DE102010020194A1 - Verfahren und Vorrichtung zur Stabilisierung der Augenhornhaut - Google Patents

Verfahren und Vorrichtung zur Stabilisierung der Augenhornhaut Download PDF

Info

Publication number
DE102010020194A1
DE102010020194A1 DE102010020194A DE102010020194A DE102010020194A1 DE 102010020194 A1 DE102010020194 A1 DE 102010020194A1 DE 102010020194 A DE102010020194 A DE 102010020194A DE 102010020194 A DE102010020194 A DE 102010020194A DE 102010020194 A1 DE102010020194 A1 DE 102010020194A1
Authority
DE
Germany
Prior art keywords
cornea
laser
irradiation
collagen fibers
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102010020194A
Other languages
English (en)
Other versions
DE102010020194B4 (de
Inventor
Dr. Rußmann Christoph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Meditec AG
Original Assignee
Carl Zeiss Meditec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Meditec AG filed Critical Carl Zeiss Meditec AG
Priority to DE102010020194.4A priority Critical patent/DE102010020194B4/de
Priority to US13/696,266 priority patent/US9504607B2/en
Priority to PCT/EP2011/002235 priority patent/WO2011138031A1/de
Publication of DE102010020194A1 publication Critical patent/DE102010020194A1/de
Application granted granted Critical
Publication of DE102010020194B4 publication Critical patent/DE102010020194B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00842Permanent Structural Change [PSC] in index of refraction; Limit between ablation and plasma ignition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00855Calibration of the laser system
    • A61F2009/00857Calibration of the laser system considering biodynamics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

Bisher wird zur Stabilisierung der Augenhornhaut bei Keratokonus ein vernetzendes Agens appliziert und die gesamte Hornhaut über eine relativ lange Zeit hinweg mit UV-Licht bestrahlt, was für den Patienten unangenehm ist und zu Gewebeschädigungen führen kann. Die Erfindung soll es ermöglichen, die Hornhaut mit geringeren Nebenwirkungen zu stabilisieren. Insbesondere soll eine größere Stabilität und eine kürzere Behandlungsdauer ermöglicht werden. Zu diesem Zweck wird die Hornhaut sukzessiv an verschiedenen Stellen lokal derart bestrahlt, dass an den bestrahlten Stellen Kollagenfasern mittelbar oder unmittelbar miteinander vernetzt werden. Die Kollagenfasern werden dadurch vorteilhafterweise ortsaufgelöst vernetzt. Auf diese Weise braucht nicht mehr das gesamte Auge mit gewebeschädigendem UV-Licht bestrahlt zu werden und es können Bereiche mit schwacher Struktur örtlich selektiv stabilisirnhaut derart bestrahlt, dass die Kollagenfasern jeweils durch Photoabsorption mehrerer Photonen, die jeweils eine Energie unterhalb einer Ionisierungsenergie eines betreffenden Moleküls aufweisen, ionisiert werden. Nach kurzer Behandlungszeit entstehen starke kovalente Bindungen unmittelbar zwischen den Kollagenfasern. Auf die Verwendung von vernetzenden Agentien kann vollständig verzichtet werden. Therapie bei Keratokonus, Nachbehandlung refraktiv-chirurgischer Eingriffe

