 5004 wird der Aktuator am Scanmodul 100 befestigt. In einem einfachen Beispiel könnte dies das Abscheiden von piezoelektrischem Material auf den Stützelementen 101, 102 umfassen (vergleiche 23). In anderen Beispielen wäre es aber auch möglich, dass zum Beispiel Biegepiezoaktuatoren an der Basis 141 befestigt werden.
  • Selbstverständlich können die Merkmale der vorab beschriebenen Ausführungsformen und Aspekte der Erfindung miteinander kombiniert werden. Insbesondere können die Merkmale nicht nur in den beschriebenen Kombinationen, sondern auch in anderen Kombinationen oder für sich genommen verwendet werden, ohne das Gebiet der Erfindung zu verlassen.
  • Beispielsweise wurden obenstehend verschiedene Techniken in Bezug auf Scanmodul mit einer bestimmten Anzahl von Stützelementen beschrieben. Die verschiedenen Techniken können aber auch für Scanmodul mit einer anderen Anzahl von Stützelementen angewendet werden.
  • Während obenstehend beispielsweise verschiedene Techniken in Bezug auf einen Laserscanner beschrieben wurden, wäre es im Allgemeinen aber auch möglich, anderes Licht als Laserlicht zu scannen.
  • Es wurden verschiedene Beispiele in Bezug auf eine zeitliche und örtliche Überlagerung einer Transversalmode und einer Torsionsmode beschrieben. In anderen Beispielen wäre es aber auch möglich, andere Freiheitsgrade der Bewegung zeitlich und örtlich zu überlagern, beispielsweise Transversalmoden mit unterschiedlicher Orientierung und/oder Transversalmoden unterschiedlicher Ordnung. Im Allgemeinen ist es auch nicht erforderlich, dass eine zeitliche und örtliche Überlagerung von unterschiedlichen Freiheitsgraden der Bewegung erfolgt. Beispielsweise wäre es in verschiedenen Szenarien möglich, dass eine Entartung zwischen den verschiedenen Moden aufgehoben wird und gezielt einen einzelnen Mode angeregt wird.
  • Beispielsweise wurden Techniken der örtlichen und zeitlichen Überlagerung für Faserbasierte Scanner in der deutschen Patentanmeldung DE 10 2016 010 448.1 diskutiert. Der entsprechende Offenbarungsgehalt - z.B. betreffend Überlagerungsfiguren und die Amplitudenmodulation der Anregung - wird hierin durch Querverweis übernommen. Die entsprechenden Techniken können auch für einstückige MEMS-Scanner angewendet werden.
  • Beispielsweise wurden Techniken zur Unterdrückung der Verkippung der Spiegeloberfläche in Bezug auf die deutsche Patentanmeldung DE 10 2016 013 227.2 beschrieben. Der entsprechen Offenbarungsgehalt - z.B. betreffend die rotationssymmetrische Anordnung mehrerer Fasern - wird hierin durch Querverweis übernommen. Die entsprechenden Techniken können auch für MEMS-Scanner angewendet werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102013223937 A1 [0005]
    • DE 102016010448 [0151]
    • DE 102016013227 [0152]

Claims (10)

