DE102014109196A1 - Vorrichtung zum Erzeugen eines Dampfes aus einem festen oder flüssigen Ausgangsstoff für eine CVD- oder PVD-Einrichtung - Google Patents

Vorrichtung zum Erzeugen eines Dampfes aus einem festen oder flüssigen Ausgangsstoff für eine CVD- oder PVD-Einrichtung Download PDF

Info

Publication number
DE102014109196A1
DE102014109196A1 DE102014109196.5A DE102014109196A DE102014109196A1 DE 102014109196 A1 DE102014109196 A1 DE 102014109196A1 DE 102014109196 A DE102014109196 A DE 102014109196A DE 102014109196 A1 DE102014109196 A1 DE 102014109196A1
Authority
DE
Germany
Prior art keywords
heat transfer
transfer body
aerosol
flow channel
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102014109196.5A
Other languages
English (en)
Inventor
Birgit Irmgard Beccard
Andreas Poqué
Michael Long
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aixtron SE
Original Assignee
Aixtron SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aixtron SE filed Critical Aixtron SE
Priority to DE102014109196.5A priority Critical patent/DE102014109196A1/de
Priority to EP15173776.4A priority patent/EP2963147B1/de
Priority to KR1020150091082A priority patent/KR20160003559A/ko
Priority to JP2015129856A priority patent/JP6777381B2/ja
Priority to US14/788,626 priority patent/US9942946B2/en
Priority to CN201510386512.0A priority patent/CN105274476B/zh
Priority to TW104121098A priority patent/TWI662147B/zh
Publication of DE102014109196A1 publication Critical patent/DE102014109196A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0014Devices wherein the heating current flows through particular resistances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material using a porous body
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Dispersion Chemistry (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zum Erzeugen eines Dampfes für eine CVD- oder PVD-Einrichtung mit mindestens zwei in Strömungsrichtung eines Trägergases hintereinander angeordneten, Wärmeübertragungsflächen aufweisende Wärmeübertragungskörper, die jeweils auf eine Wärmeübertragungstemperatur aufheizbar sind, mit einem Zuleitungsrohr (4) zur Zuleitung eines Aerosols zu einem der Wärmeübertragungskörper zur Verdampfung des Aerosols durch In-Kontakt-Bringen der Aerosol-Partikel mit den Wärmeübertragungsflächen. Es ist vorgesehen, dass zumindest einer der Wärmeübertragungskörper eine Öffnung aufweist, in der ein Zuleitungsrohr (4) steckt, wobei das Zuleitungsrohr (4) einen ersten Strömungskanal (23) zum Einspeisen des Aerosols und einen zweiten Strömungskanal (24) zum Einspeisen eines Trägergases aufweist, wobei Gasdurchtrittsöffnungen (29, 30) vorgesehen sind, durch die das Trägergas aus dem zweiten Strömungskanal (24) in den ersten Strömungskanal (23) strömen kann und wobei insbesondere vorgesehen ist, dass der zweite Strömungskanal (24) im Bereich der Mündung (4') des Zuleitungsrohres verschlossen ist.

