DE102008014274A1 - Verfahren und Vorrichtung zum Bestimmen einer Entfernung zu einem Objekt - Google Patents

Verfahren und Vorrichtung zum Bestimmen einer Entfernung zu einem Objekt Download PDF

Info

Publication number
DE102008014274A1
DE102008014274A1 DE102008014274A DE102008014274A DE102008014274A1 DE 102008014274 A1 DE102008014274 A1 DE 102008014274A1 DE 102008014274 A DE102008014274 A DE 102008014274A DE 102008014274 A DE102008014274 A DE 102008014274A DE 102008014274 A1 DE102008014274 A1 DE 102008014274A1
Authority
DE
Germany
Prior art keywords
modulation signal
light beam
modulation
signal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102008014274A
Other languages
English (en)
Other versions
DE102008014274B4 (de
Inventor
Martin Dr. Ossig
Philipp Dr. Schumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faro Technologies Inc
Original Assignee
Faro Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faro Technologies Inc filed Critical Faro Technologies Inc
Priority to DE102008014274.3A priority Critical patent/DE102008014274B4/de
Priority to CN2009801038520A priority patent/CN101932953B/zh
Priority to JP2010544678A priority patent/JP5306376B2/ja
Priority to PCT/EP2009/050887 priority patent/WO2009095383A1/de
Priority to EP09706836A priority patent/EP2238470A1/de
Publication of DE102008014274A1 publication Critical patent/DE102008014274A1/de
Priority to US12/697,837 priority patent/US8064046B2/en
Application granted granted Critical
Publication of DE102008014274B4 publication Critical patent/DE102008014274B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Ein Verfahren und eine Vorrichtung zum Bestimmen einer Entfernung zu einem Objekt (20) verwenden einen Lichtsender (12) zum Aussenden eines Sendelichtstrahls (18). Ein Lichtempfänger (14) empfängt einen Empfangslichtstrahl (24), der durch Reflexion des Sendelichtstrahls (18) an dem Objekt (20) entsteht. Anhand einer Laufzeit des Sende- und Empfangslichtstrahls (18, 24) wird die Entfernung (d) bestimmt. Der Sendelichtstrahl (18) wird mit einem rechteckwellenförmigen Modulationssignal (66; 74) amplitudenmoduliert und das Modulationssignal (66; 74) besitzt eine Vielzahl von Rechteckpulsen (68; 68') mit gleicher Pulsamplitude, die in einer Vielzahl von Gruppen (76; 76') auftreten. Gemäß einem Aspekt der Erfindung treten die Gruppen (76; 76') in variierenden zeitlichen Abständen (PA) zueinander auf und sie besitzen wechselnde Anzahlen von Rechteckpulsen (68; 68'). In einem bevorzugten Ausführungsbeispiel wird das Modulationssignal mit Hilfe eines digitalen Schaltkreises (56) als binäres rechteckwellenförmiges Modulationssignal (74) erzeugt.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Bestimmen einer Entfernung zu einem Objekt, mit den Schritten:
    • – Aussenden eines Sendelichtstrahls von einem Lichtsender,
    • – Empfangen eines Empfangslichtstrahls mit einem Lichtempfänger, wobei der Empfangslichtstrahl durch Reflexion des Sendelichtstrahls an dem Objekt entsteht, und
    • – Bestimmen der Entfernung anhand einer Laufzeit des Sende- und Empfangslichtstrahls,
    • – wobei der Sendelichtstrahl mit einem rechteckwellenförmigen Modulationssignal amplitudenmoduliert wird, und
    • – wobei das Modulationssignal eine Vielzahl von Rechteckpulsen besitzt, die in einer Vielzahl von Gruppen auftreten.
  • Die Erfindung betrifft außerdem eine Vorrichtung zum Bestimmen einer Entfernung zu einem Objekt, mit einem Lichtsender zum Aussenden eines Sendelichtstrahls, mit einem Lichtempfänger zum Empfangen eines Empfangslichtstrahls, wobei der Empfangslichtstrahl durch Reflexion des Sendelichtstrahls an dem Objekt entsteht, und mit einer Auswerteeinheit zum Bestimmen der Entfernung des Objekts anhand einer Laufzeit des Sende- und Empfangslichtstrahls, wobei der Sendelichtstrahl mit einem rechteckwellenförmigen Modulationssignal amplitudenmoduliert ist, und wobei das Modulationssignal eine Vielzahl von Rechteckpulsen besitzt, die in einer Vielzahl von Gruppen auftreten.
  • Ein Verfahren und eine Vorrichtung dieser Art sind aus DE 40 27 990 C1 bekannt.
  • Die Erfindung betrifft insbesondere einen sog. Laserscanner, der dazu ausgebildet ist, einen Raumbereich und/oder ein Objekt dreidimensional zu vermessen. Ein solcher Laserscanner ist bspw. in DE 103 61 870 A1 beschrieben. Dieser bekannte Laserscanner besitzt einen Messkopf, der um eine vertikale Achse drehbar ist. Der Messkopf enthält einen Rotor, der um eine horizontale Achse drehbar ist. Der Rotor sendet einen Sendelichtstrahl aus und empfängt einen Empfangslichtstrahl, der von einem Objekt reflektiert wird. (Reflexion im Sinne der vorliegenden Erfindung muss nicht unbedingt eine Totalreflexion sein, sondern kann auch eine diffuse Reflexion bzw. Streuung des ausgesendeten Lichtstrahls sein.) Aus der Laufzeit des Sendelichtstrahls und des Empfangslichtstrahls wird die Entfernung zwischen dem Messkopf und dem Objekt bestimmt. Die Drehung des Rotors und des Messkopfes ermöglicht es, den Sendelichtstrahl um 360° im Azimut und um etwa 270° in der Elevation zu bewegen. Auf diese Weise ist es möglich, nahezu den gesamten Raum rund um den bekannten Laserscanner zu vermessen. Typische Anwendungen für solche Laserscanner sind die Vermessung von Gebäuden (innen und/oder außen), Tunneln oder die Vermessung von großen Objekten, wie etwa Schiffsrümpfen.
  • Die Bestimmung der Laufzeit des Sende- und Empfangslichtstrahls ist auf verschiedene Weisen möglich. Grundsätzlich unterscheidet man zwischen Pulslaufzeitverfahren und CW(Continuous Wave)-Verfahren. Bei den Pulslaufzeitverfahren enthält der Sendelichtstrahl für jeden Messvorgang nur einen kurzen Sendeimpuls. Gemessen wird die Zeit, bis der reflektierte Impuls im Empfänger ankommt. Bei den CW-Verfahren wird ein (zumindest weitgehend) kontinuierlicher Sendelichtstrahl ausgesendet und die Laufzeit wird anhand einer Phasenverschiebung zwischen dem Sende- und Empfangslichtstrahl bestimmt. Typischerweise wird der Sendelichtstrahl dabei mit Hilfe eines Modulationssignals in seiner Amplitude moduliert und es wird die Phasenverschiebung des Modulationssignals im ausgesendeten und empfangenen Lichtstrahl zur Laufzeitbestimmung verwendet. Je höher die Modulationsfrequenz ist, desto genauer kann die Entfernung hier bestimmt werden. Allerdings reduziert sich mit zunehmender Modulationsfrequenz der Eindeutigkeitsbereich, weil sich die Phasenverschiebung zwischen Sende- und Empfangslichtstrahl nach einem Phasendurchlauf von 360° wiederholt.
  • Die eingangs genannte DE 40 27 990 C1 schlägt daher einen Entfernungsmesser mit einem modulierten Sendelichtstrahl nach dem CW-Verfahren vor, wobei der Sendelichtstrahl mit einem rechteckwellenförmigen Modulationssignal mit einer ersten, relativ hohen Modulationsfrequenz amplitudenmoduliert ist, und wobei dieser Sendelichtstrahl nach einer bestimmten Anzahl von Perioden des Modulationssignals für einen längeren Zeitraum unterbrochen wird. Diese Unterbrechung lässt sich als Amplitudenmodulation mit einem zweiten Modulationssignal mit einer zweiten, niedrigeren Modulationsfrequenz interpretieren. Mit anderen Worten ist der Sendelichtstrahl in diesem Fall mit einer ersten höheren und mit einer zweiten niedrigeren Modulationsfrequenz amplitudenmoduliert, wobei die beiden unterschiedlichen Modulationsfrequenzen den Eindeutigkeitsbereich bestimmen. Dieser ist deutlich größer als bei Verwendung von lediglich einer Modulationsfrequenz.
