DE102014017370A1 - Servosteuersystem zum schleifen einer geneigten oberfläche - Google Patents

Servosteuersystem zum schleifen einer geneigten oberfläche Download PDF

Info

Publication number
DE102014017370A1
DE102014017370A1 DE102014017370.4A DE102014017370A DE102014017370A1 DE 102014017370 A1 DE102014017370 A1 DE 102014017370A1 DE 102014017370 A DE102014017370 A DE 102014017370A DE 102014017370 A1 DE102014017370 A1 DE 102014017370A1
Authority
DE
Germany
Prior art keywords
servomotor
command
unit
angle
correction value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102014017370.4A
Other languages
English (en)
Other versions
DE102014017370B4 (de
Inventor
c/o FANUC CORPORATION Sonoda Naoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Publication of DE102014017370A1 publication Critical patent/DE102014017370A1/de
Application granted granted Critical
Publication of DE102014017370B4 publication Critical patent/DE102014017370B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B1/00Comparing elements, i.e. elements for effecting comparison directly or indirectly between a desired value and existing or anticipated values
    • G05B1/01Comparing elements, i.e. elements for effecting comparison directly or indirectly between a desired value and existing or anticipated values electric
    • G05B1/03Comparing elements, i.e. elements for effecting comparison directly or indirectly between a desired value and existing or anticipated values electric for comparing digital signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • G05B19/4141Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller characterised by a controller or microprocessor per axis
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45156Grind on lathe
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50216Synchronize speed and position of several axis, spindles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Numerical Control (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

Ein Servosteuersystem (10) hat eine erste Wiederholungssteuerungseinheit (70a) für einen ersten Servomotor (80a) auf Basis eines Referenzwinkels und eines ersten Positionsfehlers zwischen einem Schwingbefehl und einer Position des ersten Servomotors, eine Multiplikationseinheit (23), welche den Schwingbefehl mit einem Verhältniswert multipliziert entsprechend dem Kippwinkel der geneigten Oberfläche des zu schleifenden Materials, um einen „Schwingbefehls nach Multiplikation” zu berechnen, und eine zweite Wiederholsteuereinheit (70b) für einen zweiten Servomotor (80b) auf Basis eines Bezugswinkels und eines zweiten Positionsfehlers zwischen dem „Schwingbefehl nach Multiplikation” und einer Position des zweiten Servomotors. Der erste und der zweite Positionsfehler werden jeweils korrigiert und der Antrieb des ersten und des zweiten Servomotors wird gesteuert auf Basis des korrigierten ersten und zweiten Positionsfehlers, um so die geneigte Oberfläche des Materials zu schleifen.

