DE102006009334A1 - Verfahren zur Qualitätsverbesserung des Druckens mit einem Thermotransferdruckkopf und Anordnung zur Durchführung des Verfahrens - Google Patents

Verfahren zur Qualitätsverbesserung des Druckens mit einem Thermotransferdruckkopf und Anordnung zur Durchführung des Verfahrens Download PDF

Info

Publication number
DE102006009334A1
DE102006009334A1 DE102006009334A DE102006009334A DE102006009334A1 DE 102006009334 A1 DE102006009334 A1 DE 102006009334A1 DE 102006009334 A DE102006009334 A DE 102006009334A DE 102006009334 A DE102006009334 A DE 102006009334A DE 102006009334 A1 DE102006009334 A1 DE 102006009334A1
Authority
DE
Germany
Prior art keywords
printing
energy
thermal transfer
heating element
heating elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102006009334A
Other languages
English (en)
Inventor
Olaf Turner
Raimund Nisius
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Francotyp Postalia GmbH
Original Assignee
Francotyp Postalia GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Francotyp Postalia GmbH filed Critical Francotyp Postalia GmbH
Priority to DE102006009334A priority Critical patent/DE102006009334A1/de
Priority to AT07002938T priority patent/ATE490090T1/de
Priority to DE502007005811T priority patent/DE502007005811D1/de
Priority to EP07002938A priority patent/EP1829692B1/de
Priority to CA2578902A priority patent/CA2578902C/en
Priority to US11/677,164 priority patent/US7609284B2/en
Publication of DE102006009334A1 publication Critical patent/DE102006009334A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/325Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads by selective transfer of ink from ink carrier, e.g. from ink ribbon or sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection
    • B41J2/3555Historical control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection
    • B41J2/3556Preheating pulses
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B17/00Franking apparatus
    • G07B17/00459Details relating to mailpieces in a franking system
    • G07B17/00508Printing or attaching on mailpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/30Embodiments of or processes related to thermal heads
    • B41J2202/34Thermal printer with pre-coating or post-processing
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B17/00Franking apparatus
    • G07B17/00459Details relating to mailpieces in a franking system
    • G07B17/00508Printing or attaching on mailpieces
    • G07B2017/00516Details of printing apparatus
    • G07B2017/00556Ensuring quality of print

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electronic Switches (AREA)

Abstract

Ein Verfahren zur Qualitätsverbesserung des Druckes mit einem Thermotransferdruckkopf und Anordnung zur Durchführung des Verfahrens, gestatten eine Berechnung eines Energiewertes nach unterschiedlichen Arten (Schritte 10, 20) durchzuführen, wenn ein Dot zu drucken ist, werten vergangenheitsbezogene und Umfeld-Information über die Ansteuerung des betreffenden und der benachbarten Heizelemente des Thermotransferdruckkopfes einerseits in an sich bekannter Weise aus und führen andererseits im Schritt (30) vor dem Druckvorgang eine Berechnung von Energiewerten durch, mit welchen die Heizelemente an den Enden der Reihe an Heizelementen des hochauflösenden Thermotransferdruckkopfes in Wärmephasen auch dann angesteuert werden, wenn an den Rändern extern des Barcodebildes kein zu druckendes Dot vorgesehen ist. Zusätzlich werden auch diejenigen Heizelemente, welche nicht in den beiden Randbereichen der Heizelementereihe liegen, für eine begrenzte Zeitdauer angesteuert, wobei die vorgenannte Zeitdauer dem Drucken eines Barcodebildes unmittelbar vorausgeht. Ein Mikroprozessor berechnet die Energiewerte und ist mit einem Pixelenergiespeicher verbunden, zur nichtflüchtigen Zwischenspeicherung der Daten, die im Schritt (40) in eine Druckdatensteuerung übertragen und im Schritt (50) in eine Druckimpulsdauer umgewandelt werden.

Description

  • Die Erfindung betrifft ein Verfahren zur Qualitätsverbesserung des Druckens mit einem Thermotransferdruckkopf gemäß des Oberbegriffs des Anspruchs 1 und eine Anordnung zur Durchführung des Verfahrens gemäß des Oberbegriffs des Anspruchs 10. Die Erfindung kommt in Druckvorrichtungen mit Relativbewegung zwischen dem Thermotransferdruckkopf und dem Druckgut zum Einsatz, insbesondere in Frankiermaschinen und in ähnlichen druckenden Buchungs- oder Postverarbeitungsgeräten. Die Erfindung bezweckt bei einem hohen Durchsatz von Poststücken die Qualität beim Drucken von Datamatrix Barcodes soweit zu erhöhen, dass deren maschinelle Lesbarkeit verbessert wird.
  • In der US 4.746.234 wurde bereits eine Frankiermaschine mit einer Thermotransferdruckvorrichtung vorgeschlagen, die eine Änderung der Druckbildinformationen leichter erlaubt. Dabei werden semipermanente und variable Druckbildinformationen als Druckdaten elektronisch in einem Speicher gespeichert und in die Thermotransferdruckvorrichtung zum Ausdrucken ausgelesen. Das Druckbild (Frankierstempelbild) beinhaltet bekanntlich eine Mitteilung und postalische Information einschließlich der Postgebührendaten zur Beförderung des Poststückes, zum Beispiel ein Postwertzeichenbild, ein Poststempelbild mit dem Posteinlieferungsort und Datum sowie ein Werbestempelbild.
  • Das gesamte Druckbild wird mikroprozessorgesteuert druckbildspaltenweise von einem einzigen Thermotransferdruckkopf aufdruckt. Dabei erfolgt ein Drucken von Druckspalten in orthogonaler Anordnung zur Transportrichtung auf ein bewegtes Poststück. Die Maschine kann dadurch einen maximalen Durchsatz an Frankiergut von 2200 Briefen/Stunde bei einer Druckauflösung von 203 dpi erreichen.
  • Die Frankiermaschine T1000 hat lediglich einen Mikroprozessor zur Ansteuerung eines Thermotransferdruckkopfes mit 240 Heizelementen in zum spaltenweisen Drucken. Alle Heizelemente liegen in einer Reihe, welche 30 mm lang ist und orthogonal zur Transportrichtung angeordnet ist. Thermotransferdrucker verwenden zum Drucken ein mindestens gleich breites Thermotransferfarbband, welches zwischen einer zu bedruckenden Oberfläche – zum Beispiel eines Poststückes – und der Reihe von Heizelementen angeordnet ist. Die Energie eines elektrischen Impulses wird am Widerstand des angesteuerten Heizelementes in Wärmeenergie umgesetzt, welche sich auf das Thermotransfertarbband überträgt. Ein Drucken erfordert ein Abschmelzen eines Farbschichtstückes vom Thermotransferfarbband und eine Aufbringung des Farbschichtstückes auf die Druckgutoberfläche. Das Drucken erfolgt erst dann, wenn das mit dem Impuls beaufschlagte Heizelement auf Drucktemperatur, d.h. eine höhere als die Vorheiztemperatur gebracht wurde. Beim Bewegen des Thermotransferfarbbandes zugleich mit dem Poststück relativ zum Heizelement und laufender Wärmeenergiezufuhr wird ein Strich parallel zur Bewegungs- bzw. Transportrichtung in einer Zeile gedruckt. Ein Strich wird orthogonal zur Bewegungs- bzw. Transportrichtung in einer Druckspalte gedruckt, wenn eine vorbestimmte begrenzte Zeitdauer (Impulsdauer) alle Heizelemente in der Reihe von Heizelementen gleichzeitig mit elektrischen Impulsen beaufschlagt werden. Die Impulsdauer ist in Phasen unterteilbar. Innerhalb der vorbestimmten begrenzten Zeitdauer (Impulsdauer), existiert eine letzte Phase (Druckphase), in welcher die Dot's einer Druckspalte gedruckt werden. Der letzten Phase gehen weitere Phasen der Ansteuerung der Heizelemente voraus, um letztere auf Drucktemperatur aufzuheizen. Aufgrund des Transports des Poststückes sind auch diesen Phasen Druckbildspalten zuordenbar. Ein langer Einzelimpuls zum Ansteuern eines Heizelementes kann in mehrere Impulse aufgeteilt werden, deren Impulsdauer gleich ist und einer bestimmten Aufheizphase entsprechen. Diesen Aufheizphasen sind also Druckbildspalten des bewegten Poststückes ebenso zugeordnet, wie den Druckphasen die Druckspalten.
  • Die binären Pixeldaten zur Ansteuerung der Heizelemente aller Druckspalten sind in einem Pixelspeicher flüchtig gespeichert. Bei einer niedrigen Druckauflösung ist der Abstand benachbarter Druckspalten groß und die binären Pixeldaten der Druckphase wiederspiegeln das Druckbild. Gewöhnlich sind mehrere Impulse erforderlich, um genügend Wärmeenergie für ein Abschmelzen eines Farbschichtstückes unter dem Heizelement zu erzeugen, welches auf die Oberfläche des Poststückes als Dot gedruckt wird ( DE 38 33 746 A1 ).