Description

  • Die Erfindung betrifft eine ophthalmologische Laservorrichtung, insbesondere zur Stabilisierung einer Augenhornhaut, mit einem Laser, dessen Strahl längs eines Behandlungsstrahlengangs in einem Behandlungsbereich fokussierbar ist, und einer Steuereinheit zur Steuerung des Lasers sowie ein Verfahren zur Stabilisierung einer Hornhaut eines Auges, wobei die Hornhaut mit Laserlicht bestrahlt wird, um Kollagenfasern der Hornhaut miteinander zu vernetzen. Der Laser wird dabei nachfolgend als Teil des Behandlungsstrahlengangs angesehen. Sofern die Ausbildung, Eignung oder Einstellbarkeit des Behandlungsstrahlengangs angesprochen ist, kann sich dies also insbesondere auf den Laser beziehen. Soweit sich das Obenstehende und Nachfolgende auf Kollagenfasern der Hornhaut bezieht, gilt das zusätzlich oder alternativ zu Kollagenfasern auch für alle anderen Bestandteile der Hornhaut.
  • Eine Stabilisierung der Hornhaut ist insbesondere zur Behandlung eines Keratokonus geeignet, einer Erkrankung, bei der die sich die Hornhaut zunehmend verdünnt und aufgrund des Augeninnendruckes nach außen vorgewölbt wird. Damit geht eine mäßige bis erhebliche Verschlechterung des Sehvermögens einher. Die Vorwölbung der Hornhaut infolge einer Hornhautverdünnung wird als Keratektasie bezeichnet.
  • Obwohl der Gesamtkollagengehalt der Hornhaut sich bei einem Keratokonus nicht signifikant von einer gesunden Hornhaut unterscheidet, ist die Festigkeit etwa um den Faktor 0,7 geringer (Spörl et al.: „Biophysical principles of collagen cross-linking", Klin. Monatsbl. Augenheilkd. 2008 Feb; 225(2):131–7). Außerdem lässt sich mit Pepsin aus der keratokonischen Kornes doppelt soviel Hydroxylprolin herauslösen wie bei der gesunden Korea. Beides lässt auf eine massive Störung der kornealen Vernetzung – möglicherweise in der Tertiär – und Quartärstruktur der Kollagenfasern– schließen.
  • In frühen Stadien eines Keratokonus reicht meist noch eine Brille zur Korrektur aus. Einige Patienten haben aber auch schon in diesem Stadium mehrere Brillen mit verschiedenen Stärken und Sehachsen, die zum Teil in Kombination mit Kontaktlinsen getragen werden, da sich Sehstärke und Achse zum Teil im Verlauf von Tagen ändern können. Beim Fortschreiten des Keratokonus kann die Fehlsichtigkeit in der Regel mit formstabilen Kontaktlinsen und in extremeren Fällen mit speziellen Kontaktlinsen – als Keratokonuslinsen bezeichnet – ausgeglichen werden.
  • Wenn auch mit Kontaktlinsen keine ausreichender Visus mehr erzielt werden kann, weil der Konus sehr wert fortgeschritten ist oder die Kontaktlinsen nicht mehr gut angepasst werden können, erfolgt nach dem Stand der Technik in der Regel eine photooxidative Vernetzung des Kollagens durch Aufbringen von Riboflavin (Vitamin B2) und Bestrahlen der Hornhaut mit UV-A-Licht von etwa 370 nm Wellenlänge über einen Zeitraum von etwa 30 Minuten (Wollensak et al.: „Treatment of keratoconus by collagen cross-linking", Der Ophthalmologe, 2003 Jan.,100(1):44–9). Ähnliche Verfahren sind in US 6,783,539 B1 und US 2008/0114283 A1 beschrieben.
  • Obwohl Riboflavin eine nicht-toxische Substanz ist, ist unbekannt, ob und inwieweit bei der Aktivierung durch UV-A-Licht toxische Folgeprodukte entstehen. Insbesondere sind die Langzeitstabilität und -toxizität ungeklärt. Darüber hinaus ist das Aufbringen von lichtinduziert vernetzenden Agentien (engl. „photo-sensitizer”) wie Riboflavin aufwendig und für den Patienten unangenehm, ebenso wie die lange Behandlungsdauer. Generell ist die Bestrahlung des Auges mit UV-Licht problematisch, da dies zur Schädigung von Gewebe führen kann, insbesondere auch abseits der eigentlich zu behandelnden Cornea. Die Gefahr einer Schädigung steigt dabei mit zunehmender Bestrahlungsdauer an.
  • Als „ultima ratio” kann der Keratokonus durch eine Keratoplastik, also die Transplantation von kornealem Gewebe, behandelt werden. Die Keratoplastik ist jedoch hochinvasiv und kann zum Teil erhebliche Nebenwirkungen wie die Abstoßung des Transplantates zur Folge haben. Sie ist daher möglichst zu vermeiden.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung der eingangs genannten Art und ein Verfahren der eingangs genannten Art anzugeben, die eine Stabilisierung der Hornhaut mit deutlich verminderten Nebenwirkungen ermöglichen.
  • Die Aufgabe wird gelöst durch eine ophthalmologische Laservorrichtung, welche die in Anspruch 1 angegebenen Merkmale aufweist, und durch ein Verfahren, welches die in Anspruch 9 angegebenen Merkmale aufweist.
  • Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Für das erfindungsgemäße Verfahren zur Stabilisierung der Augenhornhaut ist vorgesehen, dass die Hornhaut sukzessiv an verschiedenen Stellen (hinsichtlich eines Wellenlängenbereichs der auftreffenden Strahlung, einer auftreffenden Strahlungsleistung und der zeitlichen Verteilung der auftreffenden Strahlung) lokal derart bestrahlt wird, dass an den bestrahlten Stellen Kollagenfasern miteinander vernetzt werden. Zu Bestrahlung an verschiedenen (vorzugsweise disjunkten) Stellen ist der Behandlungsstrahlengang notwendigerweise optisch so ausgebildet, dass der Laserstrahl zu einem Zeitpunkt nur einen lokalen Teil der Hornhaut bestrahlt, nicht die gesamte Hornhaut.
  • Die Vernetzung der Kollagenfasern miteinander kann erfindungsgemäß mittelbar oder unmittelbar erfolgen. Bei mittelbarer Vernetzung von Kollagenfasern werden diese über ein zusätzliches Molekül (nachfolgend als vernetzendes Agens bezeichnet) indirekt chemisch verbunden. Das vernetzende Agens bindet sich einerseits an eine Kollegenfaser und andererseits an eine andere Kollegenfaser. Bei unmittelbarer Vernetzung wird hingegen jeweils eine Kollegenfaser direkt mit einer anderen Kollegenfaser chemisch verbunden, ohne dass ein anderes Molekül dazwischen eingebunden wird.
  • Die Kollagenfasern werden dadurch vorteilhafterweise ortsaufgelöst vernetzt. Auf diese Weise können Bereiche mit schwacher Struktur örtlich selektiv stabilisiert werden. Im Gegensatz zum Stand der Technik braucht nicht mehr das gesamte Auge mit gewebeschädigendem UV-Licht bestrahlt zu werden. Diese Form des Verfahrens kann insbesondere mit zuvor auf die Hornhaut aufzubringenden exogenen oder endogenen Molekülen – beispielsweise lichtinduziert vernetzenden Agentien wie Riboflavin oder Hyaluronsäure – zur mittelbaren Vernetzung oder ausschließlich mit den Kollagenfasern der Hornhaut selbst zur unmittelbaren Vernetzung eingesetzt werden.
  • Erfindungsgemäß ist für eine ophthalmologische Laservorrichtung vorgesehen, dass der Behandlungsstrahlengang eine variabel einstellbare Ablenkeinheit zum Abtasten (engl. „scanning”) des Behandlungsbereichs aufweist und dass die Steuereinheit eingerichtet ist zum Vernetzen von Kollagenfasern einer Hornhaut eines im Behandlungsbereich angeordneten Auges durch sukzessives Bestrahlen der Hornhaut an verschiedenen Stellen mittels der Ablenkeinheit. Der Behandlungsbereich ist dabei der Bereich, in dem eine zu behandelnde Hornhaut in Behandlungslage des Patienten platziert werden kann. Die variabel einstellbare Ablenkeinheit ermöglicht ein einstellbares Abwinkeln des Behandlungsstrahlengangs zum Bewegen des Laserstrahls relativ zum Behandlungsbereich, also relativ zur Hornhaut. Die Steuereinheit kann dadurch die Kollagenfasern vorteilhafterweise ortsaufgelöst und damit örtlich selektiv vernetzen und so das Auge und umliegendes Gewebe schonen.
  • Die Ausbildung der Steuereinheit zum Vernetzen von Kollagenfasern durch sukzessives Bestrahlen an verschiedenen Stellen kann beispielsweise realisiert werden, indem die Steuereinheit ein Bedienelement zur Verfügung stellt, mittels dessen in Verbindung mit einem Softwaremodul der Steuereinheit zur Ansteuerung der Ablenkeinheit gemäß vorgegebener Bestrahlungssteuerdaten die sukzessive Bestrahlung an den verschiedenen Stellen der Hornhaut zum Zwecke der ortsaufgelösten Vernetzung durch einen Bediener auslösbar ist. Die Bestrahlungssteuerdaten umfassen dabei zweckmäßigerweise Koordinaten samt jeweiliger Strahlungsleistung und Bestrahlungsdauer, die die Steuereinheit in Steuersignale für die Ablenkeinheit und den Laser oder einen Leistungsmodulator (Intensitätsmodulator) umsetzt. Diese Form der Laservorrichtung kann insbesondere mit zuvor auf die Hornhaut aufzubringenden lichtinduziert vernetzenden Agentien wie Riboflavin oder Hyaluronsäure eingesetzt werden.
  • Vorzugsweise werden die Stellen der Hornhaut derart bestrahlt, dass die Kollagenfasern jeweils durch Photoabsorption mehrerer Photonen, die jeweils eine Energie unterhalb einer Ionisierungsenergie eines betreffenden Moleküls aufweisen, ionisiert werden und daraufhin eine unmittelbare kovalente Bindung zwischen den Kollagenfasern entsteht. Unmittelbar bedeutet hier, dass zwei Kollagenfasern direkt, also ohne vermittelndes Agens, eine kovalente Bindung eingehen. Vorzugsweise ist der Behandlungsstrahlengang zu diesem Zweck derart ausgebildet oder einstellbar, dass der Laserstrahl beim Bestrahlen der Hornhaut eine Kollagenfaser (ausschließlich) durch Photoabsorption mehrerer Photonen, die jeweils eine Energie unterhalb einer Ionisierungsenergie eines betreffenden Elektrons aufweisen, ionisiert. Die unmittelbaren kovalenten Bindungen entstehen anschließend durch eine chemische Reaktion der auf diese Weise erzeugten Kollagenradikale miteinander. Unmittelbare kovalente Bindungen bewirken aufgrund ihrer geringen Länge eine starke Verbindung der Kollagenfasern. Ihre Ausbildung wird daher auch als „zero-length cross-linking” bezeichnet. So kann eine deutlich wirksamere Stabilisierung der Hornhaut als bei der Vernetzung mit vernetzenden Agentien bewirkt werden. Auf die Verwendung solcher Agentien kann daher vollständig verzichtet werden. Die Bestrahlung mit Photonen einer unter der Ionisierungsgrenze liegenden Energie führt ausschließlich über mindestens ein reales Zwischenanregungsniveau zur Ionisierung. So wird das Gewebe der Hornhaut und umliegendes Gewebe besonders geschont, da die Bildung von Radikalen auf diese Weise selektiv minimiert werden kann. In allen Ausführungsformen der Erfindung kann die Photoabsorption resonant (Einzelphotonenabsorption oder Mehrphotonenabsorption) oder nichtresonant (Mehrphotonenabsorption) sein.