  • In DE 43 03 804 A1 wird das Verfahren nach DE 40 27 990 C1 insoweit für nachteilig erachtet, als dass durch die Amplitudenmodulation mit der niedrigeren zweiten Modulationsfrequenz die über die Dauer der gesamten Signalperiode gemittelte Sendelichtintensität reduziert wird. Dies führe zu einer Verringerung des Signal-/Rauschverhältnisses und infolgedessen dazu, dass Objekte mit einer geringen Reflektivität nicht mehr vermessen werden können. Zur Vermeidung dieses Nachteils schlägt DE 43 03 804 A1 vor, den Sendelichtstrahl abwechselnd mit der höheren ersten und der niedrigeren zweiten Modulationsfrequenz zu modulieren, d. h. in jedem Zeitintervall wird der Sendelichtstrahl jeweils mit nur einer der beiden Modulationsfrequenzen moduliert. Dieses Verfahren hat allerdings verlängerte Messzeiten zur Folge, da jedes Objekt doppelt vermessen werden muss. Die höhere Messzeit ist besonders bei einem Laserscanner von Nachteil, weil der Sendelichtstrahl dann nur relativ langsam verschwenkt werden kann.
  • Vor diesem Hintergrund ist es eine Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung der eingangs genannten Art anzugeben, bei denen die zur Verfügung stehende Lichtleistung optimal genutzt wird, um ein großes Signal-/Rauschverhältnis zu erhalten, und die ferner hohe Messgenauigkeiten zusammen mit einem großen Eindeutigkeitsbereich bieten.
  • Diese Aufgabe wird nach einem Aspekt der Erfindung durch ein Verfahren und eine Vorrichtung der eingangs genannten Art gelöst, wobei die Gruppen von Rechteckpulsen in variierenden zeitlichen Abständen zueinander auftreten und wechselnde Anzahlen von Rechteckpulsen aufweisen.
  • Das neue Verfahren und die neue Vorrichtung basieren weiterhin auf dem Prinzip der Laufzeitmessung nach dem CW-Verfahren, d. h. die Laufzeit wird anhand einer Phasenverschiebung des Modulationssignals im Empfangslichtstrahl relativ zum Modulationssignal im Sendelichtstrahl bestimmt. Des Weiteren verwenden das neue Verfahren und die neue Vorrichtung ein rechteckwellenförmiges Modulationssignal, mit dem der Sendelichtstrahl amplitudenmoduliert wird. Die eingangs genannte DE 40 27 990 C1 hat zwar bereits ein rechteckwellenförmiges Modulationssignal zur Amplitudenmodulation eines Sendelichtstrahls in Betracht gezogen. In der Praxis werden demgegenüber jedoch üblicherweise sinusförmige Modulationssignale verwendet. Ein rechteckwellenförmiges Modulationssignal besitzt gegenüber einem sinusförmigen Modulationssignal den Vorteil, dass das Modulationssignal bei gleicher Signalamplitude (Pulsspitze) und gleicher Modulationsfrequenz länger auf seinem jeweiligen Maximalwert verbleibt. Mit anderen Worten wird bei einem rechteckwellenförmigen Modulationssignal weniger Lichtleistung für den Flankenanstieg „verschwendet". Infolgedessen ermöglicht die Verwendung eines rechteckwellenförmigen Modulationssignals ein höheres Signal-/Rauschverhältnis als die Verwendung eines vergleichbaren sinusförmigen Modulationssignals. Die zur Verfügung stehende Lichtleistung lässt sich mit einem rechteckwellenförmigen Modulationssignal wesentlich besser ausnutzen.
  • Im Unterschied zu dem Verfahren nach DE 40 27 990 C1 wird der rechteckwellenförmig modulierte Sendelichtstrahl nach dem neuen Verfahren jedoch nicht lediglich periodisch unterdrückt, sondern das Modulationssignal selbst ist in einer Weise moduliert, so dass die Rechteckpulse in zeitlich variierenden Abständen zueinander und mit wechselnden Pulszahlen auftreten. In einem besonders bevorzugten Ausführungsbeispiel ist das Modulationssignal ein binäres Rechtecksignal (nach Art einer digitalen 0-1-Folge), wobei die einzelnen Rechteckpulse mit variierendem Puls-Pause-Verhältnis und variierender Pulshäufung auftreten. In anderen Ausführungsbeispielen können die Rechteckpulse Pulsspitzen eines nicht-binären rechteckwellenförmigen Modulationssignals sein, bspw. die Pulsspitzen eines quaternären rechteckwellenförmigen Signals. In einem bevorzugten Ausführungsbeispiel sind die Rechteckpulse des Modulationssignals so verteilt, dass das Modulationssignal selbst frequenzmoduliert ist, und zwar vorzugsweise nach einem periodisch wiederkehrenden Muster.
  • Es sei in diesem Zusammenhang darauf hingewiesen, dass ein Rechtecksignal in der Realität nie exakt rechteckförmig sein kann, da unvermeidliche Bandbreitenbegrenzungen und Überschwinger in realen Schaltungen stets zu einer Abweichung vom idealen Rechteck führen. Generell gilt jedoch, dass die Lichtausbeute bei dem Verfahren und der Vorrichtung der vorliegenden Erfindung um so besser ist, je näher das Modulationssignal einem idealen Rechtecksignal kommt.
  • Nach dem neuen Verfahren und der neuen Vorrichtung wird die Amplitude des Sendelichtstrahls mit einem Modulationssignal moduliert, das aufgrund seiner eigenen wechselnden Eigenschaften eine Vielzahl von unterschiedlichen Modulationsfrequenzen beinhaltet. Diese Vielzahl von unterschiedlichen Modulationsfrequenzen sind nicht nur die harmonischen Vielfachen, die jedes rechteckwellenförmige Signal aufgrund des Fourierzusammenhangs per se beinhaltet. Das neue Modulationssignal beinhaltet über die harmonischen Vielfachen eines Rechtecksignals hinaus eine Vielzahl von unterschiedlichen Modulationsfrequenzen, die insbesondere kleiner als die erste Oberwelle des rechteckwellenförmigen Signals sind. Das neue Modulationssignal ist somit ein kombiniertes Modulationssignal, mit dem der Lichtsender kontinuierlich angesteuert werden kann. Die verschiedenen Modulationsfrequenzen, die in dem neuen Modulationssignal enthalten sind, werden vorzugsweise zumindest annähernd zeitgleich ausgewertet, so dass prinzipiell ein Messvorgang für jede Entfernungsmessung genügt. Aufgrund der im kombinierten Modulationssignal enthaltenen hohen Modulationsfrequenzen lässt sich die Entfernung mit hoher Messgenauigkeit bestimmen. Andererseits enthält das Modulationssignal aufgrund der variierenden Pulsgruppen aber auch niedrigere Modulationsfrequenzen, so dass man einen großen Eindeutigkeitsbereich erhält.
  • Darüber hinaus hat sich gezeigt, dass sich mit dem neuen Modulationssignal die zur Verfügung stehende Lichtleistung wesentlich besser ausnutzen lässt als mit vergleichbaren kombinierten sinusförmigen Signalen. Die oben genannte Aufgabe ist daher vollständig gelöst.
  • In einer bevorzugten Ausgestaltung der Erfindung wechseln die zeitlichen Abstände periodisch.
  • In dieser Ausgestaltung werden die zeitlichen Abstände zwischen den Gruppen von Rechteckpulsen nach einem sich periodische wiederholenden Muster länger und kürzer. Die periodisch variierenden zeitlichen Abstände führen zu einer Modulationsfrequenz in dem rechteckwellenförmigen Modulationssignal, die klein ist im Vergleich zu der Grundfrequenz des rechteckwellenförmigen Modulationssignals. Die niedrige Modulationsfrequenz ermöglicht einen großen Eindeutigkeitsbereich. Darüber hinaus ermöglicht diese Ausgestaltung aufgrund der „Pausen" zwischen den Pulsgruppen eine höhere Spitzenbelastung des Lichtsenders bei gleicher mittlerer Lichtleistung, was eine weitere Verbesserung des Signal-/Rauschverhältnisses zur Folge hat.
  • In einer weiteren Ausgestaltung wechselt die Anzahl von Rechteckpulsen pro Gruppe periodisch.
  • Diese Ausgestaltung sorgt für eine weitere „niedrige" Modulationsfrequenz in dem kombinierten Modulationssignal und sie kann infolgedessen zu einer weiteren Vergrößerung des Eindeutigkeitsbereichs beitragen. Besonders vorteilhaft ist die Kombination dieser Ausgestaltung mit der vorhergehenden Ausgestaltung, wobei die periodisch wechselnden Abstände und die periodisch wechselnde Anzahl von Rechteckpulsen pro Gruppe mit gleicher Periode auftreten. In diesem Fall ergeben sich die größeren zeitlichen Abstände zwischen Gruppen von Rechteckpulsen aus der geringeren Anzahl von Rechteckpulsen pro Gruppe. Diese Ausgestaltung vereinfacht die praktische Realisierung und sie ermöglicht eine sehr gute Ausnutzung der zur Verfügung stehenden Lichtleistung.