  1. Scanmodul (100) für einen Lichtscanner (99), das umfasst: - eine Basis (141, 141-1, 141-2), - ein Schnittstellenelement (142, 142-1, 142-2), das eingerichtet ist, um eine Spiegeloberfläche (151) zu fixieren, und - mindestens ein Stützelement (101, 101-1, 101-2, 102, 102-1, 102-2), das sich zwischen der Basis (141, 141-1, 141-2) und dem Schnittstellenelement (142, 142-1, 142-2) erstreckt und das eine Ausdehnung senkrecht zur Spiegeloberfläche (151) aufweist, die nicht kleiner als 0,7 mm ist, wobei die Basis (141, 141-1, 141-2), das Schnittstellenelement (142, 142-1, 142-2) und das mindestens eine Stützelement (101, 101-1, 101-2, 102, 102-1, 102-2) einstückig ausgebildet sind.
  2. Scanmodul (100) nach Anspruch 1, wobei das mindestens eine Stützelement (101, 101-1, 101-2, 102, 102-1, 102-2) stabförmig entlang einer Längsachse (111) ausgebildet ist, welche eine Komponente senkrecht zur Spiegeloberfläche (151) aufweist, wobei die Länge (211) des mindestens einen Stützelements (101, 101-1, 101-2, 102, 102-1, 102-2) nicht kürzer als 2 mm ist, optional nicht kürzer als 4 mm, weiter optional nicht kürzer als 6 mm.
  3. Scanmodul (100) nach Anspruch 1 oder 2, wobei eine Längsachse (111) des mindestens einen Stützelements (101, 101-1, 101-2, 102, 102-1, 102-2) einen Winkel (159) mit einer Oberflächennormalen (159) der Spiegeloberfläche (151) einschließt, der im Bereich im Bereich von -60° bis +60° liegt.
  4. Scanmodul (100) nach einem der voranstehenden Ansprüche, wobei das mindestens eine Stützelement (101, 101-1, 101-2, 102, 102-1, 102-2) zwei in einer Ebene angeordnete Stützelemente (101, 101-1, 101-2, 102, 102-1, 102-2) umfasst.
  5. Scanmodul (100) nach einem der voranstehenden Ansprüche, das weiterhin umfasst: - eine weitere Basis (141, 141-1, 141-2), die mit der Basis (141, 141-1, 141-2) verbunden ist und mit dieser nicht einstückig ausgebildet ist, - ein weiteres Schnittstellenelement (142, 142-1, 142-2), das mit dem Schnittstellenelement (142, 142-1, 142-2) verbunden ist, mit diesem nicht einstückig ausgebildet ist, und das eingerichtet ist, um die Spiegeloberfläche (151) zu fixieren, und - mindestens ein weiteres Stützstellenelement, das sich zwischen der weiteren Basis (141, 141-1, 141-2) und dem weiteren Schnittstellenelement (142, 142-1, 142-2) erstreckt.
  6. Scanmodul (100) nach Anspruch 5, wobei das mindestens eine Stützstellenelement (101, 101-1, 101-2, 102, 102-1, 102-2) durch Spiegelung an einer Symmetrieebene auf das mindestens eine weitere Stützstellenelement (101, 101-1, 101-2, 102, 102-1, 102-2) abgebildet werden kann.
  7. Scanmodul (100) nach einem der voranstehenden Ansprüche, wobei die Basis (141, 141-1, 141-2) einen Zentralbereich und einen Randbereich umfasst, wobei sich das mindestens eine Stützelement (101, 101-1, 101-2, 102, 102-1, 102-2) weg von dem Zentralbereich erstreckt und wobei der Randbereich eine forminduzierte Elastizität aufweist, die größer ist, als die forminduzierte Elastizität des Zentralbereichs.
  8. Scanmodul (100) nach einem der voranstehenden Ansprüche, das weiterhin umfasst: - eine piezoelektrische Schicht (310, 320), die auf dem mindestens einen Stützelement (101, 101-1, 101-2, 102, 102-1, 102-2) angebracht ist und die optional eingerichtet ist, um eine Torsionsmode des mindestens einen Stützelements (101, 101-1, 101-2, 102, 102-1, 102-2) anzuregen.
  9. Scanmodul (100) nach einem der voranstehenden Ansprüche, das weiterhin umfasst: - die Spiegeloberfläche (151), die mit dem Schnittstellenelement (142, 142-1, 142-2) verbunden ist und mit diesem nicht einstückig ausgebildet ist.
  10. Lichtscanner (99), der umfasst: - das Scanmodul (100) nach einem der voranstehenden Ansprüche, und - die Spiegeloberfläche (151), und - mindestens einen Aktuator, der eingerichtet ist, um eine Torsionsmode des mindestens einen Stützelements (101, 101-1, 101-2, 102, 102-1, 102-2) durch Verkippen der Basis (141, 141-1, 141-2) anzuregen.
DE102016014001.1A 2016-11-23 2016-11-23 MEMS Scanmodul für einen Lichtscanner mit mindestens zwei Stützelementen Active DE102016014001B4 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102016014001.1A DE102016014001B4 (de) 2016-11-23 2016-11-23 MEMS Scanmodul für einen Lichtscanner mit mindestens zwei Stützelementen
US16/463,647 US11143858B2 (en) 2016-11-23 2017-11-22 MEMS scanning module for a light scanner
PCT/DE2017/101007 WO2018095486A2 (de) 2016-11-23 2017-11-22 Mems scanmodul für einen lichtscanner
CN201780082641.8A CN110312944B (zh) 2016-11-23 2017-11-22 用于光扫描仪的mems扫描模块
JP2019547758A JP6933401B2 (ja) 2016-11-23 2017-11-22 光スキャナ用mems走査モジュール
EP17808314.3A EP3545332A2 (de) 2016-11-23 2017-11-22 Mems scanmodul für einen lichtscanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016014001.1A DE102016014001B4 (de) 2016-11-23 2016-11-23 MEMS Scanmodul für einen Lichtscanner mit mindestens zwei Stützelementen

