DE102009011182A1 - Kristallisierendes Glaslot und dessen Verwendung - Google Patents

Kristallisierendes Glaslot und dessen Verwendung Download PDF

Info

Publication number
DE102009011182A1
DE102009011182A1 DE102009011182A DE102009011182A DE102009011182A1 DE 102009011182 A1 DE102009011182 A1 DE 102009011182A1 DE 102009011182 A DE102009011182 A DE 102009011182A DE 102009011182 A DE102009011182 A DE 102009011182A DE 102009011182 A1 DE102009011182 A1 DE 102009011182A1
Authority
DE
Germany
Prior art keywords
glass
glass solder
oxide
crystallizing glass
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102009011182A
Other languages
English (en)
Other versions
DE102009011182B4 (de
Inventor
Dieter Dr. Gödeke
Peter Dr. Brix
Olaf Dr. Claußen
Jörn Dr. Besinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE102009011182.4A priority Critical patent/DE102009011182B4/de
Application filed by Schott AG filed Critical Schott AG
Priority to DK10706552.6T priority patent/DK2403812T3/en
Priority to AU2010220562A priority patent/AU2010220562B2/en
Priority to CN201080010401.5A priority patent/CN102341357B/zh
Priority to JP2011552361A priority patent/JP5486612B2/ja
Priority to KR1020117023321A priority patent/KR101640275B1/ko
Priority to PCT/EP2010/001301 priority patent/WO2010099939A1/de
Priority to EP10706552.6A priority patent/EP2403812B1/de
Priority to US13/203,347 priority patent/US8658549B2/en
Publication of DE102009011182A1 publication Critical patent/DE102009011182A1/de
Priority to US13/238,455 priority patent/US8664134B2/en
Priority to US14/140,751 priority patent/US9133053B2/en
Application granted granted Critical
Publication of DE102009011182B4 publication Critical patent/DE102009011182B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Die vorliegende Erfindung betrifft kristallisierende Glaslote und Komposite, die insbesondere für Hochtemperaturanwendungen geeignet sind, und deren Anwendungen z. B. in Brennstoffzellen. Das kristallisierende Glaslot beinhaltet in Gew.-% 25% bis 40% SiO, 45% bis 60% BaO, 5% bis 15% BO, 0 bis < 2%AlOsowie zumindest ein Erdalkalioxid aus der Gruppe MgO, CaO und SrO und zeichnet sich durch einen thermischen Ausdehnungskoeffizienten im Temperaturbereich von 20°C bis 300°C von 8,0 · 10Kbis 12,0 · 10Kaus.