  • Besonders bevorzugt sind Ausführungsformen, in denen die Bestrahlung derart erfolgt, dass die Ionisierung und die kovalente Bindung im Bereich einer Aminosäure einer betreffenden Kollagenfaser auftreten. Auf diese Weise kann die Stabilisierung durch Quervernetzung von Kollagenfasern bei gewebeschonender Bestrahlungsleistung in kurzer Zeit durchgeführt werden, da die Absorptionseffizienz von Photonen im Bereich von Aminosäuren überraschend hoch ist. Nach theoretischen Prognosen genügt eine Behandlungsdauer von ein bis zwei Minuten gegenüber 30 Minuten nach dem Stand der Technik, um einen typischen Keratokonus zu behandeln. Entsprechend vorteilhaft ist eine Laservorrichtung, bei der der Behandlungsstrahlengang derart ausgebildet oder einstellbar ist, dass der Laserstrahl beim Bestrahlen der Hornhaut eine Kollagenfaser (ausschließlich) durch Photoabsorption mehrerer Photonen, die jeweils eine Energie unterhalb einer Ionisierungsenergie eines betreffenden Elektrons aufweisen, ionisiert.
  • Zweckmäßigerweise wird für derart kurze Behandlungen zum Bestrahlen gepulstes Laserlicht, insbesondere mit einer Pulsdauer von Femtosekunden, Pikosekunden oder Nanosekunden, verwendet. Entsprechend vorteilhaft sind Laservorrichtungen, bei denen der Laser zur pulsweisen Emission ausgebildet ist und insbesondere Femtosekunden-Pulse, Picosekunden-Pulse oder Nanosekunden-Pulse emittiert. Vorzugsweise sind die Femtosekunden-Pulse kürzer als 500 fs.
  • Zweckmäßigerweise erfolgt die Bestrahlung derart, dass die betreffende Aminosäure im Bereich eines π-Elektronensystems ionisiert wird. Insbesondere kann die Bestrahlung (hinsichtlich des auf die Hornhaut treffenden Wellenlängenbereichs) vorteilhafterweise derart erfolgen, dass es im Bereich des π-Elektronensystems zu einer π*-Anregung des betreffenden π-Elektronensystems und insbesondere zu einer Ionisierung an dem betreffenden π-Elektronensystem kommt. Die Beschränkung auf die Anregung und Ionisierung von π-Elektronensystemen bedeutet die Bestrahlung mit einem engen Spektralbereich und damit eine hohe Selektivität, so dass deutlich geringere Nebenwirkungen verursacht werden. Entsprechend vorteilhaft sind Ausführungsformen, in denen der Behandlungsstrahlengang derart ausgebildet oder einstellbar ist, dass der Laserstrahl auf der Hornhaut einen Wellenlängenbereich umfasst, der Aminosäuren der Kollagenfasern, insbesondere π-Elektronensystemen von Aminosäuren, durch Photoabsorption mindestens eines Photons, das eine Energie unterhalb einer Ionisierungsenergie eines betreffenden Elektrons aufweist, π*-anregt und (ausschließlich) durch Photoabsorption mehrerer Photonen, die jeweils eine Energie unterhalb einer Ionisierungsenergie des betreffenden Elektrons aufweisen, ionisiert.
  • Besonders bevorzugt sind Ausgestaltungen, in denen zum Bestrahlen Laserlicht in einem Bereich zwischen 260 nm und 290 nm, insbesondere zwischen 275 nm und 285 nm, oder einem ganzzahligen Vielfachen davon, insbesondere ein Einfaches, Doppeltes, Dreifaches oder ein Vierfaches, verwendet wird. Dadurch werden nahezu ausschließlich π-Elektronenbindungen von Aminosäuren π*–anregt und insbesondere ionisiert. In Verbindung mit der örtlichen Selektivität durch Abtasten der Hornhaut kann die Behandlung äußerst gewebeschonend durchgeführt werden. Entsprechend vorteilhaft sind Vorrichtungen, bei denen der Behandlungsstrahlengang derart ausgebildet oder einstellbar ist, dass der Laserstrahl auf der Hornhaut einen Wellenlängenbereich zwischen 260 nm und 290 nm, insbesondere zwischen 275 nm und 285 nm, oder ein ganzzahliges Vielfaches davon, insbesondere ein Dreifaches oder ein Vierfaches, umfasst. Bei ganzzahligen Vielfachen der Photoabsorptionswellenlänge, also im Sichtbaren oder im nahen Infrarot, tritt Mehrphotonenabsorption ein. Die Bestrahlung mit sichtbarem oder Infrarotlicht bedeutet eine drastische geringere Schädigung der Hornhaut und des umgebenden Gewebes gegenüber der Bestrahlung. Entsprechend vorteilhaft sind Laservorrichtungen, bei denen der Laser ultraviolettes Licht, sichtbares Licht oder Infrarotstrahlung emittiert und der Behandlungsstrahlengang einen Frequenzvervielfacher aufweist. Infrarotstrahlung ist zudem besonders vorteilhaft, weil sie eine hohe Eindringtiefe aufweist, so dass unmittelbare Quervernetzungen zwischen Kollagenfasern auch tief in der Hornhaut möglich sind.
  • Die Anregung und Ionisierung kann mit genau einem Wellenlängenbereich erreicht werden, beispielsweise durch die Frequenzvervierfachte (vierte Harmonische) eines Festkörperlasers (Nd:YAG; Nd:Glas, Ti:Sa, Nd:YLF). Der Generator (engl. „fourth harmonic generator” FHG) kann beispielsweise eine Anordnung aus den doppelbrechenden Kristallen BBO (β-Barium-Borat), KDP (Kaliumdihydrogenphosphat), KTP (Kaliumtitanylphosphat) oder Lithiumniobat sein. Alternativ ist die Bestrahlung mit zwei disjunkten Wellenlängenbereichen, die als bichromatische Anregung bezeichnet werden kann, vorteilhaft. Der Wellenlängenbereich mit den kürzeren Wellenlängen kann dann zur Anregung aus dem Grundzustand dienen, während der Wellenlängenbereich mit den längeren Wellenlängen das angeregte Elektron bis über die Ionisierungsgrenze des Moleküls anregt. Die bichromatische Anregung kann beispielsweise durch Kombination der vierten Harmonischen und der ersten oder zweiten Harmonischen eines Festkörperlasers erreicht werden. Vorteilhaft ist die simultane Applikation von Laserpulsen oder die zeitliche Verzögerung (ΔT ≈ 0...10 ps) der ersten beziehungsweise zweiten Harmonischen durch eine Verzögerungsstrecke (engt. „delay line”). Die Verwendung von optisch-parametrischen Oszillatoren ist möglich.
  • Indem eine betreffende Stelle zeitlich versetzt mit zwei Pulsen disjunkter Wellenlängenbereiche bestrahlt wird, wobei der später eintreffende Puls längere Wellenlängen aufweist als der frühere Puls, insbesondere mit einem zeitlichen Pulsabstand zwischen 0 ps und 10 ps, vorzugsweise zwischen 0 ps und 2 ps. Mit dem ersten Puls wird das betreffende Molekül vom Grundzustand in den ersten angeregten Singulettzustand gehoben, mit dem zweiten Puls wird das Molekül ionisiert. Vorteilhaft ist dabei eine verbesserte Gewebeschonung durch eine Reduktion der schädlicheren kürzeren Wellenlängen sowie die Bevorzugung des Singulettkanals gegenüber dem Triplettkanal mit dem Vorteil eines größeren Anregungsquerschnitts. Entsprechend vorteilhaft ist eine Laservorrichtung, bei der der Laser zwei disjunkte Wellenlängenbereiche pulsweise emittiert und der Behandlungsstrahlengang eine Verzögerungsstrecke für einen längerwelligen der beiden Wellenlängenbereiche zur Erzeugung eines zeitlichen Versatzes zwischen den Pulsen auf der Hornhaut aufweist, insbesondere eines zeitlichen Pulsabstands zwischen 0 ps und 10 ps, vorzugsweise zwischen 0 ps und 2 ps.
  • Vorzugsweise wird bei der Bestrahlung mit dem zweiten Wellenlängenbereich eine Bestrahlungsleistung verwendet, die gegenüber einer Bestrahlungsleistung bei der ersten Wellenlänge einen Faktor zwischen eins und zehn beträgt. Dadurch werden die Hornhaut und das umgebende Gewebe bestmöglich geschont. Die mittlere Wellenlänge des zweiten Wellenlängenbereichs liegt vorzugsweise zwischen 340 nm und 700 nm.
  • Zweckmäßigerweise ist der Behandlungsstrahlengang (hinsichtlich auf die Hornhaut abgegebenem Wellenlängenbereich und Strahlungsleistung) so ausgebildet oder einstellbar, dass die Hornhaut während des Bestrahlens photodisruptionsfrei und ablationsfrei und insbesondere frei von laserinduzierter thermischer Wechselwirkung ist. Dadurch werden Gewebeschäden vermieden. Der Behandlungsstrahlengang kann, beispielsweise durch einen Strahlabschwächer, schaltbar oder permanent eine rein photochemisch wirkende, also Photodisruption oder Photoablation ausschließende Strahlungsleistung auf die Hornhaut abgeben. Alternativ dazu kann der Laser auch ohne Strahlabschwächer einstellbar oder permanent auf eine entsprechende Strahlungsleistung geregelt sein. Bei umschaltbaren Bestrahlungsleistungen, beispielsweise durch verschiedene Schaltstellungen eines Abschwächers, Leistungsmodulators oder des Lasers, kann die Laservorrichtung beispielsweise neben der photochemischen Quervernetzung von Kollagenfasern zur laserchirurgischen Schnittführung mittels Photoablation oder Photodisruption ausgebildet sein.
  • Die Erfindung umfasst auch ein vorteilhaftes Verfahren, bei dem eine Lage eines vorhandenen Schnitts in der Hornhaut eines Auges oder eine andere Läsion der Hornhaut auf bekannte Weise ermittelt und die Hornhaut im Bereich des Schnitts zur Quervernetzung bestrahlt wird. Dadurch können Schnitte aus früheren Behandlungen verschlossen werden. Beispielsweise kann ein mittels eines Femtosekunden-Lasers geschnittener Hornhautlappen (engl. „flap”) oder ein Lentikel sinnbildlich wieder an die Hornhaut „angenäht” werden. Zu diesem Zweck werden aus den ermittelten Koordinaten des Schnitts Bestrahlungssteuerdaten für einen Quervernetzungsdurchgang ermittelt. Diese Verfahrensschritte können beispielsweise von der Steuereinheit durchgeführt werden. Vorteilhaft ist dafür ein mit der Steuereinheit gekoppelter Detektor zum Vermessen des Schnittes. Der Detektor kann beispielsweise mittels eines Strahlteilers in den Behandlungsstrahlengang eingekoppelt sein. Der Laser kann während der Vermessung (durch einen Abschwächer, Leistungsmodulator oder direkte Regelung) mit einer geringen Beleuchtungsleistung betrieben werden. Insbesondere kann die Hornhaut konfokal auf den Detektor abgebildet und zur Vermessung mittels der Ablenkeinheit abgetastet werden. Durch Auslösen eines Bedienelementes der Steuereinheit zur Quervernetzung kann der Bediener schließlich den Behandlungsvorgang mit photochemischer Bestrahlungsleistung auslösen.
  • Speziell umfasst die Erfindung die Verwendung eines gepulsten Femtosekunden-Lasers mit einer Strahlablenkeinheit zur ortsaufgelösten Quervernetzung einer Augenhornhaut, insbesondere bei einer ausschließlich photochemisch wirkenden Bestrahlungsleistung und Photonenenergien unterhalb einer Ionisierungsenergie von Kollagenfasern der Augenhornhaut.