  • Prinzipiell könnte zur Erzielung einer hohen Druckauflösung in jeder Phase gedruckt werden, wenn nur rechtzeitig in vorausgehenden Phasen die Ansteuerung der Heizelemente zu deren Aufheizung erfolgt. Dabei muß auch beachtet werden, daß ebenfalls am Widerstand des in der Reihe benachbarten Heizelementes die Energie eines elektrischen Impulses in Wärmeenergie umgesetzt wird (Wärmeleitungsproblem). Die Wärmeenergie wird durch Abkühlung verringert, wenn der Impuls entfällt. Aufgrund des benachbarten Energieeintrages ist ein Zuwachs an Wärmeenergie durch Wärmeleitung gegebenenfalls soweit gegeben, dass die Ansteuerung bestimmter Heizelemente zu deren Aufheizung in einer Phase ausgesetzt werden kann und dennoch genügend Wärmeenergie vorhanden ist, welche ein Abschmelzen eines Farbschichtstückes unter dem Heizelement bewirkt. Ein Mikroprozessor ist deshalb neben der Bereitstellung und Ausgabe von binären Pixeldaten zur Erzeugung oder Nichterzeugung eines elektrischen Impulses auch mit der Steuerung der Energieverteilung in Abhängigkeit vom zu druckenden Muster beschäftigt. Die ursprüngliche Widerspiegelung des Druckbildes durch binäre Pixeldaten wird dabei im Pixelspeicher entsprechend verändert, damit ein sauberes Druckbild entsteht. Das erfordert entweder eine umfangreiche Vorausberechnung, wie u.a. aus dem EP 536 526 B1 (= DE 41 33 207 ) bekannt ist, das den Titel trägt: "Verfahren zum Steuern der Speisung eines Thermodruck-Heizelementes" oder eine vergangenheitsbezogene Steuerung (history control). Bei der vorgenannten vergangenheitsbezogenen Steuerung wird die zugeführte Energie zum Vorheizen eines jeweiligen Heizelementes des Thermotransferdruckkopfes abhängig davon eingestellt, ob in der nahen Vergangenheit häufig oder selten Druckvorgänge ausgelöst wurden, wobei das Heizelement zum Drucken angesteuert werden musste.
  • Auch aus dem JP 61-239966 ist bekannt, durch eine Impulsbreitenmodulation in Abhängigkeit benachbarter Daten die Temperatur der einzelnen Heizelemente separat zu steuern und die Temperatur kurzfristig auf den zum Drucken notwendigen Wert anzuheben. Dennoch bleibt das betreffenden Heizelement und damit der gesamte Thermodruckkopf trotzt des Vorheizens relativ kühl. Das ist erwünscht, damit die Temperaturkurve relativ steil abfällt, so dass die Zeit zwischen den aufeinander folgenden Rasterzeitpunkten kurz sein kann. Damit gelingt es, die für eine Aufzeichnung von Dots auf einen Druckträger notwendige Zeit zu verkürzen und somit die Druckgeschwindigkeit zu erhöhen.
  • Zur Erzielung einer höheren Druckauflösung könnte ein Mikroprozessor mit höherer Rechengeschwindigkeit eingesetzt werden. Die Ausgabe von binären Pixeldaten an den Thermotransferdruckkopf würde dann öfter je Zeiteinheit erfolgen, in welches ein Poststück oder ähnliches Druckgut ein gleiches Stück des Transportweges weiterbewegt wird. Zugleich erhöht sich aber der Speicherplatzbedarf im Pixelspeicher durch die Pixeldaten für jede zusätzlich eingefügte virtuelle Spalte bzw. Aufheizphase. Unter einer virtuellen Spalte soll hier eine Möglichkeit einer weiteren Spalte im Druckbild verstanden werden, welche beim Drucken jedoch nicht sichtbar wird, da in der Aufheizphase kein Dot gedruckt wird.
  • Seit der Markteinführung der Frankiermaschine T1000 der Anmelderin Francotyp-Postalia AG & Co.KG im Jahre 1991, welche neben dem Datum und den Postgebühren nun erstmalig auch gestattete, das vorgenannte Werbestempelbild elektronisch per Knopfdruck zu wechseln, wurden die Anforderungen an deren Mikroprozessorsteuerung ständig größer. Einerseits werden mehr Daten verarbeitet, je mehr variable Daten im Druckbild erforderlich sind. Andererseits gilt es auch andere Druck bilder zu erzeugen, die sich in Aufbau und Inhalt wesentlich von einem Frankierstempelbild unterscheiden, um zum Beispiel Visitenkarten, Gebühren- und Gerichtskostenstempelbilder auszudrucken. Die Anforderungen an die Druckauflösung in dpi (Dot's par inch) erhöhen sich ständig weiter. Dabei tritt beim Drucken eines Dot's das vorgenannte Wärmeleitungsproblem zwischen den benachbarten Heizelementen durch die im zu druckenden Druckbild benachbarten Pixel um so stärker auf, je näher die Pixel benachbart sind. Das vorgenannte Problem, welches mit dem Thermotransferdruckverfahren verbunden ist, vergrößert sich bei hoher Druckauflösung.
  • Moderne Frankiermaschinen sollen einen sogenannten Sicherheitsabdruck ermöglichen, d.h. einen Abdruck einer speziellen Markierung zusätzlich zu der vorgenannten Mitteilung. Beispielsweise wird aus der vorgenannten Mitteilung ein Message Authentication Code oder eine Signatur erzeugt und dann eine Zeichenkette oder ein Barcode als Markierung gebildet. Wenn ein Sicherheitsabdruck mit einer solchen Markierung gedruckt wird, ermöglicht das eine Nachprüfung der Echtheit des Sicherheitsabdruckes beispielsweise im Postamt oder beim privaten Carrier ( US 5.953.426 , US 6.041.704 ).
  • Die Entwicklung der postalischen Anforderungen für einen Sicherheitsabdruck hat in einigen Ländern zur Folge, dass die Menge der variablen Duckbilddaten sehr hoch ist, die zwischen zwei Abdrucken von unterschiedlichen Frankierstempelbildern geändert werden muss. So soll beispielsweise für Kanada ein Datamatrixcode von 48 × 48 Bildelementen für jeden einzelnen Frankierabdruck erzeugt und gedruckt werden.
  • Zum rationelleren Postvertrieb und zur Erhöhung der Fälschungssicherheit wurde von der Deutschen Post AG im Jahre 2004 eine neue FRANKIT genannte Norm in Deutschland eingeführt. Auch bei geringer Druckgeschwindigkeit ist die Druckqualität bekannter Frankiermaschinen mit Thermotransferdruck nicht gut genug für die maschinelle Lesbarkeit eines 2-D Barcodes. Neben der Druckgeschwindigkeit musste nun aber auch die Druckauflösung auf 300 dpi zum Drucken eines zweidimensionalen Barcodes erhöht werden. Ein hoher Durchsatz von Poststücken geht jedoch mit einer geringeren Qualität beim Drucken einher, insbeson dere von Datamatrix Barcodes, so dass deren maschinelle Lesbarkeit nicht immer garantiert ist. Der Mikroprozessor einer dafür geeigneten Frankiermaschine hat mehr Daten in kürzerer Zeit zu verarbeiten. Die Heizenergie zum Drucken der Bildelemente der Frankiermaschine soll mikroprozessorgesteuert unter Berücksichtigung der in der Vergangenheit gedruckten zwei unmittelbar vorausgehenden Druckspalten berechnet werden. Eine solche vergangenheitsbezogene Steuerung ist zur Vorgeschichtskompensation bekannt und müsste nun erweitert werden, zwecks Berücksichtigung von sehr viel mehr Informationen, um die Lesbarkeit von Datamatrix Barcodes zu verbessern.
  • Der aufgedruckte Datamatrix Barcode enthält am linken und am unteren Rand je eine durchgehende Linie, welche auch 100% Linie genannt wird und am rechten und am oberen Rand eine unterbrochene Linie aus Barcodebildelementen, welche auch 50% Linie genannt wird, weil jedes zweite Barcodebildelement fehlt. Statt als Punkt werden die Barcodebildelemente (Module) gewöhnlich in quadratischer Form gedruckt (1). Die mit bisherigen Methoden gedruckten hochauflösenden Bilder, insbesondere Barcodebilder sind an den Rändern anders ausgedruckt, als in deren Mitte und dadurch nicht immer maschinell lesbar.
  • Die Aufgabe der Erfindung besteht darin, ein Verfahren zur Qualitätsverbesserung des Druckens mit einem Thermotransferdruckkopf und eine zugehörige Anordnung zu schaffen, welche eine verbesserte maschinelle Lesbarkeit von Barcodes liefert.
  • Die Aufgabe wird mit den Merkmalen des Verfahrens nach dem Anspruch 1 und der Anordnung nach dem Anspruch 10 gelöst.