Description

  • Die vorliegende Erfindung betrifft kristallisierende Glaslote und Komposite, die insbesondere für Hochtemperaturanwendungen geeignet sind, und deren Anwendungen.
  • Glaslote werden üblicherweise zum Herstellen von Fügeverbindungen eingesetzt, um insbesondere Glas- und/oder keramische Bauteile miteinander oder mit Bauteilen aus Metall zu verbinden. Bei der Entwicklung von Glasloten wird deren Zusammensetzung oftmals so gewählt, dass der thermische Ausdehnungskoeffizient des Glaslotes in etwa dem der miteinander zu verbindenden Bauteile entspricht, um eine dauerhaft stabile Fügeverbindung zu erhalten. Gegenüber anderen Fügeverbindungen, beispielsweise solchen aus Kunststoff, haben solche basierend auf Glasloten den Vorteil, dass sie hermetisch dicht ausgeführt werden können und höheren Temperaturen standhalten können.
  • Glaslote werden im allgemeinen oftmals aus einem Glaspulver hergestellt, das beim Lötvorgang aufgeschmolzen wird und unter Wärmeeinwirkung mit den zu verbindenden Bauteilen die Fügeverbindung ergibt. Die Löttemperatur wird in der Regel etwa in Höhe der so genannten Halbkugeltemperatur des Glases gewählt oder kann üblicherweise um ±20 K von dieser abweichen. Die Halbkugeltemperatur kann in einem mikroskopischen Verfahren mit einem Heiztischmikroskop bestimmt werden. Sie kennzeichnet diejenige Temperatur, bei der ein ursprünglich zylindrischer Probekörper zu einer halbkugelförmigen Masse zusammengeschmolzen ist. Der Halbkugeltemperatur lässt sich eine Viskosität von ungefähr log η = 4,6 zuordnen, wie entsprechender Fachliteratur entnommen werden kann. Wird ein kristallisationsfreies Glas in Form eines Glaspulvers aufgeschmolzen und wieder abgekühlt, so dass es erstarrt, kann es üblicherweise bei der gleichen Schmelztemperatur auch wieder aufgeschmolzen werden. Dies be deutet für eine Fügeverbindung mit einem kristallisationsfreien Glaslot, dass die Betriebstemperatur, welcher die Fügeverbindung dauerhaft ausgesetzt sein kann, nicht höher als die Löttemperatur sein darf. Tatsächlich muss die Betriebstemperatur bei vielen Anwendungen noch signifikant unter der Löttemperatur liegen, da die Viskosität des Glaslotes bei steigenden Temperaturen abnimmt und ein gewissermaßen fließfähiges Glas bei hohen Temperaturen und/oder Drücken aus der Fügeverbindung herausgepresst werden kann, so dass diese Ihren Dienst versagen kann.
  • Aus diesem Grund müssen Glaslote für Hochtemperaturanwendungen üblicherweise eine Löttemperatur bzw. Halbkugeltemperatur aufweisen, welche noch deutlich über der späteren Betriebstemperatur liegt. Ein Problem, das durch die im Vergleich zur späteren Betriebstemperatur deutlich höhere Löttemperatur entstehen kann, ist die Schädigung der miteinander zu verbindenden Bauteile. Daher sind Glaslote erwünscht, welche zwar eine möglichst geringe Löttemperatur aufweisen, aber dennoch eine möglichst hohe Betriebstemperatur ermöglichen. Dies bedeutet, dass die gewünschten Glaslote nach einem ersten Lötvorgang nur noch bei einer höheren Temperatur als der Löttemperatur wieder aufschmelzbar sein sollten.
  • Mit reinen nichtkristallisierenden Glasloten ist dies nicht ohne weiteres zu erreichen. Glaslote, die solchen Anforderungen erfüllen, können jedoch erhalten werden, wenn das Grundglas beim Lötvorgang zumindest teilweise kristallisiert, wobei die kristallinen Phasen deutlich von dem Grundglas abweichende Eigenschaften z. B. bzgl. der thermischen Ausdehnung aufweisen können, insbesondere aber die für das Wiederaufschmelzen benötigte Temperatur in der Regel deutlich über der des Grundglases liegt. Die Eigenschaften eines zumindest teilweise kristallisierten Glaslotes können direkt durch die Zusammensetzung des ursprünglichen Grundglases beeinflusst werden, aber auch durch geeignete Füllstoffe, welche in der Regel eine kristalline Struktur aufweisen und dem Lot glas hinzugefügt werden. Die Mischung aus Glaslot und Füllstoff wird im Sinne dieser Anmeldung Komposit genannt.
  • Ein Einsatzgebiet solcher Glaslote und/oder Komposite sind z. B. Fügeverbindungen in Hochtemperaturbrennstoffzellen, welche z. B. als Energiequelle in Kraftfahrzeugen eingesetzt werden können. Ein wichtiger Brennstoffzellentyp sind beispielsweise die so genannten SOFC (solid oxid fuel cell), welche sehr hohe Betriebstemperaturen von bis zu etwa 1000°C aufweisen können. Die Fügeverbindung mit dem Glaslot wird dabei üblicherweise zur Herstellung von Brennstoffzellen-Stacks, d. h. für die Verbindung mehrerer einzelner Brennstoffzellen zu einem Stack verwendet. Solche Brennstoffzellen sind bereits bekannt und werden kontinuierlich verbessert. Insbesondere geht der Trend in der aktuellen Brennstoffzellenentwicklung im allgemeinen zu geringeren Betriebstemperaturen. Einige Brennstoffzellen erreichen schon Betriebstemperaturen unter 800°C, so dass eine Absenkung der Löttemperaturen möglich und aufgrund der dann geringen Temperaturbelastung der SOFC-Komponenten beim Lötprozess auch erwünscht ist.
  • Eine große Rolle bei der Brennstoffzellen-Entwicklung kommt dabei den Glasloten zu, die auch schon Gegenstand der folgenden Offenbarungen sind.
  • Die DE 19857057 C1 beschreibt ein alkalifreies glaskeramisches Lot mit einem thermischen Ausdehnungskoeffizienten α(20–950) von 10,0·10–6 K–1 bis 12,4·10–6 K–1. Das dort beschriebene Lot enthält MgO von 20 bis 50 mol-%. Hoch MgO-haltige Gläser sind in der Praxis stark kristallisationsempfindlich, was zu schnell und stark kristallisierenden Verbindungen führt. Bei einer solch schnellen und starken Kristallisation ist es schwierig, eine gute Benetzung des Interkonnektormaterials durch das Glaslot zu gewährleisten. Dies ist aber erforderlich, um eine den jeweiligen Anforderungen optimal genügende Fügeverbindung bereitstellen zu können.
  • Ebenfalls glaskeramische Lote werden in der US 6,532,769 B1 und US 6,430,966 B1 beschrieben. Diese sind für Löttemperaturen von etwa 1150°C ausgelegt und enthalten 5 bis 15 mol-% Al2O3. Solch hohe Löttemperaturen sind für moderne Brennstoffzellen unerwünscht, da sie die metallischen Substratmaterialien und andere temperatursensitive Materialien zu stark belasten.
  • Die DE 10 2005 002 435 A1 beinhaltet Kompositlote, die aus einer amorphen Glasmatrix und einer kristallinen Phase bestehen. Die Glasmatrix weist dabei hohe Gehalte von CaO auf, was jedoch zu relativ hohen Viskositäten und hohen dielektrischen Verlusten führt.
  • Bei den erfindungsgemäßen Glassystemen ist der dominierende Kristallisationsmechanismus die Oberflächenkristallisation. Werden diese wie üblich aus pulverförmigen Mischungen der Ausgangskomponenten für das Herstellen der Fügeverbindung bereitgestellt, erfolgt die Kristallisation im allgemeinen bereits vor Erreichen der Erweichungstemperatur des Lotglases, also weit vor Erreichen der Löttemperatur. Beim Erreichen der Löttemperatur liegt das Lot damit schon teilweise kristallisiert vor, was bedeutet, dass die benötigte Löttemperatur oftmals weit oberhalb von 1000°C gewählt werden muss, da sie an den höheren Schmelzpunkt des teilweise kristallisierten Lotglases angepasst werden muss. Bei solch hohen Temperaturen kann es bei metallischen Bestandteilen der Fügeverbindung zu unerwünschten Oxidationsreaktionen kommen. Eine entstehende Oxidschicht einer gewissen Dicke kann bereits beim Lötvorgang abplatzen und so eine dichte Verbindung verhindern. Ferner steigt bei solch hohen Löttemperaturen die Verdampfung von Cr aus Stählen, die oftmals Bestandteil der Bauteile der Fügeverbindung sind. Ausdampfendes Cr kann zur so genannten Vergiftung des Elektrolyten einer SOFC führen und so die Leistungsfähigkeit negativ beeinflussen.
  • Im Rahmen dieser Offenbarung umfasst der Begriff „kristallisierendes Glaslot” Glaslote, die während des Lötprozesses oder vorzugsweise in einem anschlie ßenden Prozess zumindest teilweise kristallisieren, wobei auch noch amorphe, glasige Phasen in dem Glaslot vorhanden sein können. Entsprechend wird der Zustand der Glaslote nach der Verarbeitung als kristallisiert bezeichnet, auch wenn noch amorphe, glasige Phasen in dem Glaslot vorhanden sein können.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein geeignetes Lotglas zur Verfügung zu stellen, sowie ein kristallisierendes Glaslot bzw. ein Komposit beinhaltend dieses Lotglas, welches bei einer Löttemperatur von maximal etwa 1000°C zu verarbeiten ist, dessen Viskosität nach Abschluss des Lötprozesses bei Betriebstemperaturen bis etwa 850°C noch so hoch ist, dass es nicht aus der Fügeverbindung herausgepresst wird und/oder aus dieser herausfließt und dessen thermische Ausdehnung im Temperaturbereich von 20°C bis 300°C α(20–300) im kristallisierten Zustand im Bereich von 8,0·10–6 K–1 bis 12,0·10–6 K–1 liegt und damit an geeignete Stähle angepasst ist.
