DE102013101367A1 - Halbleiterchip - Google Patents

Halbleiterchip Download PDF

Info

Publication number
DE102013101367A1
DE102013101367A1 DE102013101367.8A DE102013101367A DE102013101367A1 DE 102013101367 A1 DE102013101367 A1 DE 102013101367A1 DE 102013101367 A DE102013101367 A DE 102013101367A DE 102013101367 A1 DE102013101367 A1 DE 102013101367A1
Authority
DE
Germany
Prior art keywords
semiconductor chip
contacts
areas
layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102013101367.8A
Other languages
English (en)
Inventor
Thomas Schlereth
Markus Kirsch
Dr. Gärtner Christian
Tony Albrecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to DE102013101367.8A priority Critical patent/DE102013101367A1/de
Priority to DE112014000774.9T priority patent/DE112014000774A5/de
Priority to PCT/EP2014/052246 priority patent/WO2014124853A1/de
Priority to US14/767,245 priority patent/US9379161B2/en
Publication of DE102013101367A1 publication Critical patent/DE102013101367A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

Es wird ein Halbleiterchip (10) angegeben, umfassend: – eine Halbleiterschichtenfolge (20) mit einem p-Typ Halbleiterbereich (5) und einem n-Typ Halbleiterbereich (3), – mehrere p-Kontakte (11a, 11b), die elektrisch leitend mit dem p-Typ Halbleiterbereich (5) verbunden sind, und – mehrere n-Kontakte (12a, 12b), die elektrisch leitend mit dem n-Typ Halbleiterbereich (3) verbunden sind, wobei – die p-Kontakte (11a, 11b) und die n-Kontakte (12a, 12b) an einer Rückseite des Halbleiterchips (10) angeordnet sind, – der Halbleiterchip (10) mehrere nebeneinander angeordnete Bereiche (21, 22) aufweist, und – die Bereiche (21, 22) jeweils einen der p-Kontakte (11a, 11b) und einen der n-Kontakte (12a, 12b) aufweisen.