  • In einer weiteren Ausgestaltung wird das Modulationssignal erzeugt, indem ein erstes rechteckwellenförmiges Modulationssignal mit einer ersten Modulationsfrequenz und ein zweites rechteckwellenförmiges Modulationssignal mit einer zweiten Modu lationsfrequenz addiert werden, wobei die erste Modulationsfrequenz groß gegenüber der zweiten Modulationsfrequenz ist. Vorzugsweise ist die erste Modulationsfrequenz zumindest fünfmal größer als die zweite Modulationsfrequenz.
  • Diese Ausgestaltung ermöglicht eine sehr einfache und kostengünstige Erzeugung des neuen Modulationssignals und somit eine einfache und kostengünstige Realisierung der neuen Vorrichtung. Eine Addition der ersten und zweiten Modulationssignale reduziert außerdem die Anzahl nicht benötigter „Nebenfrequenzen" in dem Modulationssignal im Vergleich zu einer prinzipiell ebenfalls denkbaren Multiplikation. Infolgedessen wird die zur Verfügung stehende Lichtleistung stärker auf die nutzbaren und genutzten Modulationsfrequenzen konzentriert.
  • In einer weiteren Ausgestaltung wird ein drittes rechteckwellenförmiges Modulationssignal mit einer dritten Modulationsfrequenz zu dem ersten und zweiten rechteckwellenförmigen Modulationssignal addiert, wobei die zweite und die dritte Modulationsfrequenz verschieden voneinander sind, und wobei die erste Modulationsfrequenz auch groß gegenüber der dritten Modulationsfrequenz ist. Besonders vorteilhaft ist es, wenn die zweite und dritte Modulationsfrequenz annähernd gleich sind bzw. dicht beieinander liegen.
  • In dieser Ausgestaltung ist die Differenz zwischen der zweiten und dritten Modulationsfrequenz wesentlich kleiner als die Differenz zwischen der zweiten und der ersten Modulationsfrequenz oder die Differenz zwischen der dritten und der ersten Modulationsfrequenz. In einem bevorzugten Ausführungsbeispiel liegt die erste Modulationsfrequenz bei etwa 125 MHz, die zweite Modulationsfrequenz liegt bei etwa 15 MHz und die dritte Modulationsfrequenz liegt bei etwa 13 MHz.
  • Diese Ausgestaltung besitzt den Vorteil, dass eine dritte Modulationsfrequenz zur Signalauswertung zur Verfügung steht, wodurch sich der Eindeutigkeitsbereich weiter vergrößern lässt. Besonders vorteilhaft ist es, wenn die zweite und dritte Modulationsfrequenz relativ eng beieinander liegen, wie in dem bevorzugten Ausführungs beispiel, weil in solchen Fällen eine Schwebung entsteht, deren Frequenz der Differenz zwischen der zweiten und der dritten Modulationsfrequenz entspricht. Diese Differenz ist sehr gering im Vergleich zu den eigentlichen Frequenzen der Modulationssignale. Infolgedessen lässt sich der Eindeutigkeitsbereich sehr stark vergrößern, ohne dass die geringe Schwebungsfrequenz separat zur Verfügung gestellt werden muss. Die Auswahl und Abstimmung der einzelnen Schaltungskomponenten der neuen Vorrichtung lässt sich in dieser Ausgestaltung deutlich vereinfachen.
  • In einer weiteren Ausgestaltung haben das zweite und das dritte Modulationssignal gleiche Pulsamplituden.
  • Diese Ausgestaltung vereinfacht die Signalauswertung und führt zu einer nochmals verbesserten Lichtausbeute. Sie ist besonders vorteilhaft, wenn die zweite und dritte Modulationsfrequenz so eng beieinander liegen, dass eine Schwebungsfrequenz zur Signalauswertung zur Verfügung steht.
  • In einer weiteren Ausgestaltung besitzt das erste Modulationssignal eine größere Pulsamplitude als das zweite Modulationssignal. In einem besonders bevorzugten Ausführungsbeispiel ist die Pulsamplitude des ersten Modulationssignals etwa um den Faktor 2 größer als die Pulsamplituden des zweiten oder dritten Modulationssignals, wobei Letztere gleich sind.
  • Diese Ausgestaltung trägt dazu bei, die zeitlichen Abstände zwischen den Gruppen von Rechteckpulsen in dem kombinierten Modulationssignal zu vergrößern, was auf den ersten Blick eine Reduzierung der mittleren Sendeleistung des Sendelichtstrahls zur Folge hat. Vorteilhafterweise wird in diesem Fall jedoch die Puls- oder Spitzenleistung, mit der der Lichtsender betrieben wird, erhöht. Dies ist durch die größeren Abstände zwischen den Gruppen von Rechteckpulsen ohne Zerstörung des Lichtsenders möglich und trägt dazu bei, das Signal-/Rauschverhältnis im Nutzsignal nochmals zu erhöhen.
  • In einer weiteren Ausgestaltung haben alle Rechteckpulse des Modulationssignals eine zumindest weitgehend gleiche Pulsamplitude.
  • In dieser Ausgestaltung ist das kombinierte Modulationssignal ein binäres Signal, wie es im Bereich der Digitaltechnik üblicherweise zur Repräsentation einer 0-1-Folge verwendet wird. Alternativ könnte das kombinierte Modulationssignal ein rechteckwellenförmiges Signal mit einer Vielzahl (n > 2) von Pulsamplitudenwerten sein. Die bevorzugte Ausgestaltung besitzt den Vorteil, dass sich das kombinierte Modulationssignal mit Hilfe von digitalen Schaltkreisen sehr einfach und effizient erzeugen lässt, wobei die zu kombinierenden Modulationssignale und das kombinierte Modulationssignal in diesem Fall digital als 0-1-Folgen bereitgestellt werden. Darüber hinaus kann mit jedem Puls die maximale Amplitude des Sendelichtstrahls ausgenutzt werden, was ebenfalls zu einer optimalen Nutzung der zur Verfügung stehenden Lichtleistung beiträgt.
  • In einer weiteren Ausgestaltung wird das rechteckwellenförmige Modulationssignal mit Hilfe eines digitalen Schaltkreises als binäres rechteckwellenförmiges Modulationssignal erzeugt.
  • Wie bereits zuvor angedeutet, ermöglicht diese Ausgestaltung eine sehr einfache und kostengünstige Realisierung des neuen Verfahrens und der neuen Vorrichtung. Darüber hinaus lässt sich das kombinierte Modulationssignal in dieser Ausgestaltung sehr flexibel variieren und an verschiedene Umgebungen und/oder Messaufgaben anpassen.
  • Alternativ hierzu wird das rechteckwellenförmige Modulationssignal in anderen Ausgestaltungen aus zumindest zwei sinusförmigen Signalen unterschiedlicher Frequenz erzeugt, wobei die sinusförmigen Signale jeweils verstärkt und amplitudenbegrenzt werden.
  • In dieser Ausgestaltung wird das rechteckwellenförmige Modulationssignal mit Hilfe von analoger Schaltungstechnik erzeugt. Diese Ausgestaltung ermöglicht eine sehr einfache und kostengünstige Realisierung der neuen Vorrichtung unter Verwendung von Schaltungskomponenten, die bislang mit sinusförmigen Signalen betrieben wurden. Insbesondere kann das neue Verfahren in dieser Ausgestaltung sehr einfach in vorhandene Schaltungskonzepte nach dem Stand der Technik integriert werden.
  • In einer weiteren Ausgestaltung wird die Laufzeit des Sende- und Empfangslichtstrahls anhand einer Phasendifferenz des Modulationssignals im Sendelichtstrahl und im Empfangslichtstrahl bestimmt, wobei die Phasenlage des Modulationssignals im Sendelichtstrahl an dem Lichtsender gemessen wird.
  • In dieser – auch für sich genommen erfinderischen – Ausgestaltung wird die Phasenlage des Modulationssignals im Sendelichtstrahl messtechnisch bestimmt und diese Phase wird als Referenz für die Laufzeitbestimmung verwendet. Es wird hier also die momentan im Sendelichtstrahl vorhandene Phasenlage zur Bestimmung der Laufzeit verwendet. Besonders bevorzugt ist es in diesem Fall, wenn der Lichtsender eine Laserdiode beinhaltet und wenn die Phasenlage des Steuerstroms gemessen wird, der durch die Laserdiode fließt. Die Phasenlage des Steuerstroms lässt sich einfach bestimmen und sie repräsentiert die tatsächliche momentane Phasenlage des Modulationssignals im Sendelichtstrahl mit hoher Genauigkeit. Diese Ausgestaltung ermöglicht eine sehr hohe Messgenauigkeit, weil ein Phasendrift im Bereich des Lichtsenders aus der Entfernungsbestimmung eliminiert wird.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