Publications (2)

Publication Number Publication Date
DE102016014001A1 true DE102016014001A1 (de) 2018-05-24
DE102016014001B4 DE102016014001B4 (de) 2020-11-12

Family

ID=60569539

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016014001.1A Active DE102016014001B4 (de) 2016-11-23 2016-11-23 MEMS Scanmodul für einen Lichtscanner mit mindestens zwei Stützelementen

Country Status (6)

Country Link
US (1) US11143858B2 (de)
EP (1) EP3545332A2 (de)
JP (1) JP6933401B2 (de)
CN (1) CN110312944B (de)
DE (1) DE102016014001B4 (de)
WO (1) WO2018095486A2 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017118776A1 (de) * 2017-08-17 2019-02-21 Blickfeld GmbH Scaneinheit und Verfahren zum Scannen von Licht
EP3435172A3 (de) * 2017-07-28 2019-03-20 The Swatch Group Research and Development Ltd Herstellungsverfahren eines flexiblen führungsmechanismus für mechanischen oszillator eines uhrwerks
DE102018102962A1 (de) * 2018-02-09 2019-08-14 Blickfeld GmbH Ausrichten eines resonanten Scansystems
DE102018112809A1 (de) * 2018-05-29 2019-12-05 Blickfeld GmbH Betätigung eines Scanspiegels mit einer elastischen Kopplung
WO2019234123A1 (en) 2018-06-08 2019-12-12 Blickfeld GmbH Coaxial optical system of a frictionless scan system for light detection and ranging, lidar, measurements
EP3636588A1 (de) * 2018-09-26 2020-04-15 Murata Manufacturing Co., Ltd. Mems-frequenzabstimmungsfedern
WO2020083780A1 (en) 2018-10-24 2020-04-30 Blickfeld GmbH Time-of-flight ranging using modulated pulse trains of laser pulses
US11454932B2 (en) 2018-07-24 2022-09-27 The Swatch Group Research And Development Ltd Method for making a flexure bearing mechanism for a mechanical timepiece oscillator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230273426A1 (en) * 2020-07-15 2023-08-31 Koito Manufacturing Co., Ltd. Light reflecting device, sensor device, and lighting device
DE102021208125A1 (de) 2021-07-28 2023-02-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Ansteuerung einer piezoelektrischen Antriebseinheit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013223937A1 (de) 2013-11-22 2015-05-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrospiegelanordnung
DE102016010448A1 (de) 2016-08-30 2018-03-01 Blickfeld GmbH Faser-basierter Laser-Scanner
DE102016013227A1 (de) 2016-11-07 2018-05-09 Blickfeld GmbH Faser-Scanner mit mindestens zwei Fasern