  • Aufgabe ist weiterhin, dass das kristallisierende Glaslot hinreichend langsam kristallisiert und nicht schon während des Sinter- und Erweichungsvorganges, wodurch eine schlechte Benetzung der zu verbindenden Materialien durch das Glaslot vermieden wird.
  • Aufgabe ist weiterhin, dass die lineare thermische Ausdehnung des kristallisierenden Glaslotes im glasigen Zustand und im kristallisierten Zustand keine zu große Differenz aufweist, da sonst durch den Kristallisationsprozess mechanische Spannungen in der Verschmelzung entstehen, die deren Stabilität gefährden.
  • Die Aufgabe wird gelöst durch die kristallisierenden Glaslote und/oder Komposite gemäß den unabhängigen Ansprüchen. Bevorzugte Ausführungsformen ergeben sich aus den abhängigen Ansprüchen. Erfindungsgemäß enthält das kristallisierende Glaslot jeweils in Gewichtsprozent (Gew.-%) auf Oxidbasis 45% bis 60% BaO, 25% bis 40% SiO2, 5% bis 15% B2O3 und optional bis zu 2% Al2O3, sowie zumindest ein Erdalkalioxid aus der Gruppe MgO, CaO und SrO, wobei die Summe der Erdalkalioxide MgO, CaO und SrO bis 20%, bevorzugt 2% bis 15% beträgt. Weitere Zusätze sind möglich. Der Begriff kristallisierendes Glaslot umfasst im Sinne der Erfindung sowohl das amorphe Grundglas, welches als Lotglas vor dem Lötvorgang eingesetzt wird, als auch das aus dem Grundglas beim Lötvorgang entstehende Material, das unter anderem glasig, kristallisiert, teilkristallisiert, glaskeramisch oder in sonstiger Form vorliegen kann.
  • Die Erfinder haben erkannt, dass sich insbesondere ein hoher Al2O3-Gehalt eines Glaslotes negativ auf dessen Eigenschaften auswirkt. Der Al2O3-Gehalt ist daher in der vorliegenden Erfindung auf bis zu 2% Al2O3 (Gew.-%) beschränkt.
  • Der geringe Anteil von Al2O3 des erfindungsgemäßen kristallisierenden Glaslotes bewirkt, dass sich unerwünschte Kristallphasen wie BaAl2Si2O8, sog. Bariumfeldspate, nicht bilden können. Von der Verbindung BaAl2Si2O8 existieren zwei Phasen mit stark unterschiedlichem thermischen Ausdehnungskoeffizienten: Celsian mit einem thermischen Ausdehnungskoeffizienten von 2,2·10–6 K–1 und Hexacelsian mit einem thermischen Ausdehnungskoeffizienten von 7,1·10–6 K–1, wobei das Hexacelsian bei höheren Temperaturen als das Celsian stabil ist. Beim Abkühlen eines Glaslotes, beispielsweise in einer Fügeverbindung einer Brennstoffzelle, kann es unter 300°C zu einer Umwandlung der Hexacelsian- in die Celsian-Phase kommen. Diese Umwandlung ist mit einem Volumensprung von etwa 3% oder mehr verbunden, wodurch starke mechanische Spannungen auftreten und die Fügeverbindung zerstört werden kann. Das erfindungsgemäße Glaslot unterbindet die Entstehung dieser Kristallphasen und erhöht damit die Ausfallsicherheit der Fügeverbindungen.
  • Eine weitere unerwünschte Kristallphase ist Mg2Al4Si5O18, auch als Cordierit bekannt, welche in Anwesenheit von Al2O3 und MgO entstehen kann. Cordierit weist einen sehr kleinen thermischen Ausdehnungskoeffizienten von ca. 1,5·10–6 K–1 auf. Auch diese Kristallphase passt mit ihrem Dehnungsverhalten nicht zu der Mehrzahl von Hochtemperaturanwendungen wie beispielsweise Fügeverbindungen in Brennstoffzellen. Das erfindungsgemäße kristallisierende Glaslot unterbindet auch die Entstehung der Cordierit-Phase durch seinen geringen Gehalt von Al2O3.
  • Die Summe der Glasbildner bestimmt wesentlich das Kristallisationsverhalten. Stabile Gläser ergeben sich in dem erfindungsgemäßen Glassystem bei einer Summe der Anteile der Glasbildner SiO2 und B2O3 von 30% bis 50% (in Gew.-% auf Oxidbasis). Die kristallisationsstabilsten Gläser ergeben sich je nach weiteren Glasbestandteilen und deren Atomgewichten bei einer Summe von SiO2 und B2O3 von 36% bis 43%. Das kristallisierende Glaslot weist daher bevorzugt eine Summe von SiO2 und B2O3 von 36% bis 43% auf (in Gew.-% auf Oxidbasis).
  • Der B2O3-Gehalt beeinflusst neben dem Kristallisationsverhalten auch das Einschmelzverhalten und damit die Glasschmelze positiv. Der B2O3-Gehalt beträgt deswegen mindestens 5%. Ein zu hoher B2O3-Gehalt kann sich hingegen negativ auf die chemische Beständigkeit auswirken. Desweiteren kann es bei B2O3-Gehalten über 15% zu Boroxidausdampfungen aus dem Glaslot kommen, was ebenfalls unerwünscht ist. Das kristallisierende Glaslot enthält daher bevorzugt 5% bis 15% B2O3 (in Gew.-% auf Oxidbasis).
  • Das kristallisierende Glaslot enthält erfindungsgemäß ferner 45% bis 60% BaO (in Gew.-% auf Oxidbasis). Bei Bariumoxidanteilen größer als 60% kann das Glaslot zur Bildung von Bariumsilikat-Kristallen neigen. Bei einem Bariumoxidanteil von kleiner 45% kann der gewünschte thermische Ausdehnungskoeffizient nicht erzielt werden. Je nach weiteren Glasbestandteilen und deren Atomgewichten werden die kristallisationsstabilsten Gläser mit erfindungsgemäßer thermischer Ausdehnung bei einem Bariumoxidgehalt von 50% bis 58% erhal ten. Besonders bevorzugt enthält das erfindungsgemäße kristallisierende Glaslot daher 50% bis 58% BaO.
  • Bevorzugt weist das erfindungsgemäße kristallisierende Glaslot einen linearen thermischen Ausdehnungskoeffizienten α(20–300),G im glasigen Zustand von 6·10–6 K–1 bis 11·10–6 K–1 auf, wobei der Index G die auf den amorphen, glasigen Zustand bezogene Größe kennzeichnet. Das bedeutet, dass der thermische Ausdehungskoeffizient des Grundglases und/oder des beim Lötvorgang nicht kristallisierten Glaslotes den genannten Wertebereich aufweist. Im kristallisierten Zustand, d. h. wenn das Glaslot beim Lötvorgang zumindest teilweise kristallisiert, weist es bevorzugt einen thermischen Ausdehnungskoeffizienten α(20–300),K von 8·10–6 K–1 bis 12·10–6 K–1 auf, wobei der Index K die auf den kristallisierten Zustand bezogene Größe kennzeichnet.
  • Typischerweise ist der Kristallisationsprozess daher mit einer geringen Zunahme des thermischen Ausdehnungskoeffizienten verbunden. Aufgrund der geringen Unterschiede in der thermischen Ausdehnung vor und nach der Kristallisation werden durch den Kristallisationsprozess jedoch lediglich geringe mechanische Spannungen in die Verschmelzung eingebracht, die deren Stabilität nicht gefährden.
  • Bevorzugt kann das kristallisierende Glaslot MgO und/oder CaO und/oder SrO enthalten. Mit diesen Komponenten kann z. B. Einfluss auf das Kristallisationsverhalten des Glaslotes genommen werden. Überraschenderweise wurde bei den erfindungsgemäßen Glasloten gefunden, dass durch die Zugabe von MgO im Austausch zu SiO2 die Kristallisationsneigung unterdrückt werden kann. Ein weiterer positiver Effekt ist, dass der dielektrische Verlust durch MgO-haltige Gläser gesenkt werden kann. Ferner können durch die netzwerkwandelnden Erdalkalioxide die Schmelztemperaturen und die Glasübergangstemperatur verringert werden. Die Zufuhr von MgO im Austausch mit Al2O3 oder SiO2 bewirkt ferner eine Erhöhung des thermischen Ausdehnungskoeffizienten und stellt da mit eine einfache Möglichkeit dar, das Glaslot an die zu verschmelzenden Bauteile anzupassen. Das erfindungsgemäße Glaslot enthält daher bis zu 20% MgO und/oder CaO und/oder SrO und bevorzugt 2% bis 15% MgO und/oder CaO und/oder SrO (in Gew.-% auf Oxidbasis).
  • Das kristallisierende Glaslot kann ferner bis zu 0,5% (in Gew.-% auf Oxidbasis) V2O5 und/oder Sb2O3 und/oder CoO enthalten. Diese Zusatzstoffe bewirken eine deutliche Erhöhung der Haftfestigkeit des Glaslotes auf metallischen Substraten.
  • Ein weiterer bevorzugter optionaler Zusatzstoff ist ZrO2 in einer Menge von bis zu 5% (in Gew.-% auf Oxidbasis). ZrO2 wirkt bekanntermaßen als Keimbildner und durch dessen Zugabe kann somit das Kristallisationsverhalten sowie auch die Kristallgröße beeinflusst werden. Die Zusammensetzung des Lotglases wird dabei bevorzugt so eingestellt, dass es langsam kristallisiert. Würde es bereits sehr stark kristallisieren, ist eine ausreichende Benetzung oft nicht gegeben. Insbesondere soll das Lotglas beim Herstellen einer Fügeverbindung im allgemeinen in nicht kristallisierter oder teilkristallisierter Form in die zu lötende Verbindungsstelle eingebracht werden können, da die für die Benetzung der zu verschmelzenden Bauteile benötigte Temperatur dann tiefer liegt. Die thermische Ausdehnung des kristallisierenden Glaslotes korreliert insbesondere mit dem molaren Verhältnis von SiO2 zu BaO. In einer besonders bevorzugten Ausführungsform wird daher vorgesehen, dass das molare Verhältnis von SiO2 zu BaO kleiner 2 und ganz besonders bevorzugt kleiner als 1,7 ist. Liegt das molare Verhältnis von SiO2 zu BaO über 2, so ist im Allgemeinen die thermische Ausdehnung zu gering und der Zielbereich der thermischen Ausdehnung kann auch durch Füllstoffe nicht mehr erreicht werden.