Description

  • Die Erfindung betrifft eine Vorrichtung zum Erzeugen eines Dampfes für eine CVD- oder PVD-Einrichtung mit mindestens zwei in Strömungsrichtung eines Trägergases hintereinander angeordneten, Wärmeübertragungsflächen aufweisende Wärmeübertragungskörper, die jeweils auf eine Wärmeübertragungstemperatur aufheizbar sind, mit einem Zuleitungsrohr zur Zuleitung eines Aerosols zu einem der Wärmeübertragungskörper zur Verdampfung des Aerosols durch In-Kontakt-Bringen der Aerosol-Partikel mit den Wärmeübertragungsflächen.
  • Die Erfindung betrifft darüber hinaus eine Vorrichtung zum Erzeugen eines Dampfes für eine CVD- oder PVD-Einrichtung mit mindestens einem, Wärmeübertragungsflächen aufweisenden Wärmeübertragungskörper, der auf eine Wärmeübertragungstemperatur aufheizbar ist und mit einem Zuleitungsrohr zur Zuleitung eines Aerosols zum Wärmeübertragungskörper zur Verdampfung des Aerosols durch In-Kontakt-Bringen der Aerosolpartikel mit den Wärmeübertragungsflächen.
  • Eine Vorrichtung der zuvor beschriebenen Art wird in der WO 2012/175128 A1 offenbart. Dort steckt in einem Gehäuse einer CVD- bzw. PVD-Einrichtung eine Verdampfungsvorrichtung, die in Strömungsrichtung eines Aerosols zwei hintereinander angeordnete Wärmeübertragungskörper aufweist. Die beiden Wärmeübertragungskörper werden von elektrisch leitenden Festkörperschäumen gebildet, die durch Hindurchleiten eines elektrischen Stroms beheizt werden. Durch eine Zuleitung wird ein Aerosol in den Verdampfer eingebracht. Die Aerosolpartikel treten in Kontakt mit den Wärmeübertragungsflächen der Wärmeübertragungskörper, so dass die Partikel verdampft werden. Ähnliche Vorrichtungen werden in der WO 2012/175124 A1 , WO 2010/175126 A1 sowie DE 10 2011 051 261 A1 oder DE 10 2011 051 260 A1 beschrieben.
  • Aus der US 4,769,296 und US 4,885,211 ist die Fertigung von lichtemittierenden Dioden (OLED) aus organischen Ausgangsstoffen bekannt. Zur Fertigung dieser OLEDs müssen feste oder flüssige Ausgangsstoffe in eine Gasform gebracht werden. Dies erfolgt mit einem Verdampfer. Der vergaste Ausgangsstoff wird als Dampf in eine Prozesskammer eines CVD- bzw. PVD-Reaktors geleitet, wo der Dampf auf einem Substrat kondensiert.
  • Verfahren zum Abscheiden von Schichten im Niedrigdruckbereich beschreiben auch die US 2,447,789 und EP 0 982 411 .
  • Die zum Abscheiden von OLEDs verwendeten Ausgangsstoffe dürfen nur einer maximalen Verdampfungstemperatur ausgesetzt werden, da sie bereits bei relativ geringen Temperaturen zerlegt werden. Diese chemische Zerlegungstemperatur sollte nicht oder darf nur für sehr kurze Zeit erreicht werden.
  • Der Erfindung liegt die Aufgabe zugrunde, einen gattungsgemäßen Verdampfer prozesstechnisch zu verbessern.
  • Gelöst wird die Aufgabe durch die in den Ansprüchen angegebene Erfindung.
  • Gemäß einem ersten Aspekt der Erfindung wird zunächst und im Wesentlichen vorgeschlagen, dass einer der Wärmeübertragungskörper eine Öffnung aufweist, in der ein Zuleitungsrohr steckt. Zufolge dieser Ausgestaltung ist es möglich, das Zuleitungsrohr entgegen der Strömungsrichtung des Trägergases in eine Öffnung des Wärmeübertragungskörpers hineinzustecken. Die Mündung der Zuleitung befindet sich dann im stromaufwärtigen Bereich des Wärmeübertragungskörpers oder in einem Zwischenraum zwischen dem die Öffnung aufweisenden Wärmeübertragungskörpers und einem gegenüber diesem Wärmeübertragungskörper stromaufwärts angeordneten Wärmeübertragungskörper. Erfindungsgemäß ist dabei bevorzugt vorgesehen, dass die Öffnung einem stromaufwärtigen Wärmeübertragungskörper zugeordnet ist und die Mündung das Zuleitungsrohr in Strömungsrichtung vor oder in einem stromabwärtigen Wärmeübertragungskörper angeordnet ist. Bevorzugt münden die ein oder mehreren Zuleitungsrohre aber in einen Abstandsraum zwischen zwei Wärmeübertragungskörpern, so dass das aus der Mündung des mindestens einen Zuleitungsrohres heraustretende Aerosol über eine möglichst große Fläche in den stromabwärtigen Wärmeübertragungskörper eintreten kann. Der in Strömungsrichtung erste und somit stromaufwärtige Wärmeübertragungskörper kann ein Vorheizkörper für ein Trägergas sein. Dieser erste Wärmeübertragungskörper kann die Öffnung aufweisen, durch die die Zuleitung zur Zuleitung eines Aerosols hindurch greift. Die Zuleitung mündet entweder in einem stromabwärtigen Wärmeübertragungskörper oder in einem Abstandsraum unmittelbar stromaufwärts des stromabwärtigen Wärmeübertragungskörpers. Zufolge dieser Ausgestaltung ist sichergestellt, dass durch den in Stromrichtung aufwärtigen Wärmeübertragungskörper nur das Trägergas hindurchströmt, welches vorgeheizt wird. In den stromabwärtigen Wärmeübertragungskörper wird hingegen zusätzlich zum Trägergas auch das Aerosol eingespeist, so dass die Aerosolpartikel in Kontakt zu den Wärmeübertragungsflächen des Wärmeübertragungskörpers treten können. Dort wird auf die Partikel die Verdampfungswärme übertragen, so dass die festen oder flüssigen Aerosolpartikel in die Gasform gebracht werden. Es ist insbesondere vorgesehen, dass kaskadenartig mehrere Wärmeübertragungskörper, die jeweils eine Verdampfungsfunktion ausüben, hintereinander angeordnet sind. Bei einer derartigen Anordnung ist es vorgesehen, dass auch ein stromabwärtiger Wärmeübertragungskörper, der die Funktion eines Verdampfungskörpers aufweist, eine oder mehrere Öffnungen aufweist, durch die eine Zuleitung hindurchgesteckt ist, welche in einen bezogen auf diesen Wärmeübertragungskörper stromabwärtigen Abstandsraum oder in einen stromabwärtigen Wärmeübertragungskörper münden. Zufolge dieser Ausgestaltung wird in einem stromaufwärtigen Verdampfungskörper ein erstes Aerosol verdampft und in einem stromabwärtigen Verdampfungskörper ein zweites Aerosol verdampft. Die beiden Aerosole können bei unterschiedlichen Verdampfungstemperaturen verdampft werden. Bevorzugt wird das eine niedrige Verdampfungstemperatur aufweisende Aerosol in einen stromaufwärtigen Verdampfungskörper eingespeist und das eine hohe Verdampfungstemperatur aufweisende Aerosol in einen stromabwärtigen Verdampfungskörper eingespeist. Der stromabwärtige Verdampfungskörper hat dann eine höhere Wärmeübertragungstemperatur als die Wärmeübertragungstemperatur des stromaufwärtigen Verdampfungskörpers. Es können somit drei oder mehr Wärmeübertragungskörper in Stromrichtung hintereinander angeordnet sein, wobei der in Strömungsrichtung erste Wärmeübertragungskörper lediglich zum Aufheizen eines Trägergases dient und die mehreren stromabwärtigen Wärmeübertragungskörper jeweils zum Aufheizen eines Aerosols und zum Verdampfen des Aerosols verwendet werden. Das in einem stromaufwärtigen Verdampfungskörper verdampfte Aerosol durchtritt als Dampf den stromabwärtigen Verdampfungskörper, in den durch eine Zuleitung ein anderes Aerosol eingespeist wird. Die Verdampfungskörper werden bevorzugt aus dem Material gefertigt, wie es in der WO 2012/175128 A1 beschrieben wird. Es handelt sich um einen offenzelligen Festkörperschaum mit einer Porösität von 400 bis 100 Poren pro Zoll. Der Verdampfungskörper ist elektrisch leitfähig, so dass er durch Hindurchleiten eines elektrischen Stromes auf seine Verdampfungstemperatur aufheizbar ist. Hierzu besitzt der bevorzugt einen rechteckigen Grundriss aufweisende Verdampfungskörper an zwei sich gegenüberliegenden Schmalseiten elektrische Kontakte, durch die der elektrische Strom in den Verdampfungskörper eingeleitet werden kann. Die Zuleitungsrohre können aus elektrisch isoliertem Material oder aus Metall bestehen. Sofern die Zuleitungsrohre aus Metall bestehen, sind sie in dem Bereich der Öffnungen von einer elektrisch isolierenden Hülse umgeben. Die Wärmeübertragungskörper, von denen zumindest einer einen Verdampfungskörper ausbildet, befinden sich in einem Gehäuse. Sie erstrecken sich über die gesamte Gehäusequerschnittsfläche, so dass das stromaufwärts in das Gehäuse eingespeiste Trägergas durch sämtliche hintereinander angeordnete Wärmeübertragungskörper strömen muss. Das Aerosol bzw. der aus dem Aerosol erzeugte Dampf durchströmt zumindest den in Strömungsrichtung letzten Wärmeübertragungskörper. Die Dampfaustrittsfläche des letzten Wärmeübertragungskörpers kann eine Gaseintrittsfläche sein, durch die das Trägergas und die vom Trägergas transportierten verdampften Aerosole in eine Prozesskammer eingeleitet werden. Die Prozesskammer des CVD- PVD-Reaktors befindet sich somit in Strömungsrichtung unmittelbar unterhalb des in Strömungsrichtung letzten Wärmeübertragungskörpers. Durch die Gasaustrittsfläche dieses Wärmeübertragungskörpers tritt ein im Wesentlichen homogener Gasstrom in die Prozesskammer ein. Auf dem Boden der Prozesskammer befindet sich ein Substrat, auf welchem der Dampf kondensieren soll. Der Suszeptor, der das Substrat trägt, wird bevorzugt von einer Kühleinrichtung gekühlt.