  • Beim Abdrucken von Data Matrix Barcodes erwärmt sich der Druckkopf erheblich, so dass die erzeugten Barcodebildelemente (Module) im Verlauf des Abdrucks vor allem in Druckrichtung deutlich breiter als zu Beginn gedruckt werden. Die Barcodebildelemente der 50% Linie am oberen Rand bilden ein schachbrettartiges Muster, aber geraten gegenüber den übrigen Barcodebildelementen oft zu klein bzw. sind zu schwach gedruckt. Beide Randeffekte führen im Zusammenwirken mit weiteren unvermeidlichen Druckmängeln zu Ausfällen der Lesbarkeit dieser Barcodes. Die Barcodebildelemente sollen links und rechts, oben und unten eine gleiche Größe annehmen. Deshalb werden zur Kompensation der Randeffekte die Heizelemente und damit auch die umliegenden Wärmekapazitäten im nicht zu bedruckenden Bereich vor dem Barcode, der sog. Quietzone, vorgeheizt. Dazu wird eine bestimmte Anzahl von Heizphasen vorgesehen, denen bei bewegten Druckgut jeweils Druckbildspalten zugeordnet werden können, um die Heizelemente zwar auf eine Vorheiztemperatur zu erwärmen, so dass gerade noch nicht der Thermotransferprozess ausgelöst wird. Das führt zu einer gewünschten günstigeren Temperaturverteilung im Druckkopf und im Resultat zu einer Vergleichmässigung des Druckens, insbesondere einer Vergrößerung der Barcodebildelemente am Druckbeginn des Barcodebildes. Die Größe der Barcodebildelemente am Ende des Barcodebildes wird hierdurch im Vergleich zum Beginn nur wenig größer.
  • In einem Randbereich zwischen der 50% Linie und dem Rand des Frankierstreifens wird eine kleine Anzahl von Heizelementen so angesteuert, dass diese genügend warm werden und der Randeffekt kompensiert wird, wodurch jedoch noch nicht der Thermotransferprozess ausgelöst wird. Dadurch wird die Umgebung der 50% Linie so aufgeheizt, so dass Barcodebildelemente am Rand ebensogut abgebildet werden, wie in der Mitte des Barcodes.
  • Die Anzahl der Vorheizspalten und der Randzeilen und/oder die jeweiligen Heizenergien werden der Temperatur des Druckkopfes angepaßt.
  • Die Erfindung wird zwar am Beispiel einer Frankiermaschine verdeutlicht, aber soll nicht allein darauf beschränkt bleiben.
  • Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet bzw. werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführung der Erfindung anhand der Figuren näher dargestellt. Es zeigen:
  • 1, Vereinfachte Darstellung eines Frankierstreifens mit Barcode,
  • 2, Draufsicht auf einen vereinfachten Thermotransferdruckkopf,
  • 3, Vereinfachter Flußplan der zum Drucken erforderlichen Verarbeitung von Bilddaten nach dem Stand der Technik,
  • 4, Temperaturverlauf und Impuls/Zeit-Diagramm beim Drucken eines Dots,
  • 5, Vereinfachte Darstellung der Barcodedaten,
  • 6, Barcodebild mit Verdeutlichung der Barcodedatenaufbereitung durch eine vergangenheitsbezogene Steuerung,
  • 7, Bereiche extern des Barcodebildes mit unterschiedlicher Datenaufbereitung,
  • 8, Schnitt durch einen Thermotransferdruckkopf entlang einer Reihe von Widerstandsheizelementen,
  • 9, Verbesserter Flussplan der zum Drucken erforderlichen Verarbeitung von Bilddaten,
  • 10, Blockschaltbild zum Steuern des Druckens einer Frankiermaschine mit einer Druckdatensteuerung für einen Thermotransferdruckkopf,
  • 11, Perspektivische Darstellung einer Frankiermaschine vom Typ Optimail 30,
  • 12, Frankierabdruck nach der DPAG-Anforderung FRANKIT,
  • 13, Programmroutine mit Ermittlung der Energiewerte zur Vorheizung und Randheizung eines Thermotransferdruckkopfes.
  • Die 1 zeigt eine vereinfachte Darstellung eines Frankierstreifens 14 mit einem Barcode 15. Der Frankierstreifen oder ein Poststück, zum Beispiel ein Briefumschlag, mit einem gleich großen Feld zum Aufdrucken eines Frankierstempelbildes und weiterer Informationen auf dessen Oberfläche wird während des Druckens mit einer konstanten Geschwindigkeit v in Transportrichtung (Pfeil) unter einem Thermotransferdruckkopf entlang bewegt. Das Feld hat zum Beispiel eine Breite von 30 mm und eine Länge von 160 mm. Der Thermotransferdruckkopf und ein Thermotransferfarbband, das zwischen dem Thermotransferdruckkopf und der zu bedruckende Oberfläche des Feldes in bekannter Weise in einer Druckvorrichtung angeordnet ist, wurden der Übersichtlichkeit halber in der Darstellung weggelassen. Zum Beginn des Druckens werden Dots beliebig in einer ersten Druckspalte C1 auf die Oberfläche des Frankierstreifens oder Briefumschlages in einem ersten Abstand von dessen rechten Rand aufgedruckt. Vereinfachend wurde das bis zur Druckspalte Cn-4 auf die Oberfläche aufgedruckte Frankierstempelbild nicht mit dargestellt. Würde ein erstes Heizelement des Thermotransferdruckkopfes dauernd angesteuert und mit einem Stromimpuls beaufschlagt, dann lägen eine Anzahl an gedruckten Dots auf einer Line L1. Weitere Linien L2, L3, ... bis Lx liegen parallel zur ersten Linie L1 und orthogonal zu den Druckspalten. Die Linien sind als dünner Strich und die Druckspalten als senkrechte gestrichelte Linien dargestellt. Ab einem zweiten größeren Abstand vom rechten Rand des Frankierstreifens oder Briefumschlages o.a. Druckguts werden die ersten Dots eines ersten Barcodes in einer vorbestimmten Druckspalte Cn aufgedruckt. Das bis zu einem dritten Abstand vom rechten Rand des Frankierstreifens auf die Oberfläche aufgedruckte Barcodebild 15 mit letzten in einer Druckspalte Cq liegenden Dots wurde vereinfacht dargestellt. Diese letzten Dots des Barcodebildes liegen aneinander stoßend in einer Reihe. Ebenso liegen die Dots des Barcodebildes auf einer Linie Lx-2 und bilden eine Grundlinie. Auf den Linien L1 und L2 sowie Lx und Lx-1 werden in den Druckspalten Cn bis Cq jedoch keine Dots aufgedruckt. Der Frankierstreifen oder Briefumschlag können von der Druckspalte Cq+1 bis Cz, d.h. bis nahe des linken Randes mit einem Werbeklischee, einem zweiten Barcode oder einem Logo weiter bedruckt werden.
  • In der 2 wird eine Draufsicht auf die Heizelementeseite eines vereinfachten Thermotransferdruckkopfes 1 schematisch gezeigt. Dessen Heizelement H1 bis Hx liegen in einer Reihe und sind eng benachbart. Vereinfacht wird angenommen, dass bei entsprechender Ansteuerung jeweils ein Heizelement H1 ... Hx auf einer zugehörigen Linie L1 ... Lx Dots drucken kann, wenn der Frankierstreifen unter der Heizelemente-Reihe mit einer konstanten Geschwindigkeit v hinweg bewegt wird.
  • In der 3 wird ein vereinfachter Flußplan der zum Drucken erforderlichen Verarbeitung von Bilddaten nach dem Stand der Technik dargestellt. In einem ersten Ermittlungs-Schritt 10' werden die nach den postalischen Anforderungen erforderlichen Bildinformationen als Daten im Arbeitsspeicher (RAM) der Frankiermaschine gespeichert. In einem zweiten Steuerung-Schritt 20' werden die Daten vom Mikroprozessor verarbeitet, um Heizelemente unterschiedlich anzusteuern, je nach dem, welche Vorgeschichte existiert. Neben einer solchen vergangenheitsbezogenen Steuerung wird zur Ansteuerung eines Heizelementes auch der aktuelle Ansteuerzustand der unmittelbar benachbarten Heizelemente und deren Vorgeschichte berücksichtigt. Außerdem werden Umgebungstemperatur und eine im Druckkopf gemessene Temperatur sowie weitere Maschinenparameter bei der Ansteuerung eines Heizelementes berücksichtigt. In einem Formatierungs-Schritt 40' werden die Druckdaten durch eine an sich bekannte Steuerung in ein für den Druckkopf geeignetes Format gebracht und über eine entsprechende Schnittstelle ausgegeben. In einem letzten Zuführ-Schritt 50' werden die Druckdaten durch eine interne Elektronik des Thermotransferdruckkopfes in Druckimpulse von vorbestimmter Spannungshöhe und mit einer separat für die Heizelemente einstellbaren Dauer umgesetzt.