Description

  • Die Erfindung betrifft einen Halbleiterchip, insbesondere einen optoelektronischen Halbleiterchip.
  • Bei der Herstellung von Halbleiterchips, insbesondere optoelektronischen Halbleiterchips wie beispielsweise LEDs, wird in der Regel eine Epitaxieschichtenfolge auf ein Substrat aufgewachsen, wobei die Epitaxieschichtenfolge durch eine Folge von Strukturierungs-, Metallisierungs- und Trennprozessen zu einzelnen Halbleiterchips vereinzelt und mit elektrischen Kontakten versehen wird.
  • Bei vielen LED-Anwendungen, beispielsweise zur Allgemeinbeleuchtung, in Scheinwerfern, in Displays oder in Projektionssystemen, wird oftmals eine Vielzahl von LED-Chips eingesetzt, die in der Regel in einer vorgegebenen Anordnung nebeneinander angeordnet sind. Zur Herstellung einer solchen Anordnung wird die Vielzahl der LEDs auf einem gemeinsamen Träger positioniert und montiert.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Halbleiterchip anzugeben, der mehrere einzeln ansteuerbare funktionelle Bereiche aufweist, welche zum Beispiel jeweils die Funktion eines LED-Chips haben. Der Halbleiterchip soll im Vergleich zu einer Anordnung aus einer Vielzahl von einzelnen Halbleiterchips vergleichsweise einfach herstellbar sein.
  • Diese Aufgabe wird durch einen Halbleiterchip gemäß dem unabhängigen Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen des Halbleiterchips sind Gegenstand der abhängigen Ansprüche.
  • Der Halbleiterchip umfasst gemäß zumindest einer Ausgestaltung eine Halbleiterschichtenfolge mit einem p-Typ Halbleiterbereich und einem n-Typ Halbleiterbereich. Der Halbleiterchip weist mehrere p-Kontakte auf, die elektrisch leitend mit dem p-Typ Halbleiterbereich verbunden sind. Weiterhin weist der Halbleiterchip mehrere n-Kontakte auf, die elektrisch leitend mit dem n-Typ Halbleiterbereich verbunden sind. Die p-Kontakte und die n-Kontakte sind an einer Rückseite des Halbleiterchips angeordnet. Insbesondere kann es sich bei dem Halbleiterchip um einen so genannten Flip-Chip handeln, bei dem sowohl die p-Kontakte als auch die n-Kontakte an der Rückseite des Halbleiterchips, insbesondere an einer einem Träger zugewandten Montageseite des Halbleiterchips, angeordnet sind.
  • Der Halbleiterchip umfasst mehrere nebeneinander angeordnete Bereiche, wobei die Bereiche jeweils einen der p-Kontakte und einen der n-Kontakte aufweisen. Insbesondere weist jeder der Bereiche jeweils genau einen der p-Kontakte und genau einen der n-Kontakte auf. Auf diese Weise ist es möglich, dass jeder der mehreren nebeneinander angeordneten Bereiche des Halbleiterchips über den zugeordneten p-Kontakt und den zugeordneten n-Kontakt elektrisch kontaktiert werden kann. Jeder der nebeneinander angeordneten Bereiche des Halbleiterchips bildet so vorteilhaft eine funktionelle Einheit aus, welche die Funktion eines einzelnen Halbleiterchips wie beispielsweise eines LED-Chips aufweisen kann. Die mehreren nebeneinander angeordneten Bereiche des Halbleiterchips bilden vorteilhaft eine Vielzahl derartiger funktioneller Bereiche aus, sodass der Halbleiterchip vorteilhaft die Funktion einer Vielzahl von nebeneinander angeordneten Halbleiterchips aufweisen kann. Im Gegensatz zu einer Vielzahl von separaten Halbleiterchips ist diese Funktion bei dem hierin beschriebenen Halbleiterchip mit einem einzigen in mehrere Bereiche unterteilten Halbleiterchip realisiert, sodass eine separate Positionierung und Montage einzelner Halbleiterchips auf einem Träger vorteilhaft entfallen kann. Vielmehr kann der gesamte Halbleiterchip vorteilhaft in einem einzigen Verfahrensschritt auf einen Träger montiert werden, wobei vorteilhaft die p-Kontakte und die n-Kontakte der mehreren nebeneinander angeordneten Bereiche gleichzeitig mit einer Kontaktstruktur des Trägers, beispielsweise Leiterbahnen, verbunden werden.
  • Die mehreren nebeneinander angeordneten Bereiche des Halbleiterchips sind vorzugsweise gleich aufgebaut. Dies bedeutet insbesondere, dass die mehreren nebeneinander angeordneten Bereiche die gleiche Schichtenfolge und die gleichen Schichtdicken aufweisen. Weiterhin weisen die gleich aufgebauten Bereiche vorteilhaft jeweils die gleiche Grundfläche und die gleiche Querschnittsfläche auf. Vorzugsweise sind die mehreren nebeneinander angeordneten Bereiche innerhalb der Fertigungstoleranz im Aufbau identisch. Weiterhin weisen vorteilhaft die p-Kontakte und n-Kontakte der mehreren nebeneinander angeordneten Bereiche jeweils die gleiche Struktur und die gleiche Anordnung auf.
  • Bei einer bevorzugten Ausgestaltung des optoelektronischen Halbleiterchips weisen die mehreren Bereiche eine Gitteranordnung auf. Die mehreren nebeneinander angeordneten Bereiche können insbesondere eine Gitteranordnung aus m Zeilen und n Spalten ausbilden, wobei m und n ganze Zahlen sind und vorzugsweise m, n ≥ 2 gilt.
  • Bei einer bevorzugten Ausgestaltung des Halbleiterchips sind zwischen den mehreren Bereichen Gräben angeordnet, welche die Halbleiterschichtenfolge zumindest teilweise durchtrennen. Die Gräben durchtrennen die Halbleiterschichtenfolge vorzugsweise derart, dass die p-Typ Halbleiterbereiche und die n-Typ Halbleiterbereiche von benachbarten nebeneinander angeordneten Bereichen jeweils elektrisch voneinander getrennt sind. Der p-Kontakt und der n-Kontakt von jedem der mehreren Bereiche kontaktieren bei dieser Ausgestaltung nur den jeweiligen Bereich, sie sind aber von den benachbarten Bereichen des Halbleiterchips elektrisch isoliert. Die nebeneinander angeordneten Bereiche sind daher separat kontaktierbar.
  • Bei einer bevorzugten Ausgestaltung des Halbleiterchips sind mindestens zwei der nebeneinander angeordneten Bereiche in Reihe geschaltet. Dies kann insbesondere dadurch erfolgen, dass der p-Kontakt eines Bereichs und der n-Kontakt eines weiteren Bereichs beispielsweise durch eine Kontaktfläche oder durch eine Leiterbahn auf einem Träger des Halbleiterchips miteinander verbunden werden.
  • Bei einer bevorzugten Ausgestaltung des Halbleiterchips sind alle nebeneinander angeordneten Bereiche in Reihe geschaltet. Auf diese Weise kann ein so genannter Hochvolt-Chip realisiert werden, der mit einer Betriebsspannung betrieben wird, die der Summe der an den einzelnen Bereichen abfallenden Vorwärtsspannungen entspricht.
  • Bei einer weiteren Ausgestaltung des Halbleiterchips sind mindestens zwei der nebeneinander angeordneten Bereiche parallel geschaltet. Dies kann insbesondere dadurch erfolgen, dass die p-Kontakte zweier benachbarter Bereiche miteinander elektrisch verbunden werden, und auch die n-Kontakte der nebeneinander angeordneten Bereiche elektrisch miteinander verbunden werden.