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878721A (en) * 1987-02-17 1989-11-07 General Scanning, Inc. Resonant mechanical system
US5280165A (en) * 1989-10-30 1994-01-18 Symbol Technolgoies, Inc. Scan pattern generators for bar code symbol readers
JPH07225347A (ja) * 1994-02-14 1995-08-22 S K S Kk レゾナントスキャナー
US5742377A (en) * 1994-04-12 1998-04-21 The Board Of Trustees Of The Leland Stanford, Jr. University Cantilever for scanning probe microscope including piezoelectric element and method of using the same
JP3462684B2 (ja) * 1996-12-19 2003-11-05 ペンタックス株式会社 光学偏向装置
US5926307A (en) * 1996-12-19 1999-07-20 Asahi Kogaku Kogyo Kabushiki Kaisha Optical deflection device
US5915063A (en) * 1997-01-15 1999-06-22 Colbourne; Paul Variable optical attenuator
US6498870B1 (en) * 1998-04-20 2002-12-24 Omm, Inc. Micromachined optomechanical switches
FR2778989B1 (fr) * 1998-05-25 2000-07-21 Suisse Electronique Microtech Actionneur optique permettant d'amener un faisceau de lumiere incidente sur une surface fixe exterieure audit actionneur
JP4724936B2 (ja) * 2000-04-28 2011-07-13 株式会社デンソー 光スキャナ及び2次元スキャンシステム
US6486995B2 (en) * 2000-04-28 2002-11-26 Denso Corporation Vibration-resisting structure of optical scanner
US6708491B1 (en) * 2000-09-12 2004-03-23 3M Innovative Properties Company Direct acting vertical thermal actuator
US6647164B1 (en) * 2000-10-31 2003-11-11 3M Innovative Properties Company Gimbaled micro-mirror positionable by thermal actuators
JP4724308B2 (ja) * 2001-04-17 2011-07-13 オリンパス株式会社 ガルバノミラー
JP3765251B2 (ja) * 2001-06-25 2006-04-12 日産自動車株式会社 光スキャナ装置及び光スキャナ装置の駆動方法
US6632698B2 (en) * 2001-08-07 2003-10-14 Hewlett-Packard Development Company, L.P. Microelectromechanical device having a stiffened support beam, and methods of forming stiffened support beams in MEMS
DE10213671A1 (de) * 2002-03-27 2003-10-23 Karlsruhe Forschzent Aktor für einen optisch-mechanischen Scanner sowie Verfahren unter Verwendung des Aktors
US6956683B2 (en) * 2003-06-11 2005-10-18 Texas Instruments Incorporated Pivoting platform having a piezoelectric drive
JP2007519023A (ja) * 2003-07-14 2007-07-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ レーザビームスキャナ
JP2005043407A (ja) * 2003-07-22 2005-02-17 Ricoh Co Ltd 波面収差補正ミラーおよび光ピックアップ
JP4461870B2 (ja) * 2004-03-26 2010-05-12 ブラザー工業株式会社 光走査装置およびそれを備えた画像形成装置
TWI239414B (en) * 2004-06-25 2005-09-11 Ind Tech Res Inst MEMS optical switch with self-assembly structure
US6985279B1 (en) * 2004-08-02 2006-01-10 Advanced Nano Systems, Inc. MEMS mirror with drive rotation amplification of mirror rotation angle
US7636101B2 (en) * 2005-02-09 2009-12-22 Microvision, Inc. MEMS scanner adapted to a laser printer
JP4574396B2 (ja) * 2005-03-02 2010-11-04 キヤノン株式会社 光偏向器
US7250705B2 (en) * 2005-09-16 2007-07-31 Texas Instruments Incorporated Resonant oscillating device actuator structure
US7474165B2 (en) * 2005-11-22 2009-01-06 Canon Kabushiki Kaisha Oscillating device, optical deflector and optical instrument using the same
WO2008072248A2 (en) * 2006-12-14 2008-06-19 Ramot At Tel-Aviv University Ltd. Tilting actuator with close-gap electrodes
JP2009122383A (ja) * 2007-11-14 2009-06-04 Canon Inc 揺動体装置の製造方法、該製造方法により製造された揺動体装置によって構成される光偏向器及び光学機器
DE102008004639A1 (de) * 2008-01-16 2009-07-23 Robert Bosch Gmbh Mikromechanisches Bauteil und Herstellungsverfahren für ein mikromechanisches Bauteil
JP5239379B2 (ja) * 2008-02-18 2013-07-17 パナソニック株式会社 光学反射素子
US8222796B2 (en) * 2008-10-15 2012-07-17 International Business Machines Corporation Micro-electro-mechanical device with a piezoelectric actuator
JP5240953B2 (ja) * 2009-02-18 2013-07-17 独立行政法人産業技術総合研究所 光ビーム走査装置
JP2011039217A (ja) * 2009-08-10 2011-02-24 Seiko Epson Corp 光偏向器及び光偏向器の製造方法
JP2011186422A (ja) * 2010-02-10 2011-09-22 Sanyo Electric Co Ltd ビーム照射装置
JP4888614B2 (ja) * 2010-04-28 2012-02-29 コニカミノルタホールディングス株式会社 光路補正装置、干渉計およびフーリエ変換分光分析装置
US8643937B2 (en) * 2010-11-16 2014-02-04 Imec Diffractive optical nano-electro-mechanical device with reduced driving voltage
FR2984010B1 (fr) * 2011-12-09 2014-01-03 St Microelectronics Rousset Dispositif capacitif integre ayant une valeur capacitive thermiquement variable
US9715107B2 (en) * 2012-03-22 2017-07-25 Apple Inc. Coupling schemes for gimbaled scanning mirror arrays
US10401865B1 (en) * 2013-03-06 2019-09-03 Waymo Llc Light steering device with an array of oscillating reflective slats
FR3022691B1 (fr) * 2014-06-23 2016-07-01 Stmicroelectronics Rousset Dispositif capacitif commandable integre
US9869858B2 (en) * 2015-12-01 2018-01-16 Apple Inc. Electrical tuning of resonant scanning
JP6301017B2 (ja) 2016-02-17 2018-03-28 三菱電機株式会社 ミラー駆動装置およびその製造方法
JP6724663B2 (ja) * 2016-09-01 2020-07-15 船井電機株式会社 スキャナミラー
DE102016011647A1 (de) * 2016-09-26 2018-03-29 Blickfeld GmbH Anregung von Fasern mit Biegepiezoaktuatoren
DE102017002866A1 (de) * 2017-03-24 2018-09-27 Blickfeld GmbH Scanner mit zwei sequentiellen Scaneinheiten
DE102017118776B4 (de) * 2017-08-17 2020-11-12 Blickfeld GmbH Scaneinheit mit mindestens zwei Stützelementen und einem freistehenden Umlenkelement und Verfahren zum Scannen von Licht
DE102018010451B4 (de) * 2018-05-22 2023-11-02 Infineon Technologies Ag MEMS-Bauelement mit Aufhängungsstruktur und Verfahren zum Herstellen eines MEMS-Bauelementes
IT201800008091A1 (it) * 2018-08-14 2020-02-14 St Microelectronics Srl Dispositivo micromeccanico dotato di una struttura orientabile tramite attuazione quasi-statica di tipo piezoelettrico e avente elementi di irrigidimento

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013223937A1 (de) 2013-11-22 2015-05-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrospiegelanordnung
DE102016010448A1 (de) 2016-08-30 2018-03-01 Blickfeld GmbH Faser-basierter Laser-Scanner
DE102016013227A1 (de) 2016-11-07 2018-05-09 Blickfeld GmbH Faser-Scanner mit mindestens zwei Fasern

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3435172A3 (de) * 2017-07-28 2019-03-20 The Swatch Group Research and Development Ltd Herstellungsverfahren eines flexiblen führungsmechanismus für mechanischen oszillator eines uhrwerks
DE102017118776B4 (de) * 2017-08-17 2020-11-12 Blickfeld GmbH Scaneinheit mit mindestens zwei Stützelementen und einem freistehenden Umlenkelement und Verfahren zum Scannen von Licht
DE102017118776A1 (de) * 2017-08-17 2019-02-21 Blickfeld GmbH Scaneinheit und Verfahren zum Scannen von Licht
DE102018102962A1 (de) * 2018-02-09 2019-08-14 Blickfeld GmbH Ausrichten eines resonanten Scansystems
DE102018112809A1 (de) * 2018-05-29 2019-12-05 Blickfeld GmbH Betätigung eines Scanspiegels mit einer elastischen Kopplung
WO2019234123A1 (en) 2018-06-08 2019-12-12 Blickfeld GmbH Coaxial optical system of a frictionless scan system for light detection and ranging, lidar, measurements
DE102018113739A1 (de) 2018-06-08 2019-12-12 Blickfeld GmbH Koaxiales optisches System eines reibungsfreien Scansystems für Lichtdetektion und Abstandsmessung, LIDAR, Messungen
US11454932B2 (en) 2018-07-24 2022-09-27 The Swatch Group Research And Development Ltd Method for making a flexure bearing mechanism for a mechanical timepiece oscillator
EP3636588A1 (de) * 2018-09-26 2020-04-15 Murata Manufacturing Co., Ltd. Mems-frequenzabstimmungsfedern
US11296671B2 (en) 2018-09-26 2022-04-05 Murata Manufacturing Co., Ltd. MEMS frequency-tuning springs
JP2020059118A (ja) * 2018-09-26 2020-04-16 株式会社村田製作所 Mems周波数チューニングばね
DE102018126522A1 (de) 2018-10-24 2020-04-30 Blickfeld GmbH Laufzeitbasierte Entfernungsmessung unter Verwendung von modulierten Pulsfolgen von Laserpulsen
WO2020083780A1 (en) 2018-10-24 2020-04-30 Blickfeld GmbH Time-of-flight ranging using modulated pulse trains of laser pulses

Also Published As

Publication number Publication date
CN110312944B (zh) 2023-11-07
DE102016014001B4 (de) 2020-11-12
WO2018095486A3 (de) 2018-07-19
US11143858B2 (en) 2021-10-12
EP3545332A2 (de) 2019-10-02
WO2018095486A2 (de) 2018-05-31
CN110312944A (zh) 2019-10-08
US20200183150A1 (en) 2020-06-11
JP2020506437A (ja) 2020-02-27
JP6933401B2 (ja) 2021-09-08

Similar Documents

Publication Publication Date Title
DE102016014001B4 (de) MEMS Scanmodul für einen Lichtscanner mit mindestens zwei Stützelementen
EP3602105B1 (de) Winkelmagnetfeldsensor für scanner
DE102011104556B4 (de) Ablenkvorrichtung für einen Scanner mit Lissajous-Abtastung
DE102008012825B4 (de) Mikromechanisches Bauelement mit verkippten Elektroden
EP3345034B1 (de) Anregung von fasern mit biegepiezoaktuatoren
DE102014217799B4 (de) Piezoelektrischer Positionssensor für piezoelektrisch angetriebene resonante Mikrospiegel
DE102017118776B4 (de) Scaneinheit mit mindestens zwei Stützelementen und einem freistehenden Umlenkelement und Verfahren zum Scannen von Licht
WO2018171841A1 (de) Scanner mit zwei sequentiellen scaneinheiten
DE102018216611B4 (de) MEMS-Bauelement mit Aufhängungsstruktur und Verfahren zum Herstellen eines MEMS-Bauelementes
WO2000025170A1 (de) Mikromechanisches bauelement mit schwingkörper
WO2019154466A1 (de) Ausrichten eines resonanten scansystems
DE102016013227A1 (de) Faser-Scanner mit mindestens zwei Fasern
DE102016010448B4 (de) Faser-basierter Laser-Scanner
DE60223785T2 (de) Struktur mit thermischem Aktuator mit einem aus der Fläche biegenden Balken
DE102017002870A1 (de) Überlagerungsfigur für Scanner
DE102017120678A1 (de) Scaneinheit mit Robustheit gegenüber Schock
DE102021128775A1 (de) Strahllenkeinheit mit magnet und distanzelement
WO2023117433A1 (de) Piezoelektrisches spiegelbauelement, verfahren zum betrieb des piezoelektrischen spiegelbauelements und projektionsvorrichtung mit dem piezoelektrischen spiegelbauelement
DE102017000827A1 (de) Lichtscanner mit Beschleunigungssensor
DE102016208926A1 (de) MOEMS-Vorrichtung sowie entsprechendes Herstellungsverfahren
DE102018112809A1 (de) Betätigung eines Scanspiegels mit einer elastischen Kopplung
EP4359842A1 (de) Lissajous-mikroscanner mit zentraler spiegelaufhängung und verfahren zu seiner herstellung
DE102015103164B4 (de) Scanvorrichtung mit wenigstens einer eindimensional scannenden Scaneinheit
WO2023198340A1 (de) Mikroscanner mit verschiedenartigen piezoelementen und verfahren zu seiner herstellung
DE102021128669A1 (de) Verfahren zur Detektion und Dämpfung einer Modenkopplung und Verwendung für elektrostatische MEMS-Spiegel

Legal Events

Date Code Title Description
R081 Change of applicant/patentee

Owner name: BLICKFELD GMBH, DE

Free format text: FORMER OWNER: PETIT, FLORIAN, DR., 81247 MUENCHEN, DE

R082 Change of representative

Representative=s name: KRAUS & WEISERT PATENTANWAELTE PARTGMBB, DE

R163 Identified publications notified
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R081 Change of applicant/patentee

Owner name: BLICKFELD GMBH, DE

Free format text: FORMER OWNER: BLICKFELD GMBH, 80689 MUENCHEN, DE

R082 Change of representative

Representative=s name: KRAUS & WEISERT PATENTANWAELTE PARTGMBB, DE

R020 Patent grant now final