  • Die 4 zeigt einen Temperaturverlauf und Impuls/Zeit-Diagramm beim Drucken eines Dots. Ein Ansteuerimpuls für ein Heizelement beginnt zum Beispiel zum Zeitpunkt t1 und endet zum Zeitpunkt t6. Ein Temperaturverlauf gemäß der durchgezogenen Linie ergibt sich, wenn in der unmittelbaren Nähe zum Heizelement eine erste Temperatur Tw1 gemessen wird und niedriger ist, als die zum Drucken erforderliche Temperatur Tp. Dann beginnt das Drucken zum Zeitpunkt t5 und endet zum Zeitpunkt t7, d.h. wenn wenn die zum Drucken erforderliche Temperatur Tp unterschritten wird. Der Dot erscheint uns als zu schwach gedruckt. Ein Temperaturverlauf gemäß der gepunkteten Linie ergibt sich, wenn eine zweite Temperatur Tw2 in der unmittelbaren Nähe zum Heizelement höher ist, als eine erste Temperatur Tw1 und niedriger ist, als die zum Drucken erforderliche Temperatur Tp. Dann beginnt das Drucken zum Zeitpunkt t3 und endet zum Zeitpunkt t9. Der Dot erscheint uns, als zu fett gedruckt. Das kann ausgehend von der zweiten Temperatur Tw2 im zweiten Schritt 20' teilkompensiert werden, indem ein Ansteuerimpuls zum Drucken erst zum Zeitpunkt t2 beginnt und zum Zeitpunkt t6 endet. Der Dot erscheint uns als normal ggf. etwas fetter gedruckt, da das Drucken zum Zeitpunkt t4, d.h. früher beginnt und erst zum Zeitpunkt t8 endet (Temperaturverlauf der Strich-Punkt-Linie). Der Abkühlungsvorgang des Heizelemtes beginnt nach dem Ende des Ansteuerimpulses, aber verläuft weniger intensiv und langsamer. Dieses zu schwache Drucken kann im zweiten Schritt 20' des Verfahrens nach dem Stand der Technik nicht kompensiert werden.
  • Die 5 zeigt eine vereinfachte Darstellung der Barcodedaten, durch Umwandlung in ein gewünschtes Barcodebild 15. Eine Reihe R und eine Grundlinie G sind am linken und am unteren Rand aus quadratischen Bildelementen (Pixel) gebildet. Zur Vereinfachung wird angenommen, das ein Heizelement H3 auf der Linie L3 in die Druckspalte Cn+1 ein Dot D in einsprechender Grösse (0,6 × 0,6 mm) druckt, um ein Bildelement (Pixel) zu erzeugen. Bei sehr geringer Druckauflösung kann der zweite Schritt 20' sogar entfallen, da bei entsprechender Grösse der Heizelemente und damit auch der vergrösserten Abmessungen der Dots D die Vorgeschichte und der vorgenannte Depositionierungs-Effekt nicht stören. Dann spiegelt das Barcodebild die gespeicherten Barcodedaten wieder. In der Praxis sind natürlich eine Anzahl an Dots erforderlich, um ein quadratisches Barcodebildelement (Modul) zu erzeugen. Zum Beispiel sind in Kanada 6 × 6 Dots oder in Deutschland 7 × 7 Dots je Modul erforderlich. Ein Modul für FRANKIT in Deutschland ist zum Beispiel 0,583 × 0,583 mm gross.
  • Eine Barcodedatenaufbereitung durch eine einfache vergangenheitsbezogene Steuerung wird anhand der vereinfachten Darstellung als Barcodebild in 6 verdeutlicht. Ein – nicht dargestelltes – Heizelement H3 wird jeweils in einer Wärmephase W bestromt, welcher bei bewegtem Frankierstreifen eine Druckspalte Cn zuordenbar ist, die zeitlich unmittelbar vor der Druckspalte Cn+1 liegt. Das Heizelement H3 wird dabei auf eine Vorheiztemperatur erwärmt. Das Drucken eines Dots D erfolgt erst in der Druckspalte Cn+1, d.h. erst dann, wenn das mit einem Druckimpuls beaufschlagte Heizelement auf Drucktemperatur, d.h. eine höhere als die Vorheiztemperatur gebracht wurde. Mindestens eine Wärmephase W eilt zeitlich dem Drucken in der vorgenannten Druckspalte voraus. Während der Wärmephase können aber auch Dots in eine andere Druckspalte gedruckt werden. Wenn das auf der selben Linie vorgesehen ist, dann kann das Wärmen auf eine Vorheiztemperatur entfallen, wie beim gedruckten Dot 17 sichtbar ist.
  • In der 7 sind Bereiche des Barcodebildes mit extern unterschiedlicher Datenaufbereitung dargestellt. In einem punktierten Bereich B, der auch als sogenannte Quietzone bekannt ist und rechts vor dem Barcode gelegen ist, existieren höchstens Wärmephasen aber keine Druckphasen, d.h. es wird keinem Heizelement genug Energie zum Drucken zugeführt. In seitlichen Nebenbereichen N des Barcodebildes 15 wird keinem Heizelement Energie zugeführt. Die Barcodedatenaufbereitung erfolgt deshalb hauptsächlich im Bereich des Barcodebildes 15. Das führt zu einer typischen Wärmeverteilung im Druckkopf mit kühleren Randbereichen.
  • Anhand der 8, die einen Schnitt durch einen Thermotransferdruckkopf entlang der Reihe von Widerstandsheizelementen zeigt, werden nun die Wärmeverteilung und der Aufbau des Thermotransferdruckkopfes 1 erläutert. Der Thermotransferdruckkopf 1 besteht aus einem 0,65 mm dicken Substrat S, vorzugsweise aus einer elektrisch isolierenden Keramikplatte, die auf eine ca. 5 mm dicke Metallplatte aufgeklebt ist. An der Grenzschicht Keramik/Metall herrscht während des Betriebes zum Beispiel eine erste Temperatur T1 von ca. 50°C. An einer zweiten Grenzschicht E innerhalb des Keramikkörpers wird dann eine zweite Temperatur T2 von ca. 70°C. erreicht. Die Temperatur nimmt nichtlinear innerhalb des liniert dargestellten Bereiches zu und erreicht an einer dritten Grenzschicht eine dritte Temperatur T3 von ca. 80°C. Die Temperatur nimmt innerhalb eines gestrichelt gezeichneten Bereiches rund um die Heizelemente H1, H2, ..., H6, ... weiter zu, bis eine vierte Grenzschicht mt einer vierten Temperatur T4 von ca. 100°C erreicht ist. Diese vierte Grenzschicht erstreckt bis zur Oberfläche einer ca. 0,2 mm dicken Isolationsschicht I und kommt in Kontakt mit einem Thermotransferfarbband (nicht dargestellt). Ab ca. 65 °C schmilzt die Farbschicht auf dem Thermotransferfarbband. In den Heizelementen selbst wird eine noch höhere fünfte Temperatur T5 > T4 erreicht. Von einem Thermotransferdruckkopf des Typs KSL360AAF-PS der Firma Kyocera werden beim Drucken je Dot eine Leistung von 0,285 W bzw. 0,354 W an einem Heizelement mit einem elektrischen Widerstand von 2 KOhm bzw. 1,6 KOhm in Wärme umgesetzt. Jedes Heizelement hat eine Grösse von 0,0683 × 0,110 mm und ist so nahe dem jeweils nächsten Heizelement benachbart, dass in einer Reihe 12 Dot je mm gedruckt werden können.
  • Die Metallplatte M besteht vorzugsweise Aluminium und ist viel dicker als das Substrat S. Sie besetzt schon deshalb eine gute Wärmeleitfähigkeit und dient als Wärmesenke. Der Thermotransferdruckkopf 1 wird mittels der Metallplatte M am Chassis (nicht gezeigt) der Druckvorrichtung bzw. Frankiermaschine befestigt. Die Substrattemperatur kann in bekannter Weise mittels eines – nicht dargestellten – Thermistors gemessen werden. Die Äquipotential-Linie A zeigt einen Temperaturabfall von der Mitte zum Rand des Thermotransferdruckkopfes 1, der durch einen Thermistor nicht erfasst werden kann, wenn letzter – in nicht gezeigter Weise – nur am Rand auf dem Substrat S aufgeklebt wird. Die Isolationsschicht S besteht vorzugsweise aus 2 Glas-Schichten (nicht dargestellt). Die innere Glas-Schicht soll die Heizelemente sehr gut elektrisch isolieren und die äußere Glas-Schicht soll eine hohe Abriebsfestigkeit besitzen.
  • In der 9 wird ein verbesserter Flußplan der zum Drucken erforderlichen Verarbeitung von Bilddaten dargestellt. Im ersten Ermittlungs-Schritt 10 werden die nach den postalischen Anforderungen erforderlichen Bildinformationen als Daten in einem Arbeitsspeicher (RAM) der Frankiermaschine gespeichert. Die Daten wiederspiegeln nicht nur jeden farbigen Druckpunkt (Dot), der gedruckt werden soll, sondern auch die benötigte Energiemenge. Letztere wird als ein Binärcode, beispielsweise mit 4-Bit pro Pixel als Quadrupel dargestellt und steuert die notwendige Impulsdauer der Ansteuerung eines Heizelementes zum Drucken eines Dots. Dieser Prozess der Energiewertberechnung nach einer ersten Art ist zeitaufwendig und kann daher nicht während des Druckens erfolgen. Ein Mikroprozessor ist durch Software zur Energiewertberechnung und Codierung sowie zur Bereitstellung von Pixelenergiedaten programmiert. Die Ergebnisse der Energiewertberechnung und Codierung werden in dem Arbeitsspeicher (RAM) der Frankiermaschine zwischengespeichert, der nachfolgend als Pixelenergiespeicher bezeichnet wird. Das ermöglicht es, den Dots zum Drucken von unterschiedlichen Bildabschnitten des Frankierstempelbildes jeweils andere Energiewerte zuzuordnen. Ein entsprechendes Verfahren zum Ansteuern eines Thermotransferdruckkopfs ist der nicht vorveröffentlichten deutschen Patentanmeldung des Aktenzeichens 10 2004 063 756.3 entnehmbar.