  • 1 einen Laserscanner gemäß einem bevorzugten Ausführungsbeispiel der Erfindung,
  • 2 eine vereinfachte Darstellung von mehreren Modulationssignalen, die bei dem Laserscanner gemäß 1 zur Anwendung kommen können,
  • 3 ein bevorzugtes Ausführungsbeispiel für ein Modulationssignal,
  • 4 das Frequenzspektrum des Modulationssignals aus 3,
  • 5 eine Schaltung zur Erzeugung des neuen Modulationssignals gemäß einem weiteren Ausführungsbeispiel, und
  • 6 eine Schaltung zur Erzeugung des neuen Modulationssignals gemäß einem weiteren Ausführungsbeispiel der Erfindung.
  • In 1 ist ein Laserscanner in seiner Gesamtheit mit der Bezugsziffer 10 bezeichnet. Der Laserscanner 10 ist ein bevorzugtes Ausführungsbeispiel für eine Vorrichtung nach der vorliegenden Erfindung. Die neue Vorrichtung und das neue Verfahren können jedoch auch bei anderen Geräten Anwendung finden, bei denen eine Entfernung zu einem Objekt mit Hilfe eines Sendelichtstrahls und eines Empfangslichtstrahls bestimmt werden soll. Die Erfindung ist auch nicht auf die Verwendung von Lichtstrahlen im engeren Sinne (bevorzugte Wellenlängen zwischen 300 und 1000 nm) beschränkt, sondern kann prinzipiell auch mit elektromagnetischen Wellen aus einem größeren Wellenlängenbereich realisiert werden, so lange eine quasioptische Ausbreitung vorliegt. Der hier verwendete Begriff Lichtstrahl umfasst daher auch solche elektromagnetischen Wellen.
  • Der Laserscanner 10 beinhaltet einen Lichtsender 12 und einen Lichtempfänger 14, die beide mit einer Auswerte- und Steuereinheit 16 verbunden sind. In dem bevorzugten Ausführungsbeispiel beinhaltet der Lichtsender 12 eine Laserdiode 13 (siehe Darstellung in 5 und 6), die dazu ausgebildet ist, einen Laserstrahl 18 auszusenden, um einen Objektpunkt an einem Objekt 20 zu beleuchten. Der Laserstrahl 18 wird hier mit einem rechteckwellenförmigen Modulationssignal amplitudenmoduliert, wie dies nachfolgend anhand der 2 bis 6 näher erläutert ist. Der Sendelichtstrahl besitzt in einem bevorzugten Ausführungsbeispiel eine Wellenlänge von etwa 790 nm.
  • Der Laserstrahl 18 wird hier über einen Spiegel 22 zu dem Objekt 20 umgelenkt. Mit der Bezugsziffer 24 ist ein Empfangslichtstrahl bezeichnet, der von dem Objekt 20 reflektiert wird und der über den Spiegel 22 zu dem Empfänger 14 umgelenkt wird. Die Auswerte- und Steuereinheit 16 ist dazu ausgebildet, die Entfernung des Laserscanners 10 zu dem beleuchteten Punkt an dem Objekt 20 aus der Laufzeit des ausgesendeten Laserstrahls 18 und des empfangenen reflektierten Strahls 24 zu bestimmen. Zu diesem Zweck wird eine Phasenverschiebung zwischen dem Sendelichtstrahl 18 und dem Empfangslichtstrahl 24 bestimmt und ausgewertet.
  • Der Spiegel 22 ist hier an der vorderen Stirnfläche eines Zylinders 26 angeordnet, der über eine Welle 28 mit einem Drehantrieb 30 verbunden ist. Mit Hilfe des Drehantriebes 30 kann der Spiegel 22 um eine Drehachse 32 gedreht werden. Die jeweilige Drehstellung des Spiegels 22 lässt sich mit Hilfe eines Encoders 34 bestimmen. Die Ausgangssignale des Encoders 34 sind ebenfalls der Auswerte- und Steuereinheit 16 zugeführt, was hier aus Gründen der Übersichtlichkeit nicht dargestellt ist.
  • In dem bevorzugten Ausführungsbeispiel ist die Drehachse 32 horizontal angeordnet und der Spiegel 22 ist gegenüber der Drehachse 32 in einem Winkel von etwa 45° geneigt. Eine Drehung des Spiegels 22 um die Horizontalachse 32 hat daher zur Folge, dass der Sendelichtstrahl 18 entlang einer Vertikalebene (Elevation) abgelenkt wird, die senkrecht zu der Drehachse 32 steht. Der Sendelichtstrahl 18 bildet gewissermaßen einen Fächer, mit dem der Raumbereich 36 in einer Vertikalebene abgetastet wird.
  • Der Laserscanner 10 besitzt hier eine Gehäusestruktur, die im Wesentlichen zwei Gehäuseteile 38, 40 aufweist. Die Gehäuseteile 38, 40 sind auf einer gemeinsamen Grundplatte 42 angeordnet. Der Sender 12, der Empfänger 14 und die Auswerte- und Steuereinheit 16 sind in dem in 1 links dargestellten Gehäuseteil 38 untergebracht. Der in 1 rechts dargestellte Gehäuseteil 40 beherbergt den Drehantrieb 30 mit dem Encoder 34 und dem Zylinder 26, wobei der Zylinder 26 mit dem Spiegel 22 aus dem Gehäuseteil 40 herausragt, so dass der Spiegel 22 etwa mittig zwischen den beiden Gehäuseteilen 38, 40 angeordnet ist.
  • Die Grundplatte 42 ist auf einem Drehantrieb 44 angeordnet, der auf einem Stativ 46 sitzt. Das Stativ 46 ist in der Höhe verstellbar und besitzt eine Skalierung 48, um eine reproduzierbare Höheneinstellung vornehmen zu können. Mit der Bezugsziffer 50 ist ein weiterer Encoder bezeichnet, mit dessen Hilfe sich die Drehposition des Drehantriebs 44 bestimmen lässt. Die Ausgangssignale des Encoders 50 sind ebenfalls der Auswerte- und Steuereinheit 16 zugeführt (hier nicht dargestellt).
  • Der Drehantrieb 44 ermöglicht eine Drehung des Laserscanners 10 um eine vertikale Achse 52, die zusammen mit der Drehachse 32 einen Achsenschnittpunkt definiert. Der Achsenschnittpunkt liegt etwa mittig auf dem Spiegel 22 und definiert in bevorzugten Ausführungsbeispielen den Ursprung eines Koordinatensystems, auf das sämtliche Entfernungsmesswerte bezogen sind. Mit Hilfe des Drehantriebes 44 kann der vertikale „Abtastfächer", der mit Hilfe des rotierenden Spiegels 22 erzeugt wird, um bis zu 360° im Azimut gedreht werden. Damit kann der Sendelichtstrahl 18 nahezu jeden Objektpunkt in der Umgebung des Laserscanners 10 beleuchten. Eine Abschattung findet lediglich nach unten hin durch die Grundplatte 42 statt, so dass der Blickwinkel des Laserscanners 10 nach unten hin begrenzt ist.
  • Die Auswerte- und Steuereinheit 16 beinhaltet in diesem Ausführungsbeispiel einen Mikroprozessor 54 und ein FPGA (field programmable gate array) 56. Das FPGA 56 erzeugt hier ein binäres rechteckwellenförmiges Modulationssignal, mit dem die Laserdiode des Lichtsenders 12 angesteuert wird. Der Mikroprozessor 54 liest digitalisierte Empfangsdaten des Lichtempfängers 14 ein und bestimmt anhand dieser Daten die Entfernung d zwischen dem Laserscanner 10 und dem Objekt 20. Zusätzlich kommunizieren der Mikroprozessor 54 und das FPGA 56 miteinander, wobei der Mikroprozessor 54 unter anderem die Phaseninformation des Modulationssignals für die Laufzeitbestimmung erhält.
  • 2 zeigt drei idealisiert dargestellte Modulationssignale 60, 62, 64 über einer Zeitachse. Das erste Modulationssignal 60 ist ein rechteckwellenförmiges Modulationssignal mit einer Grundfrequenz von bspw. 125 MHz. Das zweite Modulationssignal 62 ist ein rechteckwellenförmiges Signal mit einer Grundfrequenz von 13 MHz und das dritte Modulationssignal 64 ist ein rechteckwellenförmiges Signal mit einer Grundfrequenz von 15 MHz. Bei der Bezugsziffer 66 ist ein Summensignal dargestellt, das sich aus einer Addition der drei Modulationssignale 60, 62, 64 ergibt. Das Summensignal 66 ist ein rechteckwellenförmiges Signal mit einer Anzahl von Rechteckpulsen 68, 70, die mit der Grundfrequenz des ersten Modulationssignals 60 aufeinander folgen. Aufgrund der Addition mit dem zweiten und dritten Modulationssignal 62, 64 besitzen die Rechteckpulse 68, 70 des Summensignals 66 allerdings unterschiedliche Pulshöhen. Das Summensignal 66 ist daher ein kombiniertes Signal, in dem zusätzlich zu der Basisfrequenz des ersten Modulationssignals 60 weitere Signalfrequenzen enthalten sind. Insbesondere beinhaltet das Summensignal 66 eine Signalfrequenz, die der Differenz der Basisfrequenzen des zweiten und dritten Modulationssignals 62, 64 entspricht. Diese weitere Signalfrequenz zeigt sich in dem periodischen Muster, mit dem die höchsten Rechteckpulse 68 über den bei der Bezugsziffer 72 angedeuteten Schwellenwert hinausgehen. Darüber hinaus enthält das Summensignal 66 eine Signalfrequenz, die dem Mittelwert aus den Grundfrequenzen der beiden Modulationssignale 62, 64 entspricht. In dem bevorzugten Ausführungsbeispiel enthält das Summensignal somit eine Signalfrequenz von etwa 2 MHz (15 MHz – 13 MHz) und eine Signalfrequenz von etwa 14 MHz (15 MHz + 13 MHz/2). Das Summensignal 66 eignet sich damit als Modulationssignal für eine Amplitudenmodulation des Sendelichtstrahls 18, wobei die relativ hohe Signalfrequenz von 125 MHz eine Feinphase für die genaue Bestimmung der Entfernung d liefert, während die niedrige Signalfrequenz von 2 MHz eine Grobphase für einen großen Eindeutigkeitsbereich liefert. Es versteht sich, dass diese unterschiedlichen Signalfrequenzen und Phasendifferenzen in der Auswerte- und Steuereinheit der neuen Vorrichtung entsprechend ausgewertet werden, und zwar vorzugsweise in jedem einzelnen Messzyklus.