  • Bei einer weiteren bevorzugten Ausgestaltung sind alle nebeneinander angeordneten Bereiche des Halbleiterchips parallel geschaltet.
  • Der Halbleiterchip weist vorzugsweise einen Träger auf, der Kontaktflächen und/oder Leiterbahnen aufweist. Mittels der Kontaktflächen und/oder den Leiterbahnen auf dem Träger können insbesondere mindestens zwei oder mehr Bereiche in Reihe oder parallel geschaltet sein.
  • Bei einer bevorzugten Ausgestaltung weist der Halbleiterchip ein Aufwachssubstrat auf, wobei die mehreren nebeneinander angeordneten Bereiche durch das Aufwachssubstrat miteinander verbunden sind. Die Halbleiterschichtenfolge ist vorzugsweise epitaktisch auf dem Aufwachssubstrat aufgewachsen.
  • Bei einer bevorzugten Ausgestaltung ist der Halbleiterchip ein optoelektronischer Halbleiterchip. Der optoelektronische Halbleiterchip enthält vorteilhaft eine strahlungsemittierende oder eine strahlungsdetektierende aktive Schicht. Insbesondere kann es sich bei dem Halbleiterchip um einen LED-Chip handeln.
  • Gemäß einer Ausgestaltung ist zwischen dem n-Typ Halbleiterbereich und dem p-Typ Halbleiterbereich eine strahlungsemittierende aktive Schicht angeordnet, wobei eine Strahlungsaustrittsfläche der Rückseite des Halbleiterchips gegenüber liegt. Die von der strahlungsemittierenden aktiven Schicht erzeugte Strahlung wird also durch eine Oberfläche des Halbleiterchips emittiert, welche den Kontakten an der Rückseite des Halbleiterchips gegenüber liegt. Die Strahlungsaustrittsfläche des Halbleiterchips kann daher vorteilhaft frei von elektrischen Kontakten sein.
  • Gemäß einer bevorzugten Ausgestaltung ist eine Spiegelschicht an einer von der Strahlungsaustrittsfläche abgewandten Seite der Halbleiterschichtenfolge angeordnet. Die Spiegelschicht kann insbesondere zwischen den elektrischen Kontakten an der Rückseite des Halbleiterchips und der Halbleiterschichtenfolge angeordnet sein. Die Spiegelschicht hat den Vorteil, dass von der strahlungsemittierenden aktiven Schicht emittierte Strahlung, welche in Richtung der Rückseite des Halbleiterchips emittiert wird, zur Strahlungsaustrittsfläche hin umgelenkt wird und so die Strahlungsausbeute des Halbleiterchips erhöht wird.
  • Die p-Kontakte der Bereiche sind vorzugsweise jeweils dadurch mit dem p-Typ Halbleiterbereich verbunden, dass die Spiegelschicht elektrisch leitend ist und an den p-Typ Halbleiterbereich angrenzt, wobei der p-Kontakt elektrisch leitend mit der Spiegelschicht verbunden ist. Bei dieser Ausgestaltung ist in den mehreren Bereichen vorteilhaft jeweils der n-Kontakt mittels einer elektrisch isolierenden Schicht von der Spiegelschicht elektrisch isoliert.
  • Die n-Kontakte der Bereiche sind vorzugsweise mittels mindestens einer Durchkontaktierung, die durch die Spiegelschicht und die Halbleiterschichtenfolge hindurchgeführt ist, mit dem n-Typ Halbleiterbereich elektrisch verbunden.
  • Bei einer Ausgestaltung ist zwischen der Spiegelschicht und den n-Kontakten eine Stromaufweitungsschicht angeordnet, die mit den n-Kontakten elektrisch leitend verbunden ist, wobei die Stromaufweitungsschicht mittels einer ersten elektrisch isolierenden Schicht von der Spiegelschicht isoliert ist und mittels einer zweiten elektrisch isolierenden Schicht von den p-Kontakten isoliert ist.
  • Weiterhin sind bei dieser Ausgestaltung vorteilhaft die n-Kontakte jeweils mittels mehrerer Durchkontaktierungen, die jeweils von der Stromaufweitungsschicht durch die Spiegelschicht und die Halbleiterschichtenfolge hindurchgeführt sind, mit dem n-Typ Halbleiterbereich elektrisch verbunden. Mittels der Stromaufweitungsschicht und den mehreren Durchkontaktierungen wird vorteilhaft erreicht, dass der n-Kontakt an mehreren Stellen mit dem n-Typ Halbleiterbereich elektrisch verbunden ist. Auf diese Weise wird vorteilhaft die Homogenität des Stromflusses in der Halbleiterschichtenfolge verbessert.
  • Für den p-Kontakt kann vorteilhaft die Spiegelschicht als Stromaufweitungsschicht fungieren, wobei die Spiegelschicht vorzugsweise ein Metall oder eine Metalllegierung wie beispielsweise Aluminium oder Silber aufweist. Aluminium und Silber zeichnen sich sowohl durch eine hohe elektrische Leitfähigkeit als auch durch eine hohe Reflexion aus.
  • Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen im Zusammenhang mit den 1 bis 7 näher erläutert.
  • Es zeigen:
  • 1 eine schematische Darstellung eines Querschnitts durch einen optoelektronischen Halbleiterchip gemäß einem ersten Ausführungsbeispiel,
  • 2 eine schematische Darstellung eines Querschnitts durch einen optoelektronischen Halbleiterchip gemäß einem weiteren Ausführungsbeispiel,
  • 3A und 3B eine schematische Darstellung eines optoelektronischen Halbleiterchips gemäß einem weiteren Ausführungsbeispiel in einer Ansicht von unten,
  • 4A und 4B eine schematische Darstellung eines optoelektronischen Halbleiterchips gemäß einem weiteren Ausführungsbeispiel in einer Ansicht von unten,
  • 5 eine schematische Darstellung eines Chipträgers für einen optoelektronischen Halbleiterchip gemäß einem Ausführungsbeispiel,
  • 6 eine schematische Darstellung eines Chipträgers für einen optoelektronischen Halbleiterchip gemäß einem Ausführungsbeispiel, und
  • 7 eine schematische Darstellung eines Chipträgers für einen optoelektronischen Halbleiterchip gemäß einem weiteren Ausführungsbeispiel.
  • Gleiche oder gleich wirkende Bestandteile sind in den Figuren jeweils mit den gleichen Bezugszeichen versehen. Die dargestellten Bestandteile sowie die Größenverhältnisse der Bestandteile untereinander sind nicht als maßstabsgerecht anzusehen.
  • Bei dem in 1 dargestellten Ausführungsbeispiel des Halbleiterchips 10 handelt es sich um einen optoelektronischen Halbleiterchip, insbesondere um einen LED-Chip.
  • Der optoelektronische Halbleiterchip 10 weist eine Halbleiterschichtenfolge 20 auf. Die Halbleiterschichtenfolge 20 basiert vorzugsweise auf einem III-V-Verbindungshalbleitermaterial, insbesondere auf einem Arsenid-, Nitrid- oder Phosphid-Verbindungshalbleitermaterial. Beispielsweise kann die Halbleiterschichtenfolge 20 InxAlyGa1-x-yN, InxAlyGa1-x-yP oder InxAlyGa1-x-yAs, jeweils mit 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 und x + y ≤ 1, enthalten. Dabei muss das III-V-Verbindungshalbleitermaterial nicht zwingend eine mathematisch exakte Zusammensetzung nach einer der obigen Formeln aufweisen. Vielmehr kann es einen oder mehrere Dotierstoffe sowie zusätzliche Bestandteile aufweisen, die die physikalischen Eigenschaften des Materials im Wesentlichen nicht ändern. Der Einfachheit halber beinhalten obige Formeln jedoch nur die wesentlichen Bestandteile des Kristallgitters, auch wenn diese teilweise durch geringe Mengen weiterer Stoffe ersetzt sein können.