  • Die gute Lesbarkeit der erzeugten Abdrucke ist nur zu erreichen, wenn die einem jeden Heizelement zugeführte Energiemenge auch mit anderen Parametern, insbesondere Farbbandparametern, abgestimmt ist. Deshalb wird ein Druckparametersatz aus einem Speicher ausgelesen, der an der Frabbandkassette befestigt ist, um damit die Energiewerte zu berechnen. Ein entsprechendes Verfahren zum Ansteuern eines Thermotransferdruckkopfes ist der nicht vorveröffentlichten deutschen Patentanmeldung des Aktenzeichens 10 2004 060 156.9 entnehmbar.
  • In einem zweiten Steuerungs-Schritt 20 werden die Daten vom Mikroprozessor in an sich bekannter Weise verarbeitet, um die Heizelemente unterschiedlich anzusteuern, je nach dem, welche Vorgeschichte existiert und nach der unterschiedlichen örtlichen Erwärmung durch benachbarte Heizelemente. Zu diesem Zweck werden Energiewerte zweiter Art mindestens an denjenigen Speicherplatz im Pixelenergiespeicher gesetzt, der der Position eines zu druckenden Dots im Barcodebild unmittelbar vorausgeht, obwohl in dieser Position nach dem Barcodebild kein Dot zu drucken ist. Aus diesen Energiewerten zweiter Berechnungsart resultiert dann eine Heizimpulsdauer, welche kleiner als die Druckimpulsdauer ist, die zum Drucken eines Dots führen würde. Im einfachsten Fall kann die Heizimpulsdauer auf einen vorbestimmten festen Wert eingestellt werden, welcher empirisch ermittelt wurde. Im Normalfall wird jedoch die Heizimpulsdauer variabel auf einen Wert eingestellt, der aus einer Gruppe an vorbestimmten festen Werten auswählbar ist und durch den Mikroprozessor berechnet wird. Ein solches Verfahren wirkt jedoch nicht auf Heizelemente, die keine Dots drucken sollen. Der Anfang des Barcodes, wie auch die in Druckrichtung gesehenen rechten und linken Ränder des Barcodes, erscheinen bei herkömmlichen Methoden als zu schwach gedruckt. Dadurch ist die Flächendeckung schlecht und der Printgrowth geringer als bei den Bildelementen/Pixel des Barcodes, welche nicht am Rand oder Anfang des Barcodebildes liegen, welches von rechts nach links gedruckt wird. Die bekannten Algorithmen sind zur Verstärkung der am äußeren Rand oder vorne liegender Bildelemente/Pixel des Barcodes nur unzureichend geeignet. Als hauptsächlicher Grund wurde der Wärmewiderstand im Druckkopf gefunden, der dreidimensional verteilt ist. Das Substrat S des Thermotransferdruckkopfes kann durch einen einfachen Historiecontrol-Mechanismus nicht genau genug aufgeheizt werden, der nur ein zu druckendes Pixel oder Druckpixel-Umfeldinformation auswertet. Im Resultat erscheinen die mit bisherigen Methoden gedruckten hochauf lösenden Barcodebilder an den besagten Rändern anders gedruckt zu sein, als im Innneren und sind dadurch ggf. schlecht maschinell lesbar.
  • Deshalb werden zur Verbesserung der maschinellen Lesbarkeit in einem dritten Verbesserungs-Schritt 30 die Daten vom Mikroprozessor in der Weise verarbeitet, um auch diejenigen Heizelemente anzusteuern, welche in den beiden Randbereichen der Heizelementreihe liegen, aber dort während des Druckens eines Barcodes keine Dots drucken sollen. Zusätzlich werden auch diejenigen Heizelemente, welche nicht in den beiden Randbereichen der Heizelementreihe liegen, für eine begrenzte Zeitdauer angesteuert, wobei die vorgenannte Zeitdauer dem Drucken des Barcodebildes unmittelbar vorausgeht. Vor dem Drucken des Anfangs des Barcodebildes wie auch neben den in Druckrichtung gesehenen rechten und linken Rändern des Barcodebildes während des Druckens werden in hinreichender Nähe zu denjenigen Heizelementen, die ein Barcodebild drucken, eine Mehrzahl von Heizelementen mit einer Energie aufgeheizt, die durch Variation der Heizimpulsdauer so bemessen ist, dass bei Berücksichtigung der Wärmekapazitäten und -Leitfähigkeiten gerade eben noch kein Druck erfolgt. Die Zahl der Zeilen und Spalten wird dabei so bemessen, dass bei der gewählten unterschwelligen Energie (oder verschiedenen unterschwelligen Energien) eine hinreichend gleichmäßige Aufheizung der dreidimensional verteilten Wärmekapazitäten erfolgt, bevor und während das Barcodebild gedruckt wird. Zu diesem Zweck wird das zu druckende Barcodebild datenmäßig im Pixelenergiespeicher derartig ergänzt, dass der Pixelenergiespeicher im genannten Vor- und Umfeld des zu druckenden Barcodebildes nun Daten für Energiewerte enthält, die den Thermotransferdruckkopf in der oben beschriebenen Weise vorheizen, aber nicht zum Drucken von Dots an diesen Positionen führen.
  • Wenn zum Beispiel die maximale Druckimpulsdauer 10 Phasen umfasst, dann genügen ggf. schon Energiewerte, die durch 0 bis 3 Phasen erreicht werden. Im Bereich B in der Darstellung nach 7 werden dann bis zu 3/10 des maximalen Energiewertes Emax jedem Heizelement zugeführt. Im Bereich N in der Darstellung nach 7 können bis zu 2/10 des maximalen Energiewertes Emax jedem Heizelement zugeführt werden.
  • Im Ergebnis des Einbringens eines vorbestimmten Energiewertes dritter Berechnungsart erfolgt ein Ansteuern jedes Heizelementes an vorbestimmten Bereichen der Heizelementreihe, wobei der Energiewert nur zum Vorheizen vorbestimmt ist, jedoch nicht zum Drucken. Aus diesen Energiewerten dritter Berechnungsart resultiert dann eine Heizimpulsdauer, welche ebenfalls kleiner als die Druckimpulsdauer ist, die zum Drucken eines Dots führen würde. Im speziellen Fall kann die Heizimpulsdauer auf einen vorbestimmten festen Wert eingestellt werden, welcher empirisch ermittelt wurde. Bei Überlagerung eines Energiewertes zweiter Berechnungsart (schraffierte Bildelemente des Bereichs B im Barcodebild nach 7) mit einem Energiewert dritter Berechnungsart (gepunkteter Bereich B im Barcodebild nach 7) für die Ansteuerung ein und desselben Heizelementes wird der Energiewert zweiter Berechnungsart eingestellt, wenn dieser den Energiewert dritter Berechnungsart übersteigt. Durch solche Heizimpulse kürzerer Länge in den Wärmephasen der Heizelemente wird die unterschiedliche Temperaturverteilung im Thermotransferdruckkopf lediglich soweit kompensiert, dass die maschinelle Lesbarkeit des Barcodes verbessert wird. Eine Programmroutine wird anhand der 12 weiter unten noch näher erläutert.
  • In einem vierten Schritt 40 werden die den jeweiligen Pixelenergiewert widerspiegelnden Daten (Quadrupel) vom Mikroprozessor über einen Bus in eine Druckdatensteuerung übertragen. Der Druckdatensteuerung wird für jedes Heizelement ein jeweilig vorbestimmter Pixelenergiewert zugeführt, welcher in eine entsprechende Anzahl an binären Pixeldaten mit dem gleichen Binärwert umgesetzt wird. Die Pixeldaten werden seriell zum Thermotransferdruckkopf übermittelt.
  • Im fünften Zuführ-Schritt 50 wird jeder einem Heizelement zugeordnete binäre Pixeldatenwert in einer zugehörigen Phase von zeitlich nacheinander ablaufenden Phasen einer Druckimpulsdauer an die jeweilige Treibereinheit des Thermotransferdruckkopfes ausgegeben, welche die so ausgewählte Energie dem Heizelement zuführt.