  • Das erfindungsgemäße kristallisierende Glaslot weist bevorzugt eine Halbkugeltemperatur von 850°C bis 1000°C auf, und kann entsprechend etwa bei dieser Temperatur für die Fügeverbindung eingesetzt werden.
  • Das erfindungsgemäße kristallisierende Glaslot wird im Allgemeinen hergestellt, indem das Lotglas nach dessen Herstellung in einer konventionellen Glasschmelze zu einem Glaspulver gemahlen wird, das z. B. in Form einer dispensfähigen Paste oder eines vorgesinterten Formkörpers in die Fügeverbindung eingebracht werden kann. Das aus den erschmolzenen Lotglas hergestellte kristallisierende Glaslot weist vor dem Lötprozess vorzugsweise einen amorphen, nicht kristallinen Zustand auf.
  • Dem in Pulverform vorliegenden kristallisierenden Glaslot können vor oder bei der Weiterverarbeitung zu den oben genannten Pasten und Sinterkörpern erfindungsgemäß zusätzlich bis zu 35% (in Gew.-% auf Oxidbasis, bezogen auf die Gesamtmasse von Glaslot und Füllstoff) eines bevorzugt kristallinen Füllstoffes ebenfalls in Pulverform zugegeben werden, so dass ein Komposit erhalten wird. Die Eigenschaften des Komposits können durch den Füllstoff gegenüber den Eigenschaften des füllstofffreien Glaslotes positiv verändert und eingestellt werden. So beeinflusst der Füllstoff, dessen Korngrößenverteilung und natürlich dessen Mengenanteil z. B. die thermische Ausdehnung und die Kristallisationsgeschwindigkeit.
  • Bevorzugt wird als Füllstoff Sanbornit (BaSi2O5), 3YSZ (Yttrium stabilisiertes Zirkonoxid), Wollastonit (CaSiO3) oder Enstatit (Mg2Si2O6) oder eine beliebige Kombination dieser Stoffe eingesetzt. Die Zugabe dieses Füllstoffes ermöglicht eine Anpassung des thermischen Ausdehnungskoeffizienten des kristallisierten Grundglases α(20–300),K, wie in Tabelle 2 am Beispiel B1 zu sehen ist. Der thermische Ausdehnungskoeffizient im Temperaturbereich 20 bis 300°C des kristallisierten Komposits α(20–300),K liegt im Bereich 8·10–6 K–1 bis 12·10–6 K–1, der im Temperaturbereich 20°C bis 750°C α(20–300),K im Bereich von 9,5·10–6 K–1 bis 14,5·10–6 K–1.
  • Die erfindungsgemäßen Komposite weisen bevorzugt eine Halbkugeltemperatur von 850°C bis 1020°C auf.
  • Optimale Festigkeiten einer Fügeverbindung werden erreicht, wenn das Lot in der thermischen Ausdehnung optimal an die zu verschmelzenden Materialien angepasst ist. Ferner dürfen auch durch eine Änderung des thermischen Ausdehnungskoeffizienten durch den Kristallisationsprozess keine zu großen Spannungen in dem Lot entstehen. Das erfindungsgemäße Glaslot stellt dies zum einen durch die Vermeidung von unerwünschten Phasen sicher, wie bereits erläutert, zum anderen zeichnen sich das erfindungsgemäße Glaslote sowie das daraus hergestellte Komposit dadurch aus, dass die Differenz in der thermischen Ausdehnung α(20–300),K vor und nach dem Kristallisationsprozess kleiner 2·10–6 K–1 und bevorzugt kleiner 1·10–6 K–1 ist.
  • Der zumindest teilweise kristalline Zustand eines Komposits nach der Verarbeitung wird analog zu dem füllstoffreien kristallisierenden Glaslot als kristallisiert bezeichnet, auch wenn noch amorphe glasige Phasen vorhanden sein können.
  • Das erfindungsgemäße kristallisierende Glaslot ist aufgrund seiner physikalischen Eigenschaften besonders geeignet für die Herstellung von hochtemperaturfesten Fügeverbindungen. Unter hochtemperaturfest wird im Sinne der Erfindung ein Temperaturbereich von mehr als etwa 650°C verstanden. Solche Fügeverbindungen können besonders vorteilhaft in Brennstoffzellen, insbesondere SOFC, eingesetzt werden. Ein Beispiel einer Anwendung in Brennstoffzellen ist das Verbinden von einzelnen SOFCs zu einem SOFC-Stack.
  • Das erfindungsgemäße kristallisierende Glaslot und/oder Komposit kann allerdings auch zur Herstellung von Sinterkörpern mit hoher Temperaturbeständigkeit verwendet werden. Herstellungsverfahren von Sinterkörpern sind hinlänglich bekannt. Im allgemeinen wird dabei das Ausgangsmaterial des erfindungsgemäßen Glaslotes in Pulverform miteinander vermischt, mit einem im allgemeinen organischen Binder vermengt und in die gewünschte Form gepresst. Statt der Pulver der Ausgangsmaterialien kann auch ein bereits aufgeschmolzenes erfin dungsgemäßes Glas vermahlen und mit dem Binder vermischt werden. Der gepresste Glas-Binder-Körper wird daraufhin auf Sintertemperatur gebracht, wobei der Binder ausbrennen kann und die Glaskomponenten bei der Sintertemperatur zusammensintern können. Der so erhaltene Sinterkörper kann daraufhin in Kontakt mit den zu verbindenden Bauteilen gebracht werden und durch einen Lötvorgang diese verbinden und/oder mit diesen verbunden werden.
  • Die Verwendung von Sinterkörpern beim Verlöten hat den Vorteil, dass der Sinterkörper ein Formbauteil ist und in nahezu beliebige Geometrien gebracht werden kann. Eine beispielsweise häufig verwendete Form ist ein Hohlzylinder, der zusammen mit einem elektrischen Kontaktstift in Durchführungsöffnungen von Metallbauteilen eingebracht werden kann, um durch die Verlötung eine vorzugsweise hermetisch dichte Glas-Metall-Durchführung mit einem elektrisch isolierten Kontaktstift zu erhalten. Solche Glas-Metall-Durchführungen werden in vielen elektrischen Bauteilen eingesetzt und sind dem Fachmann bekannt.
  • Eine weitere bevorzugte Anwendung des erfindungsgemäßen kristallisierenden Glaslots und/oder Komposits ist die Herstellung von Folien, die das Glaslot und/oder das Komposit beinhalten. Solche Folien sind ähnlich dem zuvor beschriebenen Sinterkörper, können aber weitgehend flexibel ausgeführt sein. Aus ihnen können Formen ausgestanzt und auf vorteilhafte Weise dazu verwendet werden, um flächige Bauteile miteinander zu verbinden.
  • Die Erfindung wird im folgenden anhand der Eigenschaften erfindungsgemäßer kristallisierender Glaslote sowie anhand von Vergleichsbeispielen näher beschrieben.
  • Zuerst wurde das Lotglas in einer Glasschmelze erschmolzen. An dem in der Regel in Blockglas, zumindest in massiver Form vorliegenden Lotglas wurden folgenden Eigenschaften gemessen, wobei der Index G die am Lotglas bestimmten physikalischen Eigenschaften kennzeichnet.
  • α(20–300),G
    linearer thermischer Ausdehnungskoeffizient von 20°C bis 300°C
    Tg,G
    Glasübergangstemperatur, oder kurz Übergangstemperatur
    EWG
    Erweichungstemperatur, bei dieser Temperatur beträgt der Logarithmus der Viskosität 7,6
    ρG
    Dichte
  • Die Zusammensetzung der Lotgläser sowie deren physikalische Eigenschaften sind in der Tabelle 1 zusammengefasst.
  • Nach der Charakterisierung des Lotglases wird aus dem Lotglas durch einen Mahlprozess das im allgemeinen pulverförmige Glaslot hergestellt. In den vorliegenden Beispielen wurde aus den erschmolzenen Lotgläsern ein Pulver mit einer Korngrößenverteilung mit einem D(50) von ca. 10 μm und einem D(99) < 63 μm bereit gestellt und mit einem Binder zu einer dispensfähigen Paste verarbeitet. Pulver und Binder wurden mit einem Dreiwalzwerk homogenisiert. Bei dem Binder handelt es sich im Allgemeinen um organische Substanzen wie z. B. Nitrocellulose, Ethylcellulose oder Acrylatbinder. Er hat im allgemeinen keinen weiteren Einfluss auf die Eigenschaften des kristallisierten Glaslotes, sollte jedoch sollte so ausgewählt werden, dass er beim Aufheizvorgang vollständig ausgebrannt werden kann.
  • Anschließend erfolgt die thermische Charakterisierung der Glaslote mittels eines Heiztischmikroskopes. Aus dem zu charakterisierenden Lotglas bzw. Komposit in Pulverform wird dafür ein zylinderförmiger Probenkörper gepresst, der auf einer keramischen Grundplatte mit 10 K/min aufgeheizt wird. Die Formänderungen des Probenkörpers werden beobachtet, wobei sich mit steigender Temperatur für eine nichtkristallisierende Probe in der Regel folgende charakteristische Punkte ergeben, denen sich bestimmte Viskositäten zuordnen lassen:
  • Sinterbeginn:
    Bei dieser Temperatur beginnen die Körner des Pulvers zu verschmelzen. Dadurch nimmt die Höhe des Probenkörpers ab. Der Logarithmus der Viskosität beträgt etwa 10 +/– 0,3.
    Erweichungstemp.:
    Diese Temperatur EWK ist durch eine einsetzende Verrundung der Kanten des Probezylinders gekennzeichnet. Der Logarithmus der Viskosität beträgt etwa 8,2.
    Sphärischtemp.:
    Der Logarithmus der Viskosität beträgt etwa 6,1.
    Halbkugeltemp.:
    Der Probenkörper hat bei dieser Temperatur annähernd die Form einer Halbkugel. Der Logarithmus der Viskosität beträgt etwa 4,6 +/– 0,1.
    Fließtemperatur:
    Bei dieser Temperatur beträgt die Höhe des Probenkörpers ca. 1/3 der Ausgangshöhe. Der Logarithmus der Viskosität beträgt etwa 4,1 +/– 0,1.
  • Eine deutliche Abweichung von diesem Verhalten wird jedoch beobachtet, wenn während des langsamen Aufheizens des Probenkörpers bereits eine Kristallisation eintritt. In diesem Fall kann der Probenkörper bis zu einer deutlich höheren Temperatur als das zugrunde liegende Grundglas stabil bleiben, und weist dann entsprechend dem Verhalten eines kristallinen Festkörpers eine Art Schmelzpunkt auf, bei dem es im Gegensatz zu einem Glas zu einem schlagartigen Übergang in die flüssige Phase kommt. In diesem Fall kann es sein, dass eine Sphärischtemperatur oder eine Halbkugeltemperatur nicht bestimmt werden können.
  • Nach Abschluss des Kristallisationsprozesses wurden an dem kristallisierten Glaslot ebenfalls die Übergangstemperatur Tg,k sowie die thermische Ausdehnung α(20–300),K im Temperaturbereich von 20 bis 300°C bestimmt, wobei die am kristallisierten Glaslot gemessenen Eigenschaften durch den Index K gekennzeichnet sind.
  • Die mit dem Heiztischmikroskop ermittelten thermischen Eigenschaften der Glaslote sowie nach der Kristallisation sind ebenfalls in der Tabelle 1 zusammengefasst. Tabelle 1: Zusammensetzung und Eigenschaften des Lotglases und des kris tallisierenden Glaslotes
    B1 B2 C1 C2 C3
    Zusammensetzung des Lotglases
    SiO2 Gew.-% 28,1 30,8 32,4 32,0 34,0
    B2O3 Gew.-% 10,0 8,4 3,2 7,0 9,8
    Al2O3 Gew.-% 1,7 1,8 1,1 1,0 1,7
    MgO Gew.-% 4,4 7,0
    SrO Gew.-% 13,1
    BaO Gew.-% 55,8 51,7 50,2 60,0 54,5
    V2O5 Gew.-% 0,3
    Phys. Eigenschaften des Lotglases vor der Kristallisation
    α(20-300),G 10–6 K–1 9,1 8,8 10,0 9,4 n. b.
    Tg,C °C 622 634 648 643 n. b.
    EWG (log η = 7,6) °C 730 744
    ρG g/cm3 3,81 3,70 3,97 3,93 n. b.
    Eigenschaften des kristallisierenden Glaslotes (Heiztischmikroskop) sowie nach der Kristallisation
    Sinterbeginn °C 653 665 683 672 679
    Erweichungstemp. EWk °C 757 779 1096 1045 711
    Sphärischtemp. °C 786 - - - -
    Halbkugeitemp. °C 853 876 1158 1127 1070
    Fließtemperatur °C 906 951 1165 1137 1090
    α(20-300),K 10–6 K–1 9,8 9,9 11,4 - 10,4
    Tg,k °C 614 624 - - 630
  • Die Tatsache, dass aus der thermischen Dehnungskurve teilweise ein Tg ermittelt werden kann, zeigt das Vorhandensein einer Restglasphase auf. Der im Vergleich zum amorphen Lotglas geringfügig niedrigere Tg,K kann durch die Abreicherung von SiO2 in der Glasphase erklärt werden, da Bariumsilikate (z. B. Ba5Si8O21) gebildet werden.
  • Die Glaslote der Vergleichsbeispiele C1, C2 und C3 weisen nicht das erfindungsgemäß erwünschte Verhalten auf. Der extrem hohe EWK von C1 und C2 weist auf eine sehr früh einsetzende Kristallisation, also eine starke Kristallisationsneigung, hin. Das Lotglas aus C3 weist einen deutlich geringeren EWK auf, jedoch liegt die der Löttemperatur entsprechende Halbkugeltemperatur deutlich über 1070°C, es kommt also ebenfalls vor Erreichen der Halbkugeltemperatur zur Kristallisation.
  • Die starke Kristallisationsneigung von Vergleichsbeispiel C1 kann auf den zu geringen B2O3-Gehalt von nur 3,2% zurückgeführt werden. Die starke Kristallisationsneigung von Vergleichsbeispiel C2 kann auf die Abwesenheit weiterer Erdalkalien der Gruppe CaO, MgO und SrO in Verbindung mit dem hohen Bariumanteil und dem ebenfalls geringen B2O3-Gehalt im Vergleich mit den Beispielen B1 und B2 zurückgeführt werden. Die starke Kristallisationsneigung von Vergleichsbeispiel C3 kann ebenfalls auf die Abwesenheit weiterer Erdalkalien zurückgeführt werden.
  • Die Beispiele B1 und B2 weisen hingegen das erfindungsgemäß gewünschte Verhalten auf. Diese erreichen Halbkugeltemperaturen deutlich unter 1000°C.
  • Das Lotglas aus Beispiel 5 wurde demzufolge als Grundglas für die Herstellung von Kompositen verwendet, wobei dem Pulver des Grundglases zwischen 10% bis 25% Füllstoffe zugesetzt wurden. An den erhaltenen Kompositen wurden analog zu den füllstofffreien Lotgläsern dieselben Eigenschaften bestimmt und in Tabelle 2 im Quervergleich zum füllstofffreien Lotglas zusammengefasst. In Ta belle 2 ist ferner der lineare thermischen Ausdehnungskoeffizient α(20-750),K aufgeführt, welcher die Temperatur-Dehnungseigenschaften des Komposits im Temperaturbereich von 20°C bis 750°C charakterisiert. Dieser Wert belegt, dass die thermische Ausdehnung über den gesamten für die Verarbeitung relevanten Temperaturbereich im Zielbereich liegt. Außerdem zeigt der Wert, dass die Probe kristallisiert ist. An dem Grundglas aus Beispiel 5 ohne Füllstoffe ist der Wert nicht bestimmbar, da dieses einen EWG von 730°C aufweist und somit vor Erreichen der 750°C erweicht. Insbesondere bei der Beurteilung der Thermozyklierbarkeit der Materialien ist der thermische Ausdehnungskoeffizient α(20-750),K relevanter als der α(20-300),K. Tabelle 2: Eigenschaften von Kompositen basierend auf Beispiel B1 (Heiztischmikroskop) sowie nach der Kristallisation
    B1 90% B1 + 10% 3YSZ 85% B1 + 15% BaSi2O5 75% B1 + 25% BaSi2O5
    Sinterbeginn °C 653 655 705 660
    Erweichungstemp. EWK °C 757 785 858 908
    Sphärischtemp. °C 786 - 895 -
    Halbkugeltemp. °C 853 877 1007 944
    Fließtemperatur °C 906 931 1120 991
    α(20-300),K 10–6 K–1 9,8 10,0 9,5 10,3
    α(20-750),K 10–6 K–1 Nicht bestimmbar, da bereits erweicht 14,2 12,7 13,2
  • Der Vergleich mit B1 zeigt, dass im Fall der Zugabe von 10% 3YSZ oder 25% BaSi2O5 (Sanbornit) der thermische Ausdehnungskoeffizient α(20-300),K des Komposits größer als der des kristallisierten Glaslots alleine ist, während im Fall der Zugabe von 15% BaSi2O5 der Wert kleiner ist. Dies belegt, dass durch die Aus wahl und durch die Menge der Füllstoffe sowohl eine positive oder auch negative Anpassung des thermischen Ausdehnungskoeffizienten erreicht werden kann.
  • Die Halbkugeltemperaturen und damit auch die Löttemperaturen liegen bei den in Tabelle 3 dargestellten Kompositen höher als bei Beispiel B1. Allerdings ist die Fließtemperatur im Falle der Komposite höher als die von Beispiel B1.
  • Mit den erfindungsgemäßen Kompositen wurden erfolgreich Fügeverbindungen mit metallischem Interkonnektormaterial hergestellt. Zuerst wurde die Fügeverbindung mit einer Aufheizgeschwindigkeit von 5 K/min auf 450°C aufgeheizt und 30 Minuten bei 450°C gehalten. Anschließend wurde die Fügeverbindung mit 2 K/min weiter auf 950°C aufgeheizt und 30 Minuten gehalten. Anschließend wurde die Fügeverbindung mit 2 K/min auf 860°C abgekühlt und 10 Stunden gehalten. Abkühlen auf Raumtemperatur erfolgt ebenfalls mit 2 K/min. Während des Fügevorganges wurde die Fügeverbindung mit einem statischen Gewicht beaufschlagt (ca. 15 g/cm2).
  • Die erfindungsgemäßen kristallisierenden Glaslote und Komposite vereinen alle positiven Eigenschaften gemäß Aufgabe der Erfindung miteinander. Das Lotglas als Vorprodukt lässt sich mit konventionellen Schmelzverfahren mit gutem Einschmelzverhalten und nicht zu hohen Schmelztemperaturen herstellen. Es weist eine thermische Ausdehnung in dem angestrebten Bereich auf sowie insbesondere keine zu starke Kristallisationsneigung bzw. spontane Kristallisation. Durch die Zusammensetzung wird die Bildung von unerwünschten Kristallphasen wirkungsvoll unterbunden, was dauerhaft stabile spannungsarme Fügeverbindungen ermöglicht.
  • Die erfindungsgemäßen Komposite können über verschiedene Füllstoffe über einen großen Bereich an die thermischen Ausdehnung der Interkonnektormaterialien angepasst werden.
  • Mit den erfindungsgemäßen kristallisierenden Glasloten und Komposite werden bei geringen Verarbeitungstemperaturen von etwa maximal 1000°C Fügeverbindungen erhalten, die hohe Betriebstemperaturen von etwa 850°C ermöglichen. Ferner ermöglicht die gute Benetzung der Interkonnektormaterialien durch die langsame Kristallisation erst nach dem Einbringen des Lotes dauerhaft stabile Fügeverbindungen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - DE 19857057 C1 [0008]
    • - US 6532769 B1 [0009]
    • - US 6430966 B1 [0009]
    • - DE 102005002435 A1 [0010]