  • Der optoelektronische Halbleiterchip 10 weist ein Substrat 1 auf, auf dem die Halbleiterschichtenfolge 20 insbesondere epitaktisch aufgewachsen sein kann. Das Substrat 1 ist also vorteilhaft ein Aufwachssubstrat. Die Halbleiterschichtenfolge 20 umfasst einen n-Typ Halbleiterbereich 3, einen p-Typ Halbleiterbereich 5 und eine zwischen dem n-Typ Halbleiterbereich 3 und dem p-Typ Halbleiterbereich 5 angeordnete aktive Schicht 4. Die Bezeichnungen p-Typ-Halbleiterbereich und n-Typ Halbleiterbereich schließen nicht aus, dass darin eine oder mehrere undotierte Schichten enthalten sein können.
  • Die aktive Schicht 4 des optoelektronischen Halbleiterchips 10 ist eine zur Emission von Strahlung geeignete aktive Schicht 4. Die aktive Schicht 4 kann zum Beispiel als pn-Übergang, als Doppelheterostruktur, als Einfach-Quantentopfstruktur oder Mehrfach-Quantentopfstruktur ausgebildet sein. Zwischen dem Substrat 1 und dem n-Typ Halbleiterbereich 3 können eine oder mehrere Pufferschichten 2 angeordnet sein.
  • Die Strahlungsaustrittsfläche 13 des optoelektronischen Halbleiterchips 10 ist durch eine von der Halbleiterschichtenfolge 20 abgewandte Oberfläche des Substrats 1 gebildet. Der optoelektronische Halbleiterchip 10 emittiert also insbesondere Strahlung durch das Substrat 1. Das Substrat 1 ist daher vorteilhaft ein transparentes Substrat, das insbesondere Silizium, Siliziumkarbid oder Saphir aufweisen kann.
  • An einer der Strahlungsaustrittsfläche 13 gegenüberliegenden Seite der Halbleiterschichtenfolge 20 ist eine Spiegelschicht 6 angeordnet. Durch die Spiegelschicht 6 wird von der aktiven Schicht 4 emittierte Strahlung, welche zu einer der Strahlungsaustrittsfläche 13 gegenüberliegenden Rückseite des Halbleiterchips 10 emittiert wird, in Richtung der Strahlungsaustrittsfläche 13 reflektiert. Dadurch wird die Strahlungsausbeute des optoelektronischen Halbleiterchips 10 erhöht. Die Spiegelschicht 6 ist vorzugsweise aus einem elektrisch leitfähigen Material gebildet. Insbesondere kann die Spiegelschicht 6 ein Metall oder eine Metalllegierung enthalten. Bevorzugt enthält die Spiegelschicht Aluminium, Silber, Gold oder Platin oder besteht daraus. Diese Materialien zeichnen sich zum einen durch eine gute elektrische Leitfähigkeit und zum anderen durch eine hohe Reflektivität aus.
  • In der Halbleiterschichtenfolge 20 sind die Halbleiterschichten in Strahlrichtung gesehen entgegengesetzt zur ursprünglichen Wachstumsrichtung angeordnet, wobei in der von der Spiegelschicht 6 zur Strahlungsaustrittsfläche 13 zeigenden Strahlrichtung der p-Typ-Halbleiterbereich 5, die aktive Schicht 4 und der n-Typ-Halbleiterbereich 3 aufeinander folgen. Die Reihenfolge der Halbleiterbereiche 3, 5 in der Strahlrichtung ist daher umgekehrt zu der Reihenfolge beim epitaktischen Wachstum, bei dem üblicherweise zunächst der n-Typ-Halbleiterbereich 3, dann die aktive Schicht 4 und danach der p-Typ-Halbleiterbereich 5 aufgewachsen werden.
  • Zur elektrischen Kontaktierung des optoelektronischen Halbleiterchips 10 sind an einer von der Halbleiterschichtenfolge 20 abgewandten Seite der Spiegelschicht 6 mehrere p-Kontakte 11a, 11b und mehrere n-Kontakt 12a, 12b angeordnet.
  • Die Halbleiterschichtenfolge 20 weist zwei nebeneinander angeordnete Bereiche 21, 22 auf, wobei die nebeneinander angeordneten Bereiche 21, 22 jeweils einen der p-Kontakte 11a, 11b und einen der n-Kontakte 12a, 12b aufweisen. Der erste Bereich 21 ist über den p-Kontakt 11a und den n-Kontakt 12a und der zweite Bereich 22 über den p-Kontakt 11b und den n-Kontakt 12b kontaktierbar.
  • Die Bereiche 21, 22 sind zum Beispiel durch einen Graben 7 voneinander getrennt. Der Graben 7 durchtrennt die Halbleiterschichtenfolge 20 insbesondere derart, dass der n-Typ Halbleiterbereich 3, die aktive Schicht 4 und der p-Typ Halbleiterbereich 5 der nebeneinander angeordneten Bereiche 21, 22 jeweils nicht unmittelbar elektrisch miteinander verbunden sind.
  • Die nebeneinander angeordneten Bereiche 21, 22 des Halbleiterchips 10 unterscheiden sich vorzugsweise in ihrem Aufbau nicht voneinander. Insbesondere weisen die nebeneinander angeordneten Bereiche den gleichen Querschnitt und die gleiche Grundfläche auf. Weiterhin weisen die elektrischen Kontakte 11a, 12a, 11b, 12b der Bereiche 21, 22 jeweils die gleichen Abmessungen und die gleiche Anordnung auf. Die nebeneinander angeordneten Bereiche 21, 22 sind also vorteilhaft kongruent zueinander.
  • In den Bereichen 21, 22 ist der p-Kontakt 11a, 11b jeweils mit dem p-Typ Halbleiterbereich 5 elektrisch leitend verbunden. Dies kann beispielsweise dadurch erfolgen, dass die Spiegelschicht 6 an den p-Typ Halbleiterbereich 5 angrenzt und der p-Kontakt 11a, 11b mit der Spiegelschicht 6 elektrisch leitend verbunden ist, beispielsweise an die Spiegelschicht 6 angrenzt.
  • Der n-Kontakt 12a, 12b der Bereiche 21, 22 ist jeweils mit dem n-Typ Halbleiterbereich 3 elektrisch leitend verbunden. Dies kann insbesondere derart erfolgen, dass der n-Kontakt 12a, 12b jeweils mittels einer Durchkontaktierung 15, die durch die Spiegelschicht 6 und die Halbleiterschichtenfolge 20 bis in den n-Typ Halbleiterbereich 3 geführt ist, mit dem n-Typ Halbleiterbereich 3 elektrisch leitend verbunden ist. Die Durchkontaktierung 15 ist mit elektrisch isolierenden Schichten 14 von der Spiegelschicht 6, von dem p-Typ Halbleiterbreich 5 und von der aktiven Schicht 4 der Halbleiterschichtenfolge 20 elektrisch isoliert. An der von der Halbleiterschichtenfolge 20 abgewandten Seite der Spiegelschicht 6 ist eine elektrisch isolierende Schicht 8 vorgesehen, um die n-Kontakte 12a, 12b von der Spiegelschicht 6 zu isolieren.
  • Die elektrischen Kontakte 11a, 11b, 12a, 12b des optoelektronischen Halbleiterchips 10 sind jeweils Rückseitenkontakte, die an einer der Strahlungsaustrittsfläche 13 gegenüberliegenden Rückseite des Halbleiterchips 10 angeordnet sind. Die Strahlungsaustrittsfläche 13 ist daher vorteilhaft frei von elektrischen Kontaktschichten. Die als Strahlungsaustrittsfläche 13 dienende Oberfläche des Substrats 1, die von der Halbleiterschichtenfolge 20 abgewandt ist, kann beispielsweise mit einer Aufrauung, einer Auskoppelstruktur oder einer Antireflexionsbeschichtung versehen sein.