  • In dem Ausführungsbeispiel gemäß 2 ist die Pulsamplitude des ersten Modulationssignals 60 doppelt so hoch wie die Pulsamplitude des zweiten und des dritten Modulationssignals 62, 64. Dies hat zur Folge, dass das Summensignal 66 ein quaternäres Signal ist, bei dem die Rechteckpulse 68, 70 einen von vier möglichen Pulswerten annehmen. Grundsätzlich kann dieses quaternäre Signal 66 als Modulationssignal für den Sendelichtstrahl verwendet werden.
  • In einem besonders bevorzugten Ausführungsbeispiel wird allerdings nicht das quaternäre Summensignal 66, sondern ein binäres Modulationssignal 74 verwendet, das sich aus dem Summensignal 66 ergibt, indem lediglich die Rechteckpulse 68 verwendet werden, die über den Pulswert bei der Bezugsziffer 72 hinausreichen. Mit anderen Worten werden hier lediglich die „hohen" Pulsspitzen des Summensignals 66 verwendet, die in 2 mit der Bezugsziffer 68' bezeichnet sind. Der untere Teil des Signals 66 wird „abgeschnitten". Wie man anhand 2 erkennen kann, wechseln die zeitlichen Abstände PA zwischen den Rechteckpulsen 68' periodisch. Des Weiteren variiert die Anzahl von Rechteckpulsen 68' pro Gruppe 76 von Rechteckpulsen 68'. Das Modulationssignal 74 ist daher ein frequenzmoduliertes, rechteckwellenförmiges, binäres Signal, dessen Grundfrequenz der Grundfrequenz des ersten Modulationssignals 60 entspricht (hier also 125 MHz). Diese Grundfrequenz ist mit der Schwebungsfrequenz, die sich aus der Frequenzdifferenz des zweiten und dritten Modulationssignals 62, 64 ergibt, frequenzmoduliert.
  • 3 zeigt ein mit Hilfe eines digitalen Schalkreises berechnetes Modulationssignal, das dem Modulationssignal 74 aus 2 entspricht. 4 zeigt das Frequenzspektrum des Modulationssignals aus 3. Bei der Bezugsziffer 80 ist ein erster Peak zu erkennen, der einen hohen Signalanteil bei der Grundfrequenz von 125 MHz anzeigt. Mit der Bezugsziffer 82 sind weitere Peaks bezeichnet, die bei 375 MHz, 625 MHz, 875 MHz etc. liegen. Es handelt sich hier um ungeradzahlige Vielfache der Grundfrequenz, die typisch für ein rechteckwellenförmiges Signal sind.
  • Bei den Bezugsziffern 84, 86 sind weitere Peaks zu erkennen, die infolge der Kombination mit dem zweiten und dritten Modulationssignal 62, 64 auftreten. Die weiteren Peaks 84, 86 kennzeichnen Frequenzanteile, die in dem kombinierten Modulationssignal 74 ebenfalls enthalten sind und die in den bevorzugten Ausführungsbeispielen der Erfindung zusätzlich zu der Grundfrequenz des ersten Modulationssignals 60 ausgewertet werden, um die Laufzeit des Sendelichtstrahls 18 und des Empfangslichtstrahls 24 und infolgedessen die Entfernung d zu bestimmen. In derzeit bevorzugten Ausführungsbeispielen werden lediglich die Grundfrequenzen, nicht jedoch die weiteren harmonischen Frequenzen 82, 88 ausgewertet, um eine Phasenverschiebung zwischen dem Sendelichtstrahl 18 und dem Empfangslichtstrahl 24 zu bestimmen. In anderen Ausführungsbeispielen können auch noch die harmonischen Frequenzen, d. h. die Frequenzen bei den Peaks 82 und die jeweils darum gruppierten Frequenzen 88 ausgewertet werden. In den derzeit bevorzugten Ausführungsbeispielen werden die harmonischen Frequenzen 82, 88 mit Hilfe eines geeigneten Eingangsfilters im Bereich des Lichtempfängers 14 unterdrückt. Es versteht sich, dass ein solches Eingangsfilter (hier nicht dargestellt) entfallen kann und/oder modifiziert werden muss, wenn die harmonischen Frequenzanteile ebenfalls ausgewertet werden sollen.
  • In dem derzeit bevorzugten Ausführungsbeispiel wird das Modulationssignal 74 mit Hilfe eines digitalen Schaltkreises in Form des FPGAs 56 als binäres rechteckwellenförmiges Modulationssignal erzeugt. In dem FPGA 56 ist zu diesem Zweck eine Rechenvorschrift und/oder eine Wertetabelle hinterlegt, die die Modulationssignale 60, 62, 64 repräsentiert. Mit Hilfe dieser Rechenvorschrift und/oder eine Wertetabelle erzeugt das FPGA 56 die binäre Pulsfolge, die als Modulationssignal 74 dem Lichtsender 12 zugeführt ist.
  • 5 zeigt ein alternatives Ausführungsbeispiel, in dem das Modulationssignal für den Lichtsender 12 auf analoge Weise erzeugt wird. Wie man anhand 5 erkennen kann, beinhaltet der Lichtsender 12 die Laserdiode 13 und einen Transistor 90, durch den ein Steuerstrom I fließt, mit dem die Laserdiode 13 gespeist wird. Indem man den Steuerstrom I durch den Transistor 90 variiert, erzeugt man eine Amplitudenmodulation des von der Laserdiode 13 erzeugten Laserlichts. Die Phasenlage des Steuerstroms I ist ein Maß für die Phasenlage des Modulationssignals, mit dem der Sendelichtstrahl moduliert ist. Vorzugsweise wird die Phasenlage des Steuerstroms I mit einem Phasendetektor 91 gemessen und als Referenzphase an den Mikroprozessor 54 gemeldet. In einem anderen bevorzugten Ausführungsbeispiel wird ein Teil des ausgesendeten Lichtstrahls mit einem Signalteiler abgezweigt und der abgezweigte Teil wird mit einer lichtempfindlichen Monitordiode gemessen. Man erhält auf diese Weise die Phasenlage des Modulationssignals im ausgesendeten Lichtstrahl. In einem besonders bevorzugten Ausführungsbeispiel wird zur Übertragung der Phaseninformation ein Kommunikationskanal des FPGA 56 verwendet.
  • In dem Ausführungsbeispiel gemäß 5 wird die Basis des Transistors 90 mit einem Summensignal gespeist, das bspw. dem Summensignal 66 aus 2 entspricht. Das Summensignal wird erzeugt, indem ein erstes Modulationssignal 60, ein zweites Modulationssignal 62 und ein drittes Modulationssignal 64 an einem Summationspunkt 91 addiert werden. Die Modulationssignale 60, 62, 64 werden mit Hilfe von drei sinusförmigen Signalen 92, 94, 96 erzeugt. Jedes der drei sinusförmigen Signale 92, 94, 96 wird mit Hilfe eines Verstärkers 98 verstärkt und anschließend über einen Begrenzer 100 „abgeschnitten". Auf diese Weise werden aus den sinusförmigen Signalen 92, 94, 96 rechteckwellenförmige Signale, wie sie in 2 idealisiert dargestellt sind.
  • 6 zeigt ein weiteres Ausführungsbeispiel. Gleiche Bezugszeichen bezeichnen dieselben Elemente wie zuvor. In diesem Ausführungsbeispiel werden die sinusförmigen Signale 92, 94, 96 mit Hilfe der Verstärker 98 jeweils so stark verstärkt, dass das Summensignal den Transistor 90 jeweils in die Sättigung führt. In diesem Ausführungsbeispiel wirkt der Transistor 90 selbst als Begrenzer, der aus den sinusförmigen Modulationssignalen 92, 94, 96 das rechteckwellenförmige Modulationssignal erzeugt.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - DE 4027990 C1 [0003, 0006, 0007, 0010, 0011]
    • - DE 10361870 A1 [0004]
    • - DE 4303804 A1 [0007, 0007]