  • Die erfindungsgemäße Quervernetzung im photochemischen Leistungsbereich eines Lasers mit oder ohne vernetzende Agentien erlaubt die Quervernetzung der Kollagenfasern zu therapeutischen Zwecken, beispielsweise zur Behandlung oder Prävention von Keratokonus, zur post-operativen Nachbehandlung von Schnitten in der Comea zur Widerherstellung der präoperativen biomechanischen Stabilität. Dabei können besonders betroffene Hornhautareale basierend beispielsweise auf Topographie- und/oder Wellenfrontmessdaten gezielt quervernetzt werden (engl. „customized cross-linking”). Gegebenenfalls kann die Applikation der Quervernetzungsagentien durch Augentropfen oder durch Injektion in eine korneale Tasche (engl. „pocket”) erfolgen, wobei die Tasche unter anderem durch einen Femtosekunden-Laser geschnitten werden kann.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.
  • In den Zeichnungen zeigen:
  • 1 eine ophthalmologische Laservorrichtung, geeignet zum chirurgischen Schneiden am Auge und zum monochromatischen Stabilisieren von Augenhornhaut
  • 2 Jablonski-Termschemata von Aminosäuren,
  • 3 den Ablauf eines Verfahrens zum ortsaufgelösten Quervernetzen und
  • 4 eine ophthalmologische Laservorrichtung zum zeitversetzt bichromatischen Stabilisieren von Augenhornhaut.
  • In allen Zeichnungen tragen übereinstimmende Teile gleiche Bezugszeichen.
  • 1 zeigt eine beispielhafte ophthalmologische Laservorrichtung 1, die zur Verdeutlichung der Kombinationsmöglichkeit sowohl zum laserchirurgischen Schneiden als auch zum Stabilisieren von Hornhaut 2 eines Auges 3 bei Keratokonus geeignet ist. Darüber hinaus ist sie ausgebildet zum Identifizieren und Orten von vorhandenen Schnitten in der Hornhaut 2 hinsichtlich deren Form und Lage, um die Hornhaut 2 im Bereich derartiger Schnitte querzuvernetzen und so die Schnitte wenigstens teilweise wieder zu verschließen. Zu diesen Zwecken umfasst die Laservorrichtung 1 einen Laser 4, einen Polarisationsstrahlteiler 5, eine Scanoptik 6, eine Ablenkeinheit 7 (auch als Scannereinheit bezeichnet) eine Fokussieroptik 8 und ein Austrittsfenster 9, die zusammen mit einem schaltbaren Strahlabschwächer 15 und einem Leistungsmodulator 16 einen Beleuchtungsstrahlengang B bilden, sowie einen Umlenkspiegel 10, eine konfokale Aperturblende 11 und einen Detektor 12, die einen ausgekoppelten Detektionsstrahlengang D bilden. Daneben umfasst das Lasersystem 1 einen Verstärker 13 für den Detektor 12 und eine Steuereinheit 14. Zwischen dem Lasersystem 1 und dem Auge 3 ist ein Kontaktglas 17 mit einer Fixiervorrichtung für das Auge 3 angeordnet, hinter dem der Behandlungsbereich Q liegt. Andere Ausführungsformen zur Realisierung der erfindungsgemäßen Lösung sind möglich (nicht abgebildet).
  • Die Scannereinheit 7 umfasst beispielsweise eine Anzahl von galvanometrischen Spiegeln zur Ablenkung des Fokusvolumens der Laserstrahlung in x- und y-Richtung über die Cornea 2. Die Fokussierung der Laserstrahlung in z-Richtung entlang der optischen Achse gelingt beispielsweise durch eine bewegliche Linse oder Linsengruppe innerhalb der Scanoptik 6 oder der Fokussieroptik 8 oder alternativ durch eine bewegliche Tubuslinse (nicht abgebildet). Der Detektor 12 ist beispielsweise als Photovervielfacher (engl. „photomultiplier”; PMT) oder als Lawinenphotodiode (engl. „avalanche photo diode”; APD) ausgebildet, da die aufzunehmenden Lichtintensitäten aufgrund der Transparenz der Hornhaut 2 niedrig sind. Der Verstärker 13 ist als Lock-In-Verstärker ausgebildet und sowohl mit dem Detektor 12 als auch mit dem Laser 4 verbunden.
  • Der Laser 4 ist beispielsweise ein gepulster TiSa-Infrarot-Laser mit einer Pulslänge zwischen 100 fs und 1000 fs. Er emittiert Laserstrahlung bei einer zur chirurgischen Schnittführung geeigneten Strahlungsleistung. Die gepulste IR-Laserstrahlung tritt aus dem Laser 4 aus und durchläuft in der Schaltstellung „chirurgische Therapie-Strahlungsleistung” des Abschwächers 15 zunächst unverändert den Polarisationsstrahlteiler 5. Der Modulator 16 dient zur Feineinstellung der auf die Hornhaut 2 abgegebenen Strahlungsleistung. Der Laserstrahl wird anschließend über die Scanoptik 6, die Scannereinheit 7 und die Fokussieroptik 8 in ein Zielvolumen in der Cornea 2 fokussiert. Das Zielvolumen kann mittels der Scannereinheit 7 und einer beweglichen Linse oder Linsengruppe innerhalb der Scanoptik 6 oder der Fokussieroptik 8 in x-, y- und z-Richtung relativ zu Cornea 2 verschoben werden.
  • In der Schaltstellung „Beleuchtungs-Strahlungsleistung” begrenzt der Abschwächer 15 die Strahlleistung so, dass eine Veränderung des Augengewebes durch die Laserstrahlung ausgeschlossen ist. An den Grenzflächen und im Inneren der Cornea 2 kommt es dann zur Streuung/Reflexion der IR-Strahlung, wobei die Strahlung teilweise depolarisiert wird. Rückgestreutes/reflektiertes Licht fällt auch in den Beleuchtungsstrahlengang B und läuft dort den Weg zurück bis zum Polarisationsstrahlteiler 5. Die Strahlungsanteile mit unverändertem Polarisationszustand fallen durch den Polarisationsstrahlteiler 5 hindurch auf den Laser 4. Dies betrifft insbesondere Reflexe, die von der Scanoptik 6 oder der Fokussieroptik 8 stammen. Solche Strahlungsanteile, die durch Depolarisation im Auge 3 in der Cornea 2 einen veränderten Polarisationszustand aufweisen, werden von dem Polarisationsstrahlteiler 5 als Detektionslicht in den Detektionsstrahlengang D zum Detektor 12 abgelenkt. Das Detektionslicht fällt über einen Umlenkspiegel 10 durch die konfokale Lochblende 11 auf den Detektor 12. Der Umlenkspiegel 10 kann in einer alternativen Ausführungsform (nicht abgebildet) entfallen oder durch andere Strahlführungseinheiten ersetzt werden. Die Konfokalblende 11 wirkt als Diskriminator in z-Richtung, so dass ortsaufgelöst nur rückgestreutes Licht aus einem kleinen Fokusvolumen detektiert wird. Die Steuereinheit 14 kann durch Ablenken des Beleuchtungslichts in x- und y-Richtung mittels der Ablenkeinheit 7 und Veränderung der Fokussierung in z-Richtung mittels der Fokussieroptik 8 beliebige Abtastpunkte innerhalb der Cornea 2 mit Beleuchtungslicht bestrahlen und über die Intensität des zugehörigen Detektionslichtes die Stärke der Rückstreuung an diese Punkten ermitteln.
  • Da die am Detektor 12 registrierten Signale eine sehr geringe Intensität aufweisen, ist der elektronische Verstärker für ein optimiertes Signal-Rausch-Verhältnis angepasst. Eine besonders vorteilhafte Ausführungsform ist der Lock-In-Verstärker, der zeitlich mit der Pulsgenerierung beziehungsweise mit der Folgefrequenz des Lasers 2 synchronisiert ist. Andere Ausführungsformen verwenden beispielsweise sogenannte „Boxcar”-Techniken oder Abtasttechniken (engl. „sampling”) mit Aufsummierung oder Mittelung zur Rauschunterdrückung. Vorteilhafterweise weist das gesamte Verstärkersystem des Detektorsignals eine nichtlineare Kennlinie auf. Es kann auch ein Spitzen-Detektor (engl. „peak detector”) und/oder eine Abtast-Halte-Schaltung (engl. „sample and hold”) verwendet werden, um eine Signalverbesserung zu erreichen.
  • In der Schaltstellung „photochemische Strahlungsleistung” des Abschwächers 15 gelangt maximal eine chemische Reaktionen auslösende optische Leistung zur Hornhaut 2, so dass ausschließlich photochemische Wechselwirkungen mit dem Gewebe auftreten, nämlich insbesondere Mehrphotonenabsorptionen in UV-absorbierenden π-Elektronenbindungen von Aminosäuren der Kollagenfasern der Hornhaut 2 und in der Folge, unter zwischenzeitlicher Anregung eines unterhalb der Ionisierungsenergie liegenden Anregungsniveaus, die Ionisierung von Kollagenfasern und Quervernetzung der resultierenden Radikale miteinander.
  • In anderen Ausführungsformen (nicht abgebildet) kann die Laservorrichtung ausschließlich zum Stabilisieren der Hornhaut ausgebildet sein, so dass der Laser 4 und/oder der Abschwächer 15 beispielsweise permanent für eine photochemische Strahlungsleistung ausgebildet sind. Der Detektionsstrahlengang D kann dann entfallen. Es sind aber auch Ausführungsformen (nicht abgebildet) möglich, in denen nur die Detektion von Schnitten oder anderen Läsionen der Hornhaut mit der Stabilisierung der Hornhaut kombiniert ist und die Schneidefähigkeit entfällt.
  • In 2 sind die Anregungsniveaus von Aminosäuren der Kollagenfasern, die zur Quervernetzung genutzt werden können, in Jablonski-Termschemata dargestellt (nicht maßstäblich). In Teilfigur 2A ist die monochromatische Anregung durch Einzelphotonenabsorption dargestellt, in Teilfigur 2B die bichromatische Anregung. Teilfigur 2C zeigt die monochromatische Anregung mit Mehrphotonenabsorption über ein virtuelles Zwischenniveau V, Teilfigur 2D die bichromatische Anregung mit Mehrphotonenabsorption aus dem Grundzustand (S0→S1) über ein virtuelles Zwischenniveau. Stets weist das eingestrahlte Laserlicht eine Photonenenergie auf, die kleiner als die Ionisierungsenergie IG ist.
  • Der/die auf die Hornhaut gestrahlte(n) Wellenlängenbereich(e) wird/werden vorzugsweise passend für Aminosäuren wie Tryptophan, Tyrosin, Phenylalanin, Prolin oder Hydroxylprolin eingestellt. Für den ersten Schritt, die resonante Anregung S0→S1, ist eine Wellenlänge λ1 zwischen 260–290 nm (vorzugsweise zwischen 275 nm und 285 nm um DNS-Schäden zu minimieren) notwendig. Für den zweiten Schritt S1→SN muss ein Photon mit einer Energie eingestrahlt werden, welche die Ionisierung der Aminosäure ausgehend vom angeregten Niveau bewirkt. Folgende Bedingung muss erfüllt sein: E(h·ν2) ≥ EIONISIERUNG – h·ν1
  • Zur Erfüllung dieser Bedingung ist die Verwendung von UV-Photonen möglich, ausreichend sind aber auch Wellenlängen im sichtbaren Bereich.
  • Bei der bichromatischen Quervernetzung wird die UV-Strahlung vorzugsweise nur für die Anregung S0→S1 verwendet. Dadurch ist es möglich, relativ geringe UV-Strahlungsleistungen zu verwenden. Zudem wird durch die anschließende Applikation eines zweiten Laserpulses im sichtbaren Bereich der Singulett-Weg stark begünstigt, wodurch die Schädigungsrate im Gewebe extrem reduziert wird Es bestehen verschiedene Möglichkeiten zur Quervernetzung durch Ionisierung von Kollagenfasern über reale Zwischenniveaus:
  • 1. Resonante Anregung S0→S1→SN oder S0→S1→T1→TN
  • Es ist möglich, sowohl über den Singulett-Weg als auch den Triplett-Weg eine Quervernetzung zu erzeugen, wobei die Singulett-Anregung bedingt durch das quantenmechanisch unwahrscheinlichere Übergänge ISC zwischen Singulett- und Triplettsystemen bei Verwendung von Femtosekunden-Pulsen effizienter ist. Nach der Ionisation erfolgt – unter geeigneten Lage der Sekundär-, Tertiär- und Quartärstrukturen der Kollagenfasern – die Umwandlung von schwachen über Wasserstoffbrücken vermittelten Bindungen zu festen kovalenten Bindungen.