  • Anhand der 10 wird ein Blockschaltbild zum Steuern des Druckens einer Frankiermaschine mit einer Druckdatensteuerung für einen Thermotransferdruckkopf erläutert. Die Frankiermaschine ist ein spezielles Thermotransferdruckgerät mit einer mikroprozessorgestützten Steuerung 6, 7, 8, 9 und einer Druckdatensteuerung 4 für einen Thermotransferdruckkopf 1 mit hoher Druckauflösung, wobei die Druckdatensteuerung 4 mit einem Encoder 3 und über einen Bus 5 mit mindestens einem Mikroprozessor 6 und Speicherbaugruppen 7, 8, 9 der Steuerung adress-, daten- und steuerungsmäßig verbunden ist. Die Quadrupel werden im Pixelenergiespeicher (RAM) 7 spaltenweise gespeichert. Dabei werden die zu benachbarten Pixel einer Druckspalte gehörenden Quadrupel nebeneinander abgelegt. Für das Drucken einer Spalte ist eine Anzahl von 90·16 bit-Datenworten vorgesehen. Bei einer Druckauflösung von 12 dot per 1 mm (≈ 300 dpi) müssen für bis zu 1950 Spalten bis 175500 16 bit-Datenwörter im Pixelenergiespeicher (RAM) 7 gespeichert werden. An dem Bus 5 sind entsprechend der postalischen Anforderungen ein postalisches Sicherheitsgerät (PSD) 18 sowie weitere – nicht gezeigte – Baugruppen, wie zum Beispiel Tastatur, Display u.a. angeschlossen. Die Druckdatensteuerung 4 kann bei einem direkten Speicherzugriff (DMA) eingangsseitig 16 bit parallel anliegende Daten wortweise vom BUS 5 übernehmen und zwischenspeichern. Die Druckdatensteuerung 4 ist mit dem Thermotransferdruckkopf 1 steuerungsmäßig verbunden und arbeitet nach einer nicht vorveröffentlichten deutschen Patentanmeldung Nr. 10 2005 007 220.8-27, welche den Titel trägt: „Verfahren und Anordnung zum Steuern des Druckens eines Thermotransferdruckgeräts". Jeder einem Heizelement des Thermotransferdruckkopfes zugeführte binäre Pixeldatenwert wird von der Druckdatensteuerung 4 in einer zugehörigen Phase von zeitlich nacheinander ablaufenden Phasen einer Druckimpulsdauer ausgegeben. Der Thermotransferdruckkopf 1 ist hochauflösend und besitzt eine interne Ansteuerelektronik und eine Anzahl von 360 Heizelementen, die in einer Reihe von ca. 30 mm Länge angeordnet sind. Ein erster Teil von 180 Heizelementen wird von einem ersten Schieberegister 11 über eine erste Latch-Einheit 12 und erste Treibereinheit 13 parallel angesteuert. Ein zweiter Teil von 180 Heizelementen wird von einem zweiten Schieberegister 21 über eine zweite Latch-Einheit 22 und zweite Treibereinheit 23 parallel angesteuert.
  • Einem Sensor/Motor-Controller 46 sind einerseits ein Start-Sensor S1, ein Roller-Sensor S2, ein Klappen-Sensor S3, ein Ende-Sensor S4 und ein Thermistor 19 sowie andererseits ein Motor 2a zum Antrieb einer nicht gezeigten Rolle zum Aufwickeln des verbrauchten Thermotransferfarbbandes, ein Motor 2b zum Antrieb einer Gegendruckrolle zur Druckgutbeförderung während des Druckens und ein Motor 2c zum Betätigen des Andruckmechanismus der Gegendruckrolle, um mittels letzterer das Druckgut an den Thermotransferdruckkopf 1 anzudrücken, verbunden. Die Frankiermaschine erzielt eine Transportgeschwindigkeit von ca.150 mm pro Sekunde für Frankierstreifen bzw. für bis zu 6 mm dicke Poststücke. Ein Interrupt-Controller 47 ist über eine Steuerleitung 49 für ein Interruptsignal I direkt mit dem Mikroprozessor 6 verbunden. Die Druckdatensteuerung 4, der Sensor/Motor-Controller 46 und der Interrupt-Controller 47 können innerhalb einer anwendungsspezifischen Schaltung (ASIC) bzw. programmierbaren Logik, wie beispielsweise einem Field Programmable Gate Array (FPGA) realisiert werden.
  • Die 11 zeigt eine perspektivische Ansicht von vorn und rechts oben einer bekannten Thermotransfer-Frankiermaschine vom Typ Optimail30. Weitere Ansichten dieser Frankiermaschine sind dem Gemeinschaftsgeschmacksmuster beim Office for Harmonization in the International Market unter der Nummer 000199468-0001 entnehmbar. Weitere Varianten der Frankiermaschine vom Typ Optimail30 sind unter den Nummern 000199468-0002 und 000199468-0003 eingetragen.
  • Die Zu- und Abführung eines Poststückes erfolgt auf dem Zuführtisch an einer Anlegekante an der Vorderseite der Frankiermaschine von links nach rechts. Die Frankiermaschine ist mit einer Klappe zum Kassettenfach ausgestattet, die an deren rechten Seite und an deren Oberteil angeordnet ist. Weitere Details sind dem deutschen Gebrauchsmuster DE 20 2004 015 279 U1 entnehmbar, das den Titel trägt: "Kassettenaufnahmeeinrichtung mit Zustandserkennung für ein druckendes Postverarbeitungsgerät".
  • Die Thermotransfer-Frankiermaschine vom Typ Optimail30 besitzt unterhalb eines Kassenfachs im Zuführtisch – nicht sichtbar – einen Anfang-Sensor und einen Ende-Sensor mit dem der Mikroprozessor den Anfang und das Ende eines Poststückes oder Frankierstreifens sicher erkennen kann. Weitere Details sind dem deutschen Gebrauchsmuster DE 20 2004 015 279 U1 entnehmbar, das den Titel trägt: "Anordnung für ein druckendes Postverarbeitungsgerät.
  • In der 12 ist ein Frankierabdruck nach der DPAG-Anforderung FRANKIT® dargestellt, der mit einer Thermotransfer-Frankiermaschine vom Typ Optimail30 auf einen Frankierstreifen 14 von rechts nach links gedruckt wurde, während der Frankierstreifen 14 von links nach rechts transportiert wird. Ein Frankierstempelbild 16 auf der rechten Seite wird also zuerst spaltenweise gedruckt und nachfolgend ein zweidimensionaler Datamatrix Barcode 15 mit 36 × 36 Bildelementen. Anschließend können ein Werbekischee und/oder Zusatztexte spaltenweise gedruckt werden. Ein Spaltenzähler, welcher mittels des Mikroprozessors realisiert wird, beginnt beim Zählerstand Z:= 0 zu zählen. Ein erster Grenzwert G1 wird beim Zählerstand Z:= G1 erreicht und löst das Drucken des Frankierstempelbildes 16 aus. Das erfolgt solange, bis beim Zählerstand Z:= G2 ein zweiter Grenzwert G2 erreicht wird, beim dem das Drucken des Frankierstempelbildes beendet wird. Das Frankierstempelbild 16 enthält in seiner oberen Hälfte das Logo Deutsche Post mit Posthörnchen, gefolgt von der in der nächsten Zeile mitgeteilten Marke FRANKIT® und einem Entgeltbetrag in Euro. Das Frankierstempelbild 16 enthält in der unteren Hälfte das Frankierdatum und die Seriennummer sowie ggf. zwei Zusatzzeilen (nicht gedruckt). Im Abstand von 3 mm, d.h. beim Zählerstand Z:= G4, folgt das Druckbild des Datamatrixcodes. Dieses Druckbild hat beispielsweise eine Grösse von 21,336 × 21,336 mm mit einer erlaubten Toleranz von ± 1 mm nach der FRANKIT-Version 2.06 vom 11.01.06. Das Druckbild endet bei einem Zählerstand Z:= G5. In Abstand von 3,8 bis 5 mm folgt dann ein Druckbild eines Werbeklischees bei einem Zählerstand Z:= G6. Das vorgenannte Druckbild hat hier eine Grösse von 45 × 30 mm.
  • Das vorgenannte Druckbild kann aber eine maximale Grösse von 56 × 30 mm aufweisen und endet bei einem Zählerstand Z:= G7. Im Abstand von 3 mm kann ein Zusatztext in der Grösse bis 50 × 30 mm in einem separaten Druckstempelbild aufgedruckt werden, wenn ein Zählerstand Z:= G8 überschritten wird. Alternativ kann an der Stelle von Werbeklischee und Zusatztext auch ein Druckbild für Briefzusatzleistungen gedruckt werden. Das Druckbild endet bei einem Zählerstand Z:= G9.
  • Der 13 ist eine Programmroutine mit Ermittlung der Energiewerte zur Vorheizung/Randheizung eines Thermotransferdruckkopfes entnehmbar, die zur Qualitätsverbesserung im Thermotransferdruckverfahren und damit insbesondere zur besseren maschinellen Lesbarkeit von Barcode beiträgt. Nach dem Start in Schritt 100 wird der Spaltenzähler des Mikroprozessors in einem Schritt 101 auf den Zählerstand Z:= 0 gesetzt. Ausserdem werden Grenzwerte der Druckspaltenzahl vorgegeben, welche die Länge des zu druckenden Druckstempelbildes definieren. Dann wird ein erster Abfrageschritt 102 erreicht. Zugleich erfolgt der Weitertransport des Frankierstreifens. Die Heizelemente des Thermotransferdruckkopfes stehen jeweils am Ende einer Vorwärmphase über der nächsten virtuelle Druckspalte. Wenn im ersten Abfrageschritt 102 festgestellt wird, dass der Streifen noch nicht um eine Spalte weiter transportiert wurde, dann wird zur weiteren Abfrage auf den ersten Abfrageschritt 102 zurückverzweigt. Anderenfalls, wenn im ersten Abfrageschritt 102 festgestellt wird, dass der Streifen um eine Spalte weiter transportiert wurde, dann wird der Spaltenzähler im Schritt 103 um den Wert 'Eins' inkrementiert. Anschliessend wird ein zweiter Abfrageschritt 104 erreicht, in welchem gefragt wird, ob der Zählwert schon grösser/gleich dem ersten Grenzwert G1 = C1 ist, wobei mit der Druckspalte C1 das Drucken beginnt. Ist das nicht der Fall, dann wird über einen Schritt 105 zum ersten Abfrageschritt 102 zurückverzweigt. Der Druckspalte C1 gehen somit weitere Phasen voraus, welche nur zur Vorwärmung des Thermotransferdruckkopfes dienen und somit nicht als Druckspalten sichtbar werden. Die davor liegenden Spalten werden deshalb als virtuelle Druckspalten bezeichnet.