Claims (15)

  1. Kristallisierendes Glaslot für Hochtemperaturanwendungen, enthaltend (in Gew.-% auf Oxidbasis) 45% bis 60% BaO, 25% bis 40% SiO2, 5% bis 15% B2O3, 0 bis < 2% Al2O3, sowie zumindest ein Erdalkalioxid aus der Gruppe MgO, CaO und SrO, wobei die Summe der Erdalkalioxide MgO, CaO und SrO bis 20%, bevorzugt 2% bis 15% beträgt.
  2. Kristallisierendes Glaslot nach Anspruch 1, wobei die Summe von SiO2 und B2O3 bis 50%, bevorzugt 36% bis 43% beträgt (in Gew.-% auf Oxidbasis).
  3. Kristallisierendes Glaslot nach mindestens einem der vorhergehenden Ansprüche mit einem thermischen Ausdehnungskoeffizienten im glasigen Zustand α(20-300),G von 6·10–6 K–1 bis 11·10–6 K–1 und/oder im kristallisierten Zustand α(20-300),K von 8·10–6 K–1 bis 12·10–6 K–1.
  4. Kristallisierendes Glaslot nach mindestens einem der vorhergehenden Ansprüche, enthaltend zusätzlich jeweils (in Gew.-% auf Oxidbasis) bis zu 0,5% V2O5 und/oder Sb2O3 und/oder CoO.
  5. Kristallisierendes Glaslot nach mindestens einem der vorhergehenden Ansprüche, enthaltend zusätzlich (in Gew.-% auf Oxidbasis) bis zu 5% ZrO2.
  6. Kristallisierendes Glaslot nach mindestens einem der vorhergehenden Ansprüche, wobei für das molare Verhältnis SiO2/BaO < 2 und besonders bevorzugt SiO2/BaO < 1,7 gilt.
  7. Kristallisierendes Glaslot nach mindestens einem der vorhergehenden Ansprüche mit einer Halbkugeltemperatur von 850°C bis 1000°C.
  8. Komposit umfassend ein kristallisierendes Glaslot nach mindestens einem der vorhergehenden Ansprüche und zusätzlich (in Gew.-% auf Oxidbasis) bis zu 35% eines kristallinen Füllstoffes.
  9. Komposit nach Anspruch 8, wobei der kristalline Füllstoff Sanbornit und/oder 3YSZ und/oder Wollastonit und/oder Enstatit umfasst.
  10. Komposit nach mindestens einem der Ansprüche 8 bis 9 mit einem thermischen Ausdehnungskoeffizienten in der Kristallphase α(20-300),K von 9,5·10–6 K–1 bis 14,5·10–6 K–1.
  11. Komposit nach mindestens einem der Ansprüche 8 bis 10 mit einer Halbkugeltemperatur von 850°C bis 1020°C.
  12. Kristallisierendes Glaslot oder Komposit nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Differenz in der thermischen Ausdehnung α(20-300) vor und nach dem Kristallisationsprozess kleiner 2·10–6 K–1, und bevorzugt kleiner 1·10–6 K–1 ist.
  13. Verwendung eines kristallisierenden Glaslotes und/oder Komposites nach mindestens einem der vorhergehenden Ansprüche zur Herstellung von Hochtemperaturfügeverbindungen, insbesondere für Brennstoffzellen.
  14. Verwendung eines kristallisierenden Glaslotes und/oder Komposites nach mindestens einem der Ansprüche 1 bis 12 in Sinterkörpern mit hoher Temperaturbeständigkeit.
  15. Verwendung eines kristallisierenden Glaslotes und/oder Komposites nach mindestens einem der Ansprüche 1 bis 13 zur Herstellung von Folien mit hoher Temperaturbeständigkeit.
DE102009011182.4A 2009-03-04 2009-03-04 Kristallisierendes Glaslot, Komposite und dessen Verwendung Expired - Fee Related DE102009011182B4 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DE102009011182.4A DE102009011182B4 (de) 2009-03-04 2009-03-04 Kristallisierendes Glaslot, Komposite und dessen Verwendung
EP10706552.6A EP2403812B1 (de) 2009-03-04 2010-03-03 Kristallisierendes glaslot und dessen verwendung
CN201080010401.5A CN102341357B (zh) 2009-03-04 2010-03-03 结晶化玻璃焊料和其用途
JP2011552361A JP5486612B2 (ja) 2009-03-04 2010-03-03 結晶化ガラスはんだおよびその使用
KR1020117023321A KR101640275B1 (ko) 2009-03-04 2010-03-03 결정성 유리 솔더 및 이의 용도
PCT/EP2010/001301 WO2010099939A1 (de) 2009-03-04 2010-03-03 Kristallisierendes glaslot und dessen verwendung
DK10706552.6T DK2403812T3 (en) 2009-03-04 2010-03-03 CRYSTALLIZING GLASS SOLUTION AND USE THEREOF
AU2010220562A AU2010220562B2 (en) 2009-03-04 2010-03-03 Crystallizing glass solder and use thereof
US13/203,347 US8658549B2 (en) 2009-03-04 2010-03-30 Crystallizing glass solder and use thereof
US13/238,455 US8664134B2 (en) 2009-03-04 2011-09-21 Crystallizing glass solders and uses thereof
US14/140,751 US9133053B2 (en) 2009-03-04 2013-12-26 Crystallizing glass solders and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009011182.4A DE102009011182B4 (de) 2009-03-04 2009-03-04 Kristallisierendes Glaslot, Komposite und dessen Verwendung