  • Folgende Bedingungen müssen dazu die auf die Hornhaut 2 gestrahlten Anregungswellenlängen erfüllen:
    Figure 00140001
    mit
  • λ1
    Wellenlänge [nm]
    h
    Plancksche Wirkungsquantum (6.625·10–34 Js)
    ΔE(S1 – S0)
    Energie des Photons für die Anregung von S0→S1 [J]
    und
    Figure 00150001
    mit
    λ2
    Wellenlänge [nm]
    EIonisierung– E(S1)
    Energie des Photons für die Anregung von S1→SN [J].
  • Für den monochromatischen Fall gilt λ1 = λ2 und Gleichung (1).
  • 2. Resonante Anregung S0→S1→SN oder S0→S1→T1→TN (Mehrphotonenanregung)
  • Zur Quervernetzung durch Mehrphotonenanregung über ein oder mehrere virtuelle Niveaus müssen die auf die Hornhaut 2 gestrahlten Anregungswellenlängen folgende Bedingungen erfüllen:
    Figure 00150002
    mit
  • n
    Ganze Zahl [1, 2, 3...]
    und
  • Figure 00150003
  • Für den monochromatischen Fall gilt λ1 = λ2 und Gleichung (3).
  • Durch infrarote Femtosekunden-Laserstrahlung, wie in 1 beispielhaft dargestellt, werden Mehrphotonenprozesse in den Molekülen der Kollegenfasern induziert, welche schließlich über mindestens ein reales Zwischenanregungsniveau zur Ionisierung des Moleküls führen. Die Strahlungsleistung muss hoch genug sein, um Mehrphotonenabsorptionen auslösen zu können, es darf aber keine Photodisruption (optischer Durchbruch) oder Ablation induziert werden.
  • Die Steuereinheit 14 führt beispielsweise das in 3 dargestellte Betriebsverfahren durch, wobei der unterbrochen umrandete Schritt S1 typischerweise manuell vom Bediener und nur dann durchgeführt wird, wenn überhaupt ein vernetzendes Agens verwendet werden soll. Der Laser 4 wird dabei sowohl für die Beleuchtung während der Detektionsphase als auch für die Quervernetzung von Kollagenfasern der Cornea 2 während der sich unmittelbar anschließenden Behandlungsphase verwendet. Falls ausschließlich eine Behandlung vorgenommen werden soll, werden die unterbrochen umrandeten Schritte S2 und S3 sowie der unterbrochen umrandete Teilschritt von Schritt S5 nicht durchgeführt.
  • Zunächst wird das Patientenauge 3 fixiert, beispielsweise mittels Unterdruck an eine Kontaktglasvorrichtung angesaugt (Schritt S2). Zusätzlich kann der Kopf des Patienten fixiert sein. Der Blick des Patienten kann durch ein geeignetes Ziel möglichst konstant gehalten werden.
  • Entlang einer einstellbaren kontinuierlichen, dreidimensionalen Abtastkurve oder Abtaststruktur wird das Beleuchtungslicht bei Beleuchtungs-Laserleistung mit einer variablen Pulsfrequenz über die Cornea 2 geführt und Detektionslicht aufgenommen (Schritt S3). Die Pulsfrequenz wird dabei in Abhängigkeit der Geschwindigkeit der Abtastbewegung so eingestellt, dass bei langsamer Abtastbewegung eine niedrigere Pulsfrequenz resultiert als bei schneller Abtastbewegung. Einzelnen Punkten der Abtastkurve wird das rückgestreute Detektionslicht abschnitts- oder punktweise zugeordnet. Durch die Stetigkeit der Abtastkurve unterscheiden sich aufeinanderfolgende Abtastpunkte in allen Raumkoordinaten. Von den detektierten Signalwerten werden vorteilhafterweise jeweilige Dunkelfeldwerte abgezogen werden, die in einem separaten Kalibrierdurchgang ermittelt werden.
  • Aus den den Abtastpunkten zugeordneten Intensitäten werden vorhandene Schnitte identifiziert und deren Form und Lage rekonstruiert (Schritt S4). Zu diesem Zweck werden beispielsweise Abtastpunkte, deren Intensität einen vorgegebenen oder vom Operateur vorgebbaren Intensitätsschwellwert überschreitet, als Stützstellen des Schnitts bestimmt. In einer Ausgleichsrechnung wird ein angenommenes oder aus einer früheren Behandlung bekanntes Modell des Schnittes an die dreidimensionalen Koordinaten der ermittelten Stützstellen des Altschnittes angepasst, um sämtliche Koordinaten des Altschnittes als Basis für die Quervernetzung des Schnittes verfügbar zu machen.
  • Anschließend werden Bestrahlungssteuerdaten bestimmt (Schritt S5). Die Bestrahlungssteuerdaten umfassen beispielsweise Ansteuersignale für die Achsen der Scannereinheit 7 beziehungsweise für die interne z-Fokussierung und für die Laserstrahlquelle und den Leistungsmodulator 16. Die Bestrahlungssteuerdaten werden beispielsweise aus Vorgaben ermittelt, die über eine Software-Schnittstelle aus einer Datenbank oder über eine graphische Benutzerschnittstelle beim Bediener abgefragt werden. Insbesondere können bei der Ermittlung der Bestrahlungssteuerdaten topographische Daten, Wellenfront-Daten, Daten einer Ultraschallmessung oder OCT-Messwerte von der zu behandelnden Hornhaut 2, die räumliche Informationen über einen Keratokonus, vorhandene Schnitte und/oder andere querzuvernetzende Areale enthalten, berücksichtigt werden. Sofern vorhandene Schnitte identifiziert werden, können die dabei gewonnenen Daten ebenfalls bei der Ermittlung der Bestrahlungssteuerdaten verwendet werden, um die Stellen, an denen eine Quervernetzung durchzuführen ist, zu ermitteln. Beispielsweise können die zu bestrahlenden Stellen längs des Schnittes berechnet werden.
  • Unmittelbar anschließend wird die Bestrahlung bei einer ausschließlich photochemisch wirkenden Laserleistung anhand der Bestrahlungssteuerdaten durchgeführt (Schritt S6). Die Steuereinheit 14 steuert dabei den Strahlabschwächer 15 in die Schaltstellung für maximal photochemisch wirksame Strahlungsleistung und bewegt die Ablenkeinheiten 7 und 8 gemäß den Bestrahlungsdaten. An jeder zu bestrahlenden Stelle steuert sie den Leistungsmodulator 16 gemäß den Bestrahlungssteuerdaten so, um die ermittelte Strahlungsenergie in die Hornhaut 2 einzutragen. Aufgrund der Infrarotstrahlung des Lasers 4 erfolgen beispielsweise monochromatische Quervernetzungen durch Mehrphotonenabsorption entsprechend 2C. Schließlich wird die Fixierung des Auges 3 gelöst (Schritt S7).
  • Durch den Einsatz angepasster Abtastkurven (engt. „scanning pattern”), beispielsweise in Form von räumlich erstreckten Lissajous-Figuren, also zwei überlagerten, insbesondere harmonischen Schwingungen, wie räumlich versetzten Achten, ist die Vermessung vorhandener Schnitte in kurzer Zeit möglich, beispielsweise innerhalb von maximal 30 Sekunden, was einerseits Bewegungsungenauigkeiten reduziert und andererseits zu einer höheren Akzeptanz beim Patienten führt. Andere beispielhafte Formen der Abtastung beziehungsweise Abrasterung können sein (nicht abgebildet): zwei gekreuzte Rechtecke im Raum; zwei Zylinderoberflächen; ein zylindrischer Körper mit Querschnitt in Form einer acht oder vier; mehrere Abtastungen längs eindimensionaler Linien. Möglich ist auch das Abrastern des Volumens eines Zylinders oder eines Würfels. Die Volumina beziehungsweise Oberflächen können kontinuierlich oder auch lediglich teilweise, also mit Zwischenräumen zwischen den einzelnen Abtastpunkten, abgerastert werden. So können zwischen einzelnen Zeilen größere Abstände auftreten.
  • Eine Anpassung an die Gegebenheiten des Patientenauges 3, beispielsweise die Stellen, die querzuvernetzen sind oder die benötigte Quervernetzungseffizienz etc., kann unter anderem durch Anpassung der Abtastkurven, eine Variation der Abstände zwischen den Stellen (engl. „spots”), der Pulsenergie und der Pulsfrequenz erfolgen.
  • In 4 ist eine weitere Laservorrichtung 1 zur bichromatischen Quervernetzung schematisch dargestellt. Der infrarote Strahl (1. Harmonische H1) des gepulsten Femtosekunden-Festkörperlasers 1 wird in einem Frequenzvervielfacher 18, beispielsweise einem Vervierfacher (FHG), örtlich und spektral in zwei Strahlen aufgespaltet, einerseits in die zweite oder dritte Harmonische H2/3 in einem grünen beziehungsweise blauen Wellenlängenbereich und andererseits in die vierte Harmonische H4 im ultravioletten Wellenlängenbereich. Der Strahl H2/3 mit dem langwelligeren Wellenlängenbereich grün/blau wird über eine Verzögerungsstrecke 19 geführt und an einem Strahlvereiniger 20 wieder mit dem anderen Strahl H4 vereinigt. Beide Strahlen werden dann gemeinsam in dasselbe Fokusvolumen in der Hornhaut 2 geführt. Die Verzögerungsstrecke 18 ist beispielsweise durch längs der optischen Achse verschiebliche Spiegel auf unterschiedliche Verzögerungen zwischen 0 ps und 10 ps einstellbar. Die grünen beziehungsweise blauen Pulse erreichen die Hornhaut 2 um diese Zeit später als die ultravioletten Pulse. Anstelle einer Verzögerungsstrecke 19 kann ein koaxialdispersives Element eingesetzt werden.
  • In allen Ausführungsformen kann eine Vorrichtung zur Bewegungsverfolgung des Auges (engl. „eye tracker”) eingesetzt werden, um Korrekturen an den Bestrahlungssteuerdaten vorzunehmen.
  • Anstelle von Lichtpulsen von Femtosekunden-Lasern können beispielsweise Nanosekunden- oder Picosekunden-Pulse verwendet werden. Sofern vernetzende Agentien verwendet werden, sind auch andere Lichtquellen und insbesondere eine Bestrahlung mit kontinuierlichen Wellenzügen (engl. „continuous wave”; cw) während des Abtastens verschiedener Stellen der Hornhaut 2 möglich.
  • Bezugszeichenliste
  • 1
    Laservorrichtung
    2
    Hornhaut
    3
    Auge
    4
    Laser
    5
    Polarisationsstrahlteiler
    6
    Scanoptik
    7
    Ablenkeinheit
    8
    Fokussieroptik
    9
    Austrittsfenster
    10
    Umlenkspiegel
    11
    Aperturblende
    12
    Detektor
    13
    Verstärker
    14
    Steuereinheit
    15
    Strahlabschwächer
    16
    Leistungsmodulator
    17
    Kontaktelement
    18
    Frequenzvervielfacher
    19
    Verzögerungsstrecke
    20
    Strahlvereiniger
    B
    Behandlungsstrahlengang
    D
    Detektionsstrahlengang
    Q
    Behandlungsbereich
    S
    Singulettzustand
    T
    Triplettzustand
    IG
    Ionisierungsenergie
    V
    Virtuelles Zwischenniveau
    ISC
    Intersystem-Übergang
    x, y, z
    Koordinaten
    H1
    Erste Harmonische
    H2/3
    Zweite/dritte Harmonische
    H4
    Vierte Harmonische
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 6783539 B1 [0005]
    • US 2008/0114283 A1 [0005]
  • Zitierte Nicht-Patentliteratur
    • Spörl et al.: „Biophysical principles of collagen cross-linking”, Klin. Monatsbl. Augenheilkd. 2008 Feb; 225(2):131–7 [0003]
    • Wollensak et al.: „Treatment of keratoconus by collagen cross-linking”, Der Ophthalmologe, 2003 Jan.,100(1):44–9 [0005]