  • In jeder von solchen virtuellen Druckspalten werden die Heizelemente des Thermotransferdruckkopfes mit einem Impuls angesteuert, dessen Impulsdauer nicht zum Drucken ausreicht. Dannach wird im Schritt 103 der Spaltenzähler um den Wert 'Eins' inkrementiert. Das geht solange weiter, bis die Druckspalte C1 erreicht ist.
  • Wird jedoch im zweiten Abfrageschritt 104 festgestellt, dass der Zählwert schon grösser/gleich dem ersten Grenzwert Z ≥ G1 ist, dann wird zu einem dritten Abfrageschritt 106 verzweigt, in welchem festgestellt wird, ob der Zählwert schon grösser dem zweiten Grenzwert, d.h. Z > G2 ist. Dabei ist G2 = Cf, wobei Cf diejenige Spalte ist, mit der das Drucken des Frankierstempelbildes endet. Ist das nicht der Fall, dann wird über einen Schritt 107 zum ersten Abfrageschritt 102 zurückverzweigt. Im Schritt 107 erfolgt die Pixelenergiewertberechnung nach einer ersten Art, die in Abhängigkeit von vorbestimmten Parametern erfolgt und oben schon beschriebenen wurde. Im Schritt 107 erfolgt die Pixelenergiewertberechnung ebenfalls nach einer an sich bekannten zweiten Art, entsprechend der Vorgeschichte der Ansteuerung der Heizelemente und ihrer benachbarten Heizelemente durch den Mikroprozessor. Bei jedem Durchlaufen des Schrittes 103 wird der Spaltenzähler um den Wert 'Eins' erhöht. Der Abfrageschritt 106 wird durchlaufen, wobei die Antwort JA lautet. Die Antwort im dritten Abfrageschritt 109 lautet NEIN, jedoch nur solange, bis das Ende des Frankierstempelbildes mit der Druckspalte erreicht ist, der ein Grenzwert G2 zuordenbar ist.
  • Wird jedoch im dritten Abfrageschritt 106 festgestellt, dass der Zählwert schon grösser dem zweiten Grenzwert, also Z > G2 ist, dann wird zu einem vierten Abfrageschritt 108 verzweigt, in welchem festgestellt wird, ob der Zählwert schon grösser/gleich dem dritten Grenzwert, also Z ≥ G3 ist. Ist das nicht der Fall, dann wird zum ersten Abfrageschritt 102 zurückverzweigt. Wieder wird im Schritt 103 der Spaltenzähler um den Wert 'Eins' erhöht und die Abfrageschritte 104 und 106 werden durchlaufen, wobei die Antwort JA lautet. Das geht solange weiter, bis eine Druckspalte Cn-4 erreicht ist, welcher der Grenzwert G3 zuordenbar ist. Wird also im vierten Abfrageschritt 108 festgestellt, dass der Zählwert schon grösser/gleich dem dritten Grenzwert, also Z ≥ G3 ist, dann wird zu einem fünften Abfrageschritt 109 verzweigt, in welchem festgestellt wird, ob der Zählwert schon grösser/gleich dem vierten Grenzwert, also Z ≥ G4 ist, welcher einer ersten Druckspalte am Anfang des Barcodebildes zuordenbar ist. Ist das nicht der Fall, dann wird über einen Schritt 110 zum ersten Abfrageschritt 102 zurückverzweigt.
  • Im Schritt 110 erfolgt die Pixelenergiewertberechnung ebenfalls nach einer an sich bekannten zweiten Art, entsprechend der Vorgeschichte der Ansteuerung der Heizelemente und ihrer benachbarten Heizelemente durch den Mikroprozessor. Vor dem Drucken eines Dots des Barcodebildes kann ein vorbestimmter erster Energiewert EH dem jeweiligen Heizelement zugeführt werden, welches im Bereich B zum Einsatz kommt. Der Energiewert EH führt jedoch noch nicht zum Drucken, sondern bewirkt nur eine vorbestimmte Vorerwärmung des entsprechenden Heizelementes in mindestens einer der vorausgehenden Phasen (History Control-Methode).
  • Ausserdem erfolgt die Pixelenergiewertberechnung einer dritten Art für alle Pixel vor dem Barcodebild im Bereich B. Zum Beispiel soll in den ersten vier Druckspalten vor dem Drucken des Barcodebildes ein vorbestimmter zweiter Energiewert EV auch jedem Heizelement zugeführt werden, welches dem Bereich B zugeordnet ist, aber bisher nicht zum Einsatz kam, weil unmittelbar nachfolgend kein Dot gedruckt werden soll. Mit jeder Phase der Heizung eines Heizelementes wird die vorhandene Grundenergie oder die in den Phasen zuvor zugeführte Energie um eine Energiestufe erhöht. Der vorbestimmte zweite Energiewert EV wird jedem der Heizelemente im Bereich (B) vor dem Drucken des Barcodebildes (15) zugeführt, welche im Bereich (B) nicht für eine vorbestimmte Vorerwärmung mit dem ersten Energiewert EH zum Einsatz kommen.
  • Der zweite Energiewert EV liegt mindestens eine Energiestufe, vorzugsweise zwei Energiestufen, unter demjenigen ersten Energiewert EH, der zum Heizen jeweils den Heizelementen zugeführt werden soll, welche im Bereich B gemäss der History Control-Methode zum Einsatz kommen sollen. Auch die anschliessend beim Drucken nicht oder nicht unmittelbar nachfolgend zum Einsatz kommenden Heizelemente werden somit im Unterschied zur History Control-Methode ebenfalls erwärmt.
  • Nach dem ersten Abfrageschritt 102 wird wieder der Schritt 103 durchlaufen und der Spaltenzähler um den Wert 'Eins' erhöht. Die Abfrageschritte 104, 106 und 108 werden durchlaufen, wobei die Antwort jeweils JA lautet. Die Antwort im fünften Abfrageschritt 109 lautet NEIN, jedoch nur solange, bis ein vierter Grenzwert G4 mit der Druckspalte Cn am Anfang des Barcodebildes noch nicht erreicht ist. Wenn dieser aber erreicht ist, dann wird auf einen sechsten Abfrageschritt 111 verweigt. Im sechsten Abfrageschritt 111 wird gefragt, ob der Zählwert schon grösser dem fünften Grenzwert, also Z > G5 ist, wobei mit der Druckspalte Cq das Drucken endet. Ist das nicht der Fall, dann wird über einen Schritt 112 zum ersten Abfrageschritt 102 zurückverzweigt. Vom Mikroprozessor wird im Schritt 112 beginnend mit der Druckspalte Cn und endend mit der Druckspalte Cq, d.h. ab Anfang bis Ende des Barcodebildes, eine Pixelenergiewertberechnung erster und zweiter Art für alle Pixel des Barcodebildes und eine Pixelenergiewertberechnung dritter Art für Pixel im Randbereich N des Barcodebildes durchgeführt. Ein Randbereich existiert, wenn die Länge des Barcodebildes kleiner ist, als die Länge der Reihe von Heizelementen (Streifenbreite). Vom Mikroprozessor werden Energiewerte für das Erwärmen der Heizelemente am Rand der Heizelementereihe berechnet, welche den Pixeln in mindestens einem der beiden Randbereiche N extern des Barcodebildes zugeordnet sind, wobei die Energiewerte von einer solchen Höhe berechnet werden, so dass im Ergebnis von den entsprechenden Heizelementen am Rand der Heizelementereihe gerade noch keine Dots ausgedruckt werden. Es ist vorgesehen, dass das Berechnen in einem Hinzufügen eines zuvor empirisch ermittelten Energiewertes EN ≤ 2/10 Emax besteht. Alternativ ist vorgesehen, dass die Substrattemperatur des Thermotransferdruckkopfes 1 gemessen und ein Schwellwertvergleich durchgeführt wird, wobei bei einer Schwellwertunterschreitung der Substrattemperatur vom Mikroprozessor ein um eine Stufe höherer Energiewert EN ausgewählt wird.
  • Nach dem ersten Abfrageschritt 102 wird wieder der Schritt 103 durchlaufen und der Spaltenzähler um den Wert 'Eins' erhöht. Die Abfrageschritte 104, 106, 108 und 109 werden durchlaufen, wobei die Antwort jeweils JA lautet. Die Antwort im sechsten Abfrageschritt 111 lautet NEIN, jedoch nur solange, bis ein fünfter Grenzwert G5 mit der Druckspalte Cq am Ende des Barcodebildes noch nicht überschritten ist. Wenn dieser aber überschritten ist, dann wird auf einen siebenten Abfrageschritt 113 verweigt. Das geht solange weiter, bis ein sechster Grenzwert G6 mit einer Druckspalte Cq + 50 am Anfang des Barcodebildes erreicht ist. Solange das nicht der Fall ist, dann wird auf den ersten Abfrageschritt 102 zurück verzweigt. Aber wenn das der Fall ist, dann wird auf weitere Abfrageschritte verzweigt, welche nicht dargestellt sind, um Energiewerte für die übrigen Druckstempelbilder zu berechnen bis ein vorletzter Abfrageschritt 119 erreicht ist, in welchem gefragt wird, ob die letzte Druckspalte Cz am Ende eines Frankierabdrucks erreicht ist. Wenn das nicht der Fall ist, dann wird auf den ersten Abfrageschritt 102 zurück verzweigt. Aber wenn das der Fall ist, dann wird die Routine im Schritt 120 gestoppt.