  • Die nebeneinander angeordneten Bereiche 21, 22 bilden jeweils eine funktionelle Einheit des Halbleiterchips 10 aus. Bei dem Ausführungsbeispiel bilden die Bereiche 21, 22 jeweils einen separat kontaktierbaren strahlungsemittierenden Bereich des optoelektronischen Halbleiterchips aus. In 1 sind zur Vereinfachung der Darstellung nur zwei nebeneinander angeordnete Bereiche 21, 22 dargestellt. Der Halbleiterchip 10 kann aber eine Vielzahl derartiger Bereiche 21, 22 in einer beliebigen ein- oder zweidimensionalen Anordnung aufweisen.
  • Insbesondere können die nebeneinander angeordneten Bereiche 21, 22 eine Gitteranordnung aus gleichartigen funktionellen Einheiten ausbilden. In diesem Fall weisen die Bereiche 21, 22 beispielsweise eine Gitteranordnung mit m Zeilen und n Spalten auf, wobei m, n ≥ 2 gilt.
  • Der optoelektronische Halbleiterchip 10 ist vorteilhaft oberflächenmontierbar. Der optoelektronische Halbleiterchip 10 kann insbesondere derart montiert werden, dass das Substrat 1 nach oben zeigt und somit die Strahlungsrichtung entgegengesetzt zur Wachstumsrichtung der Halbleiterschichtenfolge 20 ist. Ein derartiger optoelektronischer Halbleiterchip 10 wird auch als Flip-Chip bezeichnet.
  • Der optoelektronische Halbleiterchip 10 kann insbesondere auf einen Träger montiert werden, der Kontaktstrukturen wie beispielsweise Leiterbahnen aufweist. Mittels der Kontaktstrukturen auf dem Träger werden die p-Kontakte 11a, 11b und die n-Kontakte 12a, 12b der Bereiche 21, 22 elektrisch angeschlossen. Insbesondere ist es möglich, dass die Bereiche 21, 22 mittels geeigneter Kontaktstrukturen auf dem Träger parallel oder in Reihe geschaltet werden.
  • In 2 ist ein zweites Ausführungsbeispiel des optoelektronischen Halbleiterchips 10 schematisch im Querschnitt dargestellt.
  • Der Aufbau der auf dem Substrat 1 angeordneten Halbleiterschichtenfolge 20 entspricht dem ersten Ausführungsbeispiel. Ein Unterschied zu dem in 1 dargestellten ersten Ausführungsbeispiel besteht darin, dass die n-Kontakte 12a, 12b der Bereiche 21, 22 jeweils nicht unmittelbar mittels der Durchkontaktierungen 15 mit dem n-Typ Halbleiterbereich 3 verbunden sind. Vielmehr sind die n-Kontakte 12a, 12b bei dem zweiten Ausführungsbeispiel jeweils mittels einer elektrisch leitenden Verbindungsschicht 19 mit einer Stromaufweitungsschicht 18 verbunden.
  • Die Stromaufweitungsschicht 18 ist auf einer der Halbleiterschichtenfolge 20 gegenüberliegenden Seite der Spiegelschicht 6 angeordnet. Die Stromaufweitungsschicht 18 ist dabei mittels der elektrisch isolierenden Schicht 8 von der Spiegelschicht 6 isoliert. Von der Stromaufweitungsschicht 18 gehen vorteilhaft zwei Durchkontaktierungen 15 aus, die jeweils durch die Spiegelschicht 6 und die Halbleiterschichtenfolge 20 bis zu dem n-Typ Halbleiterbereich 3 geführt sind. Die Durchkontaktierungen 15 sind dabei jeweils mittels elektrisch isolierender Schichten 14 von der Spiegelschicht 6, von dem p-Typ Halbleiterbreich 5 und von der aktiven Schicht 4 elektrisch isoliert. Dadurch, dass der optoelektronische Halbleiterchip 10 eine mit den n-Kontakten 12a, 12b verbundene Stromaufweitungsschicht 18 aufweist, von der mehrere Durchkontaktierungen 15 bis in den n-Typ Halbleiterbereich 3 geführt sind, wird in den Bereichen 21, 22 jeweils eine besonders homogene Stromeinprägung in die aktive Schicht 4 erzielt.
  • Die p-Kontakte 11a, 11b sind wie bei dem ersten Ausführungsbeispiel jeweils elektrisch leitend mit der Spiegelschicht 6 verbunden, die an den p-Typ Halbleiterbereich 5 angrenzt. Da bei dem zweiten Ausführungsbeispiel die Stromaufweitungsschicht 18 zwischen der Spiegelschicht 6 und den elektrischen Kontakten 11a, 11b, 12a, 12b angeordnet ist, werden die p-Kontakte 11a, 11b vorteilhaft jeweils mittels einer Durchkontaktierung 17, welche mit elektrisch isolierenden Schichten 16 von der Stromaufweitungsschicht 18 isoliert ist, mit der Spiegelschicht 6 elektrisch leitend verbunden. Die p-Kontakte 11a, 11b sind mit einer weiteren elektrisch isolierenden Schicht 9 von der Stromaufweitungsschicht 18 elektrisch isoliert.
  • Weitere vorteilhafte Ausgestaltungen des zweiten Ausführungsbeispiels ergeben sich aus der Beschreibung des ersten Ausführungsbeispiels und umgekehrt.
  • Bei den Ausführungsbeispielen des optoelektronischen Halbleiterchips 10 gemäß den 1 und 2 sind zur Vereinfachung der Darstellung jeweils nur zwei nebeneinander angeordnete Bereiche 21, 22 dargestellt. Der optoelektronische Halbleiterchip 10 kann eine Vielzahl derartiger nebeneinander angeordneter Bereiche 21, 22 aufweisen, wobei die nebeneinander angeordneten Bereiche 21, 22 insbesondere eine Gitteranordnung aufweisen können.
  • In 3A ist ein Ausführungsbeispiel des optoelektronischen Halbleiterchips 10 in einer Ansicht von unten dargestellt, bei dem der optoelektronische Halbleiterchip 10 insgesamt einhundert nebeneinander angeordnete Bereiche 21, 22 aufweist, die eine Gitteranordnung mit zehn Zeilen und zehn Spalten ausbilden. 3B zeigt eine Vergrößerung des in 3A markierten Ausschnitts A.
  • Der Halbleiterchip 10 kann einen Schichtaufbau wie bei dem in 1 dargestellten Ausführungsbeispiel aufweisen, der daher nicht nochmals näher erläutert wird. Wie bei dem in 1 dargestellten Ausführungsbeispiel sind die nebeneinander angeordneten Bereiche 21, 22 jeweils durch Gräben 7 voneinander getrennt. Die den Gräben 7 zugewandten Seitenflächen der Bereiche 21, 22 können beispielsweise mit einer Passivierungsschicht 23 versehen sein.
  • Die geometrische Anordnung der p-Kontakte 11a, 11b und der n-Kontakte 12a, 12b unterscheidet sich bei dem Ausführungsbeispiel der 3 von dem Ausführungsbeispiel der 1. Die n-Kontakte 12a, 12b sind jeweils kreisförmig ausgeführt und im Zentrum der Bereiche 21, 22 angeordnet. Die p-Kontakte 11a, 11b sind in einem Abstand um die n-Kontakte 12a, 12b herum geführt und reichen bis zu den Seitenflächen der quadratisch ausgebildeten Bereiche 21, 22. Die nebeneinander angeordneten Bereiche 21, 22 sind in ihrem Aufbau identisch und bilden jeweils eine funktionelle Einheit des optoelektronischen Halbleiterchips 10 aus. Die Anzahl der funktionellen Einheiten, die durch die Bereiche 21, 22 gebildet werden, kann bei der Herstellung des optoelektronischen Halbleiterchips 10 an eine vorgegebene Anwendung angepasst werden und der optoelektronische Halbleiterchip 10 durch die Auswahl der Anzahl der funktionellen Einheiten in den Zeilen und Spalten der Gitteranordnung in der Größe skaliert werden.