  • Ein zweiter Aspekt der Erfindung betrifft eine Rückstromsperre, die in Strömungsrichtung vor dem ersten Wärmeübertragungskörper angeordnet ist. Die Rückstromsperre befindet sich somit zwischen der Trägergaszuleitung und dem ersten Wärmeübertragungskörper. Die Rückstromsperre besteht bevorzugt aus zwei plattenförmigen Körpern, die sich über die gesamte Querschnittsfläche des Gehäuses des Verdampfers erstrecken. Die beiden Platten besitzen Öffnungen, durch die das Trägergas hindurchströmen können. Die Öffnungen der beiden Platten liegen versetzt zueinander, so dass das Trägergas zunächst durch die Öffnungen der stromaufwärtigen Rückstromsperrplatte hindurchtreten muss, dann in einen Zwischenraum umgelenkt wird, um anschließend durch die Öffnungen der zweiten Rückstromsperrplatte hindurch zu strömen.
  • Die Erfindung betrifft darüber hinaus die Weiterbildung eines Zuleitungsrohres. Das erfindungsgemäße Zuleitungsrohr besitzt Mittel, mit denen der aus der Mündung des Zuleitungsrohres heraustretende Gasstrom aufgeweitet wird, so dass der Gasstrom über eine möglichst größe Fläche in den Wärmeübertragungskörper eintreten kann. Ein erfindungsgemäß weitergebildetes Zuleitungsrohr mündet bevorzugt in einen Abstandszwischenraum zwischen zwei Wärmeübertragungskörpern. Es kann aber auch stromaufwärts eines Wärmeübertragungskörpers in einen Volumenabschnitt eines Gehäuses münden. Das Zuleitungsrohr besitzt bevorzugt zwei Strömungskanäle, wobei ein erster Strömungskanal zur Durchleitung des Aerosols und ein zweiter Strömungskanal zum Einspeisen eines Trägergases durch Durchtrittsöffnungen in den ersten Strömungskanal vorgesehen ist. Durch das durch die Durchtrittsöffnung in den ersten Strömungskanal mündende Trägergas wird die Strömung innerhalb des ersten Strömungskanals beeinflusst. Der erste Strömungskanal besitzt bevorzugt einen Querschnittsfläche, die größer ist als die Querschnittsfläche des zweiten Strömungskanals. Mit den Trägergasströmen, die durch die ein oder mehreren Gasdurchtrittsöffnungen hindurchtreten, kann innerhalb des ersten Strömungskanals eine turbulente Strömung erzeugt werden. Hierzu sind insbesondere erste Gasdurchtrittsöffnungen vorgesehen, die in einem spitzen Winkel zur Erstreckungsrichtung des ersten Strömungskanales bzw. zur Strömungsrichtung des Aerosols in den ersten Strömungskanal münden. Es können zweite Gasdurchtrittsöffnungen vorgesehen sein, die insbesondere in Strömungsrichtung den ersten Gasdurchtrittsöffnungen nachgeordnet und besonders bevorzugt im Bereich der Mündung des Zuleitungsrohres angeordnet sind. Mit diesen zweiten Gasdurchtrittsöffnungen soll ein Drall erzeugt werden. Die zweiten Gasdurchtrittsöffnungen münden nicht nur spitzwinklig zur Erstreckungsrichtung des ersten Strömungskanales, also zur Strömungsrichtung des Aerosols in den ersten Strömungskanal. Die zweiten Gasdurchtrittsöffnungen sind vielmehr auch schräg bezogen auf eine Querschnittsebene durch den Strömungskanal ausgerichtet, so dass sie ein im Uhrzeigersinn oder im Gegenuhrzeigersinn drehender Trägergasstrom in den ersten Strömungskanal eingespeist wird. Hierdurch wird ein Wirbel erzeugt. Die damit einhergehenden Fliehkräfte bewirken eine Aufweitung des aus der Mündung der Zuleitung austretenden Gasstroms. In einer Weiterbildung der Erfindung ist ferner vorgesehen, dass die beiden Strömungskanäle aus zwei ineinander geschachtelten Rohren ausgebildet sind, so dass die Strömungskanäle koaxial zueinander angeordnet sind, wobei durch den inneren Strömungskanal das Aerosol strömt. Das den ersten Strömungskanal ausbildende Rohr besitzt an seiner Mündung eine Aufweitung, so dass sich die Querschnittsfläche des ersten Strömungskanals mündungsseitig in Stromrichtung bis zum Ende des Zuleitungsrohres stetig vergrößert. Auch dies führt zu einer Aufweitung des aus der Mündung heraustretenden Gasstroms. Es sind in Strömungsrichtung mehrere erste und zweite Gasdurchtrittsöffnungen hintereinander liegend angeordnet.
  • Ausführungsbeispiele der Erfindung werden nachfolgend anhand beigefügter Zeichnungen erläutert. Es zeigen:
  • 1 in Form eines Längsschnittes ein erstes Ausführungsbeispiel der Erfindung, bei dem eine Verdampfungseinrichtung stromaufwärts eines CVD-Reaktors angeordnet ist;
  • 2 ein zweites Ausführungsbeispiel der Erfindung, bei dem die Gasaustrittsfläche des in Strömungsrichtung letzten Wärmeübertragungskörpers 3 gleichzeitig eine Gaseintrittsfläche einer Prozesskammer 15 ist;
  • 3 ein drittes Ausführungsbeispiel der Erfindung ebenfalls in einer Längsschnittdarstellung gemäß Linie III-III in 4;
  • 4 den Schnitt gemäß der Linie IV-IV in 3;
  • 5 den Schnitt gemäß der Linie V-V in 3;
  • 6 ein viertes Ausführungsbeispiel der Erfindung;
  • 7 ein fünftes Ausführungsbeispiel der Erfindung;
  • 8 ein sechstes Ausführungsbeispiel der Erfindung;
  • 9 in perspektivischer Darstellung ein erfindungsgemäßes Zuleitungsrohr;
  • 10 den Längsschnitt durch das in 9 dargestellte Zuleitungsrohr;
  • 11 den Schnitt gemäß der Linie XI-XI in 10 und
  • 12 den Schnitt gemäß der Linie XII-XII in 10.
  • Die in den Zeichnungen lediglich schematisch dargestellten Vorrichtungen dienen zum Abscheiden von OLED-Schichten auf Substraten 14, die auf einem gekühlten Suszeptor 13 an einer Prozesskammer 15 liegen. In die Prozesskammer 15 wird ein aus verdampften Aerosolen erzeugtes Prozessgas eingespeist. Dies erfolgt mit Hilfe eines Trägergases, welches durch eine Trägergaszuleitung 11 in das Gehäuse 12 eines Verdampfers eingespeist wird. In dem Verdampfer befinden sich mehrere Wärmeübertragungskörper 1, 2, 3. Die Wärmeübertragungskörper 1, 2, 3 erstrecken sich über die gesamte Querschnittsfläche des Verdampfergehäuses 12 und sind in Strömungsrichtung hintereinander angeordnet. Dies hat zur Folge, dass das durch die Trägergaseinspeiseöffnung 11 eingeleitete Trägergas, bei dem es sich um ein Inertgas, H2, N2 oder ein Edelgas handelt, sämtliche Wärmeübertragungskörper 1, 2, 3 in Strömungsrichtung durchströmt.
  • Ein in Strömungsrichtung zuoberst angeordneter Wärmeübertragungskörper 1 bildet in den Ausführungsbeispielen einen Vorheizkörper zum Vorheizen des Trägergases. Es ist aber auch vorgesehen, dass die Vorheizung des Trägergases außerhalb des Verdampfergehäuses 12 stattfindet, so dass der in Strömungsrichtung des Trägergases innerhalb des Verdampfergehäuses 12 zuerst angeordnete Wärmeübertragungskörper ein Verdampfungskörper für eines der Aerosole ist.
  • Es sind zwei in Strömungsrichtung hintereinander angeordnete Verdampfungskörper 2, 3 vorgesehen, die in sämtlichen Ausführungsbeispielen stromabwärts des Vorheizkörpers 1 liegen. Mittels Zuleitungen 4, 5 werden in die Verdampfungskörper 2, 3 voneinander verschiedene Aerosole eingespeist. Dies erfolgt derart, dass durch das Zuleitungsrohr 4 ein erstes Aerosol mit einer niedrigen Verdampfungstemperatur in einem stromaufwärtigen Verdampfungskörper 2 verdampft wird und ein zweites Aerosol, welches eine höhere Verdampfungstemperatur aufweist, in einen zweiten Verdampfungskörper 3, der stromabwärts des ersten Verdampfungskörpers 3 angeordnet ist, eingespeist wird.
  • Der Vorheizkörper 1 und die beiden diesem gegenüber stromabwärts angeordneten Verdampfungskörper 2, 3 werden jeweils von einem Wärmeübertragungskörper ausgebildet. Die Wärmeübertragungskörper 1, 2, 3 bestehen aus einem Festkörperschaum. Der Festkörperschaum hat offene Zellen und eine Porösität im Bereich zwischen 400 und 100 Poren pro Zoll.
  • Die Einspeisung der Aerosole erfolgt erfindungsgemäße durch rohrförmige Zuleitungen 4, 5, die Öffnungen 6, 7, 8 von Wärmeübertragungskörpern 1, 2, 3 durchragen oder in Öffnungen 6, 8 der Wärmeübertragungskörper 2, 3 hineingesteckt sind. Die Öffnungen erstrecken sich bevorzugt in Strömungsrichtung des Trägergases, wobei die Zuleitungsrohre dann entweder in Strömungsrichtung oder entgegen der Strömungsrichtung in die Öffnung 6, 7, 8 eingesteckt sind.
  • Bei dem in der 1 dargestellten Ausführungsbeispiel ist lediglich ein Verdampfungskörper 2 vorgesehen. Dieser befindet sich zusammen mit einem Vorheizkörper 1 für das Trägergas in dem Gehäuse 12 der Verdampfungseinrichtung. Der Vorheizkörper 1, also der stromaufwärtige Wärmeübertragungskörper 1, ist vom stromabwärtigen Wärmeübertragungskörper 2, also einem Verdampfungskörper in Strömungsrichtung beabstandet. Es bildet sich somit ein Abstandsraum 9 zwischen den beiden Wärmeübertragungskörpern 1, 2, aus. In diesen Abstandsraum 9 münden die Mündungen 4' von Zuleitungsrohren 4, die sich in Strömungsrichtung des Trägergases 11 erstreckende Öffnungen 6 des Wärmeübertragungskörpers 1 durchgreifen. Der Innendurchmesser der Öffnungen 6 entspricht dem Außendurchmesser der Zuleitungsrohre 4, so dass die Zuleitungsrohre 4 berührend an der Innenwandung der Öffnung 6 anliegen. Durch die Zuleitungen 4 wird ein Aerosol in den Abstandsraum 9 eingespeist. Das Aerosol wird zusammen mit dem durch das Hindurchtreten durch den Vorheizkörper 1 vorgeheizte Trägergas in den zweiten Wärmeübertragungskörper 2 transportiert. Dort treten die Partikel des Aerosols in berührenden Kontakt zu den Wärmeübertragungsflächen des Wärmeübertragungskörpers 2. Den Partikeln des Aerosols wird Verdampfungswärme zugeführt, so dass aus der Gasaustrittsfläche des Wärmeübertragungskörpers 2 ein verdampftes Aerosol zusammen mit dem Trägergas austritt. Die Wärmezufuhr erfolgt durch elektrischen Strom. Durch eine Gasaustrittsöffnung 22 gelangen der Dampf und das Trägergas aus dem Verdampfer 12 heraus und in ein Gaseinlassorgan 16 eines CVD-Reaktors 17. Durch Gasaustrittsöffnungen des Gaseinlassorganes 16 treten das Trägergas und das verdampfte Aerosol in die Prozesskammer 15 ein. die Zuleitungsrohre 4 bestehen aus Metall und sind mittels Isolationshülsen 28 gegenüber dem Wärmeübertragungskörper 1 isoliert.