Publications (2)

Publication Number Publication Date
DE102009011182A1 true DE102009011182A1 (de) 2010-09-09
DE102009011182B4 DE102009011182B4 (de) 2017-03-23

Family

ID=42538436

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009011182.4A Expired - Fee Related DE102009011182B4 (de) 2009-03-04 2009-03-04 Kristallisierendes Glaslot, Komposite und dessen Verwendung

Country Status (1)

Country Link
DE (1) DE102009011182B4 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012110242A1 (de) 2011-02-18 2012-08-23 Schott Ag Durchführung
DE102012003540A1 (de) 2011-02-18 2012-08-23 Schott Ag Durchführung, insbesondere für Gehäuse für Sensoranwendungen,Speichereinrichtungen, bevorzugt Batterien, Akkumulatoren undVerfahren zur Herstellung einer Durchführung
WO2012167921A1 (de) 2011-06-10 2012-12-13 Schott Ag Durchführung
DE102013209970B3 (de) * 2013-05-28 2014-07-24 Schott Ag Glasiges oder zumindest teilkristallines Fügematerial und dessen Verwendung sowie Fügeverbindung
DE102013006463A1 (de) 2013-04-15 2014-10-16 Schott Ag Durchführung
WO2018114392A2 (de) 2016-12-20 2018-06-28 Schott Ag Grundkörper zur durchführung eines leiters sowie gehäuseteil eines gehäuses, insbesondere eines batteriegehäuses mit einem derartigen grundkörper
US10138157B2 (en) 2014-12-22 2018-11-27 Schott Ag Lead-through or connecting element with improved thermal loading capability
DE102017216422B3 (de) 2017-09-15 2019-01-03 Schott Ag Hochdehnendes Fügeglas mit verbesserter Wasserbeständigkeit und seine Anwendungen
US10224521B2 (en) 2011-02-18 2019-03-05 Schott Ag Feed-through
US11462789B2 (en) 2011-02-18 2022-10-04 Schott Ag Base body for feeding through of a conductor, and a housing component of a housing, in particular a battery housing comprising said base body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19857057C1 (de) 1998-12-10 2000-04-13 Fraunhofer Ges Forschung Verwendung von alkalifreien Glaskeramiken als Fügematerial für den Hochtemperatureinsatz
US6124224A (en) * 1998-09-02 2000-09-26 Ferro Corporation High temperature sealing glass
US6430966B1 (en) 1999-07-30 2002-08-13 Battelle Memorial Institute Glass-ceramic material and method of making
DE10122327A1 (de) * 2001-05-08 2002-11-28 Forschungszentrum Juelich Gmbh Glaslot als Fügematerial für den Hochtemperatureinsatz sowie Herstellung und Verwendung
DE102005002435A1 (de) 2005-01-19 2006-07-27 Forschungszentrum Jülich GmbH Herstellung einer Glaskeramik sowie dessen Verwendung als Fügematerial für den Hochtemperatureinsatz

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124224A (en) * 1998-09-02 2000-09-26 Ferro Corporation High temperature sealing glass
DE19857057C1 (de) 1998-12-10 2000-04-13 Fraunhofer Ges Forschung Verwendung von alkalifreien Glaskeramiken als Fügematerial für den Hochtemperatureinsatz
US6430966B1 (en) 1999-07-30 2002-08-13 Battelle Memorial Institute Glass-ceramic material and method of making
US6532769B1 (en) 1999-07-30 2003-03-18 Battelle Memorial Institute Glass-ceramic joint and method of joining
DE10122327A1 (de) * 2001-05-08 2002-11-28 Forschungszentrum Juelich Gmbh Glaslot als Fügematerial für den Hochtemperatureinsatz sowie Herstellung und Verwendung
DE102005002435A1 (de) 2005-01-19 2006-07-27 Forschungszentrum Jülich GmbH Herstellung einer Glaskeramik sowie dessen Verwendung als Fügematerial für den Hochtemperatureinsatz