  • Ein weiteres Ausführungsbeispiel des optoelektronischen Halbleiterchips 10 ist in den 4A und 4B in einer Ansicht von unten dargestellt. Wie in 4A dargestellt, weist der optoelektronische Halbleiterchip 10 insgesamt sechzig nebeneinander angeordnete Bereiche 21, 22 auf, die in zehn Zeilen und sechs Spalten angeordnet sind. Die Bereiche 21, 22, die jeweils eine funktionelle Einheit des optoelektronischen Halbleiterchips 10 bilden, weisen bei diesem Ausführungsbeispiel eine rechteckige Form auf.
  • 4B zeigt eine vergrößerte Ansicht des in 4A markierten Ausschnitts A. Die rechteckförmigen nebeneinander angeordneten Bereiche 21, 22 sind wie bei dem vorherigen Ausführungsbeispiel jeweils durch Gräben 7 voneinander getrennt. Die nebeneinander angeordneten Bereiche 21, 22 sind bei diesem Ausführungsbeispiel wie bei dem in 2 dargestellten Ausführungsbeispiel aufgebaut. In der Ansicht von unten sind jeweils der p-Kontakt 11a, 11b und der n-Kontakt 12a, 12b zu sehen. Der optoelektronische Halbleiterchip 10 kann durch eine geeignete Auswahl der Anzahl der nebeneinander angeordneten Bereiche 21, 22 bei der Herstellung in der Größe skaliert werden.
  • Bei den hierin beschriebenen Ausführungsbeispielen des optoelektronischen Halbleiterchips sind die Bereiche 21, 22 vorteilhaft jeweils über ein gemeinsames Aufwachssubstrat 13 miteinander verbunden. Dies bedeutet, dass die Gräben 7 das Aufwachssubstrat der Halbleiterschichtenfolge, welche die Vielzahl der nebeneinander angeordneten Bereiche 21, 22 ausbildet, zumindest nicht vollständig durchtrennen.
  • Die in den Ausführungsbeispielen beschriebenen optoelektronischen Halbleiterchips 10 haben im Vergleich zu einer Gitteranordnung aus einer Vielzahl von vorher vereinzelten Halbleiterchips den Vorteil, dass sie in einem einzelnen Verfahrensschritt auf einem Träger positioniert und gelötet werden können. Auf diese Weise kann vorteilhaft eine Gitteranordnung aus einer Vielzahl von nebeneinander angeordneten Licht emittierenden Bereichen 21, 22 mit einem vergleichsweise geringen Herstellungsaufwand hergestellt werden.
  • Die mehreren nebeneinander angeordneten Bereiche 21, 22 der optoelektronischen Halbleiterchips 10 können durch eine Montage des optoelektronischen Halbleiterchips auf einen mit geeigneten Kontaktflächen versehenen Träger auf verschiedene Weise elektrisch miteinander verschaltet werden. Beispiele für geeignete Kontaktstrukturen zur Realisierung verschiedener Schaltungen sind in den folgenden 5 bis 7 dargestellt.
  • 5 zeigt eine Aufsicht auf einen Träger 24 für den optoelektronischen Halbleiterchip mit Kontaktflächen 25, 26. Der Träger ist für einen optoelektronischen Halbleiterchip 10 mit zehn nebeneinander angeordneten Bereichen 21, 22 vorgesehen, die in fünf Zeilen und zwei Spalten angeordnet sind. Die gestrichelt eingezeichneten Rechtecke symbolisieren die Umrisse der Bereiche 21, 22, die jeweils mit ihren p-Kontakten 11a, 11b und ihren n-Kontakten 12a, 12b mit den Kontaktflächen 25, 26 verbunden werden.
  • Das Ausführungsbeispiel weist zwei U-förmige Kontaktflächen 25, 26 auf, wobei auf den Schenkeln einer ersten Kontaktfläche 25 die p-Kontakte 11a der Bereiche 21 der ersten Spalte und die p-Kontakte 11b der benachbarten Bereiche 22 der zweiten Spalten angeordnet werden. Auf den Schenkeln der zweiten Kontaktfläche 26 werden die n-Kontakte 12a der ersten Spalte und die n-Kontakte 12b der benachbarten Bereiche 22 der zweiten Spalte angeordnet. Es kann beispielsweise vorgesehen sein, dass jede der beiden U-förmigen Kontaktflächen 25, 26 mittels eines Drahtanschlusses kontaktiert wird. Mit den dargestellten Kontaktflächen 25, 26 auf dem Träger 24 wird eine Parallelschaltung der zehn Bereiche 21, 22 des Halbleiterchips 10 hergestellt. Die Bereiche 21, 22 sind beispielsweise wie bei den Ausführungsbeispielen der 2 und 4 ausgebildet.
  • In 6 ist ein weiteres Ausführungsbeispiel eines Trägers 24 mit Kontaktflächen 27, 28, 29 dargestellt, der wie bei dem Ausführungsbeispiel der 5 für einen optoelektronischen Halbleiterchip 10 mit zehn Bereichen 21, 22 vorgesehen ist, die in fünf Zeilen und zwei Spalten angeordnet sind. Eine erste streifenförmige Kontaktfläche 27 verbindet die p-Kontakte 11a der Bereiche 21 der ersten Spalte miteinander. Die n-Kontakte 12a der Bereiche 21 der ersten Spalte und die p-Kontakte 11b der Bereiche 22 der zweiten Spalte sind durch eine Kontaktfläche 28 miteinander verbunden. Eine weitere streifenförmige Kontaktfläche 29 verbindet die n-Kontakte 12b der Bereiche 22 der zweiten Spalte miteinander. Mit dieser Kontaktstruktur 27, 28, 29 wird erreicht, dass die Bereiche 21 der ersten Spalte parallel geschaltet sind, und auch die Bereiche 22 der zweiten Spalte parallel geschaltet sind. Die fünf Bereiche 21 der ersten Spalte und die fünf Bereiche 22 der zweiten Spalte sind miteinander in Reihe geschaltet. Die beiden streifenförmigen Kontaktfläche 27, 29 können beispielsweise jeweils mit einem Drahtanschluss versehen werden.
  • In 7 ist ein weiteres Ausführungsbeispiel eines für den optoelektronischen Halbleiterchip 10 geeigneten Trägers 24 dargestellt. Wie bei den beiden vorherigen Ausführungsbeispielen ist der Träger 24 für einen optoelektronischen Halbleiterchip 10 mit zehn Bereichen 21, 22 vorgesehen, die in fünf Zeilen und zwei Spalten angeordnet sind. Der p-Kontakt 11a des Bereichs 21 der ersten Zeile und der ersten Spalte sowie der n-Kontakt 12b des Bereichs 22 der ersten Zeile und zweiten Spalte sind jeweils mit einer streifenförmigen Kontaktfläche 30, 31 kontaktiert. Weiterhin ist jeweils ein p-Kontakt 11a, 11b mit einem n-Kontakt 12a, 12b eines benachbarten Bereichs 21, 22 derart verbunden, dass alle zehn Bereiche 21, 22 in Reihe geschaltet sind. Die Verbindung zwischen den p-Kontakten 11a, 11b und den benachbarten n-Kontakten 12a, 12b kann beispielsweise durch Leiterbahnen 32 erfolgen.
  • Die drei Ausführungsbeispiele eines Trägers mit Kontaktflächen in den 5, 6 und 7 verdeutlichen, dass mit einem optoelektronischen Halbleiterchip 10, der beispielsweise zehn nebeneinander angeordnete Bereiche 21, 22 in fünf Zeilen und zwei Spalten aufweist, verschiedene elektrische Schaltungen von Licht emittierenden Bereichen realisiert werden können.
  • Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen angegeben ist.