Claims (12)

  1. Verfahren zum Bestimmen einer Entfernung (d) zu einem Objekt (20), mit den Schritten: – Aussenden eines Sendelichtstrahls (18) von einem Lichtsender (12), – Empfangen eines Empfangslichtstrahls (24) mit einem Lichtempfänger (14), wobei der Empfangslichtstrahl (24) durch Reflexion des Sendelichtstrahls (18) an dem Objekt (20) entsteht, und – Bestimmen der Entfernung (d) anhand einer Laufzeit des Sende- und Empfangslichtstrahls (18, 24), – wobei der Sendelichtstrahl (18) mit einem rechteckwellenförmigen Modulationssignal (66; 74) amplitudenmoduliert wird, und – wobei das Modulationssignal (66; 74) eine Vielzahl von Rechteckpulsen (68; 68') besitzt, die in einer Vielzahl von Gruppen (76; 76') auftreten, dadurch gekennzeichnet, dass die Gruppen (76; 76') in variierenden zeitlichen Abständen (PA) zueinander auftreten und wechselnde Anzahlen von Rechteckpulsen (68; 68') aufweisen.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die zeitlichen Abstände (PA) periodisch wechseln.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Anzahl von Rechteckpulsen (68; 68') pro Gruppe (76) periodisch wechselt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Modulationssignal (66; 74) erzeugt wird, indem ein erstes rechteckwellenförmiges Modulationssignal (60) mit einer ersten Modulationsfrequenz und ein zweites rechteckwellenförmiges Modulationssignal (62) mit einer zweiten Modulationsfrequenz addiert werden, wobei die erste Modulationsfrequenz groß gegenüber der zweiten Modulationsfrequenz ist.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass ferner ein drittes rechteckwellenförmiges Modulationssignal (64) mit einer dritten Modulationsfrequenz zu dem ersten und zweiten rechteckwellenförmigen Modulationssignal (60, 62) addiert wird, wobei die zweite und die dritte Modulationsfrequenz verschieden voneinander sind, und wobei die erste Modulationsfrequenz auch groß gegenüber der dritten Modulationsfrequenz ist.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das zweite und das dritte Modulationssignal (62, 64) weitgehend gleiche Pulsamplituden haben.
  7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass das erste Modulationssignal (60) eine größere Pulsamplitude besitzt als das zweite Modulationssignal (62).
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass alle Rechteckpulse (68') des Modulationssignals (74) eine weitgehend gleiche Pulsamplitude haben.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das rechteckwellenförmige Modulationssignal (74) mit Hilfe eines digitalen Schaltkreises (56) als binäres rechteckwellenförmiges Modulationssignal erzeugt wird.
  10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das rechteckwellenförmige Modulationssignal aus zumindest zwei sinusförmigen Signalen (92, 94, 96;) unterschiedlicher Frequenz erzeugt wird, wobei die sinusförmigen Signale (92, 94, 96; 92', 94', 96') jeweils verstärkt und amplitudenbegrenzt werden.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Laufzeit des Sende- und Empfangslichtstrahls (18, 24) anhand einer Phasendifferenz des Modulationssignals (66; 74) im Sendelichtstrahl (18) und im Empfangslichtstrahl (24) bestimmt wird, wobei die Phasenlage des Modulationssignals (66; 74) im Sendelichtstrahl an dem Lichtsender (12) gemessen wird.
  12. Vorrichtung zum Bestimmen einer Entfernung (d) zu einem Objekt (20), mit – einem Lichtsender (12) zum Aussenden eines Sendelichtstrahls (18), – einem Lichtempfänger (14) zum Empfangen eines Empfangslichtstrahls (24), wobei der Empfangslichtstrahl (24) durch Reflexion des Sendelichtstrahls (18) an dem Objekt (20) entsteht, und – einer Auswerteeinheit (16) zum Bestimmen der Entfernung (d) des Objekts (20) anhand einer Laufzeit des Sende- und Empfangslichtstrahls (18, 24), – wobei der Sendelichtstrahl (18) mit einem rechteckwellenförmigen Modulationssignal (66; 74) amplitudenmoduliert ist, und – wobei das Modulationssignal (66; 74) eine Vielzahl von Rechteckpulsen (68; 68') besitzt, die in einer Vielzahl von Gruppen (76; 76') auftreten, dadurch gekennzeichnet, dass die Gruppen (76; 76') in variierenden zeitlichen Abständen (PA) zueinander auftreten und verschieden viele Rechteckpulse (68; 68') aufweisen.
DE102008014274.3A 2008-02-01 2008-03-03 Verfahren und Vorrichtung zum Bestimmen einer Entfernung zu einem Objekt Active DE102008014274B4 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102008014274.3A DE102008014274B4 (de) 2008-02-01 2008-03-03 Verfahren und Vorrichtung zum Bestimmen einer Entfernung zu einem Objekt
CN2009801038520A CN101932953B (zh) 2008-02-01 2009-01-27 用于确定与物体的距离的方法和装置
JP2010544678A JP5306376B2 (ja) 2008-02-01 2009-01-27 対物距離計測方法及び装置
PCT/EP2009/050887 WO2009095383A1 (de) 2008-02-01 2009-01-27 Verfahren und vorrichtung zum bestimmen einer entfernung zu einem objekt
EP09706836A EP2238470A1 (de) 2008-02-01 2009-01-27 Verfahren und vorrichtung zum bestimmen einer entfernung zu einem objekt
US12/697,837 US8064046B2 (en) 2008-02-01 2010-02-01 Method and device for determining a distance from an object

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008008064 2008-02-01
DE102008008064.0 2008-02-01
DE102008014274.3A DE102008014274B4 (de) 2008-02-01 2008-03-03 Verfahren und Vorrichtung zum Bestimmen einer Entfernung zu einem Objekt

Publications (2)

Publication Number Publication Date
DE102008014274A1 true DE102008014274A1 (de) 2009-08-06
DE102008014274B4 DE102008014274B4 (de) 2020-07-09

Family

ID=40822250

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102008014274.3A Active DE102008014274B4 (de) 2008-02-01 2008-03-03 Verfahren und Vorrichtung zum Bestimmen einer Entfernung zu einem Objekt

Country Status (6)

Country Link
US (1) US8064046B2 (de)
EP (1) EP2238470A1 (de)
JP (1) JP5306376B2 (de)
CN (1) CN101932953B (de)
DE (1) DE102008014274B4 (de)
WO (1) WO2009095383A1 (de)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009038964A1 (de) * 2009-08-20 2011-02-24 Faro Technologies, Inc., Lake Mary Verfahren zum optischen Abtasten und Vermessen einer Umgebung
EP2302415A1 (de) * 2009-09-22 2011-03-30 BALLUFF GmbH Optische Sensorvorrichtung und Verfahren zum Betreiben einer optischen Sensorvorrichtung
US8384914B2 (en) 2009-07-22 2013-02-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
US8699036B2 (en) 2010-07-29 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9074878B2 (en) 2012-09-06 2015-07-07 Faro Technologies, Inc. Laser scanner
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US9279662B2 (en) 2012-09-14 2016-03-08 Faro Technologies, Inc. Laser scanner
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
EP4361666A3 (de) * 2022-10-27 2024-07-17 Sick Ag Vorrichtung und verfahren zur erfassung eines abstands

