DE102015115683A1 - Verfahren zur Herstellung einer Vorform aus einer Alpha+Gamma-Titanaluminid-Legierung zur Herstellung eines hochbelastbaren Bauteils für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke - Google Patents

Verfahren zur Herstellung einer Vorform aus einer Alpha+Gamma-Titanaluminid-Legierung zur Herstellung eines hochbelastbaren Bauteils für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke Download PDF

Info

Publication number
DE102015115683A1
DE102015115683A1 DE102015115683.0A DE102015115683A DE102015115683A1 DE 102015115683 A1 DE102015115683 A1 DE 102015115683A1 DE 102015115683 A DE102015115683 A DE 102015115683A DE 102015115683 A1 DE102015115683 A1 DE 102015115683A1
Authority
DE
Germany
Prior art keywords
forging
blank
stretching
component
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102015115683.0A
Other languages
English (en)
Inventor
Peter Janschek
Tobias Naumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leistritz Turbinentechnik GmbH
Original Assignee
Leistritz Turbinentechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leistritz Turbinentechnik GmbH filed Critical Leistritz Turbinentechnik GmbH
Priority to DE102015115683.0A priority Critical patent/DE102015115683A1/de
Priority to EP16185613.3A priority patent/EP3144402A1/de
Priority to US15/255,557 priority patent/US20170081751A1/en
Priority to JP2016179532A priority patent/JP2017094392A/ja
Publication of DE102015115683A1 publication Critical patent/DE102015115683A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • B21J5/022Open die forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • B21J5/025Closed die forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J7/00Hammers; Forging machines with hammers or die jaws acting by impact
    • B21J7/02Special design or construction
    • B21J7/14Forging machines working with several hammers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K3/00Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like
    • B21K3/04Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like blades, e.g. for turbines; Upsetting of blade roots
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/25Manufacture essentially without removing material by forging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • F05D2230/41Hardening; Annealing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Forging (AREA)

Abstract

Verfahren zur Herstellung einer Vorform aus einer α + γ-Titanaluminid-Legierung zur Herstellung eines hochbelastbaren Bauteils für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke, durch Schmieden eines Rohlings, wobei der in einem Manipulator (2) gehaltene und über den Manipulator (2) bewegte Rohling (1) durch Reckschmieden mittels eines Reckschmiedewerkzeugs (5) lediglich partiell umgeformt wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung einer Vorform aus einer α + γ-Titanaluminid-Legierung zur Herstellung eines hochbelastbaren Bauteils für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke, durch Schmieden eines Rohlings.
  • Legierungen auf TiAl-Basis gehören zur Gruppe der intermetallischen Werkstoffe, die für Anwendungen im Bereich der Einsatztemperaturen der Superlegierungen entwickelt wurden. Aufgrund ihrer geringen Dichte von etwa 4g/cm3 bietet dieser Werkstoff ein erhebliches Potential zur Gewichtseinsparung sowie zur Reduzierung der Belastungen bewegter Bauteile, z. B. Schaufeln und Scheiben von Gasturbinen oder Bauteile von Kolbenmotoren, bei Temperaturen bis ca. 700 °C. Stand der Technik ist das Feingießen von z. B. Turbinenschaufeln für Flugtriebwerke. Für Anwendungen mit größerer Belastung wie z. B. in schnelllaufenden Turbinen für neuartige Getriebefan-Flugtriebwerke sind die Eigenschaften des Gussgefüges nicht mehr ausreichend. Durch thermomechanische Behandlung mittels plastischer Umformung mit definiertem Umformgrad und nachfolgender Wärmebehandlung lassen sich die statischen und dynamischen Eigenschaften von TiAl-Legierungen auf die geforderten Werte steigern. Allerdings sind TiAl-Legierungen wegen ihres hohen Umformwiderstands nicht konventionell schmiedbar. Daher müssen die Umformprozesse bei hohen Temperaturen im Bereich des α + γ- oder α-Phasengebiets in schützender Atmosphäre unter Verwendung von aus Molybdän gefertigten Werkzeugen bei sehr niedrigen Umformgeschwindigkeiten durchgeführt werden. Zum Erreichen der gewünschten Endgeometrie des Schmiedeteils sind dabei in der Regel mehrere aufeinander folgende Schmiedeschritte erforderlich.
  • Ein solches Verfahren zur Herstellung hochbelastbarer Bauteile aus α + γ-TiAl-Legierungen ist beispielsweise aus DE 101 50 674 B4 bekannt. Die Bauteile, insbesondere für Flugtriebwerke oder stationäre Gasturbinen, werden hier in einem zweistufigen Verfahren hergestellt. In einem ersten Verfahrensschritt wird eine Vorform aus einem aus α + γ-TiAl-Legierung bestehenden Rohling hergestellt. Hierzu wird ein gekapselter TiAl-Rohling globularen Gefüges durch isotherme Umformung im α + γ-Phasengebiet im Temperaturbereich von 1000–1340 °C oder im α-Phasengebiet im Temperaturbereich von 1340–1360 °C durch Schmieden oder Strangpressen verformt. In einem zweiten, ebenfalls isothermen Sekundärumformprozess unter gleichzeitiger dynamischer Rekristallisation im α + γ- oder α-Phasengebiet in einem Temperaturbereich von 1000–1340 °C wird das Bauteil zur vorgegebenen Form durch Schmieden ausgeformt, wonach das Bauteil zur Einstellung des Mikrogefüges im α-Phasengebiet lösungsgeglüht und anschließend schnell abgekühlt wird. Dieses Verfahren sieht also das isotherme Vorschmieden zur Herstellung der Vorform sowie das isotherme Fertigschmieden im zweiten Verfahrensschritt vor. Das Ausbilden einer Vorform ist bei den dort beschriebenen Bauteilen, die über die Längsrichtung stark unterschiedliche Querschnitte aufweisen, wie z. B. Turbinenschaufeln oder Pleuel, im Hinblick auf die geforderte Volumenverteilung erforderlich.
  • Das Bilden der Vorform in dem isothermen Primärumformprozess ist jedoch sehr aufwändig. Die Umformung erfolgt mit extrem langsamer Umformgeschwindigkeit, es findet quasi ein Fließpressen statt. Dies bedingt, dass eine sehr große Presse, die eine Presskraft von 400–500 t auf den Rohling ausüben kann, verwendet werden muss. Weiterhin findet die Umformung unter Verwendung von Molybdänwerkzeugen statt, was bedingt, die Umformung in inerter Atmosphäre, also unter Schutzgas, bzw. im Vakuum vorzunehmen. Schließlich sind relativ große Rohlinge, sogenannte Billets, zu verwenden, um ein hinreichendes Volumen zu haben, was jedoch dazu führt, dass sich an den Seiten der Vorform Grate oder Abschnitte ergeben, die anschließend abzutrennen und zu verwerfen sind.
  • Der Erfindung liegt damit das Problem zugrunde, ein Verfahren zur Herstellung einer Vorform anzugeben, das demgegenüber verbessert ist.
  • Zur Lösung dieses Problem ist bei einem Verfahren zur Herstellung einer Vorform der eingangs genannten Art erfindungsgemäß vorgesehen, dass der in einem Manipulator gehaltene und über den Manipulator bewegte Rohling durch Reckschmieden mittels eines Reckschmiedewerkszeugs lediglich partiell umgeformt wird.
  • Die Erfindung sieht vor, die Vorform durch Reckschmieden eines Rohlings herzustellen. Beim Reckschmieden wird unter Verwendung generischer Werkzeuge durch mehrfaches Einwirken auf das Werkstück inkrementell die gewünschte Form erzeugt. Dieses Umformen findet partiell statt, das heißt, dass mittels des Reckschmiedewerkszeugs der Rohling nur lokal bearbeitet wird. Während dieses Mehrfachschmiedevorgangs wird ein Teil des Rohlingmaterials, das im Querschnitt die größte im späteren Fertigteil zu findende Fläche aufweist, partiell auf die im fertigen Bauteil an der entsprechenden Stelle zu findende Querschnittsfläche reduziert. Die Umformung findet derart statt, dass ein angetriebenes Werkzeug, ein sogenannter Sattel, eine Vielzahl von Hüben mit einem definierten Weg senkrecht zur Längsachse des Ausgangsmaterials ausübt, wobei der Rohling mittels des programmgesteuerten Manipulators zwischen zwei Hüben um einen definierten Weg in Längsrichtung des Werkstücks bewegt wird. Das Werkstück wird mittels des Manipulators zumindest einmal in eine Richtung durch das Reckschmiedewerkzeug bewegt und hierbei mit einer entsprechenden Hubanzahl bearbeitet. Sofern erforderlich kann auch eine Rückbewegung respektive eine mehrfache Wiederholung dieser Zyklen mit einer entsprechenden Anzahl von Hüben, gegebenenfalls auch mit unterschiedlicher Hubgröße, erfolgen.
  • Das Reckschmieden hat im Vergleich zur eingangs genannten, bisher durchgeführten Art und Weise der Vorformherstellung eine Reihe von Vorteilen. Zum einen kann eine deutlich kleinere Reckschmiede verwendet werden, verglichen mit den für die isotherme Umformung zu nutzenden Schmiedepressen. Denn beim Reckschmieden wird pro Schmiedevorgang, also pro Hub, aufgrund des kleineren umzuformenden Volumens weit weniger Kraft benötigt. Von daher ist eine Reckschmiede mit einer Schmiedekraft von z.B. 10 t völlig ausreichend, um die Umformung vorzunehmen. Verglichen mit bisher verwendeten, das isotherme Fließpressen ermöglichenden Vorrichtungen, die eine Presskraft von mehreren 100 t, z.B. von 400–500 t aufbringen müssen, ist folglich eine Reckschmiede mit einer Schmiedekraft von ca. 10 t wesentlich kleiner und einfacher konzipiert.
  • Auch kann der Schmiedevorgang mit besonderem Vorteil an Luft erfolgen, er muss nicht unter Schutzgas vorgenommen werden. Denn es besteht grundsätzlich die Möglichkeit, eine Reckschmiedewerkzeug z.B. aus einem keramischen Werkstoff zu verwenden, bevorzugt aus einem faserverstärkten keramischen Werkstoff, resultierend aus der deutlich geringeren Schmiedekraft.
  • Schließlich können auch kleinere Rohlinge respektive Billets verwendet werden, da eine partielle, gezielte und lokale Umformung durch das Reckschmieden möglich ist, ohne dass seitliche Grate oder sonstige abzutrennende Abschnitte an der Vorform gebildet werden.
  • Das Reckschmieden selbst erfolgt bevorzugt im β-Phasengebiet. Zweckmäßigerweise wird der Rohling während des Reckschmiedens auf einer Temperatur im Bereich von 1070–1300 °C gehalten.
  • Wie beschrieben wird bevorzugt ein Reckschmiedewerkzeug aus einem, vorzugsweise faserverstärkten, keramischen Werkstoff verwendet, das ohne Weiteres an Luft verwendet werden kann. Alternativ besteht natürlich grundsätzlich die Möglichkeit, auch ein Schmiedewerkzeug aus Molybdän zu verwenden, wobei dann jedoch das Schmieden unter Schutzgasatmosphäre erfolgen muss.
  • Der Rohling und das Reckschmiedewerkzeug selbst werden während des Reckschmiedens bevorzugt mittels eines Strahlungsheizeinrichtung erwärmt, wobei bevorzugt ein Infrarotstrahler verwendet wird. Alternativ kann der Rohling auch mittels über ihn fließenden elektrischen Stroms erwärmt werden. Hierüber kann eine gezielte Temperierung während des Schmiedevorgangs erfolgen.
  • Zweckmäßig ist es ferner, wenn der Rohling vor dem Einbringen in das Reckschmiedewerkzeug mittels eines Strahlungsheizers, induktiver Erwärmung oder mittels über den Rohling fließenden elektrischen Stroms erwärmt wird. Demgemäß wird also der Rohling schmiedeextern bereits vorgewärmt. Dies kann ebenfalls unter Verwendung des Manipulators, der den Rohling bereits gegriffen hat, erfolgen. Beispielsweise befindet sich unmittelbar neben der Reckschmiede eine entsprechende Beheizungseinrichtung, in die der Manipulator den Rohling bewegt, wo er erwärmt wird. Erreicht er seine Schmiedetemperatur, wird der Rohling über den Manipulator der Reckschmiede zugeführt und zwischen das Reckschmiedewerkzeug zum Schmieden bewegt.
  • Im Hinblick auf übliche Geometrien der aus dieser TiAl-Legierung herzustellenden Bauteile für Kolbenmaschinen und Gasturbinen, die zumeist schaufelartig sind, wird der Rohling durch das Reckschmieden bevorzugt derart bearbeitet, dass die Längung größer als die Breitung ist. Über das Reckschmieden wird wie beschrieben der Rohling nur partiell umgeformt. Der zwischen den Sätteln geschmiedete Rohling wird während jedes Hubes umgeformt. Das Verhältnis der Länge des Werkzeugs respektive der Sättel in Längsrichtung des Rohlings, die sogenannte „Sattelbreite“, zur aktuellen Breite des Rohlings bestimmt, ob die bevorzugte Umformung eher in die Länge (Längung) oder eher in die Breite (Breitung) des Rohlings erfolgt. Zur Bildung beispielsweise einer Schaufelvorform wird ein relativ kurzer, beispielsweise zylindrischer Rohling verwendet, der durch das Reckschmieden beispielsweise im mittleren Bereich zwar einerseits geringfügig verbreitert wird, bis die Mindestbreite, die die Schaufel in ihrer Endform aufweisen soll, zumindest näherungsweise erreicht ist. Insbesondere erfährt der Rohling aber eine Längung, damit der reckgeschmiedete Formabschnitt der Länge des Schaufelblattes entspricht. Während des Schmiedens wird das Material entsprechend umgeformt, also verdrängt, so dass ohne Weiteres die entsprechenden Breitungen und Längungen erreicht werden können. Die durch das Reckschmieden erzielte Längung sollte zwischen 50–100 % betragen, sie sollte wenigstens 70 % betragen.
  • Der Rohling wird gemäß einer Weiterbildung der Erfindung nur in einem mittleren Bereich durch Reckschmieden bearbeitet, so dass ein erster freier Endabschnitt und ein zweiter, im Manipulator gehaltener Endabschnitt anderer Geometrie oder anderen Durchmessers als der reckgeschmiedete Bereich verbleiben. Diese beiden Endabschnitte, aus denen am Fertigteil das Deckband und der Fuß geschmiedet werden, werden erst nach dem Reckschmieden, also im zweiten Fertigschmiedevorgang, in die Endform umgeformt. Denkbar ist es jedoch, während des Reckschmiedevorgangs auch den ersten freien Endabschnitt, der nicht im Manipulator aufgenommen ist, in einem geringeren Maß als den mittleren Bereich umzuformen, mithin also beispielsweise abzuflachen oder Ähnliches.
  • Besonders zweckmäßig ist es, wenn der Rohling mittels des Manipulators derart durch das Reckschmiedewerkzeug bewegt wird, dass die Werkzeugsättel einen in einem vorherigen Hub geschmiedeten Abschnitt z. B. zur Hälfte überschmieden. Das heißt, dass der Rohling mittels des Manipulators nach jedem Hub um die halbe Sattelbreite bewegt wird, so dass im nächsten Hub die Hälfte des zuvor geschmiedeten Bereichs ein zweites Mal überschmiedet wird. Über diesen sogenannten „Bißversatz“ lässt sich der Umformgrad über den Querschnitt des Bauteils einstellen und eine gleichmäßige Verteilung desselben erreichen.
  • Dabei kann der Rohling bei Bedarf mittels des Manipulators auch um seine Längsachse gedreht werden, um einen runden Querschnitt zu erzeugen respektive eine Torsion einzubringen und Ähnliches.
  • Es können Reckschmiedewerkzeuge unterschiedlicher Geometrie verwendet werden. Denkbar ist es, ein Reckschmiedewerkzeug mit Schmiedesätteln mit einer ebenen Schmiedefläche zu verwenden. Alternativ können auch Schmiedesättel mit einer konkav ausgerundeten Schmiedefläche verwendet werden. Über solche Schmiedesättel ist es möglich, dem geschmiedeten Bereich eine dem Schaufelblattquerschnitt genäherte gewölbte Form zu verleihen.
  • Schließlich ist es möglich, ein Reckschmiedewerkzeug zu verwenden, dessen Schmiedesättel eine dreidimensional tordierte Schmiedefläche aufweisen. Mit solchen Schmiedesätteln ist es möglich, eine definierte Torsion um die Vorformlängsachse einzuschmieden. Soll sich beispielsweise die fertiggeschmiedete Schaufel vom Fuß zum Deckband um 30° tordieren, so kann die dreidimensional tordierte Schmiedefläche eine Torsion um beispielsweise 3° aufweisen. Werden zehn in Längsrichtung aufeinanderfolgende Schmiedehübe durchgeführt, so addieren sich die jeweils über das Schmiedewerkzeug eingebrachten 3°-Umformungen, so dass sich im Endeffekt das Deckband relativ zum Fuß um 30° verdreht. Es kann also ein definierter Drall in dem überschmiedeten Bereich des Rohlings oder Werkstücks entstehen, resultierend aus dem Stofffluss in der Wirkfuge.
  • Als Legierung wird bevorzugt eine TiAl-Legierung folgender Zusammensetzung (in Atom%) verwendet:
    40–48% Al,
    2–8% Nb,
    0,1–9% wenigstens eines die β-Phase stabilisierenden Elements, gewählt aus Mo, V, Ta, Cr, Mn, Ni, Cu, Fe, Si,
    0–0,5% B,
    sowie einem Rest aus Ti und erschmelzungsbedingten Verunreinigungen.
  • Über das oder die eingebrachten, die β-Phase stabilisierenden Elemente wird sichergestellt, dass der β-Phasenbereich im Schmiedetemperaturfenster stabilisiert ist.
  • Besonders bevorzugt werden als die β-Phase stabilisierenden Elemente Mo, V oder Ta oder eine Mischung davon verwendet.
  • Der Gehalt des die β-Phase stabilisierenden Elements sollte 0,1–2 %, insbesondere 0,8–1,2 % betragen. Dies insbesondere, wenn Mo, V und/oder Ta verwendet werden, da diese eine besonders hohe stabilisierende Eigenschaft besitzen und daher deren Gehalt relativ niedrig gehalten werden kann.
  • Bevorzugt wird eine Legierung folgender Zusammensetzung verwendet:
    41–47 % Al,
    1,5–7 % Nb,
    0,2–8 % wenigstens eines die β-Phase stabilisierenden Elements, gewählt aus Mo, V, Ta, Cr, Mn, Ni, Cu, Fe, Si,
    0–0,3 % B,
    und einem Rest aus Ti und erschmelzungsbedingten Verunreinigungen.
  • In weiterer Konkretisierung wird bevorzugt eine Legierung folgenden Zusammensetzung verwendet:
    42–46 % Al,
    2–6,5 % Nb,
    0,4–5 % wenigstens eines die β-Phase stabilisierenden Elements, gewählt aus Mo, V, Ta, Cr, Mn, Ni, Cu, Fe, Si,
    0–0,2 % B,
    und einem Rest aus Ti und erschmelzungsbedingten Verunreinigungen.
  • Besonders bevorzugt wird eine Legierung folgenden Zusammensetzung verwendet:
    42,8–44,2% Al,
    3,7–4,3% Nb,
    0,8–1,2% Mo,
    0,07–0,13% B,
    sowie einem Rest aus Ti und erschmelzungsbedingten Verunreinigungen.
  • Neben dem Verfahren betrifft die Erfindung eine Vorform, herstellt nach dem beschriebenen Verfahren.
  • Des Weiteren betrifft die Erfindung neben dem Verfahren zur Herstellung der Vorform ein Verfahren zur Herstellung eines hochbelastbaren Bauteils aus einer α + γ-Titanaluminid-Legierung für Kolbenmaschinen und Gasturbienen, insbesondere Flugtriebwerke, das sich dadurch auszeichnet, dass eine nach dem Verfahren der zuvor beschriebenen Art hergestellte Vorform in einem einstufigen Umformschritt in eine vorgegebene Kontur umgeformt wird, wobei die Vorform im β-Phasenbereich isotherm mit einer logarithmischen Umformgeschwindigkeit von 0,01–0,5 1/s umgeformt wird.
  • Die erfindungsgemäß zuvor hergestellte Vorform wird in einem langsamen, isothermen Umformvorgang mit sehr niedriger Umformgeschwindigkeit umgeformt. Die Umformung erfolgt ebenfalls bei entsprechender Temperatur im β-Phasenbereich. Bei der Umformung werden die in der kubisch-raumzentrierten β-Phase existierenden zwölf Gleitebenen aktiviert und eine dynamische Rekristallisation angestoßen. Durch stetig weiter zugeführte Umformenergie wird diese über den gesamten Umformweg aufrechterhalten. Hierbei entsteht bei niedrigerer Fließspannung ein feinkörniges Mikrogefüge. Da die Vorform durch das Reckschmieden bereits relativ endkonturnah ausgeschmiedet wurde, kann dieser zweite Schmiedevorgang trotz der geringen Umformgeschwindigkeit von 10–3 s–1 bis 10–1 s–1 hinreichend zügig erfolgen.
  • Die Umformtemperatur im β-Phasenbereich beträgt bevorzugt 1070–1250 °C. Bei diesem isothermen Umformvorgang wird ein Werkzeug aus einem höchst-warmfesten Werkstoff verwendet, vorzugsweise aus einer Mo-Legierung, wobei die Werkzeuge in diesem Fall während des Umformvorgangs durch eine inerte Atmosphäre geschützt sind, es wird also unter Schutzgas gearbeitet. Alternativ kann auch die Oxidation durch Arbeiten im Vakuum vermieden werden.
  • Weiterhin ist es zweckmäßig, die zur Umformung verwendeten Werkzeuge aktiv zu beheizen, wobei diese Beheizung bevorzugt induktiv erfolgt.
  • Auch die Vorform wird zweckmäßigerweise bereits vor der Umformung erwärmt, was in einem Ofen, induktiv oder durch Widerstandsbeheizung, erfolgen kann.
  • Nach Durchführung dieses zweiten, isothermen Schmiedevorgangs wird zweckmäßigerweise eine Wärmebehandlung des umgeformten Bauteils durchgeführt, um die geforderten Gebrauchseigenschaften einzustellen und hierfür die für die Umformung günstige β-Phase durch eine geeignete Wärmebehandlung in ein feinlamellares α + γ-Gefüge umzuwandeln. Hierzu kann die Wärmebehandlung eine Rekristallisationsglühung bei einer Temperatur von 1230–1270 °C umfassen. Die Haltezeit während der Rekristallisationsglühung beträgt bevorzugt 50–100 min. Die Rekristallisaitonsglühung erfolgt im Bereich der γ-α-Umwandlungstemperatur. Wird, wie erfindungsgemäß ferner vorgesehen ist, nach der Rekristallisationsglühung das Bauteil auf eine Temperatur von 900–950 °C in 120 s oder schneller abgekühlt, so kommt es zur Bildung kleinerer Lamellenabstände der α + γ-Phase.
  • Bevorzugt schließt sich ein zweiter Wärmebehandlungsschritt an, in dem das Bauteil zunächst auf Raumtemperatur abgekühlt und anschließend auf eine Stabilisierungs- oder Entspannungstemperatur von 850–950° erwärmt wird. Alternativ kann auch direkt von der nach der Rekristallisationsglühung schnell erreichten Temperatur von 900–950 °C (wie zuvor beschrieben) auf die Stabilisierungs- und Entspannungstemperatur von 850–950 °C gegangen werden. Die bevorzugte Haltezeit auf der Stabilisierungs- und Entspannungstemperatur, unabhängig, wie diese erreicht wurde, beträgt bevorzugt 300–360 min.
  • Nach Ablauf der Haltezeit wird bevorzugt mit einer definierten Abkühlrate die Bauteiltemperatur auf eine Temperatur unterhalb 300 °C reduziert. Die Abkühlrate beträgt bevorzugt 0,5–2 K/min, das heißt, die Abkühlung erfolgt relativ langsam, was zur Stabilisierung und Entspannung des Gefüges dient. Bevorzugt beträgt die Abkühlrate 1,5 K/min.
  • Die jeweilige Abkühlung kann in einer Flüssigkeit, z. B. in Öl, oder in Luft oder einem Inertgas erfolgen.
  • Neben dem erfindungsgemäßen Verfahren zur Herstellung des Bauteils betrifft die Erfindung ferner ein Bauteil aus einer α + γ-Titanaluminid-Legierung, insbesondere für eine Kolbenmaschine, ein Flugtriebwerk oder eine Gasturbine, das in einem Verfahren der beschriebenen Art hergestellt ist. Ein solches Bauteil kann beispielsweise eine Schaufel oder eine Scheibe einer Gasturbine oder Ähnliches sein.
  • Weitere Vorteile und Merkmale der Einzelheiten der Erfindung ergeben sich aus den im Folgenden beschriebenen Ausführungsbeispielen sowie anhand der Zeichnungen. Dabei zeigen:
  • 1 eine Prinzipdarstellung zur Erläuterung des erfindungsgemäßen Verfahrens zur Herstellung einer Vorform sowie des erfindungsgemäßen Verfahrens zur Herstellung eines Fertigbauteils, und
  • 2 eine Prinzipdarstellung des Rohlings vor und beim Reckschmieden, der Vorform und des fertiggeschmiedeten Bauteils.
  • 1 zeigt ein Ablaufdiagramm zur Erläuterung des erfindungsgemäßen Verfahrens zur Vorform- und zur Fertigteilherstellung. Gezeigt ist ein Rohling 1 in zylindrischer Form. Dieser besteht aus einer α + γ-Titanaluminid-Legierung einer Zusammensetzung, wie sie vorstehend angegeben ist. Insbesondere enthält die TiAl-Legierung ein die β-Phase stabilisierendes Element, vorzugsweise Mo, V oder Ta, da die nachfolgenden Umformvorgänge im β-Phasenbereich der TiAl-Legierung erfolgen.
  • Der Rohling 1 ist, siehe den Schritt a), in einem programmgesteuerten Manipulator 2 respektive Roboter fixiert. Im Schritt a) wird er zunächst einer ersten Heizeinrichtung 3 zugeführt, bei der es sich um einen Infrarot-Heizstrahler, einen Ofen oder eine elektrische Heizeinrichtung handeln kann. In dieser Heizeinrichtung 3 wird der Rohling 1 auf eine Temperatur im Bereich von 1070–1330 °C aufgeheizt, mithin also eine Temperatur, in der sich eine β-Phase im Legierungsgefüge ausbildet.
  • Nach Erreichen dieser Temperatur, siehe Schritt b), wird der Rohling 1 mittels des Manipulators 2 in eine benachbart zur Heizeinrichtung 3 angeordnete Reckschmiede 4 bewegt. Diese Reckschmiede 4 weist ein Schmiedewerkzeug 5 umfassend einen beweglichen Schmiedesattel 6 sowie einen feststehenden Schmiedesattel 7 auf. Die Schmiedesättel 6, 7 sind bevorzugt aus einem keramischen, insbesondere faserverstärkten, Werkstoff, so dass ein Reckschmieden an Luft möglich ist. Die Reckschmiede 4 ist beispielsweise für eine Schmiedekraft von 10 t ausgelegt.
  • Der Reckschmiede 4 ist eine Heizeinrichtung 8 zugeordnet, vorzugsweise ein Infrarotstrahler, mittels dem es möglich ist, den zwischen den Schmiedesätteln 6, 7 befindlichen Rohling 1 wie auch die Schmiedesättel 6, 7 selbst während des Schmiedevorgangs zu erwärmen, so dass insbesondere der Rohling auf der entsprechenden Schmiedetemperatur gehalten wird.
  • Während des Schmiedevorgangs wird der Rohling 1, wie durch den horizontalen Doppelpfeil dargestellt ist, in intermittierenden Schritten durch das Schmiedewerkzeug 5 bewegt. Hierbei wird der Schmiedesattel 6 in einzelnen Hüben angehoben und zum Schmieden auf den Rohling 1 abgesenkt, der Rohling wird zwischen den Schmiedesätteln 6, 7 umgeformt. Zwischen jeweils zwei Hüben wird der Rohling 1 über den Manipulator 2 um ein inkrementelles Stück verschoben. Die Verschiebung erfolgt beispielsweise um die halbe Breite der gleichbreit ausgelegten Schmiedesättel 6, 7, so dass mit jedem Hub der Rohling 1 in dem halben, zuvor geschmiedeten Bereich nochmals überschmiedet wird.
  • Mittels des Manipulators 2 wird der Rohling 1 zumindest einmal in einer Richtung durch die Reckschmiede 4 bewegt. Sofern erforderlich wird er in die entgegengesetzte Richtung zur Durchführung eines weiteren Schmiedezyklus bewegt. Während dieser Bewegung kann der Rohling 1 auch, sofern erforderlich, um seine Längsachse gedreht werden, um eine Torsion oder Rundungen einzuschmieden etc.
  • Die verwendeten Schmiedesättel 6, 7 können eine ebene Schmiedefläche oder eine dreidimensional verformte Schmiedefläche, beispielsweise konkav ausgebildete Schmiedeflächen oder dreidimensional tordierte Schmiedeflächen aufweisen, um gezielte Geometrien einzuschmieden.
  • Der Schritt c) zeigt exemplarisch die Situation während des Schmiedevorgangs. Der Rohling 1 ist zwischen den beiden Schmiedesätteln 6, 7 aufgenommen, wobei die Schmiedesättel exemplarisch zugefahren sind. Ersichtlich wird der Rohling 1 nur partiell umgeformt, das heißt, dass ein erster freier Endabschnitt 9 und ein zweiter, im Manipulator 2 bzw. der Manipulatorzange gehaltener zweiter Endabschnitt 10 stehenbleibt, zwischen denen sich der reckgeschmiedete Bereich 11 erstreckt. Diese Endabschnitte 9, 10 dienen zur Bildung des Deckbandes und des Fußes einer später herzustellenden Schaufel, worauf nachfolgend noch eingegangen wird.
  • Dem Schritt c) folgend ist exemplarisch vergrößert der fertiggeschmiedete Rohling, also die reckgeschmiedete Vorform 12 gezeigt. Dargestellt sind die beiden Endabschnitte 9, 10 sowie der flachgeschmiedete mittlere Bereich 11, aus dem im nachfolgenden zweiten Umformschritt der Schaufelbereich geformt wird. Dieser Bereich 11 ist durch das Reckschmieden bereits in seinen mechanischen Eigenschaften umformbedingt verändert, er weist aufgrund der Mehrfachschmiedung eine sehr feine Gefügestruktur auf, etwaige Poren sind zwangsläufig geschlossen. Dies ist für die mechanischen Eigenschaften respektive auch den Umformvorgang zur Herstellung des Fertigbauteils zweckmäßig.
  • Diese Vorform 12 wird nun zur Herstellung eines Fertigbauteils 13 in Form einer Turbinenschaufel in einem zweiten isothermen Umformschritt weiterbearbeitet. Dies ist im Schritt d) gezeigt, wo die – gegebenenfalls vorher nochmals auf die Schmiedetemperatur in einer nicht gezeigten Heizeinrichtung erwärmte – Vorform 12 in eine formgebende zweite Schmiede 19 mit einem Oberteil 14 und einem Unterteil 15 eingebracht ist. Hier findet ein isothermer Schmiedevorgang statt, bei dem das Ober- und Unterteil 14, 15 erwärmt werden. Die Schmiedetemperatur beträgt auch hier zwischen 1070–1250°, die Umformung erfolgt im β-Phasenbereich.
  • Die Umformung erfolgt hier jedoch isotherm mit einer sehr langsamen Umformgeschwindigkeit, die logarithmische Umformgeschwindigkeit liegt im Bereich von 0,01–0,5 1/s. Es findet also quasi ein Fließpressen statt. Die hier verwendeten Werkzeuge respektive Formteile 14, 15 sind aus einer Mo-Legierung, weshalb die Umformung in einer Schutzgasatmosphäre erfolgt. Die Umformwerkzeuge werden aktiv beheizt, bevorzugt induktiv.
  • Das fertige Bauteil ist im Schritt e) gezeigt, wobei dies eine reine Prinzipdarstellung ist. Das Bauteil 13 ist eine Turbinenschaufel mit einem Deckband 16 und einem Fuß 17, wie hinlänglich bekannt. Der mittlere Bereich 18, also der eigentliche Schaufelbereich ist in an sich bekannter Weise entsprechend gewölbt respektive tordiert.
  • An den im Schritt d) gezeigten sekundären Umformvorgang schließt sich nun eine Wärmebehandlung des umgeformten Bauteils 13 an, beispielsweise eine Rekristallisationsglühung bei einer Temperatur von 1230–1270°, mit einer Haltezeit zwischen 50–100 min, wonach das Bauteil auf eine Temperatur im Bereich von 900–950° relativ schnell abgekühlt wird. Hieran schließt sich eine Stabilisierungs- und Entspannungsglühung bei einer Temperatur im Bereich von 850–950° an, wozu das Bauteil entweder nochmals erwärmt werden kann, oder die vorherige Abkühlung findet bereits auf diesem Temperaturbereich statt. Die Haltezeit hier beträgt ca. 300–360 min, wonach das Bauteil endgültig auf eine Temperatur unter 300 °C mit einer Abkühlrate im Bereich von 0,5–2 K/min abgekühlt wird.
  • 2 zeigt in einer vergrößerten Prinzipdarstellung den Rohling, die Vorform und das fertiggeschmiedete Bauteil. Im Figurenteil a) ist der zylindrische Rohling direkt nach dem Einbringen in die Reckschmiede gezeigt, die beiden Schmiedesättel beginnen die Umformarbeit.
  • Im Figurenteil b) ist der bereits teilumgeformte Rohling gezeigt. Wie dargestellt ist das Verhältnis von Sattelbreite (gesehen in Längsrichtung des Rohlings) zur Rohlingbreite so gewählt, dass es primär zu einer Längung und nur zu einer unwesentlichen Breitung kommt.
  • Der Figurenteil c) zeigt die fertig reckgeschmiedete Vorform 12 mit den Endabschnitten 9, 10 und dem umgeformten Bereich 11. Ersichtlich ist die Vorform deutlich länger als der Rohling in Ausgangszustand.
  • Diese Vorform wird sodann in der zweiten Schmiede 19 endkonturnah isotherm durch Fließpressen geschmiedet. Es zeigt sich die aus dem Bereich 11 ausgeschmiedete Turbinenschaufel 18 mit dem Schaufelblatt und dem Deckband 16 und dem Fuß 17, die beide aus den Endabschnitten 9, 10 geschmiedet wurden. Lediglich randseitig sind noch abzutrennende Grate gegeben.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 10150674 B4 [0003]

Claims (42)

  1. Verfahren zur Herstellung einer Vorform aus einer α + γ-Titanaluminid-Legierung zur Herstellung eines hochbelastbaren Bauteils für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke, durch Schmieden eines Rohlings, dadurch gekennzeichnet, dass der in einem Manipulator (2) gehaltene und über den Manipulator (2) bewegte Rohling (1) durch Reckschmieden mittels eines Reckschmiedewerkzeugs (5) lediglich partiell umgeformt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Reckschmieden im β-Phasengebiet erfolgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Rohling (1) während des Reckschmiedens eine Temperatur im Bereich von 1070–1300 °C aufweist.
  4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein Reckschmiedewerkzeug (5) aus einem keramischen Werkstoff verwendet werden.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass ein Reckschmiedewerkzeug (5) aus einem faserverstärkten keramischen Werkstoff verwendet werden.
  6. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Reckschmiedewerkzeuge (5) aus Molybdän verwendet werden und das Reckschmieden unter einer Schutzgasatmosphäre oder im Vakuum erfolgt.
  7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Rohling (1) und das Reckschmiedewerkzeug (5) während des Reckschmiedens mittels eines Strahlungsheizeinrichtung (8), oder das der Rohling (1) mittels über den Rohling (1) fließenden elektrischen Stroms erwärmt wird.
  8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Rohling (1) vor dem Einbringen in das Reckschmiedewerkzeug (5) mittels einer Heizeinrichtung (3), insbesondere eines Strahlungsheizers, oder mittels über den Rohling fließenden elektrischen Stroms oder induktiv erwärmt wird.
  9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Rohling (1) durch das Reckschmieden derart bearbeitet wird, dass die Längung größer als die Breitung ist.
  10. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die durch das Reckschmieden erzielte Längung zwischen 50–100 % beträgt.
  11. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Rohling (1) nur in einem mittleren Bereich (11) durch Reckschmieden bearbeitet wird, so dass ein erster freier Endabschnitt (9) und ein zweiter, im Manipulator (2) gehaltener Endabschnitt (10) anderer Geometrie oder anderen Durchmessers als der reckgeschmiedete Bereich (11) verbleiben.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass während des Reckschmiedevorgangs auch der erste freie Endabschnitt (9) durch das Reckschmieden umgeformt wird, jedoch in einem geringeren Maß als der mittlere Bereich (11).
  13. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Rohling (1) mittels des Manipulators (2) derart durch das Reckschmiedewerkzeug (5) bewegt wird, dass die Werkzeugsättel (6, 7) einen in einem vorherigen Hub geschmiedeten Abschnitt, vorzugsweise zur Hälfte, überschmieden.
  14. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Rohling (1) mittels des Manipulators (2) um seine Längsachse gedreht wird.
  15. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein Reckschmiedewerkzeug (5) mit Schmiedesätteln (6, 7) mit einer ebenen Schmiedefläche verwendet wird.
  16. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass ein Reckschmiedewerkzeug (5) mit Schmiedesätteln (6, 7) mit einer konkav ausgerundeten Schmiedefläche verwendet wird.
  17. Verfahren nach einem der Ansprüche 1 bis 14 oder 16, dadurch gekennzeichnet, dass ein Reckschmiedewerkzeug (5) mit Schmiedesätteln (6, 7) mit einer dreidimensional tordierten Schmiedefläche verwendet wird.
  18. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass als Legierung eine TiAl-Legierung folgender Zusammensetzung verwendet wird (in Atom%): 40–48% Al, 2–8% Nb, 0,1–9% wenigstens eines die β-Phase stabilisierenden Elements, gewählt aus Mo, V, Ta, Cr, Mn, Ni, Cu, Fe, Si, 0–0,5% B, sowie einem Rest aus Ti und erschmelzungsbedingten Verunreinigungen.
  19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass als die β-Phase stabilisierende Element nur Mo, V, Ta oder eine Mischung davon in der Legierung vorliegt.
  20. Verfahren nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass der Gehalt des die β-Phase stabilisierenden Elements 0,1–2 % beträgt.
  21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass der Gehalt des die β-Phase stabilisierenden Elements 0,8–1,2 % beträgt.
  22. Verfahren nach einem der Ansprüche 18 bis 21, dadurch gekennzeichnet, dass eine TiAl-Legierung folgender Zusammensetzung verwendet wird: 41–47 % Al, 1,5–7 % Nb, 0,2–8 % wenigstens eines die β-Phase stabilisierenden Elements, gewählt aus Mo, V, Ta, Cr, Mn, Ni, Cu, Fe, Si, 0–0,3 % B, und einem Rest aus Ti und erschmelzungsbedingten Verunreinigungen.
  23. Verfahren nach einem der Ansprüche 18 bis 22, dadurch gekennzeichnet, dass eine TiAl-Legierung folgender Zusammensetzung verwendet wird: 42–46 % Al, 2–6,5 % Nb, 0,4–5 % wenigstens eines die β-Phase stabilisierenden Elements, gewählt aus Mo, V, Ta, Cr, Mn, Ni, Cu, Fe, Si, 0–0,2 % B, und einem Rest aus Ti und erschmelzungsbedingten Verunreinigungen.
  24. Verfahren nach einem der Ansprüche 18 bis 23, dadurch gekennzeichnet, dass eine Legierung folgender Zusammensetzung verwendet wird: 42,8–44,2% Al, 3,7–4,3% Nb, 0,8–1,2% Mo, 0,07–0,13% B, sowie einem Rest aus Ti und erschmelzungsbedingten Verunreinigungen.
  25. Vorform, hergestellt nach einem Verfahren nach einem der vorangehenden Ansprüche.
  26. Verfahren zur Herstellung eines hochbelastbaren Bauteils aus einer α + γ-Titanaluminid-Legierung für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke, dadurch gekennzeichnet, dass eine nach dem Verfahren nach einem der Ansprüche 1 bis 24 hergestellte Vorform (12) in einem einstufigen Umformschritt in eine vorgegebene Kontur umgeformt wird, wobei die Vorform im β-Phasenbereich isotherm mit einer logarithmischen Umformgeschwindigkeit von 0,01–0,5 1/s umgeformt wird.
  27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, dass die Umformtemperatur im β-Phasenbereich 1070–1250 °C beträgt.
  28. Verfahren nach Anspruch 26 oder 27, dadurch gekennzeichnet, dass zur Umformung Werkzeuge (14, 15) aus einem höchst-warmfesten Werkstoff verwendet werden.
  29. Verfahren nach Anspruch 28, dadurch gekennzeichnet, dass Werkzeuge (14, 15) aus einer Mo-Legierung verwendet werden.
  30. Verfahren nach Anspruch 28 oder 29, dadurch gekennzeichnet, dass die Werkzeuge (14, 15) während des Umformvorgangs durch eine inerte Atmosphäre geschützt sind, oder dass im Vakuum gearbeitet wird.
  31. Verfahren nach einem der Ansprüche 26 bis 30, dadurch gekennzeichnet, dass die zur Umformung verwendeten Werkzeuge (14, 15) aktiv beheizt werden.
  32. Verfahren nach Anspruch 31, dadurch gekennzeichnet, dass die Werkzeuge (14, 15) induktiv beheizt werden.
  33. Verfahren nach einem der Ansprüche 26 bis 32, dadurch gekennzeichnet, dass die Vorform (12) in einem Ofen, induktiv oder durch Widerstandsbeheizung vor der Umformung erwärmt wird.
  34. Verfahren nach einem der Ansprüche 26 bis 33, dadurch gekennzeichnet, dass der Umformung eine Wärmebehandlung des umgeformten Bauteils (13) folgt.
  35. Verfahren nach Anspruch 34, dadurch gekennzeichnet, dass die Wärmebehandlung eine Rekristallisationsglühung bei einer Temperatur von 1230–1270 °C umfasst.
  36. Verfahren nach Anspruch 35, dadurch gekennzeichnet, dass die Haltezeit während der Rekristallisationsglühung 50–100 min beträgt.
  37. Verfahren nach Anspruch 36, dadurch gekennzeichnet, dass nach der Rekristallisationsglühung das Bauteil (13) auf eine Temperatur von 900–950 °C in 120s oder schneller abgekühlt wird.
  38. Verfahren nach Anspruch 37, dadurch gekennzeichnet, dass das Bauteil (13) anschließend auf Raumtemperatur abgekühlt wird und anschließend auf eine Stabilisierungs- und Entspannungstemperatur von 850–950 °C erwärmt wird, oder dass das Bauteil ohne vorherige Abkühlung auf einer Stabilisierungs- und Entspannungstemperatur von 850–950 °C gehalten wird.
  39. Verfahren nach Anspruch 38, dadurch gekennzeichnet, dass die Haltezeit auf der Stabilisierungs- und Entspannungstemperatur 300–360 min beträgt.
  40. Verfahren nach Anspruch 38 oder 39, dadurch gekennzeichnet, dass anschließend eine Abkühlung des Bauteils (13) auf eine Temperatur unter 300 °C mit einer Abkühlrate von 0,5–2 K/min erfolgt.
  41. Verfahren nach Anspruch 40, dadurch gekennzeichnet, dass die Abkühlrate 1,5 K/min beträgt.
  42. Bauteil aus einer α + γ-Titanaluminid-Legierung, insbesondere für eine Kolbenmaschine, ein Flugtriebwerk oder eine Gasturbine, hergestellt nach dem Verfahren nach einem der Ansprüche 26 bis 41.
DE102015115683.0A 2015-09-17 2015-09-17 Verfahren zur Herstellung einer Vorform aus einer Alpha+Gamma-Titanaluminid-Legierung zur Herstellung eines hochbelastbaren Bauteils für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke Withdrawn DE102015115683A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102015115683.0A DE102015115683A1 (de) 2015-09-17 2015-09-17 Verfahren zur Herstellung einer Vorform aus einer Alpha+Gamma-Titanaluminid-Legierung zur Herstellung eines hochbelastbaren Bauteils für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke
EP16185613.3A EP3144402A1 (de) 2015-09-17 2016-08-25 Verfahren zur herstellung einer vorform aus einer alpha+gamma-titanaluminid-legierung zur herstellung eines hochbelastbaren bauteils für kolbenmaschinen und gasturbinen, insbesondere flugtriebwerke
US15/255,557 US20170081751A1 (en) 2015-09-17 2016-09-02 Method for producing a preform from an alpha+gamma titanium aluminide alloy for producing a component with high load-bearing capacity for piston engines and gas turbines, in particular aircraft engines
JP2016179532A JP2017094392A (ja) 2015-09-17 2016-09-14 ピストンエンジン及びガスタービン用の高負荷容量部品を生成するため、α+γチタンアルミ合金からプリフォームを生成する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015115683.0A DE102015115683A1 (de) 2015-09-17 2015-09-17 Verfahren zur Herstellung einer Vorform aus einer Alpha+Gamma-Titanaluminid-Legierung zur Herstellung eines hochbelastbaren Bauteils für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke

Publications (1)

Publication Number Publication Date
DE102015115683A1 true DE102015115683A1 (de) 2017-03-23

Family

ID=56920481

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015115683.0A Withdrawn DE102015115683A1 (de) 2015-09-17 2015-09-17 Verfahren zur Herstellung einer Vorform aus einer Alpha+Gamma-Titanaluminid-Legierung zur Herstellung eines hochbelastbaren Bauteils für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke

Country Status (4)

Country Link
US (1) US20170081751A1 (de)
EP (1) EP3144402A1 (de)
JP (1) JP2017094392A (de)
DE (1) DE102015115683A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109158515A (zh) * 2018-02-09 2019-01-08 沈阳中核舰航特材科技(常州)有限公司 一种钛合金tc4接骨板和tc4eli接骨板的制造方法
CN113881859A (zh) * 2020-06-19 2022-01-04 新疆大学 一种中小规格钛及钛合金薄壁管材的制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107385370B (zh) * 2017-06-23 2019-04-05 太原理工大学 Ti-44Al-4Nb-4V-0﹒3Mo合金细晶化热处理方法
CN107234200A (zh) * 2017-07-13 2017-10-10 安徽众鑫科技股份有限公司 一种单轨产品用合金模锻方法
JP2019043321A (ja) * 2017-08-31 2019-03-22 トヨタ自動車株式会社 タイロッドエンドおよびそれの製造方法
CN107974653B (zh) * 2017-12-01 2019-05-21 中国航空工业标准件制造有限责任公司 一种钛铌合金零件退火热处理不合格的优化方法
CN108453205B (zh) * 2017-12-21 2020-05-01 江苏保捷锻压有限公司 一种轴类产品的闭式锻设备及其生产方法
CN108393572A (zh) * 2018-05-23 2018-08-14 芜湖储铁艺铁画设计有限公司 一种铁画制作用焊接加工装置
KR102095463B1 (ko) * 2018-05-24 2020-03-31 안동대학교 산학협력단 우수한 고온 성형성을 가지는 TiAl계 합금 및 이를 이용한 TiAl계 합금 부재의 제조방법
JP7452172B2 (ja) 2019-03-29 2024-03-19 株式会社プロテリアル 熱間鍛造材の製造方法
CN111690888A (zh) * 2020-05-28 2020-09-22 河南新开源石化管道有限公司 一种钛合金原料推压挤料装置
CN112872261A (zh) * 2020-12-24 2021-06-01 陕西宏远航空锻造有限责任公司 一种钛合金法兰盘锻件的锻造方法
CN112899526B (zh) * 2021-01-19 2022-04-29 中国航空制造技术研究院 航空发动机风扇叶片用的α+β型两相钛合金及制备方法
CN113172190B (zh) * 2021-04-15 2023-08-22 沈阳和世泰通用钛业有限公司 锻件成型方法
CN114226613B (zh) * 2021-12-06 2024-05-24 陕西宏远航空锻造有限责任公司 一种“7”型AerMet100超高强度钢锻件的锻造方法
US11807911B2 (en) * 2021-12-15 2023-11-07 Metal Industries Research & Development Centre Heat treatment method for titanium-aluminum intermetallic and heat treatment device therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0513407A1 (de) * 1991-05-13 1992-11-19 Asea Brown Boveri Ag Verfahren zur Herstellung einer Turbinenschaufel
DE10150674B4 (de) 2000-12-15 2008-02-07 Leistritz Ag Verfahren zur Herstellung von hochbelastbaren Bauteilen aus TiAl-Legierungen
DE102007051499A1 (de) * 2007-10-27 2009-04-30 Mtu Aero Engines Gmbh Werkstoff für ein Gasturbinenbauteil, Verfahren zur Herstellung eines Gasturbinenbauteils sowie Gasturbinenbauteil

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292077A (en) * 1979-07-25 1981-09-29 United Technologies Corporation Titanium alloys of the Ti3 Al type
JPS59225841A (ja) * 1983-06-08 1984-12-18 Agency Of Ind Science & Technol 超塑性鍛造装置
US4836982A (en) * 1984-10-19 1989-06-06 Martin Marietta Corporation Rapid solidification of metal-second phase composites
JPS62207528A (ja) * 1986-03-06 1987-09-11 Agency Of Ind Science & Technol 鍛造金型の加熱制御方法並びにその装置
JPH0710408B2 (ja) * 1986-11-12 1995-02-08 株式会社日立製作所 変断面長物の鍛造成形方法及び装置
JPH02274850A (ja) * 1989-04-14 1990-11-09 Sumitomo Metal Ind Ltd 金属間化合物TiAl基合金の熱処理方法
JPH0543958A (ja) * 1991-01-17 1993-02-23 Sumitomo Light Metal Ind Ltd 耐酸化性チタニウムアルミナイドの製造方法
JP2538181Y2 (ja) * 1991-01-29 1997-06-11 株式会社小松製作所 鍛造用据込み金型
JPH06240428A (ja) * 1993-02-17 1994-08-30 Sumitomo Metal Ind Ltd Ti−Al系金属間化合物基合金の製造方法
US5328530A (en) * 1993-06-07 1994-07-12 The United States Of America As Represented By The Secretary Of The Air Force Hot forging of coarse grain alloys
DE4447130A1 (de) * 1994-12-29 1996-07-04 Nils Claussen Herstellung eines aluminidhaltigen keramischen Formkörpers
DE19756354B4 (de) * 1997-12-18 2007-03-01 Alstom Schaufel und Verfahren zur Herstellung der Schaufel
AU2002221859A1 (en) * 2000-12-15 2002-06-24 Rolls-Royce Deutschland Ltd And Co Kg Method for producing components with a high load capacity from tial alloys
JP2005007402A (ja) * 2003-06-16 2005-01-13 Sumitomo Metal Ind Ltd 鍛造方法
DE102006037883B4 (de) * 2006-08-11 2008-07-31 Leistritz Ag Gesenk zum Hochtemperaturschmieden
JP2009006379A (ja) * 2007-06-29 2009-01-15 Sanyo Special Steel Co Ltd 難加工性大型製品の中心欠陥防止方法
US20090041609A1 (en) * 2007-08-07 2009-02-12 Duz Volodymyr A High-strength discontinuously-reinforced titanium matrix composites and method for manufacturing the same
AT508323B1 (de) * 2009-06-05 2012-04-15 Boehler Schmiedetechnik Gmbh & Co Kg Verfahren zur herstellung eines schmiedestückes aus einer gamma-titan-aluminium-basislegierung
DE102009050603B3 (de) * 2009-10-24 2011-04-14 Gfe Metalle Und Materialien Gmbh Verfahren zur Herstellung einer β-γ-TiAl-Basislegierung
AT509768B1 (de) * 2010-05-12 2012-04-15 Boehler Schmiedetechnik Gmbh & Co Kg Verfahren zur herstellung eines bauteiles und bauteile aus einer titan-aluminium-basislegierung
DE102012201082B4 (de) * 2012-01-25 2017-01-26 MTU Aero Engines AG Verfahren zur Herstellung geschmiedeter Bauteile aus einer TiAl-Legierung und entsprechend hergestelltes Bauteil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0513407A1 (de) * 1991-05-13 1992-11-19 Asea Brown Boveri Ag Verfahren zur Herstellung einer Turbinenschaufel
DE10150674B4 (de) 2000-12-15 2008-02-07 Leistritz Ag Verfahren zur Herstellung von hochbelastbaren Bauteilen aus TiAl-Legierungen
DE102007051499A1 (de) * 2007-10-27 2009-04-30 Mtu Aero Engines Gmbh Werkstoff für ein Gasturbinenbauteil, Verfahren zur Herstellung eines Gasturbinenbauteils sowie Gasturbinenbauteil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109158515A (zh) * 2018-02-09 2019-01-08 沈阳中核舰航特材科技(常州)有限公司 一种钛合金tc4接骨板和tc4eli接骨板的制造方法
CN113881859A (zh) * 2020-06-19 2022-01-04 新疆大学 一种中小规格钛及钛合金薄壁管材的制备方法
CN113881859B (zh) * 2020-06-19 2022-11-11 新疆大学 一种中小规格钛及钛合金薄壁管材的制备方法

Also Published As

Publication number Publication date
JP2017094392A (ja) 2017-06-01
EP3144402A1 (de) 2017-03-22
US20170081751A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
DE102015115683A1 (de) Verfahren zur Herstellung einer Vorform aus einer Alpha+Gamma-Titanaluminid-Legierung zur Herstellung eines hochbelastbaren Bauteils für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke
EP3067435B1 (de) Verfahren zur herstellung eines hochbelastbaren bauteils aus einer alpha+gamma-titanaluminid-legierung für kolbenmaschinen und gasturbinen, insbesondere flugtriebwerke
EP0513407B1 (de) Verfahren zur Herstellung einer Turbinenschaufel
EP2386663B1 (de) Verfahren zur Herstellung eines Bauteiles und Bauteile aus einer Titan-Aluminium-Basislegierung
EP0464366B1 (de) Verfahren zur Herstellung eines Werkstücks aus einer dotierstoffhaltigen Legierung auf der Basis Titanaluminid
AT508323B1 (de) Verfahren zur herstellung eines schmiedestückes aus einer gamma-titan-aluminium-basislegierung
EP3372700B1 (de) Verfahren zur herstellung geschmiedeter tial-bauteile
CH654593A5 (de) Verfahren zur herstellung eines feinkoernigen werkstuecks aus einer nickelbasis-superlegierung.
EP1214995B1 (de) Verfahren zur Behandlung metallischer Werkstoffe
DE102016108527B4 (de) Verfahren zur Herstellung einer Kantenabdeckung für ein Schaufelbauteil eines Flugtriebwerks oder einer Gasturbine sowie Kantenabdeckung für ein Schaufelbauteil
EP3427858A1 (de) Schmieden bei hohen temperaturen, insbesondere von titanaluminiden
DE102008032024A1 (de) Dichtereduzierte UHC-Stähle
EP2646591B1 (de) Verfahren zur herstellung eines gegenstandes aus einem metall oder einer legierung mittels starker plastischen verformung sowie presswerkzeug hierfür
WO2020011301A1 (de) Verfahren und vorrichtung zur warmumformung metallischer vorprodukte
EP3077557B1 (de) Verfahren zur herstellung von tial-bauteilen
DE1923524C3 (de) Verfahren zum Herstellen von Gasturbinenteilen aus hochwarmfesten ausscheidungshärtenden Legierungen auf Nickeloder Titanbasis
EP3655176B1 (de) Schmiedeverfahren, insbesondere leichtbaulegierungsschmiedeverfahren, und schmiedepresse
EP0069421B1 (de) Verfahren zur Herstellung eines Halbzeugs oder eines Fertigteils aus einem metallischen Werkstoff durch Warm-Formgebung
WO2008098910A1 (de) Verfahren zum herstellen von bauteilen durch superplastisches verformen eines temperierten stahlblechteils
DE102013012585A1 (de) Verfahren zur Umformung eines Leichtmetall-Halbzeugs
DE2445623A1 (de) Verfahren zur herstellung von werkstuecken, die einer thermischen belastung unterliegen
CH654496A5 (de) Verfahren zur kontinuierlichen herstellung eines drahtes von geringem querschnitt und grosser laenge.

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R120 Application withdrawn or ip right abandoned