Description

  • Hintergrund der Erfindung
  • 1. Gebiet der Erfindung
  • Die Erfindung betrifft ein Servosteuersystem zum Steuern eines Servomotors einer Werkzeugmaschine, die eine geneigte Oberfläche abschleift.
  • 2. Zum Stand der Technik
  • Im Allgemeinen wird bei einem Oberflächenschleifer ein horizontal ausgerichtetes Werkstück in Bezug auf einen festen Schleifstein hin- und hergeschwungen und auf diese Weise wird eine ebene Oberfläche am Werkstück geschliffen. Andererseits kann auch das Werkstück derart geschliffen werden, dass der Schleifstein in Bezug auf das fixierte Werkstück hin- und hergeschwungen wird. Eine mit der Oberflächenschleifeinrichtung verbundene numerische Steuerung steuert einen Motor für eine Schwingwelle zum Schwingen des Werkstückes oder des Schleifsteines und einen Motor für eine Vorschubwelle zum Vorschieben des Werkstückes oder Schleifsteines in einer Richtung senkrecht zur Schwingwelle.
  • 9 zeigt schematisch ein Werkstück und einen Schleifstein gemäß dem Stand der Technik nach der japanischen Patentveröffentlichung 2011-194552 . Wie 9 zeigt, wird beim Schleifen einer geneigten Oberfläche eines Werkstückes W das Werkstück W um eine Neigungsachse geschwenkt. Dann kann, wie beim Schleifen einer ebenen Fläche, die geneigte Oberfläche des Werkstückes W mit dem Schleifstein G geschliffen werden.
  • 10A zeigt einen Zusammenhang zwischen einer Vorschubposition einer Vorschubwelle und einer Position einer Schwingwelle gemäß dem Stand der Technik. Wie 10A zeigt, wird die Bewegung der Schwingwelle beim Oberflächenschleifen durch eine Sägezahnform dargestellt, wobei die Schwingwelle von einen Ende des Werkstückes zum anderen Ende hin- und herschwingt. Die Bewegungsgeschwindigkeit des Schleifsteines von einem Punkt P zu einem Punkt Q gemäß 10A ist angenähert konstant, wie 10B zeigt. Dies hat den Vorteil, dass die Schleifwirkung beim Schleifen konstant ist.
  • Beim in 9 gezeigten Aufbau ist aber eine Neigungsachse(-welle) erforderlich, zusätzlich zur Schwingwelle und Vorschubwelle. Deshalb hat eine Schleifeinrichtung mit einer Schwingwelle, einer Vorschubwelle, und einer Neigungswelle insofern ein Problem, dass ein solcher Aufbau darauf eingeschränkt ist, eine ebene Fläche, wie eine geneigte Fläche, zu schleifen.
  • Wie aus 10A verständlich wird, gibt es aufgrund des größeren Drehmomentes beim Beschleunigen/Abbremsen eine Grenze bezüglich der Bewegung des Schleifsteines mit der Schwingwelle bei hohen Geschwindigkeiten. Auch ändert sich die Bewegungsgeschwindigkeit plötzlich, insbesondere am Punkt P und am Punkt Q. Wird deshalb der Schleifstein mit der Schwingachse mit hoher Geschwindigkeit bewegt, dann kann es an Umkehrpunkten, wie dem Punkt P und dem Punkt Q, zum Unterschwingen bzw. überschwingen kommen. Dieses Problem kann auch beim Schleifen einer konischen Oberfläche eines konischen oder kegelstumpfförmigen Werkstückes (nicht gezeigt) mit einem zylindrischen Schleifer auftreten.
  • Die vorliegende Erfindung betrifft die obigen Umstände und hat insbesondere ein Ziel darin, ein Servosteuersystem bereitzustellen, mit dem eine geneigte Oberfläche geschliffen werden kann ohne dass eine Neigungswelle erforderlich wäre und ohne Erzeugung von Unterschwung und Überschwung an den Umkehrstellen.
  • Kurzbeschreibung der Erfindung
  • Zum Erreichen dieser Ziele wird gemäß einer ersten Merkmalskombination der vorliegenden Erfindung ein Servosteuersystem bereitgestellt zum Steuern eines Servomotors einer Werkzeugmaschine zum Schleifen einer geneigten Oberfläche eines mit einem Schleifstein zu schleifenden Materials, wobei das Servosteuersystem einen ersten Servomotor aufweist, der eingerichtet ist, den Schleifstein oder das zu schleifende Material in Bezug auf (längs) einer ersten Schwingwelle zu schwingen, eine erste Positionsdetektoreinheit, die eingerichtet ist, eine Position des ersten Servomotors zu detektieren, eine erste Servomotorsteuereinheit, die eingerichtet ist, den ersten Servomotor zu steuern, einen zweiten Servomotor, der eingerichtet ist, den obigen Schleifstein oder das zu schleifende Material in Bezug auf (längs) einer zweiten Schwingachse zu schwingen, die senkrecht steht zur ersten Schwingachse, eine zweite Positionsdetektoreinheit, die eingerichtet ist, eine Position des zweiten Servomotors zu detektieren, eine zweite Servomotorsteuereinheit, die eingerichtet ist, den zweiten Servomotor zu steuern, eine Bezugswinkelberechnungseinheit, die eingerichtet ist, einen Bezugswinkel zu berechnen auf Basis einer Befehlswinkelgeschwindigkeit und eines Befehlsverteilungszyklus, welche aus Prozessbedingungen gewonnen werden, eine Schwungbefehlsberechnungseinheit, die eingerichtet ist, einen zyklischen Schwingbefehl zu berechnen auf Basis der Prozessbedingungen und des Bezugswinkels, eine erste Zufuhreinheit, die eingerichtet ist, den Bezugswinkel und den Schwingbefehl der ersten Servomotorsteuereinheit zuzuführen, eine erste Positionsfehlerberechnungseinheit, die eingerichtet ist, einen ersten Positionsfehler zu berechnen zwischen dem Schwingbefehl und der Position des ersten Servomotors, die durch die erste Positionsdetektoreinheit für jeden Arbeitszyklus detektiert worden ist, eine erste Wiederholungssteuereinheit, die eingerichtet ist, auf Basis des Bezugswinkels, des Schwingbefehls, und des ersten Positionsfehlers eine Wiederholungssteuerung für den ersten Servomotor auszuführen, eine Multiplikationseinheit, die eingerichtet ist, den Schwingbefehl mit einem Verhältnis entsprechend dem Neigungswinkel der geneigten Oberfläche des zu schleifenden Materials zu multiplizieren, um einen Schwingbefehl nach der Multiplikation zu berechnen, eine zweite Zufuhreinheit, die eingerichtet ist, den Bezugswinkel und den Schwingbefehl nach der Multiplikation der zweiten Servomotorsteuereinheit zuzuführen, eine zweite Positionsfehlerberechnungseinheit, die eingerichtet ist, einen zweiten Positionsfehler zwischen dem Schwingbefehl nach der Multiplikation und der Position des zweiten Servomotors, wie sie durch die zweite Positionsdetektoreinheit detektiert worden ist, für jeden Arbeitszyklus zu berechnen, und eine zweite Wiederholungssteuereinheit, die eingerichtet ist, eine Wiederholungssteuerung für den zweiten Servomotor auf Basis des Bezugswinkels, des Schwingbefehls nach der Multiplikation, und des zweiten Positionsfehlers auszuführen. Die erste Wiederholungssteuereinheit bzw. die zweite Wiederholungssteuereinheit korrigieren den ersten Positionsfehler bzw. den zweiten Positionsfehler und steuern den Antrieb des ersten Servomotors und des zweiten Servomotors auf Basis der korrigierten ersten Positionsfehler und der korrigierten zweiten Positionsfehler und schleifen so die geneigte Oberfläche des zu schleifenden Materials.
  • Gemäß einer zweiten Merkmalskombination der Erfindung enthält in einem Servosteuersystem gemäß der ersten Merkmalskombination die erste Wiederholungssteuereinheit eine erste Zeit-Winkel-Konversionseinheit, die eingerichtet ist, den ersten, für jeden Arbeitszyklus gewonnenen Positionsfehler in einen Fehler für jeden Referenzwinkel zu konvertieren, eine erste Korrekturwertberechnungseinheit, die eingerichtet ist, einen Korrekturwert bezüglich des Referenzwinkels aus dem Fehler für jeden Referenzwinkel zu berechnen, eine erste Korrekturwert-Speichereinheit, die eingerichtet ist, die Korrekturwerte zumindest für einen Zyklus des Schleifsteines oder des zu schleifenden Materials, welcher bzw. welches zyklisch geschwungen wird, eine erste Winkel-Zeit-Konversionseinheit, die eingerichtet ist, den Korrekturwert, welcher in der ersten Korrekturwert-Speichereinheit abgespeichert ist, in einen Korrekturwert für jeden Arbeitszyklus zu konvertieren, und einen ersten Phasenvorlauffilter, der eingerichtet ist, eine Phase des konvertierten Korrekturwertes, der durch die erste Winkel-Zeit-Konversionseinheit konvertiert worden ist, voranzubringen. Die zweite Wiederholungssteuereinheit hat eine zweite Zeit-Winkel-Konversionseinheit, die eingerichtet ist, den zweiten, für jeden Arbeitszyklus gewonnenen Positionsfehler in einen Fehler für jeden Referenzwinkel zu konvertieren, eine zweite Korrekturwertberechnungseinheit, die eingerichtet ist, einen Korrekturwert bezüglich des Referenzwinkels aus dem Fehler für jeden Referenzwinkel zu berechnen, eine zweite Korrekturwert-Speichereinheit, die eingerichtet ist, Korrekturwerte zumindest für einen Zyklus des Schleifsteines oder des zu schleifenden Materials, welcher bzw. welches zyklisch geschwungen wird, abzuspeichern, eine zweite Winkel-Zeit-Konversionseinheit, die eingerichtet ist, den in der zweiten Korrekturwert-Speichereinheit abgespeicherten Korrekturwert in einen Korrekturwert für jeden Arbeitszyklus zu konvertieren, und einen zweiten Phasenvorlauffilter, der eingerichtet ist, eine Phase des konvertierten Korrekturwertes, wie er von der zweiten Winkel-Zeit-Konversionseinheit konvertiert worden ist, voranzubringen.
  • Gemäß einer dritten Merkmalskombination der vorliegenden Erfindung hat in einem Servosteuersystem gemäß der ersten Merkmalskombination der Schwingbefehl eine Sinus-Wellenform.
  • Kurzbeschreibung der Figuren
  • Die obigen Ziele, Merkmale und Vorteile sowie weitere Ziele, Merkmale und Vorteile der vorliegenden Erfindung werden noch deutlicher durch die nachfolgende Beschreibung von Ausführungsbeispielen im Einzelnen mit Blick auf die begleitenden Figuren:
  • 1 ist ein Blockdiagramm eines Servosteuersystems gemäß der Erfindung;
  • 2 zeigt ein Beispiel einer Anwendung des Steuersystems der Erfindung;
  • 3 ist ein Flussdiagramm zur Erläuterung des Betriebs des Servosteuersystems nach 1;
  • 4A zeigt die Beziehung zwischen einer Vorschubposition einer Vorschubwelle und einer Position einer Schwingwelle gemäß der Erfindung;
  • 4B zeigt über der Zeit eine Geschwindigkeit während der Bewegung von einem Punkt P zu einem Punkt Q gemäß 4A;
  • 5 ist ein Blockdiagramm einer ersten Wiederholungssteuereinheit gemäß 1;
  • 6 ist ein Blockdiagramm einer zweiten Wiederholungssteuereinheit gemäß 1;
  • 7 ist ein Flussdiagramm einer Wiederholungssteuerung;
  • 8 zeigt ein anderes Anwendungsbeispiel eines Servosteuersystems nach der Erfindung;
  • 9 zeigt ein Werkstück und einen Schleifstein gemäß herkömmlicher Technik;
  • 10A zeigt den Zusammenhang zwischen einer Vorschubposition einer Vorschubwelle und einer Position einer Schwingwelle gemäß dem Stand der Technik; und
  • 10B zeigt über der Zeit eine Geschwindigkeit bei der Bewegung von einem Punkt P zu einem Punkt Q nach 10A.
  • Beschreibung von Ausführungsbeispielen im Einzelnen
  • Nachfolgend werden Ausführungsbeispiele der Erfindung mit Bezug auf die Figuren beschrieben. In den Figuren sind gleiche oder ähnliche Objekte mit den gleichen oder ähnlichen Bezugszeichen versehen. Zur Erleichterung des Verständnisses sind Abmessungen in den Figuren passend geändert.
  • 1 zeigt ein Blockdiagramm eines Servosteuersystems nach der Erfindung. Das Servosteuersystem 10 hat eine numerische Steuerung 20, einen ersten Servomotor 80a für eine Schwingwelle in X-Richtung, eine erste Servomotorsteuereinheit 40a, die eingerichtet ist, den ersten Servomotor 80a zu steuern, einen zweiten Servomotor 80b für eine Schwingwelle in Y-Richtung, und eine zweite Servomotorsteuereinheit 40b, die eingerichtet ist, den zweiten Servomotor 80b zu steuern.
  • Wie in 1 gezeigt, berechnet die numerische Steuerung 20 Positionsbefehle Pc1 und Pc2, um entsprechende Befehle an die erste Servomotorsteuereinheit 40a und die zweite Servomotorsteuereinheit 40b abzugeben. Der erste Servomotor 80a und der zweite Servomotor 80b haben jeweils Positionsdetektoren 82a bzw. 82b, die eingerichtet sind, Rotationspositionen der jeweiligen Motoren zu detektieren.
  • Entsprechend 1 hat die numerische Steuerung 20 eine Bezugswinkelberechnungseinheit 21, die eingerichtet ist, einen Bezugswinkel zu berechnen auf Basis eines Befehls bezüglich der Winkelgeschwindigkeit und eines Befehls bezüglich der Zyklusverteilung, welche sich aus den Prozessbedingungen ergeben, und eine Schwingbefehlsberechnungseinheit 22, die eingerichtet ist, einen zyklischen Schwingbefehl zu berechnen auf Basis der Prozessbedingungen und des Bezugswinkels. Die numerische Steuerung 20 hat weiterhin eine Multiplikationseinheit 23, die eingerichtet ist, den Schwingbefehl mit einem Verhältnis zu multiplizieren entsprechend einem Kippwinkel β eines Werkstückes W, um so einen „Schwingbefehl nach Multiplikation” zu berechnen.
  • 2 zeigt ein Anwendungsbeispiel für das Servosteuersystem der Erfindung. Wie 2 zeigt, wird das Servosteuersystem 10 zur Steuerung einer Werkzeugmaschine oder einer industriellen Maschine zur Bearbeitung einer geneigten Oberfläche eines fixierten Werkstückes W mittels eines rotierenden Schleifsteines G eingesetzt. Ein Kippwinkel zwischen der geneigten Oberfläche des Werkstückes W und einer horizontalen Ebene wird in 2 als Winkel β bezeichnet (B).
  • In 2 wird der Schleifstein G der Werkzeugmaschine in X-Richtung relativ zum Werkstück W mittels des ersten Servomotors 80a geschwungen und weiterhin wird der Schleifstein G mittels des zweiten Servomotors 80b relativ zum Werkstück W in Y-Richtung geschwungen, die senkrecht steht zur X-Richtung. Dies ermöglicht ein Schleifen der geneigten Oberfläche des Werkstückes W. Wird der Schleifstein G in Z-Richtung vorgeschoben, welches senkrecht steht zur X-Richtung und zur Y-Richtung, kann die gesamte geneigte Fläche geschliffen werden. Angemerkt sei, dass auch das Werkstück W in Bezug auf einen fixierten Schleifstein G schwingbar ist, um die geneigte Oberfläche des Werkstückes W zu schleifen.
  • 3 ist ein Flussdiagramm zur Darstellung des Betriebs des Servosteuersystems nach 1. Nachfolgend wird der Betrieb des Servosteuersystems gemäß der Erfindung mit Bezug auf die 1 und 3 erläutert. Gemäß 3 gewinnt zunächst in Schritt S1 die Bezugswinkelberechnungseinheit 21 eine Winkel befehlsgeschwindigkeit ω und einen Befehlsverteilungszyklus T aus den Prozessbedingungen bezüglich des Werkstückes W. Eine Bedienungsperson kann auch die Winkelbefehlsgeschwindigkeit ω und den Befehlsverteilungszyklus T über eine Eingabeeinrichtung (nicht gezeigt), wie ein Tastatur, eingeben. In Schritt S2 berechnet die Bezugswinkelberechnungseinheit 21 eine bestimmte Zeit t = nT (n ist eine natürliche Zahl) und einen Bezugswinkel θ = ωt aus der Winkelgeschwindigkeit ω für jeden Befehlsverteilungszyklus.
  • Sodann berechnet in Schritt S3 die Schwingbefehlsberechnungseinheit 22 einen Schwingbefehl auf Basis der Prozessbedingungen und des Bezugswinkels (Referenzwinkels). Bei dem mit der Schwingbefehlsberechnungseinheit 22 berechneten Schwingbefehl handelt es sich beispielsweise um einen Schwingbefehl F(t) = A × cos (ωt). Es kann auch ein anderer Schwingbefehl eingesetzt werden, solange eine Sinuswelle zugrunde liegt. Der Koeffizient A ist eine Amplitude des Schwingbefehls F(t) und wird auf Basis der Prozessbedingungen besonders gesetzt. Wie 2 zeigt, entspricht der Koeffizient A beispielsweise der Länge des Werkstückes W in X-Richtung.
  • Sodann multipliziert in Schritt 54 die Multiplikationseinheit 23 den Schwingbefehl F(t), wie durch die Schwingbefehlsberechnungseinheit 22 berechnet, mit einem Verhältniswert entsprechend dem Kippwinkel der geneigten Oberfläche, beispielsweise tanβ. Dementsprechend wird ein „Schwingbefehl nach Multiplikation” F'(t) = A × tanβ × cos (ωt) berechnet.
  • 4A ist ein Graph zur Darstellung der Beziehung zwischen einer Vorschubposition einer Vorschubwelle (Z-Richtung) und einer Position einer Schwingwelle gemäß der Erfindung. Die in 4A illustrierte Schwingwelle ist beispielsweise die Schwingwelle in X-Richtung und es versteht sich, dass die Verhältnisse sinngemäß gleich sind wenn die Schwingwelle in Y-Richtung wirkt. Wie 4A zeigt, hat der Schwingbefehl F(t) oder der Schwingbefehl nach Multiplikation F'(t) eine Sinuswellenform und damit wird die Servo-Ansprechempfindlichkeit sogar für Schwingungen mit hoher Geschwindigkeit zu verbessern.
  • 4B zeigt über der Zeit die Geschwindigkeit während der Bewegung vom Punkt P zu Punkt Q gemäß 4A. Die Erfindung verwendet den Schwingbefehl F(t) oder den Schwingbefehl nach Multiplikation F'(t), jeweils mit Verlauf entsprechend einer Sinuswelle. Dementsprechend ändert sich gemäß 4B die Bewegungsgeschwindigkeit während der Bewegung von Punkt P zu Punkt Q relativ glatt (ruckfrei). Dadurch wird das Drehmoment beim Beschleunigen/Abbremsen reduziert. Deshalb wird erfindungsgemäß das Auftreten von Unterschwung bzw. Überschwung an den Umkehrpunkten der Schwingungen verhindert.
  • Sodann liefert in Schritt S5 die numerische Steuerung 20 auf Basis des Schwingbefehls F(t) den Positionsbefehl Pc1 und den Bezugswinkel ω an die erste Servomotorsteuereinheit 40a über eine erste Zufuhreinheit 24 für jeden Befehlsverteilungszyklus T. Ähnlich liefert in Schritt S6 die numerische Steuerung 20 auf Basis des Schwingbefehls nach Multiplikation F'(t) den Positionsbefehl Pc2 und den Bezugswinkel ω über eine zweite Zufuhreinheit 25 an die zweite Servomotorsteuereinheit 40B für jeden Befehlsverteilungszyklus T. Auf diese Weise können die erste Servomotorsteuereinheit 40a und die zweite Servomotorsteuereinheit 40b eine Winkelsynchronisationssteuerung ausführen durch Zugrundelegung eines gemeinsamen Bezugswinkels θ = ωt.
  • Es sei angemerkt, dass in den Schritten S5 und S6 der Schwingbefehl F(t) und der Schwingbefehl nach Multiplikation F'(t) direkt der ersten Servomotorsteuereinheit 40a bzw. der zweiten Servomotorsteuereinheit 40b zugeführt werden können. In diesem Fall berechnet die erste Servomotorsteuereinheit 40a bzw. die zweite Servomotorsteuereinheit 40b den Positionsbefehl Pc1 bzw. Pc2 aus dem Schwingbefehl F(t) und dem Schwingbefehl nach Multiplikation F'(t) für jeden Befehlsverteilungszyklus.
  • Sodann detektiert in den Schritten S7 und S8 der erste Positionsdetektor 82a eine Position einer Ausgangswelle des ersten Servomotors 80a. Wie 1 zeigt, wird die Positionsinformation als Positions-Rückkopplung Pf1 zur ersten Servomotorsteuereinheit 40a rückgekoppelt. Ein Rechner 41a in der ersten Servomotorsteuereinheit 40a subtrahiert den ersten Positionsrückkopplungswert Pf1 des ersten Servomotors 80a, wie von ersten Positionsdetektor 82a detektiert, vom ersten Positionsbefehlswert Pc1, um so einen ersten Positionsfehler ε1 zu gewinnen.
  • Sodann detektiert in den Schritten S9 und S10 der zweite Positionsdetektor 82b die Position einer Ausgangswelle des zweiten Servomotors 80b. Diese Positionsinformation wird als Positionsrückkoppelsignal Pf2 in die zweite Servomotorsteuereinheit 40b rückgeführt. Ein Rechner 21b in der zweiten Servomotorsteuereinheit 40b subtrahiert den zweiten Positionsrückkoppelungswert Pf2 des zweiten Servomotors 80b, wie durch den zweiten Positionsdetektor 82b detektiert, vom zweiten Positionsbefehlswert Pc2, um so einen zweiten Positionsfehler ε2 zu gewinnen. Die Schritte S7 bis S10 werden für jeden Arbeitszyklus ausgeführt.
  • Sodann führt eine erste Wiederholungssteuereinheit 70a in der ersten Servomotorsteuereinheit 40a in Schritt 511 eine Wiederholungssteuerung aus auf Basis des Bezugswinkels ωt, des Schwingbefehls F(t), und des ersten Positionsfehlers ε1. Ähnlich führt in Schritt S12 eine zweite Wiederholungssteuereinheit 70b in der zweiten Servomotorsteuereinheit 40b eine Wiederholungssteuerung aus auf Basis des Bezugswinkels ωt, des Schwingbefehls nach Multiplikation F'(t), und des zweiten Positionsfehlers ε2. Die erste Wiederholungssteuereinheit 70a und die zweite Wiederholungssteuereinheit 70b sind bezüglich des Winkels zueinander synchronisiert.
  • 5 illustriert als Blockdiagramm die erste Wiederholungssteuereinheit gemäß 1. Wie 5 zeigt, hat die erste Wiederholungssteuereinheit 70a eine erste Zeit-in-Winkel-Konversionseinheit 42a, einen ersten Addierer 43a, ein erstes Bandbegrenzungsfilter 44a, einen ersten Verzögerungsspeicher 45a, eine erste Winkel-in-Zeit-Konversionseinheit 46a, und ein erstes Phasenvorlauffilter 47a.
  • 6 ist ein Blockdiagramm der zweiten Wiederholungssteuereinheit nach 1. Wie 6 zeigt, hat die zweite Wiederholungsteuereinheit 70b eine zweite Zeit-in-Winkel-Konversionseinheit 42b, einen zweiten Addierer 43b, ein zweites Bandbegrenzungsfilter 44b, einen zweiten Verzögerungsspeicher 45b, eine zweite Winkel-in-Zeit-Konversionseinheit 46b, und ein zweites Phasenvorlauffilter 47b.
  • 7 erläutert als Flussdiagramm die Wiederholungssteuerung. In 7 gezeigte Inhalte gelten sowohl für die erste Wiederholsteuereinheit 70a als auch die zweite Wiederholsteuereinheit 70b. Nachfolgend wird nur die erste Wiederholsteuereinheit 70a mit Blick auf die 4 bis 7 näher beschrieben, jedoch versteht sich, dass dieser Inhalt auch analog für die zweite Wiederholsteuereinheit 70b gilt.
  • Zunächst konvertiert in Schritt S21 gemäß 7 die erste Zeit-in-Winkel-Konversionseinheit 42a unter Verwendung des ersten Positionsfehlers ε1 für jeden Arbeitszyklus und des Referenzwinkels θ (= ωt) den Positionsfehler für jeden vorgegebenen Winkel in einen ersten Positionsfehler ε1. Der Addierer 43a addiert den ersten Positionsfehler ε1 bei jedem der vorgegebenen Winkel θ'(m) (m = 1, 2, 3, ..., mmax), wie durch die erste Zeit-in-Winkel-Konversionseinheit 42a gewonnen, und einen Korrekturbetrag an entsprechenden vorgegebenen Winkeln θ (m) vor einem Musterzyklus, der im ersten Verzögerungsspeicher 45a abgespeichert ist.
  • Sodann führt in Schritt S22 das erste Bandbegrenzungsfilter 44a eine Filterung durch bezüglich des Ausgangs des Addierers 43a, um einen Korrekturbetrag zu gewinnen. Anschließend wird in Schritt S23 der Korrekturbetrag bezüglich jedes vorgegebenen Winkels θ'(m) an den ersten Verzögerungsspeicher 45 gegeben, welcher den Korrekturbetrag für 360° (ein Zyklus) der Bezugswinkel abspeichert und der Korrekturbetrag wird im ersten Verzögerungsspeicher 45 abgespeichert.
  • Sodann liest in Schritt S24 die erste Winkel-in-Zeit-Konversionseinheit 46a einen Korrekturbetrag entsprechend dem Bezugswinkel θ (= ωt) aus jeweiligen vorgegebenen Winkeln θ'(m) im ersten Verzögerungsspeicher 45a aus und konvertiert den ausgelesenen Korrekturbetrag in einen Korrekturbetrag bezogen auf die Zeit, ausgehend von einem Korrekturbetrag bezogen auf den Winkel. Der durch die erste Winkel-in-Zeit-Konversionseinheit 46a in einen zeitbezogenen Korrekturbetrag konvertierte Korrekturwert wird bezüglich einer Phasenverzögerung durch das erste Phasenvorlauffilter 47a kompensiert und an den Rechner 48a abgegeben (Schritt S25). In Schritt S26 addiert der Rechner 48a den Korrekturbetrag von der ersten Wiederholsteuereinheit 70a zum ersten Positionsfehler ε1.
  • Die erste Zeit-in-Winkel-Konversionseinheit 42a und die erste Winkel-in-Zeit-Konversionseinheit 46a sollen näher beschrieben werden. Die erste Zeit-in-Winkel-Konversionseinheit 42a konvertiert den für jeden Arbeitszyklus (für jede Position, Geschwindigkeitsrückkopplungszyklus) gewonnenen ersten Positionsfehler ε1 in einen ersten Positionsfehler in dem Bezugswinkel θ'(m).