Claims (19)

  1. Ophthalmologische Laservorrichtung (1), insbesondere zur Stabilisierung einer Augenhornhaut (2), mit einem Laser (4), dessen Strahl längs eines Behandlungsstrahlengangs (B) in einem Behandlungsbereich (Q) fokussierbar ist, und einer Steuereinheit (14) zur Steuerung des Lasers (4), dadurch gekennzeichnet, dass der Behandlungsstrahlengang (B) eine variabel einstellbare Ablenkeinheit (7, 8) zum Abtasten des Behandlungsbereichs (Q) aufweist und dass die Steuereinheit (14) eingerichtet ist zum Vernetzen von Kollagenfasern einer Hornhaut (2) eines im Behandlungsbereich (Q) angeordneten Auges (3) durch sukzessives Bestrahlen der Hornhaut (2) an verschiedenen Stellen mittels der Ablenkeinheit (7, 8).
  2. Vorrichtung (1) nach Anspruch 1, wobei der Behandlungsstrahlengang (B) derart ausgebildet oder einstellbar ist, dass der Laserstrahl beim Bestrahlen der Hornhaut (2) eine Kollagenfaser (ausschließlich) durch Photoabsorption mehrerer Photonen, die jeweils eine Energie unterhalb einer Ionisierungsenergie eines betreffenden Moleküls aufweisen, ionisiert.
  3. Vorrichtung (1) nach Anspruch 1 oder 2, wobei der Behandlungsstrahlengang (B) derart ausgebildet oder einstellbar ist, dass der Laserstrahl auf der Hornhaut (2) einen Wellenlängenbereich umfasst, der Aminosäuren der Kollagenfasern, insbesondere π-Elektronensysteme von Aminosäuren, durch Photoabsorption mindestens eines Photons, das eine Energie unterhalb einer Ionisierungsenergie eines betreffenden Moleküls aufweist, π*-anregt und (ausschließlich) durch Photoabsorption mehrerer Photonen, die jeweils eine Energie unterhalb einer Ionisierungsenergie des betreffenden Moleküls aufweisen, ionisiert.
  4. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der Behandlungsstrahlengang (B) derart ausgebildet oder einstellbar ist, dass der Laserstrahl auf der Hornhaut (2) einen Wellenlängenbereich zwischen 260 nm und 290 nm, insbesondere zwischen 275 nm und 285 nm, oder ein ganzzahliges Vielfaches davon, insbesondere ein Einfaches, ein Doppeltes, ein Dreifaches oder ein Vierfaches, umfasst.
  5. Vorrichtung (1) nach dem vorhergehenden Anspruch, wobei der Laser (4) ultraviolettes Licht, sichtbares Licht oder Infrarotstrahlung emittiert und der Behandlungsstrahlengang (B) einen Frequenzvervielfacher (18) aufweist.
  6. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der Laser (4) zwei disjunkte Wellenlängenbereiche pulsweise emittiert und der Behandlungsstrahlengang (B) eine Verzögerungsstrecke (19) für einen längerwelligen der beiden Wellenlängenbereiche zur Erzeugung eines zeitlichen Versatzes zwischen den Pulsen auf der Hornhaut (2) aufweist, insbesondere eines zeitlichen Pulsabstands zwischen 0 ps und 10 ps, vorzugsweise zwischen 0 ps und 2 ps.
  7. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der Behandlungsstrahlengang (B) (hinsichtlich auf die Hornhaut abgegebenem Wellenlängenbereich und Strahlungsleistung) so ausgebildet oder einstellbar ist, dass die Hornhaut (2) während des Bestrahlens photodisruptionsfrei und ablationsfrei und insbesondere frei von laserinduzierter thermischer Wechselwirkung ist.
  8. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der Laser (4) zur pulsweisen Emission ausgebildet ist und insbesondere Femtosekunden-Pulse, Picosekunden-Pulse oder Nanosekunden-Pulse emittiert.
  9. Verfahren zur Stabilisierung einer Hornhaut (2) eines Auges (3), wobei die Hornhaut (2) mit Laserlicht bestrahlt wird, um Kollagenfasern der Hornhaut (2) miteinander zu vernetzen, dadurch gekennzeichnet, dass die Hornhaut (2) sukzessiv an verschiedenen Stellen lokal derart bestrahlt wird, dass an den bestrahlten Stellen Kollagenfasern miteinander vernetzt werden.
  10. Verfahren nach dem vorhergehenden Anspruch, wobei die Stellen derart bestrahlt werden, dass die Kollagenfasern jeweils durch Photoabsorption mehrerer Photoren, die jeweils eine Energie unterhalb einer Ionisierungsenergie eines betreffenden Moleküls aufweisen, ionisiert werden und daraufhin eine unmittelbare kovalente Bindung zwischen den Kollagenfasern entsteht.
  11. Verfahren nach dem vorhergehenden Anspruch, wobei Bestrahlung derart erfolgt, dass die Ionisierung und die kovalente Bindung im Bereich einer Aminosäure einer betreffenden Kollagenfaser auftreten.
  12. Verfahren nach dem vorhergehenden Anspruch, wobei die Bestrahlung derart erfolgt, dass die betreffende Aminosäure im Bereich eines π-Elektronensystems ionisiert wird, insbesondere durch π*-Anregung des betreffenden π-Elektronensystems.
  13. Verfahren nach einem der vorhergehenden Verfahrensansprüche, wobei zum Bestrahlen Laserlicht in einem Bereich zwischen 260 nm und 290 nm, insbesondere zwischen 275 nm und 285 nm, oder einem ganzzahligen Vielfachen davon, insbesondere ein Einfaches, ein Doppeltes, ein Dreifaches oder ein Vierfaches, verwendet wird.
  14. Verfahren nach einem der vorhergehenden Verfahrensansprüche, wobei eine betreffende Stelle zeitlich versetzt mit zwei Pulsen disjunkter Wellenlängenbereiche bestrahlt wird, wobei der später eintreffende Puls eine niedrigere mittlere Wellenlänge aufweist als der frühere Puls, insbesondere mit einem zeitlichen Pulsabstand zwischen 0 ps und 10 ps, vorzugsweise zwischen 0 ps und 2 ps.
  15. Verfahren nach dem vorhergehenden Anspruch, wobei bei der Bestrahlung mit der zweiten Wellenlänge eine Bestrahlungsleistung verwendet wird, die gegenüber einer Bestrahlungsleistung bei der ersten Wellenlänge einen Faktor zwischen eins und zehn beträgt.
  16. Verfahren nach einem der vorhergehenden Verfahrensansprüche, wobei zum Bestrahlen gepulstes Laserlicht, insbesondere mit einer Pulsdauer von Femtosekunden, Pikosekunden oder Nanosekunden, verwendet wird.
  17. Verfahren nach einem der vorhergehenden Verfahrensansprüche, wobei die Hornhaut (2) während der Bestrahlung frei von lichtinduziert vernetzenden Hilfsstoffen ist, insbesondere, indem vor der Bestrahlung kein lichtinduziert vernetzender Hilfsstoffen auf die Hornhaut (2) aufgebracht wird.
  18. Verfahren nach einem der vorhergehenden Verfahrensansprüche, wobei eine Lage eines vorhandenen Schnitts in der Hornhaut (2) eines Auges (3) oder eine andere Läsion der Hornhaut (2) ermittelt wird und die Hornhaut (2) im Bereich des Schnitts zur Quervernetzung bestrahlt wird.
  19. Verwendung eines gepulsten Femtosekunden-Lasers (4) mit einer Strahlablenkeinheit (7, 8) zur ortsaufgelösten Quervernetzung einer Augenhornhaut (2), insbesondere bei einer ausschließlich photochemisch wirkenden Bestrahlungsleistung und Photonenenergien unterhalb einer Ionisierungsenergie (IG) von Kollagenfasern der Augenhornhaut (2).
DE102010020194.4A 2010-05-07 2010-05-07 Vorrichtung zur Stabilisierung der Augenhornhaut Active DE102010020194B4 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102010020194.4A DE102010020194B4 (de) 2010-05-07 2010-05-07 Vorrichtung zur Stabilisierung der Augenhornhaut
US13/696,266 US9504607B2 (en) 2010-05-07 2011-05-05 Method and device for stabilizing the cornea
PCT/EP2011/002235 WO2011138031A1 (de) 2010-05-07 2011-05-05 Verfahren und vorrichtung zur stabilisierung der augenhornhaut