Claims (15)

  1. Halbleiterchip (10), umfassend: – eine Halbleiterschichtenfolge (20) mit einem p-Typ Halbleiterbereich (5) und einem n-Typ Halbleiterbereich (3), – mehrere p-Kontakte (11a, 11b), die elektrisch leitend mit dem p-Typ Halbleiterbereich (5) verbunden sind, und – mehrere n-Kontakte (12a, 12b), die elektrisch leitend mit dem n-Typ Halbleiterbereich (3) verbunden sind, wobei – die p-Kontakte (11a, 11b) und die n-Kontakte (12a, 12b) an einer Rückseite des Halbleiterchips (10) angeordnet sind, – der Halbleiterchip (10) mehrere nebeneinander angeordnete Bereiche (21, 22) aufweist, und – die Bereiche (21, 22) jeweils einen der p-Kontakte (11a, 11b) und einen der n-Kontakte (12a, 12b) aufweisen.
  2. Halbleiterchip nach Anspruch 1, wobei die mehreren Bereiche (21, 22) gleich aufgebaut sind.
  3. Halbleiterchip nach einem der vorhergehenden Ansprüche, wobei die mehreren Bereiche (21, 22) eine Gitteranordnung aufweisen.
  4. Halbleiterchip nach einem der vorhergehenden Ansprüche, wobei zwischen den mehreren Bereichen (21, 22) Gräben (7) angeordnet sind, welche die Halbleiterschichtenfolge (20) durchtrennen.
  5. Halbleiterchip nach einem der vorhergehenden Ansprüche, wobei mindestens zwei der Bereiche (21, 22) in Reihe geschaltet sind.
  6. Halbleiterchip nach Anspruch 5, wobei alle Bereiche (21, 22) des Halbleiterchips (10) in Reihe geschaltet sind.
  7. Halbleiterchip nach einem der Ansprüche 1 bis 4, wobei mindestens zwei der Bereiche (21, 22) parallel geschaltet sind.
  8. Halbleiterchip nach Anspruch 7, wobei alle Bereiche (21, 22) des Halbleiterchips (10) parallel geschaltet sind.
  9. Halbleiterchip nach einem der Ansprüche 5 bis 8, wobei der Halbleiterchip (10) einen Träger (24) aufweist, und die mindestens zwei Bereiche (21, 22) mittels Kontaktflächen (25, 26, 27, 28, 29, 30, 31) oder Leiterbahnen (32), die auf dem Träger (24) angeordnet sind, in Reihe oder parallel geschaltet sind.
  10. Halbleiterchip nach einem der vorhergehenden Ansprüche, wobei die Halbleiterschichtenfolge (20) ein Aufwachssubstrat (1) aufweist, und die mehreren nebeneinander angeordneten Bereiche (21, 22) durch das Aufwachssubstrat (1) miteinander verbunden sind.
  11. Halbleiterchip nach einem der vorhergehenden Ansprüche, wobei der Halbleiterchip (10) ein optoelektronischer Halbleiterchip ist.
  12. Halbleiterchip nach einem der vorhergehenden Ansprüche, wobei zwischen dem n-Typ Halbleiterbereich (3) und dem p-Typ Halbleiterbereich (5) eine strahlungsemittierende aktive Schicht (4) angeordnet ist, wobei eine Strahlungsaustrittsfläche (13) der Rückseite des Halbleiterchips (10) gegenüberliegt.
  13. Halbleiterchip nach einem der vorhergehenden Ansprüche, wobei eine Spiegelschicht (6) an einer von der Strahlungsaustrittsfläche (13) abgewandten Seite der Halbleiterschichtenfolge (20) angeordnet ist.
  14. Halbleiterchip nach Anspruch 13, wobei zwischen der Spiegelschicht (6) und den n-Kontakten (12a, 12b) eine Stromaufweitungsschicht (18) angeordnet ist, die mit den n-Kontakten (12a, 12b) elektrisch leitend verbunden ist, wobei die Stromaufweitungsschicht (18) mittels einer ersten elektrisch isolierenden Schicht (8) von der Spiegelschicht (6) isoliert ist und mittels einer zweiten elektrisch isolierenden Schicht (9) von den p-Kontakten (11a, 11b) isoliert ist.
  15. Halbleiterchip nach Anspruch 14, wobei die n-Kontakte (12a, 12b) jeweils mittels mehrerer Durchkontaktierungen (15, 17), die jeweils von der Stromaufweitungsschicht (18) durch die Spiegelschicht (6) und die Halbleiterschichtenfolge (20) hindurch geführt sind, mit dem n-Typ Halbleiterbereich (3) elektrisch verbunden sind.
DE102013101367.8A 2013-02-12 2013-02-12 Halbleiterchip Withdrawn DE102013101367A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102013101367.8A DE102013101367A1 (de) 2013-02-12 2013-02-12 Halbleiterchip
DE112014000774.9T DE112014000774A5 (de) 2013-02-12 2014-02-05 Monolithisches Halbleiterchip-Array
PCT/EP2014/052246 WO2014124853A1 (de) 2013-02-12 2014-02-05 Monolithisches halbleiterchip-array
US14/767,245 US9379161B2 (en) 2013-02-12 2014-02-05 Monolithic semiconductor chip array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013101367.8A DE102013101367A1 (de) 2013-02-12 2013-02-12 Halbleiterchip