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11462789B2 (en) 2011-02-18 2022-10-04 Schott Ag Base body for feeding through of a conductor, and a housing component of a housing, in particular a battery housing comprising said base body
WO2012110245A1 (de) 2011-02-18 2012-08-23 Schott Ag DURCHFÜHRUNG, INSBESONDERE FÜR BATTERIEN UND VERFAHREN ZUM EINBRINGEN DER DURCHFÜHRUNG MITTELS ULTRASCHALLSCHWEIßEN IN EIN GEHÄUSE
US10224521B2 (en) 2011-02-18 2019-03-05 Schott Ag Feed-through
DE102012003540A1 (de) 2011-02-18 2012-08-23 Schott Ag Durchführung, insbesondere für Gehäuse für Sensoranwendungen,Speichereinrichtungen, bevorzugt Batterien, Akkumulatoren undVerfahren zur Herstellung einer Durchführung
DE102012003540B4 (de) 2011-02-18 2021-09-23 Schott Ag Durchführung für ein Gehäuse, insbesondere für Speichereinrichtungen, bevorzugt Batterien, Akkumulatoren und Verfahren zur Herstellung einer Durchführung
WO2012110246A1 (de) 2011-02-18 2012-08-23 Schott Ag Durchführungsbauteil
WO2012110247A1 (de) 2011-02-18 2012-08-23 Schott Ag Glas, insbesondere glaslot bzw. schmelzglas
EP3782966A1 (de) 2011-02-18 2021-02-24 Schott AG Durchführung
WO2012110243A1 (de) 2011-02-18 2012-08-23 Schott Ag Durchführung
WO2012110244A1 (de) 2011-02-18 2012-08-23 Schott Ag Durchführung
WO2012110242A1 (de) 2011-02-18 2012-08-23 Schott Ag Durchführung
US10751831B2 (en) 2011-02-18 2020-08-25 Schott Ag Feed-through component
US9527157B2 (en) 2011-02-18 2016-12-27 Schott Ag Feed-through
US9539665B2 (en) 2011-02-18 2017-01-10 Schott Ag Feed-through
US9616518B2 (en) 2011-02-18 2017-04-11 Schott Ag Feed-through
US9799860B2 (en) 2011-02-18 2017-10-24 Schott Ag Feed-through
EP3579296A1 (de) 2011-02-18 2019-12-11 Schott AG Durchführung
WO2012167921A1 (de) 2011-06-10 2012-12-13 Schott Ag Durchführung
US10044010B2 (en) 2013-04-15 2018-08-07 Schott Ag Feedthrough
US10622596B2 (en) 2013-04-15 2020-04-14 Schott Ag Feedthrough
DE102013006463A1 (de) 2013-04-15 2014-10-16 Schott Ag Durchführung
US9206076B2 (en) 2013-05-28 2015-12-08 Schott Ag Vitreous or partially crystalline joining material and uses of same
EP2816018A1 (de) 2013-05-28 2014-12-24 Schott AG Glasiges oder zumindest teilkristallines Fügematerial und dessen Verwendung
DE102013209970B3 (de) * 2013-05-28 2014-07-24 Schott Ag Glasiges oder zumindest teilkristallines Fügematerial und dessen Verwendung sowie Fügeverbindung
US10138157B2 (en) 2014-12-22 2018-11-27 Schott Ag Lead-through or connecting element with improved thermal loading capability
US10457588B2 (en) 2014-12-22 2019-10-29 Schott Ag Lead-through or connecting element with improved thermal loading capability
WO2018114392A2 (de) 2016-12-20 2018-06-28 Schott Ag Grundkörper zur durchführung eines leiters sowie gehäuseteil eines gehäuses, insbesondere eines batteriegehäuses mit einem derartigen grundkörper
EP3588606A1 (de) 2016-12-20 2020-01-01 Schott AG Grundkörper zur durchführung eines leiters sowie gehäuseteil eines gehäuses, insbesondere eines batteriegehäuses mit einem derartigen grundkörper
DE102017216422B3 (de) 2017-09-15 2019-01-03 Schott Ag Hochdehnendes Fügeglas mit verbesserter Wasserbeständigkeit und seine Anwendungen

Also Published As

Publication number Publication date
DE102009011182B4 (de) 2017-03-23

Similar Documents

Publication Publication Date Title
EP2403812B1 (de) Kristallisierendes glaslot und dessen verwendung
DE102009011182B4 (de) Kristallisierendes Glaslot, Komposite und dessen Verwendung
DE102010035251B4 (de) Hochtemperatur-Glaslot und dessen Verwendung
DE102012206266B3 (de) Barium- und strontiumfreies glasiges oder glaskeramisches Fügematerial und dessen Verwendung
EP2816018B1 (de) Glasiges oder zumindest teilkristallines Fügematerial und dessen Verwendung
DE102012207405B3 (de) Glaskeramisches Fügematerial und dessen Verwendung
DE102015207285B4 (de) Glasiges oder zumindest teilweise kristallisiertes Einschmelzmaterial, Fügeverbindung, Sperrschicht, und Schichtsystem mit dem Einschmelzmaterial und dessen Integration in Bauteilen
DE102014014322B4 (de) Tellurat-Fügeglas mit Verarbeitungstemperaturen ≦ 400 °C
DE10157443B4 (de) Glas-Keramikzusammensetzung für ein elektronisches Keramikbauteil, Verwendung der Glas-Keramikzusammensetzung für ein elektronisches Keramikbauteil und Vefahren zur Herstellung eines elektronischen Vielschicht-Keramikbauteils
DE102005002435A1 (de) Herstellung einer Glaskeramik sowie dessen Verwendung als Fügematerial für den Hochtemperatureinsatz
DE19857057C1 (de) Verwendung von alkalifreien Glaskeramiken als Fügematerial für den Hochtemperatureinsatz
DE10122327A1 (de) Glaslot als Fügematerial für den Hochtemperatureinsatz sowie Herstellung und Verwendung
DE2823904A1 (de) Dichtungsglas
WO2013120803A1 (de) Zusammensetzung für die herstellung von glasloten für hochtemperaturanwendungen sowie deren verwendung
EP3414209B1 (de) Niedertemperatur-telluritglasmischungen für vakuumverdichtung bei temperaturen bis zu 450 °c
DE2610303C2 (de) Siebdruckpaste für dicke, elektrisch leitende, Leiterbahnen bildende Schichten auf einem keramischen Substrat
DE102011080352B4 (de) Hochtemperatur-Glaslot und dessen Verwendung
EP0897897A1 (de) Composit-Glaslot, Verwendung eines Composit-Glaslotes und Hochtemperatur-Brennstoffzelle
EP1268354B1 (de) Glas und glaspulvermischung sowie deren verwendung zur herstellung einer glaskeramik
EP0974559B1 (de) Komposit-Lotglas mit niedriger Aufschmelztemperatur, ein Füllstoff hierfür, sowie deren Verwendung
DE102010050867A1 (de) Kristallisationsfähiges Glaslot für Höchsttemperaturanwendungen
DE102011011107B4 (de) Sperrschicht aus Glas auf Metall, Verbundsystem, Brennstoffzelle mit der Sperrschicht, Verfahren zum Versehen von Metallen mit einer Sperrschicht sowie zum Herstellen eines Brennstoffzellenstapels
DE2512549A1 (de) Gesinterte siliciumcarbidmaterialien und verfahren zu ihrer herstellung
DE1421829C (de) Schmelzabdichtmasse aus einer keramischen Grundmasse und einem Glasbindemittel, deren Anteile zur Einstellung des Ausdehnungskoeffizienten dosiert sind, für vorgeformte Bauteile
DE1421829B2 (de) Schmelzabdichtmasse aus einer keramischen grundmasse und einem glasbindemittel deren anteile zur einstellung des aus dehnungskoeffizienten dosier sind fuer vorgeformte bauteile

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee