DE102015224464A1 - Kupfer-Keramik-Substrat, Kupferhalbzeug zur Herstellung eines Kupfer-Keramik-Substrats und Verfahren zur Herstellung eines Kupfer-Keramik-Substrats - Google Patents

Kupfer-Keramik-Substrat, Kupferhalbzeug zur Herstellung eines Kupfer-Keramik-Substrats und Verfahren zur Herstellung eines Kupfer-Keramik-Substrats Download PDF

Info

Publication number
DE102015224464A1
DE102015224464A1 DE102015224464.4A DE102015224464A DE102015224464A1 DE 102015224464 A1 DE102015224464 A1 DE 102015224464A1 DE 102015224464 A DE102015224464 A DE 102015224464A DE 102015224464 A1 DE102015224464 A1 DE 102015224464A1
Authority
DE
Germany
Prior art keywords
copper
layer
ceramic substrate
layers
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102015224464.4A
Other languages
English (en)
Inventor
Karl Zeiger
Benjamin Cappi
Helge Lehmann
Robert Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aurubis Stolberg GmbH and Co KG
Original Assignee
Aurubis Stolberg GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aurubis Stolberg GmbH and Co KG filed Critical Aurubis Stolberg GmbH and Co KG
Priority to DE102015224464.4A priority Critical patent/DE102015224464A1/de
Priority to CN201680068701.6A priority patent/CN108367994B/zh
Priority to HUE16816594A priority patent/HUE054954T2/hu
Priority to PCT/EP2016/079879 priority patent/WO2017097758A1/de
Priority to JP2018528066A priority patent/JP2019500303A/ja
Priority to KR1020187016062A priority patent/KR102636795B1/ko
Priority to US16/060,344 priority patent/US10988418B2/en
Priority to EP16816594.2A priority patent/EP3386934B1/de
Publication of DE102015224464A1 publication Critical patent/DE102015224464A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/048Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material made of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/04Inorganic
    • B32B2266/045Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/54Oxidising the surface before joining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/55Pre-treatments of a coated or not coated substrate other than oxidation treatment in order to form an active joining layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • C04B2237/588Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different particle or grain sizes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Kupfer-Keramik-Substrat (1) mit – einem Keramikträger (2), und – einer mit einer Oberfläche des Keramikträgers (2) verbundenen Kupferschicht (3, 4), wobei – die Kupferschicht (3, 4) mindestens eine erste, dem Keramikträger zugewandte Schicht (5, 6) mit einer gemittelten ersten Korngröße und eine an der von dem Keramikträger (2) abgewandten Seite der Kupferschicht (3, 4) angeordnete zweite Schicht (7, 8) mit einer gemittelten zweiten Korngröße aufweist, wobei – die zweite Korngröße kleiner als die erste Korngröße ist.