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010020194.4A DE102010020194B4 (de) 2010-05-07 2010-05-07 Vorrichtung zur Stabilisierung der Augenhornhaut

Publications (2)

Publication Number Publication Date
DE102010020194A1 true DE102010020194A1 (de) 2011-11-10
DE102010020194B4 DE102010020194B4 (de) 2022-09-08

Family

ID=44118753

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010020194.4A Active DE102010020194B4 (de) 2010-05-07 2010-05-07 Vorrichtung zur Stabilisierung der Augenhornhaut

Country Status (3)

Country Link
US (1) US9504607B2 (de)
DE (1) DE102010020194B4 (de)
WO (1) WO2011138031A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2745820A1 (de) 2012-12-19 2014-06-25 Telesto GmbH Lasertherapiesystem zur nichtinvasiven Korrektur des refraktiven Systems des Auges
EP2745819A1 (de) 2012-12-18 2014-06-25 Telesto GmbH Lasertherapiesystem zur Behandlung einer Kollagenstruktur und variköser Blutgefäße in einem Auge
DE102013007074A1 (de) * 2013-04-23 2014-10-23 TAD Bavaria GmbH Okuläre Therapievorrichtung
WO2019147901A2 (en) 2018-01-26 2019-08-01 The Trustees Of Columbia University In The City Of New York Methods, computer-readable media, and systems for treating a cornea
EP3863576A4 (de) * 2018-10-09 2022-07-06 Avedro, Inc. Photoaktivierungssysteme und -verfahren zur behandlung der hornhautvernetzung
US11559433B2 (en) 2015-10-23 2023-01-24 The Trustees Of Columbia University In The City Of New York Laser induced collagen crosslinking in tissue
US11666481B1 (en) 2017-12-01 2023-06-06 The Trustees Of Columbia University In The City Of New York Diagnosis and treatment of collagen-containing tissues
DE102022125222A1 (de) 2022-09-29 2024-04-04 Schwind Eye-Tech-Solutions Gmbh Strahlenvorrichtung und Bearbeitungsvorrichtung, umfassend eine Strahlenvorrichtung

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574277B2 (en) 2009-10-21 2013-11-05 Avedro Inc. Eye therapy
EP3556330A1 (de) * 2010-03-19 2019-10-23 Avedro, Inc. System zur anwendung und überwachung einer augentherapie
US9622911B2 (en) 2010-09-30 2017-04-18 Cxl Ophthalmics, Llc Ophthalmic treatment device, system, and method of use
US9044308B2 (en) 2011-05-24 2015-06-02 Avedro, Inc. Systems and methods for reshaping an eye feature
JP6122845B2 (ja) 2011-06-02 2017-04-26 アヴェドロ・インコーポレーテッドAvedro,Inc. 時間ベースの光活性剤の送達又は光活性マーカの存在をモニターするシステム及び方法
EP2830637A4 (de) 2012-03-29 2016-03-16 Cxl Ophthalmics Llc Zusammensetzungen und verfahren zur behandlung oder prävention von erkrankungen im zusammenhang mit oxidativem stress
WO2013148896A1 (en) 2012-03-29 2013-10-03 Cxl Ophthalmics, Llc Ocular treatment solutions, delivery devices and delivery augmentation methods
WO2013059837A2 (en) 2012-07-16 2013-04-25 Avedro, Inc. Systems and methods for corneal cross-linking with pulsed light
CN104853700A (zh) 2012-10-17 2015-08-19 阿尔贝特·达克瑟尔 用于照射眼睛的装置和方法
RU2510258C1 (ru) * 2013-01-10 2014-03-27 Государственное бюджетное учреждение "Уфимский научно-исследовательский институт глазных болезней Академии наук Республики Башкортостан" Способ лечения эктатических заболеваний роговицы
US9498114B2 (en) 2013-06-18 2016-11-22 Avedro, Inc. Systems and methods for determining biomechanical properties of the eye for applying treatment
WO2014205145A1 (en) 2013-06-18 2014-12-24 Avedro, Inc. Systems and methods for determining biomechanical properties of the eye for applying treatment
AU2013404375B2 (en) * 2013-10-30 2017-08-03 Alcon Inc. Crosslinking control
RU2558997C1 (ru) * 2014-03-25 2015-08-10 Государственное бюджетное учреждение "Уфимский научно-исследовательский институт глазных болезней Академии наук Республики Башкортостан" Способ лечения прогрессирующей миопии с использованием перекрестного сшивания коллагена склеры
EP3212140B1 (de) 2014-10-27 2021-12-01 Avedro, Inc. Systeme zur vernetzung von behandlungen trockener augen
US10114205B2 (en) 2014-11-13 2018-10-30 Avedro, Inc. Multipass virtually imaged phased array etalon
EP3285704B1 (de) 2015-04-24 2020-11-18 Avedro Inc. Systeme zur lichtaktivierung eines an einem auge applizierten lichtsensibilisators
WO2016191342A1 (en) 2015-05-22 2016-12-01 Avedro, Inc. Systems and methods for monitoring cross-linking activity for corneal treatments
EP3324973B1 (de) 2015-07-21 2020-06-03 Avedro, Inc. Augenbehandlung mit einem photosensibilisator
US11497403B2 (en) 2016-06-10 2022-11-15 The Trustees Of Columbia University In The City Of New York Devices, methods, and systems for detection of collagen tissue features
US11766356B2 (en) 2018-03-08 2023-09-26 Avedro, Inc. Micro-devices for treatment of an eye
RU2707792C1 (ru) * 2018-12-27 2019-11-29 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр глазных болезней имени Гельмгольца" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ ГБ им. Гельмгольца" Минздрава России) Способ лечения осложнений вирусных и бактериальных кератоконъюнктивитов у животных с помощью коллагенового кросслинкинга
US11642244B2 (en) 2019-08-06 2023-05-09 Avedro, Inc. Photoactivation systems and methods for corneal cross-linking treatments
CN114786633A (zh) * 2019-12-13 2022-07-22 爱尔康公司 角膜交联术的系统和方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69520074T2 (de) * 1994-12-09 2001-08-02 Gabriel Simon Vorrichtung für die Laserstrahl-Augenchirurgie
DE10124358C1 (de) * 2001-05-18 2002-10-17 Wavelight Laser Technologie Ag Lasersystem für die Hornhauttransplantation
DE10138984A1 (de) * 2001-08-08 2003-03-06 Glautec Ag Vorrichtung zur Glaukombehandlung
US6783539B1 (en) 2001-03-30 2004-08-31 University Of Kansas Medical Center Phototriggerable, collagen-crosslinking compounds for wound closure
DE102005056958A1 (de) * 2005-11-29 2007-06-06 Rowiak Gmbh Verfahren und Vorrichtung zum Bearbeiten eines Werkstücks
US20080114283A1 (en) 2006-10-24 2008-05-15 Mattson Matthew S Photochemical therapy to affect mechanical and/or chemical properties of body tissue
DE102008046834A1 (de) * 2008-09-11 2010-03-18 Iroc Ag Steuerprogramm zum Steuern elektromagnetischer Strahlung für eine Quervernetzung von Augengewebe
DE102008051644A1 (de) * 2008-10-14 2010-04-15 Violeta Doci Verfahren zur Abtragung von sphärischen Segmenten innerhalb der Hornhaut des Auges
DE102008053964A1 (de) * 2008-10-30 2010-05-06 Kasenbacher, Anton, Dr. Verfahren zur Bearbeitung von Gewebe und Laserbearbeitungsgerät zur Bearbeitung von Gewebe

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152759A (en) 1989-06-07 1992-10-06 University Of Miami, School Of Medicine, Dept. Of Ophthalmology Noncontact laser microsurgical apparatus
AU647533B2 (en) 1990-10-16 1994-03-24 Summit Technology, Inc. Laser thermokeratoplasty methods and apparatus
DE4131361C2 (de) 1991-09-20 1996-12-05 Jenoptik Jena Gmbh Vorrichtung zur Bestrahlung der Hornhaut
US5749871A (en) 1993-08-23 1998-05-12 Refractec Inc. Method and apparatus for modifications of visual acuity by thermal means
US6099521A (en) 1998-05-26 2000-08-08 Shadduck; John H. Semiconductor contact lens cooling system and technique for light-mediated eye therapies
US20080039769A1 (en) * 2001-11-07 2008-02-14 Minu Llc Method of medical treatment using controlled heat delivery
US8221480B2 (en) * 2008-10-31 2012-07-17 The Invention Science Fund I, Llc Compositions and methods for biological remodeling with frozen particle compositions
CN102470048A (zh) 2009-08-03 2012-05-23 威孚莱有限公司 用于眼科激光手术的设备
DE102009036615A1 (de) 2009-08-07 2011-02-10 Giesecke & Devrient Gmbh Sicherheitspapier mit Wasserzeichen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69520074T2 (de) * 1994-12-09 2001-08-02 Gabriel Simon Vorrichtung für die Laserstrahl-Augenchirurgie
US6783539B1 (en) 2001-03-30 2004-08-31 University Of Kansas Medical Center Phototriggerable, collagen-crosslinking compounds for wound closure
DE10124358C1 (de) * 2001-05-18 2002-10-17 Wavelight Laser Technologie Ag Lasersystem für die Hornhauttransplantation
DE10138984A1 (de) * 2001-08-08 2003-03-06 Glautec Ag Vorrichtung zur Glaukombehandlung
DE102005056958A1 (de) * 2005-11-29 2007-06-06 Rowiak Gmbh Verfahren und Vorrichtung zum Bearbeiten eines Werkstücks
US20080114283A1 (en) 2006-10-24 2008-05-15 Mattson Matthew S Photochemical therapy to affect mechanical and/or chemical properties of body tissue
DE102008046834A1 (de) * 2008-09-11 2010-03-18 Iroc Ag Steuerprogramm zum Steuern elektromagnetischer Strahlung für eine Quervernetzung von Augengewebe
DE102008051644A1 (de) * 2008-10-14 2010-04-15 Violeta Doci Verfahren zur Abtragung von sphärischen Segmenten innerhalb der Hornhaut des Auges
DE102008053964A1 (de) * 2008-10-30 2010-05-06 Kasenbacher, Anton, Dr. Verfahren zur Bearbeitung von Gewebe und Laserbearbeitungsgerät zur Bearbeitung von Gewebe

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Spörl et al.: "Biophysical principles of collagen cross-linking", Klin. Monatsbl. Augenheilkd. 2008 Feb; 225(2):131-7
Wollensak et al.: "Treatment of keratoconus by collagen cross-linking", Der Ophthalmologe, 2003 Jan.,100(1):44-9

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2745819A1 (de) 2012-12-18 2014-06-25 Telesto GmbH Lasertherapiesystem zur Behandlung einer Kollagenstruktur und variköser Blutgefäße in einem Auge
EP2745820A1 (de) 2012-12-19 2014-06-25 Telesto GmbH Lasertherapiesystem zur nichtinvasiven Korrektur des refraktiven Systems des Auges
DE102013007074A1 (de) * 2013-04-23 2014-10-23 TAD Bavaria GmbH Okuläre Therapievorrichtung
US10252075B2 (en) 2013-04-23 2019-04-09 TAD Bavaria GmbH Ocular therapy device
US11559433B2 (en) 2015-10-23 2023-01-24 The Trustees Of Columbia University In The City Of New York Laser induced collagen crosslinking in tissue
US11957622B2 (en) 2015-10-23 2024-04-16 The Trustees Of Columbia University In The City Of New York Laser induced collagen crosslinking in tissue
US11666481B1 (en) 2017-12-01 2023-06-06 The Trustees Of Columbia University In The City Of New York Diagnosis and treatment of collagen-containing tissues
WO2019147901A2 (en) 2018-01-26 2019-08-01 The Trustees Of Columbia University In The City Of New York Methods, computer-readable media, and systems for treating a cornea
CN111836604A (zh) * 2018-01-26 2020-10-27 纽约市哥伦比亚大学理事会 用于治疗角膜的方法、计算机可读介质和系统
EP3743026A4 (de) * 2018-01-26 2021-10-27 The Trustees Of Columbia University In The City Of New York Verfahren, computerlesbare medien und systeme zur behandlung einer hornhaut
EP3863576A4 (de) * 2018-10-09 2022-07-06 Avedro, Inc. Photoaktivierungssysteme und -verfahren zur behandlung der hornhautvernetzung
DE102022125222A1 (de) 2022-09-29 2024-04-04 Schwind Eye-Tech-Solutions Gmbh Strahlenvorrichtung und Bearbeitungsvorrichtung, umfassend eine Strahlenvorrichtung

Also Published As

Publication number Publication date
WO2011138031A1 (de) 2011-11-10
US20130116757A1 (en) 2013-05-09
DE102010020194B4 (de) 2022-09-08
US9504607B2 (en) 2016-11-29

Similar Documents

Publication Publication Date Title
DE102010020194B4 (de) Vorrichtung zur Stabilisierung der Augenhornhaut
EP1372552B1 (de) Vorrichtung zur bearbeitung und diagnose von augengewebe
US8475438B2 (en) Method and apparatus for non- or minimally disruptive photomanipulation of an eye
EP2521519B1 (de) Ophthalmologisches lasersystem
DE69434984T2 (de) Verbesserter ophthalmochirurgischer Laser
EP2349149B1 (de) Ophthalmologisches lasersystem
EP1787607B1 (de) Anordnung zur Durchführung chirurgischer Laserbehandlungen des Auges
WO2009146906A2 (de) Ophthalmologisches lasersystem und betriebsverfahren
US20090227994A1 (en) Device and method for the delivery and/or elimination of compounds in tissue
DE112008002380T5 (de) Laserinduziertes Schutzschild bei Laserchirurgie
DE102012007272B4 (de) Lasereinrichtung und Verfahren zur Konfiguration einer solchen Lasereinrichtung
US20200038239A1 (en) Nonlinear collagen crosslinking using a single, amplified, femtosecond laser pulse
DE102013004482A1 (de) Vorrichtung und Verfahren zur Stabilisierung der Augenhornhaut
DE102011116759A1 (de) Ophthalmologisches Lasersystem und Verfahren zum Durchtrennen von Augengewebe
DE10148783B4 (de) Verfahren zur nicht-invasiven optischen Bearbeitung von Geweben des Auges sowie zu dessen Diagnose und Vorrichtung zur Durchführung dieser Verfahren
Calhoun et al. Effect of therapeutic femtosecond laser pulse energy, repetition rate, and numerical aperture on laser-induced second and third harmonic generation in corneal tissue
Mackanos et al. Corneal ablation using the pulse stretched free electron laser
Hansen et al. Lowering threshold energy for femtosecond laser pulse photodisruption through turbid media using adaptive optics
DE102021210661A1 (de) Verfahren und Anordnung zur Rekalibrierung des Fokus eines ophthalmologischen Systems zur intraokularen Laserbehandlung
DE102018122838A1 (de) Laserstrahlung-absorbierende Zusammensetzung und deren Verwendung
Bille Femtosecond lasers in ophthalmology: Surgery and imaging
Hansen et al. Spatial beam shaping for lowering the threshold energy for femtosecond laser pulse photodisruption
Hansen et al. Focal spot shaping for femtosecond laser pulse photodisruption through turbid media

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final