  • Bei dem in der 2 dargestellten zweiten Ausführungsbeispiel ist unterhalb des Wärmeübertragungskörpers 2 ein weiterer Wärmeübertragungskörper 3 angeordnet. Zwischen dem Wärmeübertragungskörper 2 und dem Wärmeübertragungskörper 3 bildet sich ein zweiter Abstandsraum 10 aus. In den Abstandsraum 10 münden Zuleitungsrohre 5 zum Einspeisen eines zweiten Aerosols in den Abstandsraum 10. Die Zuleitungsrohre 5 stecken in Öffnungen 7 des Wärmeübertragungskörpers 1 und Öffnungen 8 des Wärmeübertragungskörpers 2. Das zweite Aerosol wird somit durch das Zuleitungsrohr 5 durch beide Wärmeübertragungskörper 1 und 2 geleitet.
  • Die Wärmeübertragungskörper 2, 3 können auch mit derselben Wärmeübertragungstemperatur betrieben werden. Bevorzugt besitzt der stromabwärtige Wärmeübertragungskörper 3 aber eine höhere Wärmeübertragungstemperatur als der stromaufwärtige Wärmeübertragungskörper 2 bzw. der Vorheizkörper 1. Hierdurch ist es möglich, in dem Wärmeübertragungskörper 3 ein zweites Aerosol zu verdampfen, welches eine höhere Verdampfungstemperatur aufweist als das erste Aerosol, welches durch Zuleitungen 4 in den Zwischenraum 9 und in den Wärmeübertragungskörper 2 eingespeist wird.
  • Im Unterschied zum ersten Ausführungsbeispiel bildet hier die Gasaustrittsfläche 3' des in Strömungsrichtung letzten Wärmeübertragungskörpers 3 eine Einspeisefläche aus, durch die das verdampfte Aerosol zusammen mit dem Trägergas in die Prozesskammer 15 eintritt.
  • Bei dem in der 3 dargestellten Ausführungsbeispiel liegen die drei in Strömungsrichtung hintereinander angeordneten Wärmeübertragungskörper 1, 2, 3 in berührender Anlage aneinander, so dass es keine Abstandsräume zwischen den in Strömungsrichtung aufeinander folgenden Wärmeübertragungskörpern 1, 2, 3 gibt. Bei diesem Ausführungsbeispiel befindet sich die Mündung 4' des Zuleitungsrohres 4 in einem stromaufwärtigen Abschnitt des ersten Verdampfungskörpers 2. Das zweite Zuleitungsrohr 5 durchdringt ebenso wie das erste Zuleitungsrohr 4 eine Öffnung des in Strömungsrichtung ersten Wärmeübertragungskörpers 1 und zusätzlich eine Öffnung 8 des in Strömungsrichtung zweiten Wärmeübertragungskörpers 2, so dass die Mündung 5' des Zuleitungsrohres 5 in einen stromaufwärtigen Abschnitt des dritten Wärmeübertragungskörpers 3 mündet. Auch hier werden bei voneinander verschiedenen Temperaturen in voneinander verschiedenen Wärmeübertragungskörpern 2, 3 zwei voneinander verschiedene Aerosole verdampft.
  • Die Zuführung der Verdampfungsenergie erfolgt durch Zuleitung von elektrischem Strom. Hierzu weisen die Wärmeübertragungskörper 1, 2, 3 elektrische Kontaktflächen 20, 21 auf. Im Ausführungsbeispiel besitzen die Wärmeübertragungskörper einen rechteckigen Grundriss, so dass die elektrischen Kontaktflächen 20, 21 einander gegenüberliegenden Schmalseitenwänden des Wärmeübertragungskörpers 1, 2, 3 zugeordnet sind.
  • Das in der 6 dargestellte vierte Ausführungsbeispiel zeigt zusätzlich eine Rückstromsperre, die von zwei plattenförmigen Rückstromsperrplatten 18, 19 ausgebildet sind. Die beiden Rückstromsperrplatten 18, 19 befinden sich in Strömungsrichtung zwischen der Einspeiseöffnung 11 zum Einspeisen des Trägergases und dem in Strömungsrichtung ersten Wärmeübertragungskörper 1. Die Rückstromsperrplatten 18, 19 werden von den Zuleitungsrohren 4, 5 durchdrungen. Sie besitzen hierzu entsprechende Öffnungen. Wesentlich an den Rückstromsperrplatten 18, 19 sind Öffnungen 18' der Rückstromsperrplatte 18 und Öffnungen 19' der Rückstromsperrplatte 19. Die Öffnungen 18' bzw. 19' liegen in Strömungsrichtung versetzt zueinander, so dass ein aus der Trägergaszuleitung 11 in das Gehäuse 12 eintretende Trägergas zunächst durch die Öffnungen 18' der stromaufwärtigen Rückstromsperrplatte 18 hindurchtreten müssen, dann in einen Abstandsraum zwischen den beiden Rückstromsperrplatten 18, 19 umgelenkt werden, um anschließend durch die Öffnungen 19' der stromabwärtigen Rückstromsperrplatte 19 auszutreten. Die Rückstromsperrplattenanordnung soll verhindern, dass aus der stromaufwärtigen Oberfläche der Wärmeübertragungskörper ausgetretener Dampf eines erzeugten Aerosols in den oberen Bereich des Verdampfungsgehäuses 12 eintreten kann.
  • Bei dem in der 7 dargestellten fünften Ausführungsbeispiel erfolgt die Zuleitung der Aerosole nicht durch in Strömungsrichtung des Trägergases in die Wärmeübertragungskörper 1, 2 hineingesteckte Zuleitungsrohre 4, 5, sondern durch Zuleitungsrohre 4, 5, die entgegen der Strömungsrichtung des Trägergases in Öffnungen 6, 7, 8 der Wärmeübertragungskörper 2, 3 eingesteckt sind. Die Zuführung der Zuleitungsrohre 4, 5 erfolgt hier gewissermaßen von unten. Das Zuleitungsrohr 4, durch welches das erste Aerosol in den Zwischenraum 9 zwischen dem Vorheizkörper 1 und dem ersten Verdampfungskörper 2 mündet, durchdringt somit Öffnungen 7, 6 beider Verdampfungskörper 2, 3. Auch hier und wie in allen Ausführungsbeispielen liegen die Außenwandungen der Zuleitungsrohre 4, 5 bzw. die Außenwandungen der die Zuleitungsrohre 4, 5 umgebenden Isolierhülse 28 in berührender Anlage an der Innenwandung der jeweiligen Öffnung 6, 7, 8 des jeweiligen Wärmeübertragungskörpers 1, 2, 3 an.
  • Das Zuleitungsrohr 5, dessen Mündung 5' im zweiten Zwischenraum 10 zwischen dem Verdampfungskörper 2 und dem Verdampfungskörper 3 angeordnet ist, durchdringt lediglich eine Öffnung 8 des in Strömungsrichtung stromabwärtigen Verdampfungskörpers 3.
  • Das in der 8 dargestellte sechste Ausführungsbeispiel zeigt eine Verdampfungseinrichtung 12, bei der drei Wärmeübertragungskörper 1, 2, 3 ähnlich dem in der 3 dargestellten dritten Ausführungsbeispiel in Strömungsrichtung des Trägergases unmittelbar hintereinander angeordnet sind. Zusätzlich besitzt dieses Ausführungsbeispiel die oben beschriebene Rückstromsperrplattenanordnung 18, 19.
  • Die Mündung 4' des Zuleitungsrohres 4 mündet hier in den unterhalb des Vorheizkörpers 1 angeordneten ersten Verdampfungskörper 2, und zwar unmittelbar unterhalb dessen oberer Randkante. Die Mündung 5' der Zuleitung 5 befindet sich unmittelbar unterhalb des oberen Randes des zweiten Verdampfungskörpers 3. Hier steckt das Zuleitungsrohr 5 in einer Öffnung 8 des Verdampfungskörpers 3. Das Zuleitungsrohr 4 steckt in einer Öffnung 6 des Verdampfungskörpers 2 und durchdringt eine Öffnung 7 des Verdampfungskörpers 3.
  • Die 9 bis 12 zeigen ein erfindungsgemäß ausgebildetes Zuleitungsrohr 4. Das Zuleitungsrohr 4 besteht aus zwei konzentrisch ineinander geschachtelten Rohren 33, 34, wobei der obere und untere Rand des Innenrohres 33 gasdicht mit dem oberen und unteren Rand des Außenrohres 34 verbunden ist. Die Rohröffnung des inneren Rohres 33 bildet einen ersten Strömungskanal 23 aus, durch den ein Aerosol hindurch geleitet werden kann, welches durch eine axiale Einspeiseöffnung 25 in den ersten Strömungskanal 23 eingespeist wird. Das Innenrohr 33 ist im Bereich der Mündung 4' des Zuleitungsrohres 4 radial nach außen aufgeweitet. Der mündungsseitige Endabschnitt des Außenrohres 34 ist von einer Manschette 28 aus isolierendem Werkstoff umgeben. Die Rohre 33, 34 selbst sind aus Metall, insbesondere Edelstahl gefertigt.
  • Das Außenrohr 34 besitzt insgesamt vier radiale Einspeiseöffnungen 26, durch die ein Trägergas in den Strömungskanal 24 eingespeist werden kann, der sich zwischen Innenrohr 33 und Außenrohr 34 befindet. Der Strömungskanal 24 ist über erste Durchtrittsöffnungen 29 und zweite Durchtrittsöffnungen 30 mit dem ersten, inneren Strömungskanal 23 verbunden. Die derart ausgebildeten Gasdurchtrittsöffnungen 29, 30 werden von durchmessergeringen Bohrungen ausgebildet, so dass dort Gasströme mit einer hohen Strömungsgeschwindigkeit hindurchtreten können. Die ersten Gasdurchtrittsöffnungen 29 besitzen eine Neigung, so dass die dort austretenden ”Gasstrahlen” schräg zur Strömungsrichtung S in den Strömungskanal 23 eintreten. Die Gasdurchtrittsöffnungen 29 können nicht nur eine Neigung in Strömungsrichtung S, sondern auch eine Neigung in Tangentialrichtung besitzen, so dass die aus ihnen heraustretenden Gasströme auch einen Wirbel erzeugen können. Die ersten Gasdurchtrittsöffnungen 29 dienen zur Erzeugung einer Turbulenz innerhalb des ersten Strömungskanals 23. Die ersten Gasdurchtrittsöffnungen 29 sind stromaufwärts der zweiten Gasdurchtrittsöffnungen 30 angeordnet. Es sind mehrere erste Gasdurchtrittsöffnungen 29 in Umfangsrichtung und in Erstreckungsrichtung des Zuleitungsrohres 4 vorgesehen.