Publications (1)

Publication Number Publication Date
DE102013101367A1 true DE102013101367A1 (de) 2014-08-14

Family

ID=50033587

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102013101367.8A Withdrawn DE102013101367A1 (de) 2013-02-12 2013-02-12 Halbleiterchip
DE112014000774.9T Pending DE112014000774A5 (de) 2013-02-12 2014-02-05 Monolithisches Halbleiterchip-Array

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE112014000774.9T Pending DE112014000774A5 (de) 2013-02-12 2014-02-05 Monolithisches Halbleiterchip-Array

Country Status (3)

Country Link
US (1) US9379161B2 (de)
DE (2) DE102013101367A1 (de)
WO (1) WO2014124853A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017100716A1 (de) 2017-01-16 2018-07-19 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010026344A1 (de) * 2010-07-07 2012-01-12 Osram Opto Semiconductors Gmbh Leuchtdiode
JP6927970B2 (ja) * 2015-11-20 2021-09-01 ルミレッズ ホールディング ベーフェー 異なる電気的構成を可能にするダイボンドパッド設計
CN109314160B (zh) * 2015-11-20 2021-08-24 亮锐控股有限公司 为实现不同的电配置的管芯接合焊盘设计
DE102018125281A1 (de) * 2018-10-12 2020-04-16 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil
WO2022000385A1 (zh) * 2020-07-01 2022-01-06 重庆康佳光电技术研究院有限公司 显示面板的制作方法、显示面板及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940683A (en) * 1996-01-18 1999-08-17 Motorola, Inc. LED display packaging with substrate removal and method of fabrication
DE102008011848A1 (de) * 2008-02-29 2009-09-03 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen
DE102008051050A1 (de) * 2008-10-09 2010-04-15 Osram Opto Semiconductors Gmbh Modul mit optoelektronischen Halbleiterelementen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514782B1 (en) 1999-12-22 2003-02-04 Lumileds Lighting, U.S., Llc Method of making a III-nitride light-emitting device with increased light generating capability
JP3904571B2 (ja) * 2004-09-02 2007-04-11 ローム株式会社 半導体発光装置
US7910395B2 (en) * 2006-09-13 2011-03-22 Helio Optoelectronics Corporation LED structure
US8207539B2 (en) 2009-06-09 2012-06-26 Epistar Corporation Light-emitting device having a thinned structure and the manufacturing method thereof
EP2445018B1 (de) * 2009-06-15 2016-05-11 Panasonic Intellectual Property Management Co., Ltd. Lichtemittierendes halbleiterbauelement, lichtemittierendes modul und beleuchtungsvorrichtung
WO2013016346A1 (en) * 2011-07-25 2013-01-31 Cree, Inc. High voltage low current surface emitting light emitting diode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940683A (en) * 1996-01-18 1999-08-17 Motorola, Inc. LED display packaging with substrate removal and method of fabrication
DE102008011848A1 (de) * 2008-02-29 2009-09-03 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen
DE102008051050A1 (de) * 2008-10-09 2010-04-15 Osram Opto Semiconductors Gmbh Modul mit optoelektronischen Halbleiterelementen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017100716A1 (de) 2017-01-16 2018-07-19 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil

Also Published As

Publication number Publication date
US9379161B2 (en) 2016-06-28
US20150372054A1 (en) 2015-12-24
WO2014124853A1 (de) 2014-08-21
DE112014000774A5 (de) 2015-10-22

Similar Documents

Publication Publication Date Title
DE102015119353B4 (de) Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils
EP2245667B1 (de) Monolithischer, optoelektronischer halbleiterkörper und verfahren zur herstellung eines solchen
DE102008016074B4 (de) Licht emittierendes Halbleiterbauteil mit transparenten Mehrschichtelektroden
DE102011015821B4 (de) Optoelektronischer Halbleiterchip
EP2248175B1 (de) Optoelektronischer halbleiterkörper und verfahren zur herstellung eines solchen
EP2553726B1 (de) Optoelektronischer halbleiterchip
DE102016100351B4 (de) Optoelektronisches Bauelement, Leuchtvorrichtung und Autoscheinwerfer
DE202009018090U1 (de) Halbleiter-Lichtemittervorrichtung
DE102015108532A1 (de) Anzeigevorrichtung mit einer Mehrzahl getrennt voneinander betreibbarer Bildpunkte
DE102013101367A1 (de) Halbleiterchip
EP2499668A1 (de) Dünnfilm-halbleiterbauelement mit schutzdiodenstruktur und verfahren zur herstellung eines dünnfilm-halbleiterbauelements
DE102011116232B4 (de) Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
DE102012108763B4 (de) Optoelektronischer halbleiterchip und lichtquelle mit dem optoelektronischen halbleiterchip
DE102011056140A1 (de) Optoelektronischer Halbleiterchip
WO2020074351A1 (de) Optoelektronisches halbleiterbauteil
DE102008016525A1 (de) Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen
WO2018114483A1 (de) Optoelektronischer halbleiterchip und verfahren zur herstellung eines optoelektronischen halbleiterchips
WO2020212252A1 (de) Optoelektronisches halbleiterbauelement
DE102015111485A1 (de) Optoelektronisches Halbleiterbauelement
WO2021028185A1 (de) Bauelement mit reduzierter absorption und verfahren zur herstellung eines bauelements
DE102017130757A1 (de) Optoelektronisches halbleiterbauteil
DE102018128896A1 (de) Halbleiterchip mit einem inneren Kontaktelement und zwei äusseren Kontaktelementen und Halbleiterbauelement
WO2021089330A1 (de) Optoelektronisches bauteil und verfahren zur herstellung eines optoelektronischen bauteils
DE102018115225A1 (de) Lichtemmitierendes Halbleiterbauelement oder Halbleiterbauelementmodul
WO2021244982A1 (de) Strahlungsemittierender halbleiterchip

Legal Events

Date Code Title Description
R163 Identified publications notified
R118 Application deemed withdrawn due to claim for domestic priority