  • Der erste Verzögerungsspeicher 45a kann den Korrekturbetrag für eine vorgegebene Winkelposition θ'(m) abspeichern, und zwar für jeden vorgegebenen Winkel, wo ein Musterzyklus des Betriebs beim wiederholten Prozess unterteilt worden ist. Angenommen, ein Musterzyklus sei 2π, und die Teilungsbreite beträgt d, dann hat der erste Verzögerungsspeicher 45a zumindest (2π/d) Speichereinheiten. Wenn (2π/D) = q, speichert der erste Verzögerungsspeicher 45a Korrekturwerte in jeweiligen Winkeln θ'(m) von θ(0) = 2π bis zum Winkel θ(q – 1) = 2π – d, entsprechend dem Teilungsmuster.
  • Die erste Winkel-in-Zeit-Konversionseinheit 46a gewinnt für jeden Arbeitszyklus einen Korrekturwert δ(n) durch Ausführung einer Interpolation bezüglich der Korrekturwerte in den Referenzwinkeln θ'(m) vor und nach dem Bezugswinkel auf Basis des Bezugswinkels θ(n), der im Arbeitszyklus gewonnen wurde. Der Korrekturwert δ(n) betrifft die Zeitabtastung, ist also zeitbasiert.
  • In Schritt S27 gemäß 7 wird der Servomotor mit dem korrigierten Fehlerwert gesteuert.
  • Insbesondere wird gemäß 1 der Korrekturwert von der ersten Wiederholungssteuereinheit 70a im Rechner 48a zum ersten Positionsfehler ε1 hinzuaddiert, wodurch der erste Positionsfehler ε1 korrigiert wird. Sodann wird der korrigierte erste Positionsfehler ε1' mit einer Positionsverstärkung Kp (49) multipliziert, um einen Geschwindigkeitsbefehl Vc1 zu gewinnen und das sogenannte Steuerverfahren mit Positionsrückkoppelung wird durchgeführt.
  • In ähnlicher Weise wird der Korrekturbetrag von der zweiten Wiederholungssteuereinheit 70b im Rechner 48b zum zweiten Positionsfehler ε2 hinzuaddiert und so der zweite Positionsfehler ε2 korrigiert. Sodann wird der korrigierte zweite Positionsfehler ε2' mit einer Positionsverstärkung Kp (49) multipliziert um einen Geschwindigkeitsbefehl Vc2 zu gewinnen und es wird das sogenannte Steuerverfahren mit Positionsrückkoppelung ausgeführt.
  • Sodann wird die Geschwindigkeitssteuerung mit Rückkoppelung durch eine Geschwindigkeitssteuerung (nicht gezeigt) auf Basis der Geschwindigkeitsbefehle Vc1 und Vc2 ausgeführt, um einen Strombefehl zu gewinnen. Die Stromsteuerung mit Rückkoppelung wird durch eine Stromsteuerung (nicht gezeigt) auf Basis des Strombefehls und einer Stromrückkoppelung von einem Stromdetektor (nicht gezeigt) ausgeführt. Eine entsprechende Antriebssteuerung über einen Stromverstärker (nicht gezeigt) erfolgt bezüglich sowohl das ersten Servomotors 80a als auch des zweiten Servomotors 80b.
  • Auf diese Weise wird erfindungsgemäß der Schwingbefehl F(t) bei der Schwingwelle in X-Richtung eingesetzt und der Schwingbefehl nach Multiplikation F'(t), der durch Multiplikation mit einem Verhältnis entsprechend dem Kippwinkel β der geneigten Oberfläche gewonnen wird, wird für die Schwingwelle in Y-Richtung eingesetzt. Der Schwingbefehl F(t) und der „Schwingbefehl nach Multiplikation” F'(t) verwenden den gemeinsamen Bezugswinkel ωt und deshalb werden der Schleifstein G bzw. das Werkstück W synchron geschwungen. Mit der Erfindung wird ein erster Positionsfehler ε1 und ein zweiter Positionsfehler ε2 auf Basis der Winkelinformation des Schwingbefehls F(t) und des „Schwingbefehls nach Multiplikation” F'(t) korrigiert und der Schleifstein bzw. das Werkstück werden wiederholt in der X-Richtung und der Y-Richtung auf Basis des korrigierten ersten Positionsfehlers ε1 und des korrigierten zweiten Positionsfehlers ε2 gesteuert.
  • Auf diese Weise kann nach der Erfindung die geneigte Oberfläche geschliffen werden ohne dass eine Kippwelle erforderlich wäre. Deshalb kann das Servosteuersystem 10 nach der Erfindung bei einer gegebenen Werkzeugmaschine oder industriellen Maschine mit zwei Schwingwellen, die zueinander senkrecht stehen, eingesetzt werden ohne dass Erfordernis einer gekippten Welle.
  • Gemäß 2 wird das Servosteuersystem der Erfindung eingesetzt zum Schleifen einer ebenen geneigten Fläche. Wie aber 8 beispielhaft zeigt, kann das Servosteuersystem 10 gemäß der Erfindung auch eingesetzt werden zum Schleifen einer konischen Oberfläche S eines konischen oder kegelstumpfförmigen Werkstückes W1.
  • In diesem Falle wird das konische oder kegelstumpfförmige Werkstück W1 um seine Zentralachse O gedreht und der Schleifstein G wird in axialer Richtung (X-Richtung) und in radialer Richtung (Y-Richtung) des Werkstückes W1 geschwungen. Auch diese Variante liegt im Umfang der vorliegenden Erfindung.
  • Wirkung der Erfindung
  • Gemäß einer ersten Merkmalskombination wird ein Schwingbefehl einer ersten Schwingwelle mit einem Verhältnis multipliziert entsprechend dem Kippwinkel einer geneigten Oberfläche und die erste Schwingwelle und die zweite Schwingwelle werden zueinander synchronisiert auf Basis eines gemeinsamen Bezugswinkels. Der Positionsfehler wird korrigiert auf Basis von Winkelinformationen bezüglich des Schwingbefehls und die Steuerung wird wiederholt ausgeführt auf Basis des korrigierten Positionsfehlers. Damit kann die geneigte Oberfläche geschliffen werden ohne das Erfordernis einer Kippwelle.
  • Gemäß einer zweiten Merkmalskombination ermöglicht die Erzeugung des Korrekturwertes in Abhängigkeit vom Winkel eine entsprechende Änderung der Winkelgeschwindigkeit.
  • Gemäß einer dritten Merkmalskombination reduziert die sinuswellenartige Form des Schwingbefehls das Drehmoment an den Beschleunigungspunkten/Abbremspunkten. Deshalb wird auch bei Hochgeschwindigkeitsbetrieb entlang der Schwingwelle die Ansprechgeschwindigkeit der Servosteuerung verbessert. Dies wiederum verhindert das Auftreten von Unterschwung bzw. Überschwung an den Umkehrpunkten.
  • Während die vorliegende Erfindung oben mit Blick auf Ausführungsbeispiele erläutert worden ist, versteht sich für die Fachperson, dass die obigen sowie weitere Abwandlungen, Weglassungen und Hinzufügungen erfolgen können, ohne den Umfang der vorliegenden Erfindung zu verlassen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • JP 2011-194552 [0003]

Claims (3)

  1. Servosteuersystem zum Steuern eines Servomotors einer Werkzeugmaschine zum Schleifen einer geneigten Oberfläche eines zu schleifenden Materials mittels eines Schleifsteines, wobei das Servosteuersystem folgendes aufweist: einen ersten Servomotor (80a), der eingerichtet ist, den Schleifstein oder das zu schleifende Material entlang einer ersten Schwingwelle zu schwingen; eine erste Positionsdetektoreinheit (82a), eingerichtet ist, eine Position des ersten Servomotors zu detektieren; eine erste Servomotorsteuereinheit (40a), die eingerichtet ist, den ersten Servomotor zu steuern; einen zweiten Servomotor (80b), der eingerichtet ist, den geschwungenen Schleifstein bzw. das zu schleifende geschwungene Material entlang einer zweiten Schwingwelle zu schwingen, die senkrecht steht zu der ersten Schwingwelle; eine zweite Positionsdetektoreinheit (82b), die eingerichtet ist, eine Position des zweiten Servomotors zu detektieren; eine zweite Servomotorsteuereinheit (40b), die eingerichtet ist, den zweiten Servomotor zu steuern; eine Bezugswinkelberechnungseinheit (21), die eingerichtet ist, einen Bezugswinkel zu berechnen auf Basis eines Winkelgeschwindigkeitsbefehls und einem Befehlsverteilungszyklus, der durch Prozessbedingungen gegeben ist; eine Schwingbefehlsberechnungseinheit (22), die eingerichtet ist, einen zyklischen Schwingbefehl zu berechnen auf Basis der Prozessbedingungen und des Bezugswinkels; eine erste Zufuhreinheit (24), die eingerichtet ist, den Bezugswinkel und den Schwingbefehl der ersten Servomotorsteuereinheit zuzuführen; eine erste Positionsfehlerberechnungseinheit (41a), die eingerichtet ist, einen ersten Positionsfehler zwischen dem Schwingbefehl und der Position des ersten Servomotors, welche mit der ersten Positionsdetektoreinheit detektiert worden ist, für jeden Arbeitszyklus zu berechnen; eine erste Wiederholsteuereinheit (70a), die eingerichtet ist, eine wiederholte Steuerung für den ersten Servomotor auf Basis des Referenzwinkels, des Schwingbefehls und des ersten Positionsfehlers auszuführen; eine Multiplikationseinheit (23), die eingerichtet ist, den Schwingbefehl mit einem Verhältniswert entsprechend dem Neigungswinkel der geneigten Oberfläche des zu schleifenden Materials zu multiplizieren, um einen „Schwingbefehl nach Multiplikation” zu berechnen; eine zweite Zufuhreinheit (25), die eingerichtet ist, den Bezugswinkel und den „Schwingbefehl nach Multiplikation” der zweiten Servomotorsteuereinheit zuzuführen; eine zweite Positionsfehlerberechnungseinheit (41b), die eingerichtet ist, einen zweiten Positionsfehler zwischen dem „Schwingbefehl nach Multiplikation” und der Position des zweiten Servomotors, wie durch die zweite Positionsdetektoreinheit detektiert, für jeden Arbeitszyklus zu berechnen; und eine zweite Wiederholungssteuereinheit (70b), die eingerichtet ist, eine wiederholte Steuerung für den zweiten Servomotor auf Basis des Bezugswinkels, des „Schwingbefehls nach Multiplikation” und des zweiten Positionsfehlers auszuführen, wobei die erste Wiederholsteuereinheit bzw. die zweite Wiederholsteuereinheit den ersten Positionsfehler bzw. den zweiten Positionsfehler korrigieren und den Antrieb des ersten Servomotors und des zweiten Servomotors auf Basis des korrigierten ersten Positionsfehlers bzw. des zweiten korrigierten Positionsfehlers steuern und so die geneigte Oberfläche des zu schleifenden Materials schleifen.
  2. Servosteuersystem gemäß Anspruch 1, wobei die erste Wiederholsteuereinheit folgendes aufweist: eine erste Zeit-zu-Winkel-Konversionseinheit (42a), die eingerichtet ist, den ersten Positionsfehler, der für jeden Arbeitszyklus gewonnen wird, in einen Fehler bezüglich jedes Bezugswinkels zu konvertieren; eine erste Korrekturwertberechnungseinheit, die eingerichtet ist, einen Korrekturwert bezüglich des Bezugswinkels aus dem Fehler für jeden Bezugswinkel zu berechnen; eine erste Korrekturwertspeichereinheit, die eingerichtet ist, zumindest für einen Zyklus des Schleifsteines oder des zu schleifenden Materials, welcher bzw. welches zyklisch geschwungen wird, Korrekturwerte abzuspeichern; eine erste Winkel-zu-Zeit-Konversionseinheit (46a), die eingerichtet ist, den in der ersten Korrekturwertspeichereinheit abgespeicherten Korrekturwert in einen Korrekturwert für jeden Arbeitszyklus zu konvertieren; und einen ersten Phasenvorlauffilter (47a), der eingerichtet ist, eine Phase des von der ersten Winkel-zu-Zeit-Konversionseinheit konvertierten Korrekturwertes vorzuschieben, und wobei die zweite Wiederholungssteuereinheit folgendes aufweist: eine zweite Zeit-in-Winkel-Konversionseinheit (42b), die eingerichtet ist, den für jeden Arbeitszyklus gewonnenen zweiten Positionsfehler in einen Fehler auf Basis jedes Referenzwinkels zu konvertieren; eine zweite Korrekturwertberechnungseinheit, die eingerichtet ist, einen Korrekturwert bezüglich des Referenzwinkels aus dem Fehler für jeden Referenzwinkel zu berechnen; eine zweite Korrekturwertspeichereinheit, die eingerichtet ist, Korrekturwerte für zumindest einen Zyklus des Schleifsteines oder des zu schleifenden Materials, welcher bzw. welches zyklisch geschwungen wird, abzuspeichern; eine zweite Winkel-zu-Zeit-Konversionseinheit (46b), die eingerichtet ist, den in der zweiten Korrekturwertspeichereinheit abgespeicherten Korrekturwert in einem Korrekturwert für jeden Arbeitszyklus zu konvertieren; einen zweiten Phasenvorschubfilter (47b), der eingerichtet ist, eine Phase des von der zweiten Winkel-zu-Zeit-Konversionseinheit konvertierten Korrekturwertes vorzuschieben.
  3. Servosteuersystem gemäß Anspruch 1, wobei der Schwingbefehl Sinuswellenform hat.
DE102014017370.4A 2013-11-29 2014-11-24 Servosteuersystem zum schleifen einer geneigten oberfläche Active DE102014017370B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-248330 2013-11-29
JP2013248330A JP5758973B2 (ja) 2013-11-29 2013-11-29 傾斜面を研削するサーボ制御システム