  • Die zweiten Gasdurchtrittsöffnungen 30 befinden sich nahe der Mündung 4'. Auch hier sind mehrere zweite Gasdurchtrittsöffnungen 30 sowohl in Umfangsrichtung als auch in Erstreckungsrichtung des Zuleitungsrohres 4 angeordnet. Die die Gasdurchtrittsöffnungen 30 ausbildenden Bohrungen besitzen einen Tangentialwinkel zum Innenrohr 33, so dass die aus den zweiten Gasdurchtrittsöffnungen 30 heraustretenden ”Gasstrahlen” dem in Strömungsrichtung S strömenden Aerosolstrom einen Wirbel aufzwingen. Dies hat in Kombination mit der Aufweitung 27 eine Aufweitung des aus der Mündung 4' austretenden Gasstroms zur Folge. Die die zweiten Gasdurchtrittsöffnungen 30 ausbildenden Bohrungen können darüber hinaus auch eine Neigung bezogen auf die Erstreckungsrichtung des Zuleitungsrohres 4 aufweisen.
  • Die Aufweitung 27 erstreckt sich bis zur unteren Randkante des äußeren Rohres 34 und bildet somit den mündungsseitigen Verschluss des Strömungskanals 24. Als Folge des im Mündungsbereich erzeugten Wirbels erhält der die Mündung verlassende Aerosolstrom eine quer zur Erstreckungsrichtung des Zuleitungsrohres 4 ausgerichtete Bewegungskomponente, so dass sich das Aerosol gleichmäßiger in einem Abstandsraum 9, 10 verteilt als es der Fall wäre, wenn aus der Mündung 4' ein in Erstreckungsrichtung des Zuleitungsrohres 4 gerichteter Gasstrom austreten würde.
  • Die Bezugsziffer 31 bezeichnet einen Gewindeabschnitt, mit dem das Zuleitungsrohr 4 in ein nicht dargestelltes Gehäuse eingeschraubt werden kann. Zum Angriff eines Schraubwerkzeuges ist ein Schraubwerkzeugangriffsprofil 32 in Form von zwei sich gegenüberliegenden Flachflächen vorgesehen.
  • Die vorstehenden Ausführungen dienen der Erläuterung der von der Anmeldung insgesamt erfassten Erfindungen, die den Stand der Technik zumindest durch die folgenden Merkmalskombinationen jeweils eigenständig weiterbilden, nämlich:
    Eine Vorrichtung, die dadurch gekennzeichnet ist, dass zumindest einer der Wärmeübertragungskörper 1, 2, 3 eine Öffnung 6, 7, 8 aufweist, in der ein Zuleitungsrohr 4, 5 steckt.
  • Eine Vorrichtung, die dadurch gekennzeichnet ist, dass das Zuleitungsrohr 4, 5 durch die Öffnung 6, 7, 8 des Wärmeübertragungskörpers 1, 2, 3 hindurch geführt ist und in einem Abstandsraum 9, 10 zwischen zwei aneinander angrenzenden Wärmeübertragungskörpern 1, 2; 2, 3 oder in einen anderen Wärmeübertragungskörper 2, 3 mündet.
  • Eine Vorrichtung, die dadurch gekennzeichnet ist, dass die Öffnung 6, 7 einem stromaufwärtigen Wärmeübertragungskörper 1, 2 zugeordnet ist und die Mündung 4', 5' des Zuleitungsrohres 4, 5 in Strömungsrichtung vor einem stromabwärtigen Wärmeübertragungskörper 2, 3 oder in einem stromabwärtigen Wärmeübertragungskörper 2, 3 angeordnet ist.
  • Eine Vorrichtung, die dadurch gekennzeichnet ist, dass ein in Strömungsrichtung erster, stromaufwärtiger Wärmeübertragungskörper 1) ein Vorheizkörper für das Trägergas ist, das durch eine Trägergaszuleitung 11 in ein Gehäuse 12 einspeisbar ist, in welchem Gehäuse 12 die Wärmeübertragungskörper 1, 2, 3 in Strömungsrichtung derart hintereinander angeordnet sind, dass das Trägergas sämtliche Wärmeübertragungskörper 1, 2, 3 durchströmt.
  • Eine Vorrichtung, die dadurch gekennzeichnet ist, dass die Wärmeübertragungskörper 1, 2, 3 aus einem offenporigen Festkörperschaum bestehen, der eine Porösität von 500 bis 100 Poren pro Zoll aufweist, wobei insbesondere der Anteil aller offenen Flächen an der Oberfläche des Festkörperschaums größer als 90% ist.
  • Eine Vorrichtung, die dadurch gekennzeichnet ist, dass der Wärmeübertragungskörper elektrisch leitend ist und elektrische Kontakte 20, 21 aufweist zum Durchleiten eines elektrischen Stroms zwecks Aufheizen des Wärmeübertragungskörpers 1, 2, 3 auf eine Wärmeübertragungstemperatur.
  • Eine Vorrichtung, die dadurch gekennzeichnet ist, dass in Strömungsrichtung hintereinander angeordnete Wärmeübertragungskörper 1, 2, 3 auf voneinander verschiedene Temperaturen aufheizbar sind, wobei die Wärmeübertragungstemperatur eines stromabwärtigen Wärmeübertragungskörpers 2, 3 größer ist als die Wärmeübertragungstemperatur eines stromaufwärtigen Wärmeübertragungskörpers 1, 2.
  • Eine Vorrichtung, die dadurch gekennzeichnet ist, dass das Zuleitungsrohr Mittel 29, 30; 27 aufweist, um den in Strömungsrichtung S durch das Zuleitungsrohr 4 hindurchtretenden Aerosolstrom aufgeweitet aus der Mündung 4' austreten zu lassen.
  • Eine Vorrichtung, die dadurch gekennzeichnet ist, dass das Zuleitungsrohr 4 einen ersten Strömungskanal 23 zum Einspeisen des Aerosols und einen zweiten Strömungskanal 24 zum Einspeisen eines Trägergases aufweist, wobei Gasdurchtrittsöffnungen 29, 30 vorgesehen sind, durch die das Trägergas aus dem zweiten Strömungskanal 24 in den ersten Strömungskanal 23 strömen kann und wobei insbesondere vorgesehen, dass der zweite Strömungskanal 24 im Bereich der Mündung 4' des Zuleitungsrohres verschlossen ist.
  • Eine Vorrichtung, die dadurch gekennzeichnet ist, dass erste Gasdurchtrittsöffnungen 29 in einem derartigen Winkel zur Strömungsrichtung S des Aerosols in den ersten Strömungskanal 23 münden, dass der durch die ersten Gasdurchtrittsöffnungen 29 hindurchtretende Trägergasstrom im ersten Strömungskanal 23 eine Turbulenz erzeugt, wobei insbesondere vorgesehen ist, dass der zweite Strömungskanal 24 den ersten Strömungskanal 23 umgibt.
  • Eine Vorrichtung, die dadurch gekennzeichnet ist, dass zweite Gasdurchtrittsöffnungen 30 in einem derartigen Winkel zur Strömungsrichtung S des Aerosols im ersten Strömungskanal 23 angeordnet sind, dass ein durch die zweiten Gasdurchtrittsöffnungen 30 hindurchtretender Trägergasstrom im Bereich der Mündung 4' einen Wirbel um eine in Strömungsrichtung S ausgerichtete Achse erzeugt.
  • Eine Vorrichtung, die dadurch gekennzeichnet ist, dass ein den ersten Strömungskanal 23 ausbildendes Rohr 33 im Bereich der Mündung 4' eine insbesondere rotationssymmetrische Aufweitung 27 aufweist.
  • Eine Vorrichtung, die dadurch gekennzeichnet ist, dass der in der Öffnung 6, 7, 8 steckende Abschnitt des Zuleitungsrohres 4, 5 von einer Isolationshülse 28 umgeben ist.
  • Eine Vorrichtung, die dadurch gekennzeichnet ist, dass vor einem in Strömungsrichtung ersten Wärmeübertragungskörper 1 eine Rückstromsperre 18, 19 angeordnet ist, welche Rückstromsperre 18, 19 insbesondere von zwei sich über den gesamten Strömungsquerschnitt erstreckenden, dicht benachbarten Platten gebildet sind, die Öffnungen 18', 19' aufweisen, wobei die Öffnungen 18', 19' voneinander verschiedener Platten quer zur Strömungsrichtung versetzt zueinander angeordnet sind.
  • Alle offenbarten Merkmale sind (für sich, aber auch in Kombination untereinander) erfindungswesentlich. In die Offenbarung der Anmeldung wird hiermit auch der Offenbarungsinhalt der zugehörigen/beigefügten Prioritätsunterlagen (Abschrift der Voranmeldung) vollinhaltlich mit einbezogen, auch zu dem Zweck, Merkmale dieser Unterlagen in Ansprüche vorliegender Anmeldung mit aufzunehmen. Die Unteransprüche charakterisieren mit ihren Merkmalen eigenständige erfinderische Weiterbildungen des Standes der Technik, insbesondere um auf Basis dieser Ansprüche Teilanmeldungen vorzunehmen.
  • Bezugszeichenliste
  • 1
    Wärmeübertragungskörper
    2
    Wärmeübertragungskörper
    3
    Wärmeübertragungskörper
    3'
    Unterseite
    4
    Zuleitungsrohr
    4'
    Mündung
    5
    Zuleitungsrohr
    5'
    Mündung
    6
    Öffnung
    7
    Öffnung
    8
    Öffnung
    9
    Abstandsraum
    10
    Abstandsraum
    11
    Trägergaszuleitung
    12
    Gehäuse
    13
    Suszeptor
    14
    Substrat
    15
    Prozesskammer
    16
    Gaseinlassorgan
    17
    CVD-Reaktor
    18
    Rückstromsperrplatte
    18'
    Öffnung
    19
    Rückstromsperrplatte
    19'
    Öffnung
    20
    elektrische Kontakte
    21
    elektrische Kontakte
    22
    Gasaustrittsöffnung
    23
    Strömungskanal
    24
    Strömungskanal
    25
    Einspeiseöffnung
    26
    Einspeiseöffnung
    27
    Aufweitung
    28
    Isolierhülse
    29
    Gasdurchtrittsöffnung
    30
    Gasdurchtrittsöffnung
    31
    Gewindeabschnitt
    32
    Schraubwerkzeugangriffsprofil
    33
    Innenrohr
    34
    Außenrohr
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 2012/175128 A1 [0003, 0009]
    • WO 2012/175124 A1 [0003]
    • WO 2010/175126 A1 [0003]
    • DE 102011051261 A1 [0003]
    • DE 102011051260 A1 [0003]
    • US 4769296 [0004]
    • US 4885211 [0004]
    • US 2447789 [0005]
    • EP 0982411 [0005]

Claims (15)

  1. Vorrichtung zum Erzeugen eines Dampfes für eine CVD- oder PVD-Einrichtung mit mindestens zwei in Strömungsrichtung eines Trägergases hintereinander angeordneten, Wärmeübertragungsflächen aufweisende Wärmeübertragungskörper (1, 2, 3), die jeweils auf eine Wärmeübertragungstemperatur aufheizbar sind, mit einem Zuleitungsrohr (4, 5) zur Zuleitung eines Aerosols zu einem der Wärmeübertragungskörper (2, 3) zur Verdampfung des Aerosols durch In-Kontakt-Bringen der Aerosol-Partikel mit den Wärmeübertragungsflächen, dadurch gekennzeichnet, dass zumindest einer der Wärmeübertragungskörper (1, 2, 3) eine Öffnung (6, 7, 8) aufweist, in der ein Zuleitungsrohr (4, 5) steckt.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Zuleitungsrohr (4, 5) durch die Öffnung (6, 7, 8) des Wärmeübertragungskörpers (1, 2, 3) hindurch geführt ist und in einem Abstandsraum (9, 10) zwischen zwei aneinander angrenzenden Wärmeübertragungskörpern (1, 2; 2, 3) oder in einen anderen Wärmeübertragungskörper (2, 3) mündet.
  3. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Öffnung (6, 7) einem stromaufwärtigen Wärmeübertragungskörper (1, 2) zugeordnet ist und die Mündung (4', 5') des Zuleitungsrohres (4, 5) in Strömungsrichtung vor einem stromabwärtigen Wärmeübertragungskörper (2, 3) oder in einem stromabwärtigen Wärmeübertragungskörper (2, 3) angeordnet ist.
  4. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein in Strömungsrichtung erster, stromaufwärtiger Wärmeübertragungskörper (1) ein Vorheizkörper für das Trägergas ist, das durch eine Trägergaszuleitung (11) in ein Gehäuse (12) einspeisbar ist, in welchem Gehäuse (12) die Wärmeübertragungskörper (1, 2, 3) in Strömungsrichtung derart hintereinander angeordnet sind, dass das Trägergas sämtliche Wärmeübertragungskörper (1, 2, 3) durchströmt.
  5. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmeübertragungskörper (1, 2, 3) aus einem offenporigen Festkörperschaum bestehen, der eine Porösität von 500 bis 100 Poren pro Zoll aufweist, wobei insbesondere der Anteil aller offenen Flächen an der Oberfläche des Festkörperschaums größer als 90% ist.
  6. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Wärmeübertragungskörper elektrisch leitend ist und elektrische Kontakte (20, 21) aufweist zum Durchleiten eines elektrischen Stroms zwecks Aufheizen des Wärmeübertragungskörpers (1, 2, 3) auf eine Wärmeübertragungstemperatur.
  7. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass in Strömungsrichtung hintereinander angeordnete Wärmeübertragungskörper (1, 2, 3) auf voneinander verschiedene Temperaturen aufheizbar sind, wobei die Wärmeübertragungstemperatur eines stromabwärtigen Wärmeübertragungskörpers (2, 3) größer ist als die Wärmeübertragungstemperatur eines stromaufwärtigen Wärmeübertragungskörpers (1, 2).
  8. Vorrichtung zum Erzeugen eines Dampfes für eine CVD- oder PVD-Einrichtung mit mindestens einem, Wärmeübertragungsflächen aufweisenden Wärmeübertragungskörper (1, 2, 3), der auf eine Wärmeübertragungstemperatur aufheizbar ist und mit einem Zuleitungsrohr (4) zur Zuleitung eines Aerosols zum Wärmeübertragungskörper zur Verdampfung des Aerosols durch In-Kontakt-Bringen der Aerosolpartikel mit den Wärmeübertragungsflächen, dadurch gekennzeichnet, dass das Zuleitungsrohr Mittel (29, 30; 27) aufweist, um den in Strömungsrichtung (S) durch das Zuleitungsrohr (4) hindurchtretenden Aerosolstrom aufgeweitet aus der Mündung (4') austreten zu lassen.
  9. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Zuleitungsrohr (4) einen ersten Strömungskanal (23) zum Einspeisen des Aerosols und einen zweiten Strömungskanal (24) zum Einspeisen eines Trägergases aufweist, wobei Gasdurchtrittsöffnungen (29, 30) vorgesehen sind, durch die das Trägergas aus dem zweiten Strömungskanal (24) in den ersten Strömungskanal (23) strömen kann und wobei insbesondere vorgesehen, dass der zweite Strömungskanal (24) im Bereich der Mündung (4') des Zuleitungsrohres verschlossen ist.
  10. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass erste Gasdurchtrittsöffnungen (29) in einem derartigen Winkel zur Strömungsrichtung (S) des Aerosols in den ersten Strömungskanal (23) münden, dass der durch die ersten Gasdurchtrittsöffnungen (29) hindurchtretende Trägergasstrom im ersten Strömungskanal (23) eine Turbulenz erzeugt, wobei insbesondere vorgesehen ist, dass der zweite Strömungskanal (24) den ersten Strömungskanal (23) umgibt.
  11. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zweite Gasdurchtrittsöffnungen (30) in einem derartigen Winkel zur Strömungsrichtung (S) des Aerosols im ersten Strömungskanal (23) angeordnet sind, dass ein durch die zweiten Gasdurchtrittsöffnungen (30) hindurchtretender Trägergasstrom im Bereich der Mündung (4') einen Wirbel um eine in Strömungsrichtung (S) ausgerichtete Achse erzeugt.
  12. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein den ersten Strömungskanal (23) ausbildendes Rohr (33) im Bereich der Mündung (4') eine insbesondere rotationssymmetrische Aufweitung (27) aufweist.
  13. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der in der Öffnung (6, 7, 8) steckende Abschnitt des Zuleitungsrohres (4, 5) von einer Isolationshülse (28) umgeben ist.
  14. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass vor einem in Strömungsrichtung ersten Wärmeübertragungskörper (1) eine Rückstromsperre (18, 19) angeordnet ist, welche Rückstromsperre (18, 19) insbesondere von zwei sich über den gesamten Strömungsquerschnitt erstreckenden, dicht benachbarten Platten gebildet sind, die Öffnungen (18', 19') aufweisen, wobei die Öffnungen (18', 19') voneinander verschiedener Platten quer zur Strömungsrichtung versetzt zueinander angeordnet sind.
  15. Vorrichtung, gekennzeichnet durch eines oder mehrere der kennzeichnenden Merkmale eines der vorhergehenden Ansprüche.
DE102014109196.5A 2014-07-01 2014-07-01 Vorrichtung zum Erzeugen eines Dampfes aus einem festen oder flüssigen Ausgangsstoff für eine CVD- oder PVD-Einrichtung Withdrawn DE102014109196A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102014109196.5A DE102014109196A1 (de) 2014-07-01 2014-07-01 Vorrichtung zum Erzeugen eines Dampfes aus einem festen oder flüssigen Ausgangsstoff für eine CVD- oder PVD-Einrichtung
EP15173776.4A EP2963147B1 (de) 2014-07-01 2015-06-25 Vorrichtung zum erzeugen eines dampfes aus einem festen oder flüssigen ausgangsstoff für eine cvd- oder pvd-einrichtung
KR1020150091082A KR20160003559A (ko) 2014-07-01 2015-06-26 Cvd- 또는 pvd-장비를 위해 고체 또는 액체의 출발 물질로부터 증기를 발생하기 위한 장치
JP2015129856A JP6777381B2 (ja) 2014-07-01 2015-06-29 Cvd装置またはpvd装置用固体または液体出発物質からの蒸気発生装置
US14/788,626 US9942946B2 (en) 2014-07-01 2015-06-30 Device for generating vapor from solid or liquid starting material for CVD or PVD apparatus
CN201510386512.0A CN105274476B (zh) 2014-07-01 2015-06-30 用于cvd或pvd装置的由固体或液体原料产生蒸汽的设备
TW104121098A TWI662147B (zh) 2014-07-01 2015-06-30 用固態或液態起始材料為cvd裝置或pvd裝置產生蒸汽之裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014109196.5A DE102014109196A1 (de) 2014-07-01 2014-07-01 Vorrichtung zum Erzeugen eines Dampfes aus einem festen oder flüssigen Ausgangsstoff für eine CVD- oder PVD-Einrichtung

Publications (1)

Publication Number Publication Date
DE102014109196A1 true DE102014109196A1 (de) 2016-01-07

Family

ID=53525057

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014109196.5A Withdrawn DE102014109196A1 (de) 2014-07-01 2014-07-01 Vorrichtung zum Erzeugen eines Dampfes aus einem festen oder flüssigen Ausgangsstoff für eine CVD- oder PVD-Einrichtung

Country Status (7)

Country Link
US (1) US9942946B2 (de)
EP (1) EP2963147B1 (de)
JP (1) JP6777381B2 (de)
KR (1) KR20160003559A (de)
CN (1) CN105274476B (de)
DE (1) DE102014109196A1 (de)
TW (1) TWI662147B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017121704A1 (de) 2016-01-15 2017-07-20 Aixtron Se Vorrichtung zum bereitstellen eines prozessgases in einer beschichtungseinrichtung
DE102017123233A1 (de) 2017-10-06 2019-04-11 Aixtron Se Vorrichtung und Verfahren zur Erzeugung eines in einem Trägergas transportierten Dampfes
DE102017126126A1 (de) 2017-11-08 2019-05-09 Aixtron Se Verfahren und Vorrichtung zum Erzeugen eines Dampfes durch die Verwendung von in einem Regelmodus gewonnenen Steuerdaten
WO2021083956A1 (de) 2019-10-29 2021-05-06 Apeva Se Verfahren und vorrichtung zum abscheiden organischer schichten

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017103047A1 (de) * 2016-11-29 2018-05-30 Aixtron Se Aerosolverdampfer
KR102369676B1 (ko) 2017-04-10 2022-03-04 삼성디스플레이 주식회사 표시 장치의 제조장치 및 표시 장치의 제조방법
US20180306500A1 (en) * 2017-04-21 2018-10-25 Larry Baxter Method for Preventing Fouling of Cryogenic Injection Systems
WO2020021796A1 (ja) * 2018-07-24 2020-01-30 株式会社リンテック 気化器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2447789A (en) 1945-03-23 1948-08-24 Polaroid Corp Evaporating crucible for coating apparatus
US4769296A (en) 1986-11-25 1988-09-06 Basf Aktiengesellschaft Batteries comprising high energy and power density methanol/air fuel cells
US4769292A (en) * 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
US4885211A (en) 1987-02-11 1989-12-05 Eastman Kodak Company Electroluminescent device with improved cathode
GB2230792A (en) * 1989-04-21 1990-10-31 Secr Defence Multiple source physical vapour deposition.
EP0982411A2 (de) 1998-08-26 2000-03-01 TDK Corporation Verdampfungsquelle, Apparat und Verfahren zur Herstellung einer organischen elektrolumineszenten Vorrichtung
DE102011051260A1 (de) 2011-06-22 2012-12-27 Aixtron Se Verfahren und Vorrichtung zum Abscheiden von OLEDs
WO2012175126A1 (en) * 2011-06-22 2012-12-27 Aixtron Se Method and apparatus for vapor deposition
WO2012175124A1 (en) 2011-06-22 2012-12-27 Aixtron Se Vapor deposition material source and method for making same
WO2012175128A1 (en) 2011-06-22 2012-12-27 Aixtron Se Vapor deposition system and supply head
DE102011051261A1 (de) 2011-06-22 2012-12-27 Aixtron Se Verfahren und Vorrichtung zum Abscheiden von OLEDs insbesondere Verdampfungsvorrichtung dazu

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356476A (en) * 1992-06-15 1994-10-18 Materials Research Corporation Semiconductor wafer processing method and apparatus with heat and gas flow control
JPH07310185A (ja) * 1994-05-12 1995-11-28 Hitachi Ltd Cvdガス供給装置
JP4292777B2 (ja) * 2002-06-17 2009-07-08 ソニー株式会社 薄膜形成装置
US6837939B1 (en) * 2003-07-22 2005-01-04 Eastman Kodak Company Thermal physical vapor deposition source using pellets of organic material for making OLED displays
JP2007092149A (ja) * 2005-09-29 2007-04-12 Tokyo Electron Ltd 原料供給装置および蒸着装置
US20070098891A1 (en) * 2005-10-31 2007-05-03 Eastman Kodak Company Vapor deposition apparatus and method
DE102006026576A1 (de) * 2006-06-06 2008-01-10 Aixtron Ag Vorrichtung und Verfahren zum Aufdampfen eines pulverförmigen organischen Ausgangsstoffs
US8377387B2 (en) * 2010-06-23 2013-02-19 General Electric Company Fluidization device for solid fuel particles
MY185561A (en) * 2011-11-18 2021-05-20 First Solar Inc Vapor transport deposition method and system for material co-deposition

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2447789A (en) 1945-03-23 1948-08-24 Polaroid Corp Evaporating crucible for coating apparatus
US4769296A (en) 1986-11-25 1988-09-06 Basf Aktiengesellschaft Batteries comprising high energy and power density methanol/air fuel cells
US4885211A (en) 1987-02-11 1989-12-05 Eastman Kodak Company Electroluminescent device with improved cathode
US4769292A (en) * 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
GB2230792A (en) * 1989-04-21 1990-10-31 Secr Defence Multiple source physical vapour deposition.
EP0982411A2 (de) 1998-08-26 2000-03-01 TDK Corporation Verdampfungsquelle, Apparat und Verfahren zur Herstellung einer organischen elektrolumineszenten Vorrichtung
DE102011051260A1 (de) 2011-06-22 2012-12-27 Aixtron Se Verfahren und Vorrichtung zum Abscheiden von OLEDs
WO2012175126A1 (en) * 2011-06-22 2012-12-27 Aixtron Se Method and apparatus for vapor deposition
WO2012175124A1 (en) 2011-06-22 2012-12-27 Aixtron Se Vapor deposition material source and method for making same
WO2012175128A1 (en) 2011-06-22 2012-12-27 Aixtron Se Vapor deposition system and supply head
DE102011051261A1 (de) 2011-06-22 2012-12-27 Aixtron Se Verfahren und Vorrichtung zum Abscheiden von OLEDs insbesondere Verdampfungsvorrichtung dazu

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017121704A1 (de) 2016-01-15 2017-07-20 Aixtron Se Vorrichtung zum bereitstellen eines prozessgases in einer beschichtungseinrichtung
DE102016100625A1 (de) 2016-01-15 2017-07-20 Aixtron Se Vorrichtung zum Bereitstellen eines Prozessgases in einer Beschichtungseinrichtung
CN108699689A (zh) * 2016-01-15 2018-10-23 艾克斯特朗欧洲公司 用于在涂层设备中制备过程气体的装置
CN108699689B (zh) * 2016-01-15 2021-06-15 艾克斯特朗欧洲公司 用于在涂层设备中制备过程气体的装置
DE102017123233A1 (de) 2017-10-06 2019-04-11 Aixtron Se Vorrichtung und Verfahren zur Erzeugung eines in einem Trägergas transportierten Dampfes
WO2019068609A1 (de) 2017-10-06 2019-04-11 Aixtron Se Vorrichtung und verfahren zur erzeugung eines in einem trägergas transportierten dampfes
DE102017126126A1 (de) 2017-11-08 2019-05-09 Aixtron Se Verfahren und Vorrichtung zum Erzeugen eines Dampfes durch die Verwendung von in einem Regelmodus gewonnenen Steuerdaten
WO2019091804A1 (de) 2017-11-08 2019-05-16 Aixtron Se Verfahren und vorrichtung zum erzeugen eines dampfes durch die verwendung von in einem regelmodus gewonnenen steuerdaten
WO2021083956A1 (de) 2019-10-29 2021-05-06 Apeva Se Verfahren und vorrichtung zum abscheiden organischer schichten

Also Published As

Publication number Publication date
CN105274476A (zh) 2016-01-27
TW201610213A (zh) 2016-03-16
US9942946B2 (en) 2018-04-10
EP2963147A2 (de) 2016-01-06
US20160007410A1 (en) 2016-01-07
JP6777381B2 (ja) 2020-10-28
CN105274476B (zh) 2019-06-04
EP2963147B1 (de) 2017-08-02
JP2016014187A (ja) 2016-01-28
KR20160003559A (ko) 2016-01-11
TWI662147B (zh) 2019-06-11
EP2963147A3 (de) 2016-05-25

Similar Documents

Publication Publication Date Title
EP2963147B1 (de) Vorrichtung zum erzeugen eines dampfes aus einem festen oder flüssigen ausgangsstoff für eine cvd- oder pvd-einrichtung
EP2269425B1 (de) Vorrichtung zur erzeugung eines atmosphärendruck-plasmas
EP2206417B1 (de) Verfahren und vorrichtung zur behandlung oder beschichtung von oberflachen
DE102014106523A1 (de) Vorrichtung und Verfahren zum Versorgen einer CVD- oder PVD-Beschichtungseinrichtung mit einem Prozessgasgemisch
EP1752554A1 (de) Bedampfervorrichtung
DE112007003062T5 (de) Ionentransferröhre mit Mehrfachbohrung zu Einzelbohrung
DE3020402A1 (de) Verfahren und vorrichtung zur alkalientfernung aus einem heissen gas durch ionisation
EP2130414B1 (de) Vorrichtung und verfahren zur erzeugung eines plasmastrahls
EP1752555A1 (de) Verdampfervorrichtung
WO2012175307A1 (de) Verfahren und vorrichtung zum abscheiden von oled's
WO2016000944A1 (de) Vorrichtung und verfahren zum erzeugen eines dampfes aus mehreren flüssigen oder festen ausgangsstoffen für eine cvd- oder pvd-einrichtung
DE102010041376A1 (de) Verdampfereinrichtung für eine Beschichtungsanlage und Verfahren zur Koverdampfung von mindestens zwei Substanzen
DE1501459A1 (de) Waermeaustauscher
DE102013109778A1 (de) Verfahren und Vorrichtung zur kontinuierlichen Wiederaufbereitung von Abgas eines Fusionsreaktors
WO2017121704A1 (de) Vorrichtung zum bereitstellen eines prozessgases in einer beschichtungseinrichtung
DE102017103047A1 (de) Aerosolverdampfer
DE102013106531A1 (de) Verdampfungseinrichtung zum Verdampfen eines Aerosols
DE102012107966A1 (de) Verdampfereinrichtung und Koverdampfersystem für eine Beschichtungsanlage
DE19506057A1 (de) Löschfunkenstreckenanordnung
DE1212608B (de) Einrichtung zur direkten Umwandlung von thermischer in elektrische Energie
DE102010046719B4 (de) Erdwärmesonde
WO2011141184A1 (de) Plasmagenerator sowie verfahren zur erzeugung und anwendung eines ionisierten gases
DE102014100135A1 (de) Gasmischvorrichtung an einem Reaktor mit Wegeventil
EP3224385B1 (de) Vorrichtung zum abscheiden einer schicht auf einem substrat
DE202013007063U1 (de) Elektrode zur Verwendung in Plasmaspritzdüsen

Legal Events

Date Code Title Description
R163 Identified publications notified
R005 Application deemed withdrawn due to failure to request examination