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102771079A (zh) 2010-01-20 2012-11-07 法罗技术股份有限公司 具有多通信通道的便携式关节臂坐标测量机
US9163922B2 (en) 2010-01-20 2015-10-20 Faro Technologies, Inc. Coordinate measurement machine with distance meter and camera to determine dimensions within camera images
US9645240B1 (en) * 2010-05-10 2017-05-09 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
WO2012155991A1 (en) * 2011-05-18 2012-11-22 Lambda:4 Entwicklungen Gmbh Method for fast and accurate distance measurement
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
EP2860492B1 (de) * 2013-10-09 2018-02-28 Hexagon Technology Center GmbH Vermessungsgerät zum optischen Abtasten einer Umgebung
WO2015066461A1 (en) 2013-11-01 2015-05-07 Irobot Corporation Scanning range finder
CN105137447B (zh) * 2015-07-29 2017-11-14 兖州市顺通机械有限公司 一种应答式激光二维扫描定位系统及方法
US10546373B2 (en) 2016-08-03 2020-01-28 Sightline Innovation Inc. System and method for integrated laser scanning and signal processing
US10782118B2 (en) 2018-02-21 2020-09-22 Faro Technologies, Inc. Laser scanner with photogrammetry shadow filling
WO2019188302A1 (ja) * 2018-03-27 2019-10-03 パイオニア株式会社 測距装置
DE102018108141A1 (de) * 2018-04-06 2019-10-10 Navvis Gmbh Mobile Vorrichtung und Verfahren zum Erfassen eines Objektraums
JP7300915B2 (ja) * 2019-07-16 2023-06-30 株式会社トプコン 測量装置
US20240027592A1 (en) 2021-08-31 2024-01-25 Faro Technologies, Inc. System and method of improving laser scanner unambiguity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4027990C1 (en) 1990-09-04 1992-02-20 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De Laser ranging device - uses modulated semiconductor laser and phase sensitive rectifier
DE4303804A1 (de) 1993-02-10 1994-08-18 Leuze Electronic Gmbh & Co Einrichtung zur Entfernungsmessung
DE10361870A1 (de) 2003-12-29 2005-07-28 Iqsun Gmbh Laserscanner und Verfahren zum optischen Abtasten und Vermessen einer Umgebung des Laserscanners

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2038818A1 (en) * 1990-03-30 1991-10-01 Akio Nagamune Distance measuring method and apparatus therefor
DE19521771A1 (de) * 1995-06-20 1997-01-02 Jan Michael Mrosik FMCW-Abstandsmeßverfahren
DE19811550C2 (de) * 1998-03-18 2002-06-27 Bosch Gmbh Robert Verfahren und Schaltungsanordnung zur Erzeugung von Frequenzsignalen
DE10112833C1 (de) * 2001-03-16 2003-03-13 Hilti Ag Verfahren und Einrichtung zur elektrooptischen Distanzmessung
JP4457525B2 (ja) 2001-06-11 2010-04-28 株式会社デンソー 距離測定装置
JP4104991B2 (ja) * 2003-01-16 2008-06-18 株式会社トプコン 光波距離計

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4027990C1 (en) 1990-09-04 1992-02-20 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De Laser ranging device - uses modulated semiconductor laser and phase sensitive rectifier
DE4303804A1 (de) 1993-02-10 1994-08-18 Leuze Electronic Gmbh & Co Einrichtung zur Entfernungsmessung
DE10361870A1 (de) 2003-12-29 2005-07-28 Iqsun Gmbh Laserscanner und Verfahren zum optischen Abtasten und Vermessen einer Umgebung des Laserscanners

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8384914B2 (en) 2009-07-22 2013-02-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
DE102009038964A1 (de) * 2009-08-20 2011-02-24 Faro Technologies, Inc., Lake Mary Verfahren zum optischen Abtasten und Vermessen einer Umgebung
EP2302415A1 (de) * 2009-09-22 2011-03-30 BALLUFF GmbH Optische Sensorvorrichtung und Verfahren zum Betreiben einer optischen Sensorvorrichtung
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699036B2 (en) 2010-07-29 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9074878B2 (en) 2012-09-06 2015-07-07 Faro Technologies, Inc. Laser scanner
US9279662B2 (en) 2012-09-14 2016-03-08 Faro Technologies, Inc. Laser scanner
US10132611B2 (en) 2012-09-14 2018-11-20 Faro Technologies, Inc. Laser scanner
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US10739458B2 (en) 2012-10-05 2020-08-11 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US11035955B2 (en) 2012-10-05 2021-06-15 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US11112501B2 (en) 2012-10-05 2021-09-07 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US11815600B2 (en) 2012-10-05 2023-11-14 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
EP4361666A3 (de) * 2022-10-27 2024-07-17 Sick Ag Vorrichtung und verfahren zur erfassung eines abstands

Also Published As

Publication number Publication date
JP2011522216A (ja) 2011-07-28
CN101932953B (zh) 2013-05-22
EP2238470A1 (de) 2010-10-13
CN101932953A (zh) 2010-12-29
US20100195086A1 (en) 2010-08-05
DE102008014274B4 (de) 2020-07-09
WO2009095383A1 (de) 2009-08-06
JP5306376B2 (ja) 2013-10-02
US8064046B2 (en) 2011-11-22

Similar Documents

Publication Publication Date Title
DE102008014274B4 (de) Verfahren und Vorrichtung zum Bestimmen einer Entfernung zu einem Objekt
EP3581958B1 (de) Optoelektronischer sensor und verfahren zur erfassung von dreidimensionalen bilddaten
AT412032B (de) Verfahren zur aufnahme eines objektraumes
DE2920828C2 (de) Ultraschall-Abbildungssystem
DE69911650T2 (de) Speckleverringerung zur kohärenten detektion mittels eines breitbandsignals
EP2867693B1 (de) Distanzmessverfahren und distanzmesser
DE102017223102A1 (de) Multipuls-Lidarsystem zur mehrdimensionalen Erfassung von Objekten
DE2008256C3 (de) Laser-Entfernungsmeßsystem mit Impulskompression der Echos frequenzmodulierter Laserimpulse
DE10022054B4 (de) Optischer Distanzsensor
DE102015200224A1 (de) 3D-LIDAR-Sensor
EP2867694B1 (de) Distanzmessverfahren und distanzmesser
DE1805993A1 (de) Vorrichtung zur Entfernungsmessung
DE3034096C2 (de)
CH676289A5 (de)
EP1540374B1 (de) Verfahren zum bestimmen einer entfernung und entfernungsmessgerät mit verbesserung der effektiven auflösung eines a/d-wandlers durch phasenmodulation des auswertesignals
EP2680034A1 (de) Optoelektronischer Sensor und Verfahren zur Entfernungsmessung von Objekten
DE102021201490A1 (de) Frequenzmoduliertes Dauerstrich-LiDAR-System
DE102018214182A1 (de) LIDAR-Vorrichtung mit einer beschleunigten Laufzeitanalyse
DE102021105770A1 (de) Abstandsmessung mittels eines aktiven optischen Sensorsystems
DE4334102A1 (de) Optische Nachrichtenverbindung
DE2052086C3 (de) Rückstrahl-Ortungseinrichtung zur Richtungs- und Entfernungsbestimmung mit scharf gebündeltem Strahl
DE19737760C2 (de) Verfahren und Vorrichtung zur messtechnischen Erfassung dreidimensionaler Objekte
DE1287170B (de) FM/CW-Hoehenmesser fuer niedere Hoehen
EP3740787B1 (de) Sensorvorrichtung
DE102021201492A1 (de) Frequenzmoduliertes Dauerstrich-LiDAR-System mit parallelisierter Datenverarbeitung

Legal Events

Date Code Title Description
R012 Request for examination validly filed

Effective date: 20120920

R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final