Description

  • Die Erfindung betrifft ein Kupfer-Keramik-Substrat mit den Merkmalen des Oberbegriffs von Anspruch 1, ein Kupferhalbzeug zur Herstellung eines Kupfer-Keramik-Substrats mit den Merkmalen des Oberbegriffs von Anspruch 6 oder 8 und ein Verfahren zur Herstellung eines Kupfer-Keramik-Substrats mit den Merkmalen des Oberbegriffs von Anspruch 13.
  • Kupfer-Keramik-Substrate (z.B. DCB, AMB) werden z.B. zur Herstellung von elektronischen Leistungsmodulen verwendet und sind ein Verbund aus einem Keramikträger mit entweder einseitig oder beidseitig darauf angeordneten Kupferschichten. Die Kupferschichten werden als Kupferhalbzeug in Form einer Kupferfolie üblicherweise mit einer Dicke von 0,1 bis 1,0 mm vorgefertigt und durch ein Verbindungsverfahren mit dem Keramikträger verbunden. Solche Verbindungsverfahren sind auch als DCB (Direct Copper Bonding) oder als AMB (Active Metal Brazing) bekannt. Bei einer höheren Festigkeit des Keramikträgers können jedoch auch Kupferlagen oder Kupferschichten mit einer noch größeren Dicke aufgebracht werden, was hinsichtlich der elektrischen und thermischen Eigenschaften grundsätzlich von Vorteil ist.
  • In der oberen Darstellung der 1 ist ein Kupfer-Keramik-Substrat 1 nach dem Stand der Technik mit einem Keramikträger 2 mit zwei auf den unterschiedlichen Seiten angeordneten Kupferschichten 3 und 4 zu erkennen, wobei in die in der Darstellung obere Kupferschicht 3 zusätzlich eine Struktur aus Leiterbahnen eingeätzt wurde, während die in der Darstellung untere Kupferschicht 4 ganzflächig ausgebildet ist.
  • Als Keramikträger werden Keramikplatten z.B. aus Mullit, Al2O3, Si3N4, AlN, ZTA, ATZ, TiO2, ZrO2, MgO, CaO, CaCO3 oder aus einer Mischung wenigstens zweier dieser Materialien verwendet.
  • Dabei wird die Kupferlage bei dem DCB-Verfahren durch folgende Verfahrensschritte mit der Keramikbasis verbunden:
    • – Oxidieren der Kupferlage derart, dass sich eine gleichmäßige Kupferoxidschicht ergibt;
    • – Auflegen der Kupferlage auf den Keramikträger;
    • – Erhitzen des Verbundes auf eine Prozesstemperatur zwischen 1060 °C und 1085 °C.
  • Dabei entsteht auf der Kupferlage eine eutektische Schmelze, die mit dem Keramikträger eine stoffschlüssige Verbindung eingeht. Dieser Prozess wird als Bonding bezeichnet. Sofern Al2O3 als Keramikträger verwendet wird, entsteht durch die Verbindung eine dünne Cu-Al-Spinellschicht.
  • Im Anschluss an den Bondingprozess erfolgt die Strukturierung der notwendigen Leiterbahnen durch Ätzen der zur Außenseite hin gewandten, also freien Oberfläche der Kupferlage. Anschließend werden die Chips aufgelötet und mittels Aufbringen von Bonddrähten die Verbindungen zu den Kontakten auf den Chipoberseiten hergestellt, wozu das Gefüge der freien Oberfläche der Kupferschicht möglichst homogen und fein strukturiert sein sollte. Zur Herstellung von Leistungsmodulen kann das Kupfer-Keramik-Substrat anschließend zusätzlich mit einer Bodenplatte verbunden werden.
  • Die Vorteile des beschriebenen Kupfer-Keramik-Substrats liegen vor allem in der hohen Stromtragfähigkeit des Kupfers und einer guten elektrischen Isolierung und mechanischen Unterstützung durch den Keramikträger. Ferner kann durch die DCB-Technologie eine hohe Haftfähigkeit der Kupferlage auf dem Keramikträger erzielt werden. Darüber hinaus sind die eingesetzten Kupfer-Keramik-Substrate beständig bei einer hohen Umgebungstemperatur, die in der Anwendung oftmals vorhanden sind.
  • Schwachpunkt der Kupfer-Keramik-Substrate ist die sogenannte Temperaturwechselbeständigkeit, eine Materialkenngröße, die das Versagen eines Bauteils nach einer bestimmten Anzahl von temporären thermisch induzierten Spannungen beschreibt. Dieser Parameter ist für die Lebenszeit der Leistungsmodule von Bedeutung, da sich extreme Temperaturgradienten im Betrieb der Module ergeben. Aufgrund der unterschiedlichen Wärmeausdehnungskoeffizienten von den eingesetzten Keramik- und Kupfer-Werkstoffen werden dadurch während des Einsatzes in dem Kupfer-Keramik-Substrat mechanische Spannungen thermisch induziert, was nach einer bestimmten Zyklenanzahl zu einer Delamination der Kupferschicht von der Keramikschicht und/oder zu Rissen in der Keramikschicht und/oder in der Kupferschicht und somit zu einem Versagen des Bauteils führen kann. Das durch die thermische Beanspruchung bewirkte Durchbiegen des Kupfer-Keramik-Substrats 1 ist in der unteren Darstellung der 1 übertrieben dargestellt. Dabei bewirkt die unterschiedliche Ausdehnung der Kupferschichten 3 und 4 aufgrund der unterschiedlichen Kupfermenge eine Durchbiegung des Kupfer-Keramik-Substrats. Aufgrund dieser Krümmung des Kupfer-Keramik-Substrats 1 werden in den Kupferschichten 3 und 4 selbst und insbesondere in den Verbindungen der Kupferschichten 3 und 4 mit dem Keramikträger 2 Scher-, Druck- und Zugspannungen erzeugt, welche zum Lösen der Verbindungen der Kupferschichten 3 und 4 mit dem Keramikträger 2 und zu Rissen in den Kupferschichten 3 und 4 und/oder in dem Keramikträger 2 führen können.
  • Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, ein Kupfer-Keramik-Substrat und ein Kupferhalbzeug zu schaffen, welches verbessert hinsichtlich der verschiedenen Anforderungen an die Kupferschicht und an das Substrat eingestellt werden kann. Außerdem ist es Aufgabe der Erfindung, ein kostengünstiges Verfahren zur Herstellung eines derartigen Kupfer-Keramik-Substrats zu schaffen.
  • Zur Lösung der Aufgabe wird ein Kupfer-Keramik-Substrat mit den Merkmalen des Anspruchs 1, ein Kupferhalbzeug mit den Merkmalen des Anspruchs 6 oder des Anspruch 8 und ein Verfahren mit den Merkmalen des Anspruchs 13 vorgeschlagen. Weitere bevorzugte Weiterentwicklungen sind den darauf rückbezogenen Unteransprüchen, der Figur und der zugehörigen Beschreibung zu entnehmen.
  • Gemäß dem Grundgedanken der Erfindung wird vorgeschlagen, dass die Kupferschicht mindestens eine erste, dem Keramikträger zugewandte Schicht mit einer gemittelten ersten Korngröße und eine an der von dem Keramikträger abgewandten Seite der Kupferschicht angeordnete zweite Schicht mit einer gemittelten zweiten Korngröße aufweist, wobei die zweite Korngröße kleiner als die erste Korngröße ist.
  • Der Vorteil der vorgeschlagenen Lösung ist darin zu sehen, dass die Kupferschicht aufgrund der vorgeschlagenen unterschiedlichen Korngrößen des Gefüges der beiden Schichten so ausgebildet werden kann, dass sie erheblich besser den an die Kupferschicht gestellten Anforderungen genügt. Dabei ist es insbesondere von Vorteil, dass die Kupferschicht in der ersten Schicht eine im Mittel größere Korngröße aufweist, da die Kupferschicht aufgrund der größeren Korngröße und der dadurch bedingten niedrigeren Dehngrenze eine verbesserte Temperaturwechselbeständigkeit aufweist, so dass die Wahrscheinlichkeit einer Delamination oder des Entstehens von Rissen verringert werden kann. Der Zusammenhang von Dehngrenze und Korngröße wird in der Hall-Petch-Beziehung beschrieben:
    Figure DE102015224464A1_0002
    wobei σy die Dehngrenze, σ0 und K materialabhängige Konstanten und dK die Korngröße sind.
  • Andererseits weist die Kupferschicht an der zur Außenseite hin gerichteten, von dem Keramikträger abgewandten Seite eine zweite Schicht mit einer feineren Korngröße auf, wodurch die Kupferschicht an dieser Seite ein höheres Härte- und Festigkeitsniveau und eine höhere Dehngrenze aufweist, was wiederum für Anwendungsbereiche mit hohen Belastungen (wie. z.B. Vibrationen) von Vorteil ist. Des Weiteren ist eine feinere Kornstruktur für eine weitere Verarbeitung über optische Systeme vorteilhaft. Während des Bearbeitungsprozesses (z.B. Ätzprozess) zur Schaffung der Leiterstruktur sind feine Korngrößen ferner bevorzugt, da dadurch scharfe Kanten und feine Strukturen besser realisiert werden können. Grobe Körner würden hier zu tiefen Ätzkratern entlang den Korngrenzen führen, was die Rauigkeit der Kupferoberfläche erhöhen würde. Dazu kommt der optische Eindruck, der bei feinen Korngrößen als homogener interpretiert wird. Darüber hinaus ist eine feine Struktur an der Oberfläche für das Bonden von Drähten von Vorteil.
  • Insgesamt kann durch die erfindungsgemäße Lösung damit ein Kupfer-Keramik-Substrat mit einer hohen Temperaturwechselbeständigkeit bei einer gleichzeitig guten Bearbeitbarkeit, einer hohen Festigkeit und hochwertigen optischen Eigenschaften der freien Oberfläche der Kupferschicht geschaffen werden.
  • In jedem Fall können durch die unterschiedlichen Korngrößen der beiden Schichten die an die Kupferschicht gestellten Anforderungen erheblich besser erfüllt werden, als dies bisher durch eine Kupferschicht mit einer einheitlichen Korngröße möglich gewesen ist. Dabei kann die Kupferschicht durch die Wahl der Korngrößen in den beiden Schichten in gewissen Grenzen individuell an die gestellten Anforderungen optimiert werden, ohne dass die Optimierung hinsichtlich einer der Eigenschaften zwangsläufig einen nachteiligen Einfluss auf eine der anderen Eigenschaften hat. Die Korngröße wird praktisch als eine Kenngröße verwendet, durch die die Eigenschaften der Kupferschicht auch unter Verwendung ein und desselben Werkstoffs bewusst hinsichtlich der verschiedenen zu erfüllenden Anforderungen verbessert werden können.
  • Dabei kann zwischen der ersten Schicht und dem Keramikträger selbstverständlich auch eine weitere dünne dritte Schicht mit einer feineren Kornstruktur vorgesehen sein, ohne dass dadurch der Erfindungsgedanke verlassen wird. Wichtig ist nur, dass die erste Schicht, welche in Bezug zu der zweiten Schicht dem Keramikträger zugewandt ist, die gröbere Kornstruktur aufweist. Die erste Schicht ist in diesem Fall zwischen der zweiten und der dritten Schicht angeordnet und bildet praktisch den Kern der Kupferschicht und ist damit für das Verformungsverhalten des Substrates bei einer thermischen Beanspruchung maßgebend. Der Vorteil der Erfindung wird in diesem Fall ebenso genutzt, da die Krümmung in der Kupferschicht aufgrund der gröberen Kornstruktur der ersten Kupferschicht und die damit zusammenhängenden Spannungen in der Kupferschicht ebenso reduziert werden, obwohl die erste Schicht nicht unmittelbar an dem Keramikträger anliegt, sondern durch die dritte Schicht von dem Keramikträger getrennt ist. Wichtig ist nur, dass die erste Schicht so dick ist, dass durch die erste Schicht die durch die thermische Beanspruchung bedingten Werkstoffspannungen in der Kupferschicht positiv beeinflusst und insbesondere verringert werden.
  • Die unterschiedlichen Gefüge in der Kupferschicht können z.B. besonders einfach durch eine gezielte Temperaturbehandlung der Kupferschicht erzielt werden. Alternativ können auch mindestens zwei unterschiedliche Kupferwerkstoffe mit verschiedenen Korngrößen z.B. durch Plattieren zu einer Kupferschicht miteinander verbunden werden. Dabei können die unterschiedlichen Kupferwerkstoffe in Form von vorgefertigten Bändern in einem vorangegangenen Arbeitsschritt zu einem Kupferhalbzeug miteinander verbunden werden. Alternativ kann auch zuerst die erste Schicht mit der größeren Korngröße auf dem Keramikträger und anschließend die zweite Schicht mit der feineren Korngröße auf der ersten Schicht mit der größeren Korngröße aufgebracht werden.
  • Ferner können auch zwei unterschiedliche Kupferwerkstoffe mit identischen oder beliebigen Korngrößen miteinander verbunden werden, deren Hochtemperatureigenschaften so eingestellt sind, dass bei einer Temperaturbehandlung in der ersten Schicht ein Gefüge mit einer großen Korngröße und in der zweiten Schicht ein Gefüge mit einer kleineren Korngröße entsteht. Im Idealfall kann für die Hochtemperaturbehandlung der Bonding-Prozess im DCB- oder AMB-Verfahren selbst genutzt werden. In diesem Fall kann das unterschiedliche Gefüge an den beiden Seiten durch eine Kombination der Verwendung von zwei unterschiedlichen Kupferwerkstoffen in Verbindung mit einer speziellen Temperaturbehandlung erzielt werden.
  • Dabei wird weiter vorgeschlagen, dass der Kupferwerkstoff der ersten Schicht Cu-ETP ist, und der Kupferwerkstoff an der der Außenseite zugewandten Seite, in der zweiten Schicht Cu-OF, weiter bevorzugt Cu-OFE, ist. Cu-OF und besonders Cu-OFE hat in dem Erstarrungsdiagramm einen ausgeprägten stufenartigen Schmelzpunkt, d.h. es erstarrt und schmilzt schlagartig beim Unter- oder Überschreiten der Schmelztemperatur. Cu-ETP weist Anteile von Cu-Oxydul auf, welches dazu führt, dass das Cu-ETP in einem in dem Erstarrungsdiagramm schräg abfallenden Schmelzintervall erstarrt bzw. aufschmilzt. Da der Schmelzpunkt des Cu-OF oberhalb der Solidustemperatur von Cu-ETP liegt, ist das gesamte Cu-OF während des Aufschmelzens des Cu-ETP noch erstarrt. Der Vorteil der Verwendung des Cu-ETP‘s als erste Schicht liegt darin, dass die Kupferschicht dadurch im Bereich der ersten Schicht beim Überschreiten der Solidustemperatur des Cu-ETP‘s, welche der Bondingtemperatur des DCB-Verfahrens entspricht, zur Schaffung der Verbindung mit dem Keramikträger beginnt anzuschmelzen, während die freie Oberfläche der Kupferschicht, die durch das Cu-OF gebildet ist, noch vollständig erstarrt ist. Aufgrund dieses Anschmelzens des Cu-Oxyduls in dem Cu-ETP kann eine verbesserte Verbindung und insbesondere Haftfestigkeit zwischen der ersten Kupferschicht und dem Keramikträger erzielt werden. Ferner bildet das Cu-ETP beim anschließenden Erkalten selbsttätig eine gröbere Kornstruktur als das Cu-OF der freien Oberfläche aus, wodurch die verbesserte Temperaturwechselbeständigkeit nach dem oben beschriebenen Prinzip selbsttätig erzielt wird.
  • Besonders gute Ergebnisse hinsichtlich der Temperaturwechselbeständigkeit und der gewünschten Eigenschaften der freien Oberfläche konnten dadurch erzielt werden, indem die Kupferschicht in der ersten Schicht im Mittel eine Korngröße von größer als 100 µm, bevorzugt ca. 250 bis 1000 µm, und in der zweiten Schicht eine gemittelte Korngröße von kleiner als 100 µm, bevorzugt ca. 50 µm, aufweist.
  • Nachfolgend wird die Erfindung anhand eines bevorzugten Ausführungsbeispiels näher beschrieben. In den Figuren sind im Einzelnen zu erkennen:
  • 1: ein Kupfer-Keramik-Substrat nach dem Stand der Technik;
  • 2: ein Kupferhalbzeug mit zwei Schichten aus unterschiedlichen Kupferwerkstoffen; und
  • 3: ein erfindungsgemäßes Kupfer-Keramik-Substrat in Schnittdarstellung.
  • Leistungsmodule sind Halbleiterbauelemente der Leistungselektronik und werden als Halbleiterschalter eingesetzt. Sie enthalten in einem Gehäuse mehrere vom Kühlkörper elektrisch isolierte Leistungshalbleiter (Chips). Diese werden auf eine metallisierte Oberfläche einer elektrisch isolierenden Platte (z.B. aus Keramik) mittels Löten oder Kleben aufgebracht, damit einerseits die Wärmeabgabe in Richtung Bodenplatte, andererseits aber auch die elektrische Isolierung gewährleistet ist. Der Verbund aus metallisierten Schichten und isolierender Platte wird als Kupfer-Keramik-Substrat bezeichnet und wird großtechnisch über die sogenannte DCB-Technologie (Direct Copper Bonding) realisiert.
  • Die Kontaktierung der Chips wird durch Bonden mit dünnen Bonddrähten realisiert. Darüber hinaus können weitere Baugruppen unterschiedlichster Funktion (z.B. Sensoren, Widerstände) vorhanden und integriert sein.
  • Zur Herstellung eines DCB-Substrates werden Keramikträger (z.B. Al2O3, Si3N4, AIN, ZTA, ATZ) ober- und unterseitig mit Kupferlagen in einem Bondprozess miteinander verbunden. In Vorbereitung auf diesen Prozess können die Kupferlagen vor dem Auflegen auf den Keramikträger oberflächlich oxidiert (z.B. chemisch oder thermisch) und anschließend auf den Keramikträger aufgelegt werden. Die Verbindung entsteht in einem Hochtemperaturprozess zwischen 1060 °C und 1085 °C, wobei auf der Oberfläche der Kupferlage eine eutektische Schmelze entsteht, die mit dem Keramikträger eine Verbindung eingeht. Diese Verbindung besteht beispielsweise im Falle von Kupfer (Cu) auf Aluminiumoxid (Al2O3) aus einer dünnen Cu-Al-Spinellschicht.
  • In der 1 ist ein Kupfer-Keramik-Substrat 1 nach dem Stand der Technik mit einem Keramikträger 2 und zwei an den Oberflächen des Keramikträgers 2 gehaltenen Kupferschichten 3 und 4 zu erkennen.
  • In der 3 ist ein erfindungsgemäß weiterentwickeltes Kupfer-Keramik-Substrat 1 mit einem Keramikträger 2 und zwei Kupferschichten 3 und 4 zu erkennen. Die beiden erfindungsgemäß weiterentwickelten Kupferschichten 3 und 4 in der 3 weisen jeweils eine erste, dem Keramikträger 2 zugewandte Schicht 5 und 6 auf, welche eine gröbere Gefügestruktur aufweisen. Die ersten Schichten 5 und 6 sind bevorzugt die Schichten, mit denen die Kupferschichten 3 und 4 an dem Keramikträger 2 anliegen, und welche die Verbindung mit dem Keramikträger 2 bilden.
  • Die ersten Schichten 5 und 6 der Kupferschichten 3 und 4 sind an der freien Außenseite jeweils durch eine zweite Schicht 7 und 8 mit einer feineren Gefügestruktur mit einer gemittelten feineren Korngröße von weniger als 100 µm, vorzugsweise von ca. 50 µm, abgedeckt. Die ersten Schichten 5 und 6 der beiden Kupferschichten 3 und 4 weisen dagegen eine gröbere Gefügestruktur mit einer gemittelten größeren Korngröße von größer als 100 µm, vorzugsweise von ca. 250 bis 1000 µm auf. Die Gefügestrukturen der Kupferschichten 3 und 4 weisen damit in den dem Keramikträger 2 zugewandten ersten Schichten 5 und 6 eine im Mittel ca. 10-fach größere Korngröße als in den nach außen hin weisenden Schichten 7 und 8 auf. Die ersten Schichten 5 und 6 können wesentlich dicker als die zweiten Schichten 7 und 8 sein und bilden die Grundschichten der Kupferschichten 3 und 4. Die zweiten Schichten 7 und 8 können wesentlich dünner ausgebildet sein und weisen eine Dicke von ca. 50 bis 100 µm auf und bilden die freien Oberflächen der Kupferschichten 3 und 4. Das mechanische Verhalten der Kupferschichten 3 und 4 wird aufgrund der erheblich größeren Dicke der ersten Schichten 5 und 6 mit der größeren Korngröße soweit verändert, dass die Kupferschichten 3 und 4 insgesamt eine niedrigere Dehngrenze und damit eine größere Temperaturwechselbeständigkeit aufweisen, während die zweiten Schichten 7 und 8 mit der wesentlich feineren Gefügestruktur lediglich die freie Oberfläche bilden.
  • Die Kupferschichten 3 und 4 können z.B. nach dem eingangs beschriebenen DCB-Verfahren mit dem Keramikträger 2 verbunden sein, so dass die beiden daran anliegenden ersten Schichten 5 und 6 der beiden Kupferschichten 3 und 4 durch eine stoffschlüssige Verbindung in den jeweiligen Oberflächenrandzonen 9 und 10 des Keramikträgers 2 mit dem Keramikträger 2 verbunden sind. Da die beiden Kupferschichten 3 und 4 in den ersten Schichten 5 und 6 eine erheblich gröbere Gefügestruktur mit einer großen Korngröße von 250 bis 1000 µm aufweisen, weisen sie aufgrund der oben beschriebenen Hall-Petch-Beziehung eine niedrigere Dehngrenze als im Bereich der an den Außenseiten angeordneten zweiten Schichten 7 und 8 auf, so dass sie mit einer höheren Temperaturwechselbeständigkeit mit dem Keramikträger 2 verbunden sind, als dies der Fall wäre, wenn sie an dieser Seite dieselbe Korngröße von 50 µm wie an der äußeren Seite aufweisen würden. Damit sind die Kupferschichten 3 und 4 durch die vorgeschlagene Auslegung mit der größeren Korngröße an der Seite der Verbindung zu dem Keramikträger 2 speziell für eine hohe Temperaturwechselbeständigkeit in der Verbindung der Oberflächenrandzonen 9 und 10 ausgebildet. Demgegenüber können die Kupferschichten 3 und 4 an ihren äußeren Seiten aufgrund der feineren Gefügestruktur der zweiten Schichten 7 und 8 mit der feineren Korngröße von 50 µm erheblich einfacher und genauer zum Einbringen der Leiterstruktur bearbeitet werden. Außerdem weisen sie an dieser Seite eine größere Härte, Festigkeit und Dehngrenze auf, so dass die Lebensdauer des Kupfer-Keramik-Substrats 1 auch gegenüber äußeren Einwirkungen vergrößert werden kann. Darüber hinaus weist die feinkörnigere Struktur der die Oberfläche bildenden zweiten Schichten 7 und 8 Vorteile für das Verbinden von Drähten auf.
  • Die unterschiedliche Gefügestruktur der Kupferschichten 3 und 4 in den verschiedenen Schichten 5, 6, 7 und 8 kann durch eine gezielt vorgenommene Temperaturbehandlung oder auch durch die Verwendung von zwei unterschiedlichen Kupferwerkstoffen oder auch durch eine Kombination der beiden Maßnahmen erzielt werden. Gemäß einer bevorzugten Ausführungsform werden die beiden Kupferschichten 3 und 4 durch Plattieren (wie z.B. Walzplattieren) einer Schicht des Kupferwerkstoffs Cu-OF, bevorzugt Cu-OFE, mit einer Schicht des Kupferwerkstoffs CU-ETP zu einem Kupferhalbzeug 11 und 12 hergestellt, welches in der 2 zu erkennen ist. Die erste Schicht 5, 6, gebildet durch das Cu-ETP und die zweite Schicht 7, 8, gebildet durch das Cu-OF weisen hier eine identische oder zumindest vergleichbare Korngröße auf. Während des DCB-Verfahrens wird beispielsweise das voroxidierte Kupferhalbzeug 11 oder 12 auf den Keramikträger 2 aufgelegt und dann auf die Prozesstemperatur von 1060 °C bis 1085 °C erhitzt. Dabei schmilzt das Cu-Oxydul in der ersten Schicht 5, 6, welche hier durch das Cu-ETP gebildet wird, an und bildet die Verbindungen in den Oberflächenrandzonen 9 und 10 mit dem Keramikträger 2 aus. Aufgrund der Temperatureinwirkung und des unterschiedlichen Rekristallisationsverhaltens der beiden Kupferwerkstoffe ändert sich das Gefüge dabei soweit, dass die Körner in dem Cu-ETP anschließend grob vorliegen, während die feinere Gefügestruktur in dem Cu-OF oder in dem Cu-OFE vorliegt.
  • Cu-OF bzw. Cu-OFE und Cu-ETP sind hochleitfähige Cu-Werkstoffe und weisen eine Leitfähigkeit von gleich oder mehr als 58 MS/m auf. Es sind jedoch auch Werkstoffe mit einer niedrigeren Leitfähigkeit denkbar. Ferner können die beiden Cu-Werkstoffe auch über andere Fügeverfahren, wie z.B. Schweißen, Löten, Heften, Kleben oder additive Fertigungsverfahren, miteinander verbunden werden. Ferner können die Kupferschichten 3 und 4 bedarfsweise auch durch weitere Cu-Werkstoffe oder Schichten ergänzt werden, soweit die Werkstoffeigenschaften der Kupferschichten 3 und 4 weiter verfeinert werden sollen.
  • Die beiden Kupferschichten 3 und 4 werden bevorzugt als Kupferhalbzeuge 11 und 12 jeweils durch Plattieren der beiden Cu-Werkstoffe vorgefertigt. Die Kupferhalbzeuge 11 und 12 weisen nach dem Bonden aufgrund der vorgeschlagenen Verwendung der verschiedenen Cu-Werkstoffe und der Temperatureinwirkung während des Bondens bereits an einer Seite eine Gefügestruktur mit einer feineren Korngröße von ca. 50 µm und an der anderen Seite eine Gefügestruktur mit einer größeren Korngröße von 250 bis 1000 µm auf. Dabei stellt das Bonden gleichzeitig bewusst eine Temperaturbehandlung dar, während der die Körner der ersten Schichten 5 und 6 der Kupferschichten 3 oder 4, welche dem Keramikträger 2 zugewandt sind, weiter wachsen, was wiederum positiv im Sinne einer weiter gesteigerten Temperaturwechselbeständigkeit der Kupferschichten 3 und 4 selbst und insbesondere im Bereich der Verbindungen 9 und 10 mit dem Keramikträger 2 ist. Gleichzeitig führt die Temperaturbehandlung nicht zu einer nennenswerten Vergrößerung der Korngröße der von dem Keramikträger 2 abgewandten Schichten 7 und 8 der Kupferschichten 3 oder 4 bzw. des Kupferhalbzeugs 11 und 12, so dass die Eigenschaften der Kupferschichten 3 und 4 an dieser Seite nicht nachteilig verändert werden.
  • Gemäß einer Ausführungsform werden zwei verschiedene Cu-Werkstoffe mittels Plattieren miteinander verbunden, so dass im Fertigmaterial die Hochtemperatureigenschaften so gezielt eingestellt werden können, dass in den Kupferschichten 3 und 4 während der Temperatureinwirkung auf den dem Keramikträger 2 zugewandten Seiten ein grobes Gefüge mit niedriger Dehngrenze und auf der freien Oberfläche ein feineres Gefüge mit den geforderten Oberflächeneigenschaften entsteht. Dabei können zwischen den ersten Schichten 5 und 6 mit dem gröberen Gefüge und dem Keramikträger 2 durchaus weitere Schichten auch mit einem feineren Gefüge vorhanden sein, sofern dies Vorteile für den jeweiligen Anwendungsfall liefert. Der Grundvorteil der verminderten Rissentstehung und der verhinderten Delamination bei einer Temperaturwechselbeanspruchung bleibt trotzdem erhalten, da die ersten Schichten 5 und 6 der Kupferschichten 3 und 4 auch in diesem Fall einen Kern mit einer verringerten Dehngrenze und einer dadurch erhöhten Temperaturwechselbeständigkeit bilden.
  • Ferner wird das Bonden hier bevorzugt neben der Schaffung der Verbindung zusätzlich als eine Temperaturbehandlung genutzt, mittels derer die erfindungsgemäß vorgeschlagene unterschiedliche Korngröße an den beiden Seiten der Kupferschichten 3 und 4 besonders einfach erreicht werden kann, wobei der Effekt weiter durch die Verwendung der beiden unterschiedlichen Kupferwerkstoffe verstärkt werden kann.
  • Die Kupferschichten 3 und 4 werden bevorzugt als Kupferhalbzeuge 11 und 12 vorgefertigt, welche durch Plattieren der beiden vorgeschlagenen Kupferwerkstoffe hergestellt werden. Dabei können die dem Keramikträger 2 zugewandten ersten Schichten 5 und 6, gebildet durch das Cu-ETP, wesentlich dicker ausgebildet sein und eine Art Trägerfunktion für die wesentlich dünneren zweiten Schichten 7 und 8, gebildet durch die Cu-OF Schicht, bilden.
  • Die Kupferhalbzeuge 11 und 12 können eine Dicke von 0,1 bis 1,0 mm aufweisen und werden in großen Abmaßen auf den Keramikträger 2 aufgelegt und durch das DCB-Verfahren mit dem Keramikträger 2 verbunden. Anschließend wird das großflächige Kupfer-Keramik-Substrat 1 in kleinere Einheiten geschnitten und weiter verarbeitet.
  • Neben dem verbesserten Kupfer-Keramik-Substrat 1 und den als Kupferhalbzeuge 11 und 12 vorgefertigten Kupferfolien liefert die Erfindung außerdem ein bevorzugtes kostengünstiges Verfahren zur Herstellung des Kupfer-Keramik-Substrats 1. Dabei wird das vorgeschlagene Kupfer-Keramik-Substrat 1 bevorzugt durch eine Temperaturbehandlung hergestellt, durch welche sich die unterschiedlichen Korngrößen in den beiden Schichten 5 und 6 bzw. 7 und 8 selbsttätig einstellen. Dabei können die Kupferschichten 3 und 4 vor der Verbindung mit dem Keramikträger 2 der Temperaturbehandlung unterzogen werden, oder es kann die Temperatureinwirkung während des Bondingverfahrens zur Beeinflussung der Gefügestruktur genutzt werden. Ferner können die Kupferschichten 3 und 4 auch durch Plattieren zweier unterschiedlicher Cu-Werkstoffe zusammengesetzt sein, welche bereits eine unterschiedliche Gefügestruktur aufweisen bzw. welche dann während der Temperaturbehandlung die unterschiedliche Gefügestruktur ausbilden.

Claims (14)

  1. Kupfer-Keramik-Substrat (1) mit – einem Keramikträger (2), und – einer mit einer Oberfläche des Keramikträgers (2) verbundenen Kupferschicht (3, 4), dadurch gekennzeichnet, dass – die Kupferschicht (3, 4) mindestens eine erste, dem Keramikträger zugewandte Schicht (5, 6) mit einer gemittelten ersten Korngröße und eine an der von dem Keramikträger (2) abgewandten Seite der Kupferschicht (3, 4) angeordnete zweite Schicht (7, 8) mit einer gemittelten zweiten Korngröße aufweist, wobei – die zweite Korngröße kleiner als die erste Korngröße ist.
  2. Kupfer-Keramik-Substrat (1) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass – die erste und die zweite Schicht (5, 6, 7, 8) der Kupferschicht (3, 4) durch mindestens zwei unterschiedliche Kupferwerkstoffe gebildet sind.
  3. Kupfer-Keramik-Substrat (1) nach Anspruch 2, dadurch gekennzeichnet, dass – der Kupferwerkstoff der ersten Schicht (5, 6) Cu-ETP ist.
  4. Kupfer-Keramik-Substrat (1) nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass – der Kupferwerkstoff der zweiten Schicht (7, 8) Cu-OF, weiter bevorzugt Cu-OFE ist.
  5. Kupfer-Keramik-Substrat (1) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass – die erste Schicht (5, 6) im Mittel eine Korngröße von größer als 100 µm, bevorzugt ca. 250 bis 1000 µm, und – die zweite Schicht (7, 8) im Mittel eine Korngröße von kleiner als 100 µm, bevorzugt ca. 50 µm, aufweist.
  6. Kupferhalbzeug (11, 12) zur Herstellung eines Kupfer-Keramik-Substrats (1), dadurch gekennzeichnet, dass – das Kupferhalbzeug (11, 12) mindestens eine erste Schicht (5, 6) mit einer gemittelten ersten Korngröße und eine zweite Schicht (7, 8) mit einer gemittelten zweiten Korngröße aufweist, wobei die beiden gemittelten Korngrößen unterschiedlich sind.
  7. Kupferhalbzeug (11, 12) nach Anspruch 6, dadurch gekennzeichnet, dass – die beiden Schichten (5, 6, 7, 8) durch unterschiedliche Kupferwerkstoffe gebildet sind.
  8. Kupferhalbzeug (11, 12) zur Herstellung eines Kupfer-Keramik-Substrats (1), dadurch gekennzeichnet, dass – das Kupferhalbzeug (11, 12) eine erste Schicht (5, 6) aus einem ersten Kupferwerkstoff und eine zweite Schicht (7, 8) aus einem zweiten Kupferwerkstoff aufweist, wobei – der erste und der zweite Kupferwerkstoff derart ausgebildet sind, dass sie nach einer Temperatureinwirkung unterschiedliche Korngrößen aufweisen.
  9. Kupferhalbzeug (11, 12) nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass – die beiden unterschiedlichen Kupferwerkstoffe durch eine Plattierung miteinander verbunden sind.
  10. Kupferhalbzeug (11, 12) nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass – die beiden unterschiedlichen Kupferwerkstoffe Cu-OF, vorzugsweise Cu-OFE, und Cu-ETP sind.
  11. Kupferhalbzeug (11, 12) nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass – das Kupferhalbzeug (11, 12) in den beiden Schichten (5, 6, 7, 8) unterschiedlich temperaturbehandelt ist.
  12. Kupferhalbzeug (11, 12) nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, dass – die erste Schicht (5, 6) im Mittel eine Korngröße von größer als 100 µm, bevorzugt ca. 250 bis 1000 µm, und die zweite Schicht (7, 8) im Mittel eine Korngröße von kleiner als 100 µm, bevorzugt ca. 50 µm, aufweist.
  13. Verfahren zur Herstellung eines Kupfer-Keramik-Substrats (1) mit den Merkmalen einer der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass – die unterschiedlichen Korngrößen der beiden Schichten (5, 6, 7, 8) der Kupferschicht (3, 4) durch die Temperatureinwirkung während eines Bonding-Verfahrens zur Verbindung der Kupferschicht (3, 4) mit dem Keramikträger (2) erzielt werden.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass – die Kupferschicht (3, 4) durch ein Kupferhalbzeug (11, 12) nach Anspruch 8 oder nach einem der Ansprüche 9 bis 12 in Rückbeziehung auf den Anspruch 8 gebildet ist.
DE102015224464.4A 2015-12-07 2015-12-07 Kupfer-Keramik-Substrat, Kupferhalbzeug zur Herstellung eines Kupfer-Keramik-Substrats und Verfahren zur Herstellung eines Kupfer-Keramik-Substrats Withdrawn DE102015224464A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE102015224464.4A DE102015224464A1 (de) 2015-12-07 2015-12-07 Kupfer-Keramik-Substrat, Kupferhalbzeug zur Herstellung eines Kupfer-Keramik-Substrats und Verfahren zur Herstellung eines Kupfer-Keramik-Substrats
CN201680068701.6A CN108367994B (zh) 2015-12-07 2016-12-06 铜陶瓷基板、制备铜陶瓷基板的铜半成品及制备铜陶瓷基板的方法
HUE16816594A HUE054954T2 (hu) 2015-12-07 2016-12-06 Réz-kerámia szubsztrát, réz prekurzor réz-kerámia szubsztrát elõállításához, és eljárás réz-kerámia szubsztrát elõállítására
PCT/EP2016/079879 WO2017097758A1 (de) 2015-12-07 2016-12-06 Kupfer-keramik-substrat, kupferhalbzeug zur herstellung eines kupfer-keramik-substrats und verfahren zur herstellung eines kupfer-keramik-substrats
JP2018528066A JP2019500303A (ja) 2015-12-07 2016-12-06 銅セラミック基板、銅セラミック基板を製造するための銅半製品、及び銅セラミック基板の製造方法
KR1020187016062A KR102636795B1 (ko) 2015-12-07 2016-12-06 구리 세라믹 기판, 구리 세라믹 기판을 제조하기 위한 구리 반제품 및 구리 세라믹 기판의 제조 방법
US16/060,344 US10988418B2 (en) 2015-12-07 2016-12-06 Copper-ceramic substrate, copper precursor for producing a copper-ceramic substrate and process for producing a copper-ceramic substrate
EP16816594.2A EP3386934B1 (de) 2015-12-07 2016-12-06 Kupfer-keramik-substrat, kupferhalbzeug zur herstellung eines kupfer-keramik-substrats und verfahren zur herstellung eines kupfer-keramik-substrats

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015224464.4A DE102015224464A1 (de) 2015-12-07 2015-12-07 Kupfer-Keramik-Substrat, Kupferhalbzeug zur Herstellung eines Kupfer-Keramik-Substrats und Verfahren zur Herstellung eines Kupfer-Keramik-Substrats

Publications (1)

Publication Number Publication Date
DE102015224464A1 true DE102015224464A1 (de) 2017-06-08

Family

ID=57609840

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015224464.4A Withdrawn DE102015224464A1 (de) 2015-12-07 2015-12-07 Kupfer-Keramik-Substrat, Kupferhalbzeug zur Herstellung eines Kupfer-Keramik-Substrats und Verfahren zur Herstellung eines Kupfer-Keramik-Substrats

Country Status (8)

Country Link
US (1) US10988418B2 (de)
EP (1) EP3386934B1 (de)
JP (1) JP2019500303A (de)
KR (1) KR102636795B1 (de)
CN (1) CN108367994B (de)
DE (1) DE102015224464A1 (de)
HU (1) HUE054954T2 (de)
WO (1) WO2017097758A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017128308A1 (de) 2017-11-29 2019-05-29 Rogers Germany Gmbh Verfahren zur Herstellung eines Metall-Keramik-Substrats, Verfahren zur Herstellung eines Metallhalbzeugs und Metall-Keramik-Substrat
DE102017128316A1 (de) 2017-11-29 2019-05-29 Rogers Germany Gmbh Verfahren zur Herstellung eines Metallhalbzeugs, Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat
WO2019179600A1 (de) 2018-03-20 2019-09-26 Aurubis Stolberg Gmbh & Co. Kg Kupfer-keramik-substrat
DE102021131902A1 (de) 2021-12-03 2023-06-07 Rogers Germany Gmbh Trägerelement für elektrische Bauteile und Verfahren zur Herstellung eines solchen Trägerelements

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016203112B4 (de) 2016-02-26 2019-08-29 Heraeus Deutschland GmbH & Co. KG Kupfer-Keramik-Verbund
DE102016203030A1 (de) 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Kupfer-Keramik-Verbund
KR101755203B1 (ko) * 2016-11-11 2017-07-10 일진머티리얼즈 주식회사 이차전지용 전해동박 및 그의 제조방법
JP6939596B2 (ja) * 2018-01-24 2021-09-22 三菱マテリアル株式会社 パワーモジュール用基板の製造方法及びセラミックス‐銅接合体
CN111278220A (zh) * 2018-12-04 2020-06-12 中科院微电子研究所昆山分所 一种厚铜dcb板的制备方法
CN110068115A (zh) * 2019-05-08 2019-07-30 广东美的制冷设备有限公司 空调器和集成式控制器
CN113939095B (zh) * 2020-06-29 2023-02-10 比亚迪股份有限公司 一种陶瓷覆铜板及其制备方法
EP3967487A1 (de) * 2020-09-11 2022-03-16 Heraeus Deutschland GmbH & Co. KG Schichtenverbund
DE102020213729A1 (de) * 2020-11-02 2022-05-05 Aurubis Stolberg Gmbh & Co. Kg Kupfer-Keramik-Substrat

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022426A (en) * 1995-05-31 2000-02-08 Brush Wellman Inc. Multilayer laminate process
US20120325517A1 (en) * 2011-06-24 2012-12-27 Tessera, Inc. Reliable wire structure and method

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3226822A (en) * 1961-09-27 1966-01-04 Eitel Mccullough Inc Art of bonding ceramic to metal
JPS59208896A (ja) * 1983-05-13 1984-11-27 日立電線株式会社 高周波プリント回路用銅張積層基板
JPS60131874A (ja) * 1983-12-19 1985-07-13 三菱重工業株式会社 セラミツクと金属との接合方法
JPS60131875A (ja) * 1983-12-20 1985-07-13 三菱重工業株式会社 セラミツクと金属の接合法
DE3924225C2 (de) * 1988-07-22 1994-01-27 Mitsubishi Electric Corp Verfahren zur Herstellung eines Keramik-Metall-Verbundsubstrats sowie Keramik-Metall-Verbundsubstrat
EP0667640A3 (de) * 1994-01-14 1997-05-14 Brush Wellman Mehrlagen-Laminatprodukt und seine Herstellung.
NL1006379C2 (nl) * 1997-06-23 1999-02-08 Gibros Pec Bv Werkwijze voor het afkoelen van verontreinigd gas.
JPH11121889A (ja) * 1997-10-16 1999-04-30 Denki Kagaku Kogyo Kk 回路基板
US6113761A (en) 1999-06-02 2000-09-05 Johnson Matthey Electronics, Inc. Copper sputtering target assembly and method of making same
AT408345B (de) * 1999-11-17 2001-10-25 Electrovac Verfahren zur festlegung eines aus metall-matrix- composite-(mmc-) materiales gebildeten körpers auf einem keramischen körper
JP2003324258A (ja) * 2002-05-01 2003-11-14 Nippon Mektron Ltd プリント配線板用銅張板
JP2008044009A (ja) * 2006-07-19 2008-02-28 Honda Motor Co Ltd 熱膨張係数が異なる部材の接合方法
TW200847867A (en) * 2007-04-26 2008-12-01 Mitsui Mining & Smelting Co Printed wire board and manufacturing method thereof, and electrolytic copper foil for copper-clad lamination board used for manufacturing the same
US20090115022A1 (en) * 2007-11-06 2009-05-07 Nec Electronics Coroporation Semiconductor device
TW200927481A (en) * 2007-12-18 2009-07-01 Wen-Jung Jiang Method of producing ceramic-copper foil laminated board
JP4471004B2 (ja) * 2008-01-23 2010-06-02 セイコーエプソン株式会社 接合体の形成方法
JP4471003B2 (ja) * 2008-01-23 2010-06-02 セイコーエプソン株式会社 接合体の形成方法
JP4471002B2 (ja) * 2008-01-23 2010-06-02 セイコーエプソン株式会社 接合体の形成方法
TW201037105A (en) 2009-03-23 2010-10-16 Nippon Mining Co Double layered flexible board, and copper electrolytic liquid for making the same
JP2011097038A (ja) 2009-10-02 2011-05-12 Ibiden Co Ltd セラミック配線基板およびその製造方法
JP2012038823A (ja) * 2010-08-04 2012-02-23 Nitto Denko Corp 配線回路基板
JP5436364B2 (ja) 2010-08-09 2014-03-05 オムロンオートモーティブエレクトロニクス株式会社 Dcdcコンバータ
US20120273948A1 (en) 2011-04-27 2012-11-01 Nanya Technology Corporation Integrated circuit structure including a copper-aluminum interconnect and method for fabricating the same
KR101548091B1 (ko) * 2011-07-28 2015-08-27 가부시끼가이샤 도시바 산화물계 세라믹스 회로 기판의 제조 방법 및 산화물계 세라믹스 회로 기판
WO2013115359A1 (ja) * 2012-02-01 2013-08-08 三菱マテリアル株式会社 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、パワーモジュール用基板の製造方法、および銅部材接合用ペースト
JP2014097529A (ja) * 2012-10-18 2014-05-29 Fuji Electric Co Ltd 発泡金属による接合方法、半導体装置の製造方法、半導体装置
WO2014080536A1 (ja) * 2012-11-20 2014-05-30 Dowaメタルテック株式会社 金属-セラミックス接合基板およびその製造方法
JP6111764B2 (ja) * 2013-03-18 2017-04-12 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
JP6079505B2 (ja) * 2013-08-26 2017-02-15 三菱マテリアル株式会社 接合体及びパワーモジュール用基板
CN103819214B (zh) * 2014-01-10 2015-04-01 南京中江新材料科技有限公司 一种AlN陶瓷敷铜基板及其制备方法
KR20170073618A (ko) * 2014-10-16 2017-06-28 미쓰비시 마테리알 가부시키가이샤 냉각기가 장착된 파워 모듈용 기판 및 그 제조 방법
CN204204831U (zh) 2014-11-05 2015-03-11 南京中江新材料科技有限公司 厚铜敷接陶瓷基板
US10052713B2 (en) * 2015-08-20 2018-08-21 Ultex Corporation Bonding method and bonded structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022426A (en) * 1995-05-31 2000-02-08 Brush Wellman Inc. Multilayer laminate process
US20120325517A1 (en) * 2011-06-24 2012-12-27 Tessera, Inc. Reliable wire structure and method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017128308A1 (de) 2017-11-29 2019-05-29 Rogers Germany Gmbh Verfahren zur Herstellung eines Metall-Keramik-Substrats, Verfahren zur Herstellung eines Metallhalbzeugs und Metall-Keramik-Substrat
DE102017128316A1 (de) 2017-11-29 2019-05-29 Rogers Germany Gmbh Verfahren zur Herstellung eines Metallhalbzeugs, Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat
WO2019105814A1 (de) 2017-11-29 2019-06-06 Rogers Germany Gmbh Verfahren zur herstellung eines metallhalbzeugs, verfahren zur herstellung eines metall-keramik-substrats und metall-keramik-substrat
DE102017128316B4 (de) 2017-11-29 2019-12-05 Rogers Germany Gmbh Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat
DE102017128308B4 (de) 2017-11-29 2020-04-23 Rogers Germany Gmbh Verfahren zur Herstellung eines Metall-Keramik-Substrats
CN111433017A (zh) * 2017-11-29 2020-07-17 罗杰斯德国有限公司 制造金属半成品的方法,制造金属-陶瓷基板的方法和金属-陶瓷基板
JP2021503433A (ja) * 2017-11-29 2021-02-12 ロジャーズ ジャーマニー ゲーエムベーハーRogers Germany GmbH 金属半製品を製造する方法、金属−セラミック基板を製造する方法および金属−セラミック基板
JP2022087102A (ja) * 2017-11-29 2022-06-09 ロジャーズ ジャーマニー ゲーエムベーハー 金属半製品を製造する方法、金属-セラミック基板を製造する方法および金属-セラミック基板
JP7337987B2 (ja) 2017-11-29 2023-09-04 ロジャーズ ジャーマニー ゲーエムベーハー 金属半製品を製造する方法および金属-セラミック基板を製造する方法
US11845700B2 (en) 2017-11-29 2023-12-19 Rogers Germany Gmbh Method for producing a semi-finished metal product, method for producing a metal-ceramic substrate, and metal-ceramic substrate
WO2019179600A1 (de) 2018-03-20 2019-09-26 Aurubis Stolberg Gmbh & Co. Kg Kupfer-keramik-substrat
DE102021131902A1 (de) 2021-12-03 2023-06-07 Rogers Germany Gmbh Trägerelement für elektrische Bauteile und Verfahren zur Herstellung eines solchen Trägerelements

Also Published As

Publication number Publication date
KR102636795B1 (ko) 2024-02-15
WO2017097758A1 (de) 2017-06-15
KR20180091011A (ko) 2018-08-14
EP3386934A1 (de) 2018-10-17
US10988418B2 (en) 2021-04-27
CN108367994B (zh) 2021-05-11
JP2019500303A (ja) 2019-01-10
US20190002358A1 (en) 2019-01-03
HUE054954T2 (hu) 2021-10-28
EP3386934B1 (de) 2021-03-03
CN108367994A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
EP3386934B1 (de) Kupfer-keramik-substrat, kupferhalbzeug zur herstellung eines kupfer-keramik-substrats und verfahren zur herstellung eines kupfer-keramik-substrats
DE112016002967T5 (de) Halbleitereinrichtung und verfahren zum herstellen einer halbleitereinrichtung
DE102011079708B4 (de) Trägervorrichtung, elektrische vorrichtung mit einer trägervorrichtung und verfahren zur herstellung dieser
DE102009000192A1 (de) Sinterwerkstoff, Sinterverbindung sowie Verfahren zum Herstellen eines Sinterverbindung
DE112018000457T5 (de) Isoliertes wärmeableitungssubstrat
DE102010024520B4 (de) Verfahren zur Erhöhung der thermo-mechanischen Beständigkeit eines Metall-Keramik-Substrats
DE102015114522B4 (de) Verfahren zum Auflöten eines ersten Lötpartners auf einen zweiten Lötpartner unter Verwendung von Abstandhaltern
EP3419950B1 (de) Kupfer-keramik-verbund
DE112015003487T5 (de) Keramische Leiterplatte und Verfahren zur Herstellung der selben
EP3955288A1 (de) Leistungsmodul mit einer verbindungsschicht aufweisend eine lotschicht und einen abstandshalter, elektrisches gerät mit dem leistungsmodul und verfahren zur herstellung des leistungsmoduls
DE102015114521B4 (de) Verfahren zum Auflöten eines Isoliersubstrats auf einen Träger
EP3768654B1 (de) Kupfer-keramik-substrat
DE102010001666A1 (de) Elektrisches oder elektronisches Verbundbauteil
EP3419952B1 (de) Kupfer-keramik-verbund
EP3210951B9 (de) Kupfer-keramik-verbund
EP3958302A1 (de) Bodenplatte für ein halbleitermodul und verfahren zum herstellen einer bodenplatte
EP2092806B1 (de) Verfahren zur herstellung einer leiterplatte mit additiven und integrierten und mittels ultraschall kontaktierten kupferelementen
WO2005109980A1 (de) Anordnung zur kühlung einer elektronikeinheit sowie herstellung einer solchen anordnung
EP3263537B1 (de) Verfahren zur herstellung eines metall-keramik-substrats
DE102007002807A1 (de) Chipanordnung und Verfahren zur Herstellung einer Chipanordnung
DE102014109183A1 (de) Verfahren zur Herstellung eines Schaltungsträgers und zum Verbinden eines elektrischen Leiters mit einer Metallisierungsschicht eines Schaltungsträgers
EP4073837B1 (de) Elektronikmodul, verfahren zur herstellung eines elektronikmoduls und industrieanlage
DE102015219565A1 (de) Kühlkörper, Verfahren zur Herstellung eines Kühlkörpers und Elektronikmodul mit einem Kühlkörper
EP4237390A1 (de) Kupfer-keramik-substrat
DE102017103110B4 (de) Leistungshalbleitermodul mit einem Schaltungsträger

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R120 Application withdrawn or ip right abandoned