Publications (2)

Publication Number Publication Date
DE102014017370A1 true DE102014017370A1 (de) 2015-06-03
DE102014017370B4 DE102014017370B4 (de) 2016-10-27

Family

ID=53058570

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014017370.4A Active DE102014017370B4 (de) 2013-11-29 2014-11-24 Servosteuersystem zum schleifen einer geneigten oberfläche

Country Status (4)

Country Link
US (1) US9367045B2 (de)
JP (1) JP5758973B2 (de)
CN (1) CN104678884B (de)
DE (1) DE102014017370B4 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6503000B2 (ja) * 2017-04-18 2019-04-17 ファナック株式会社 揺動切削を行う工作機械の制御装置
JP6599920B2 (ja) * 2017-04-18 2019-10-30 ファナック株式会社 揺動切削を行う工作機械の制御装置
CN110900343A (zh) * 2019-12-10 2020-03-24 苏州嘉睦碧晟建筑装饰有限公司 一种石板打磨抛光加工控制系统
CN113894806B (zh) * 2021-10-20 2023-05-05 武汉理工大学 一种盘式打磨头-工件接触界面角偏差估计及补偿方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194552A (ja) 2010-03-24 2011-10-06 Okamoto Machine Tool Works Ltd ワーク支持装置付き複合平面研削装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06214633A (ja) * 1991-05-31 1994-08-05 Riyouki Eng Kk 平面及び曲面の研削装置
JPH06262483A (ja) * 1993-03-10 1994-09-20 Toyoda Mach Works Ltd 数値制御工作機械
JPH09212218A (ja) * 1996-01-30 1997-08-15 Nippei Toyama Corp 非真円体の研削装置
JP2005216135A (ja) * 2004-01-30 2005-08-11 Fanuc Ltd ねじ切り・ねじ立て加工用制御装置
JP4074638B2 (ja) * 2006-01-31 2008-04-09 ファナック株式会社 電動機の制御装置
JP4728422B2 (ja) * 2009-12-09 2011-07-20 ファナック株式会社 高速揺動動作を高精度化するサーボ制御システム
JP4980453B2 (ja) * 2010-09-06 2012-07-18 ファナック株式会社 加工を高精度化するサーボ制御システム
CN202548604U (zh) * 2012-04-16 2012-11-21 河北威赛特科技有限公司 单脉冲自动跟踪天线伺服控制系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194552A (ja) 2010-03-24 2011-10-06 Okamoto Machine Tool Works Ltd ワーク支持装置付き複合平面研削装置

Also Published As

Publication number Publication date
US9367045B2 (en) 2016-06-14
US20150153713A1 (en) 2015-06-04
CN104678884A (zh) 2015-06-03
DE102014017370B4 (de) 2016-10-27
JP2015104780A (ja) 2015-06-08
CN104678884B (zh) 2016-06-22
JP5758973B2 (ja) 2015-08-05

Similar Documents

Publication Publication Date Title
DE102018005754B4 (de) Steuervorrichtung für eine werkzeugmaschine zum ausführen von schwingungsschneiden
DE102010060177B4 (de) Servomotorsteuersystem für hochpräzise Hochgeschwindigkeits-Oszillationsbewegungen
DE112014006479B4 (de) Numeriksteuervorrichtung
DE102017000473B4 (de) Vorrichtung und Verfahren zum Steuern einer Werkzeugmaschine für das Steuern des synchronisierten Betriebs von Spindelachse und Vorschubachse
DE102017205214A1 (de) Servo-steuereinheit, steuerverfahren und computerprogramm für ein maschinenwerkzeug das für oszillierendes schneiden verwendet wird
DE102014017370B4 (de) Servosteuersystem zum schleifen einer geneigten oberfläche
DE102012110227B4 (de) Motorsteuerungsvorrichtung mit Nullbereichsverarbeitung
CH688472A5 (de) Gravierverfahren und Graviervorrichtung zu dessen Ausfuehrung.
DE102011018536A1 (de) Numerische Steuerung mit einer Oszillationsvorgangsfunktion, die im Stande ist, Geschwindigkeit in einem optionalen Abschnitt zu ändern
DE10043636A1 (de) Verfahren und Schaltungsanordnung zur Erzeugung von Lagesollwerten für einen Lageregelkreis einer numerisch bahngesteuerten Maschine
DE112011101682T5 (de) Motorsteuervorrichtung
DE102016003642B4 (de) Servosteuervorrichtung für eine lernende Steuerung durch Änderung einer Referenzachse
DE102009038155B4 (de) Servomotorsteuergerät
DE112019007578T5 (de) Numerische Steuerung, numerisches Steuerverfahren und Maschinenlernvorrichtung
DE112020007163T5 (de) Numerische Steuerung und numerisches Steuerungsverfahren
WO2016128290A1 (de) Verfahren zum überwachen einer werkzeugmaschine
DE102019204409A1 (de) Anzeigevorrichtung
DE102019000890B4 (de) Robotersystem zum Ausführen einer Lernsteuerung basierend auf Bearbeitungsergebnissen und diesbezügliches Steuerverfahren
DE102017010539B4 (de) Vorrichtung und Verfahren zum Steuern einer Werkzeugmaschine, um einen synchronisierten Betrieb einer Spindelachse und einer Vorschubachse zu steuern
DE102018003638A1 (de) Numerische Steuerung
DE102021109788A1 (de) Zahnradbearbeitungsvorrichtung
DE102020207868A1 (de) Numerische steuervorrichtung, steuerprogramm und steuerverfahren
DE2165926C2 (de) Steuerungsvorrichtung für die Vorschubbewegung von Werkzeugen an Werkzeugmaschinen mit mehreren Werkzeugspindeln
DE102019204643A1 (de) Steuereinrichtung für eine werkzeugmaschine
EP2199879A1 (de) Vorrichtung und Verfahren zur Minimierung eines dynamischen Schleppfehlers

Legal Events

Date Code Title Description
R082 Change of representative

Representative=s name: WUESTHOFF & WUESTHOFF, PATENTANWAELTE PARTG MB, DE

R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final