  • Die Routine kann für die in anderen Ländern gültigen Postvorschriften angepasst, für die erforderlichen Frankierabdrucke entsprechend modifiziert bzw. für andere Druckbilder von ähnlichen druckenden Buchungs- oder Postverarbeitungsgeräten sinngemäß verwendet werden.
  • Wenn in dem vorgenannten Beispiel von Poststücken, Briefkuverten oder Frankierstreifen gesprochen wird, dann sollen andere Formen von Druckgütern nicht ausgeschlossen werden. Vielmehr sollen alle Druckgüter mit eingeschlossen sein, die von Druckvorrichtungen nach dem Thermotransferdruckverfahren bedruckt werden können.
  • Zur Qualitätsverbesserung können weitere andere Ausführungen der Erfindung entwickelt bzw. eingesetzt werden, die vom gleichen Grundgedanken der Erfindung ausgehen und von den anliegenden Ansprüchen umfasst werden.

Claims (14)

  1. Verfahren zur Qualitätsverbesserung des Druckens mit einem Thermotransferdruckkopf (1) für eine Druckvorrichtung, deren Steuerung mit einem Mikroprozessor (8) und Speichern ausgestattet ist, zur Datenverarbeitung vor dem Drucken sowie um einen Druckvorgang auszulösen und zu steuern, bei dem eine erste Energiemenge in einem ersten Ermittlungsschritt (10) vor dem Drucken mindestens unter Einbeziehung von Maschinenparametern berechnet wird, wobei die Energiemenge in einem Zuführschritt (50) einem ersten Heizelement des Thermotransferdruckkopfes (1) zugeführt wird, um Farbe von einem dem Thermotransferdruckkopf (1) zugeordneten Farbband auf eine Druckträgeroberfläche zu übertragen, bei dem in einem zweiten Steuerungs-Schritt (20) vergangenheitsbezogene Informationen und Umfeldinformation über die Ansteuerung eines jeden Heizelementes des Thermotransferdruckkopfes (1) im Umfeld des Heizelementes ausgewertet werden, um die im ersten Schritt (10) errechnete Energiemenge entsprechend zu modifizieren oder zur Erzeugung einer Energiemenge zur Vorheizung des Heizelementes, gekennzeichnet dadurch, dass in einem dritten Verbesserungs-Schritt (30) eine Energiewertberechnung nach einer dritten Art durchgeführt wird, wobei Daten des Druckbildes vom Mikroprozessor (6) verarbeitet werden, um auch diejenigen Heizelemente anzusteuern, welche in mindestens einem der Randbereiche der Heizelementereihe liegen, aber dort während des Druckens eines Barcodes keine Dots drucken sollen und wobei zusätzlich auch diejenigen Heizelemente, welche nicht in den beiden Randbereichen der Heizelementereihe liegen, für eine begrenzte Zeitdauer angesteuert werden, wobei die vorgenannte Zeitdauer dem Drucken eines Barcodebildes (15) unmittelbar vorausgeht sowie dass Energiewerte für jedes der Heizelemente des Thermotransferdruckkopfes (1) im Pixelenergiespeicher (7) nichtflüchtig zwischengespeichert werden.
  2. Verfahren, nach Anspruch 1, gekennzeichnet dadurch, dass vom Mikroprozessor (6) für Bereiche (N) und (B) extern des Barcodebildes (15) eine unterschiedliche Datenaufbereitung vorgenommen wird.
  3. Verfahren, nach den Ansprüchen 1 und 2, gekennzeichnet dadurch, dass nach der Energiewertberechnung in den Schritten (10), (20) und (30) die einen jeweiligen Pixelenergiewert wiederspiegelnden Daten in einem vierten Formatierungs-Schritt (40) über einen Bus in eine Druckdatensteuerung (4) übertragen werden, um dort die Daten in eine entsprechende Anzahl an binären Pixeldaten mit dem gleichen Binärwert umzusetzen, und dass in einem fünften Zuführ-Schritt (50) jeder einem Heizelement zugeführte binäre Pixeldatenwert in einer zugehörigen Phase von zeitlich nacheinander ablaufenden Phasen einer Druckimpulsdauer an die jeweilige Treibereinheit des Thermotransferdruckkopfes (1) ausgegeben wird, um die Druckdaten durch eine interne Elektronik des Thermotransferdruckkopfes in Druckimpulse von vorbestimmter Spannungshöhe und mit einer separat für die Heizelemente einstellbaren Dauer umzusetzen.
  4. Verfahren, nach den Ansprüchen 1 bis 3, gekennzeichnet dadurch, dass eine Spannung als Druckimpuls an die Heizelemente angelegt wird, wobei der Druckimpuls in Phasen gleicher Dauer zeitlich unterteilbar ist, dass mit jeder Phase der Heizung eines Heizelementes die vorhandene Grundenergie oder die in den Phasen zuvor zugeführte Energie um eine Energiestufe erhöht wird, dass auch die anschliessend beim Drucken nicht oder nicht unmittelbar nachfolgend zum Einsatz kommenden Heizelemente ebenfalls erwärmt werden.
  5. Verfahren, nach den Ansprüchen 1 bis 4, gekennzeichnet dadurch, dass vom Mikroprozessor (6) die Energiewerte für das Erwärmen der Heizelemente am Rand der Heizelementereihe berechnet werden, welche den Pixeln in mindestens einem der beiden Randbereiche N extern des Barcodebildes zugeordnet sind, wobei die Energiewerte von einer solchen Höhe berechnet werden, so dass im Ergebnis von den entsprechenden Heizelementen am Rand der Heizelementereihe gerade noch keine Dots ausgedruckt werden.
  6. Verfahren, nach Anspruch 6, gekennzeichnet dadurch, dass eine Energie bis zu zwei Zehntel des maximalen Energiewertes jedem Heizelement am Rand der Heizelementereihe des Thermotransferdruckkopfes (1) zugeführt werden, während das Barcodebild gedruckt wird.
  7. Verfahren, nach Anspruch 6, gekennzeichnet dadurch, dass das Berechnen in einem Hinzufügen eines zuvor empirisch ermittelten Energiewertes EN besteht.
  8. Verfahren, nach Anspruch 6, gekennzeichnet dadurch, dass die Substrattemperatur des Thermotransferdruckkopfes (1) gemessen und ein Schwellwertvergleich durchgeführt wird, wobei bei einer Schwellwertunterschreitung der Substrattemperatur vom Mikroprozessor (6) ein um eine Stufe höherer Energiewert EN ausgewählt wird.
  9. Verfahren, nach den Ansprüchen 1 bis 4, gekennzeichnet dadurch, dass ein vorbestimmter Energiewert EH einem Heizelement zugeführt wird, welches im Bereich (B) vor dem Drucken des Barcodebildes (15) zum Einsatz kommt, wobei ein erster Energiewert EH jedoch noch nicht zum Drucken führt, sondern nur eine vorbestimmte Vorerwärmung des entsprechenden Heizelementes in mindestens einer der vorausgehenden Phasen bewirkt, dass ein vorbestimmter zweiter Energiewert EV jedem der Heizelemente im Bereich (B) vor dem Drucken des Barcodebildes (15) zugeführt wird, welche im Bereich (B) nicht für eine vorbestimmte Vorerwärmung mit dem ersten Energiewert EH zum Einsatz kommen, wobei der zweite Energiewert EV mindestens eine Energiestufe unter dem ersten Energiewert EH liegt.
  10. Anordnung zur Durchführung des Verfahrens, nach Anspruch 1, gekennzeichnet dadurch, dass ein hochauflösender Thermotransferdruckkopf (1) eine Reihe von Heizelementen aufweist, wobei die Länge der Reihe der Heizelemente des Thermotransferdruckkopfes (1) die Länge einer Reihe (R) an Barcodebildelementen an demjenigen Rand des Barcodebildes übersteigt, der zuletzt gedruckt wird, dass der Thermotransferdruckkopf (1) in einer Druckvorrichtung angeordnet und mit einer Steuerung verbunden ist, die mit einem Mikroprozessor (8) ausgestattet ist, welcher programmiert ist, vor dem Druckvorgang eine Berechnung von Energiewerten durchzuführen, mit welchen die Heizelemente an den Enden der Reihe an Heizelementen des hochauflösenden Thermotransferdruckkopfes (1) in Wärmephasen auch dann angesteuert werden, wenn an den Rändern extern des Barcodebildes kein Dot zu drucken vorgesehen ist und dass dann, wenn ein Drucken eines Dots vorgesehen ist, eine Berechnung eines dem Thermotransferdruckkopf (1) zu zuführenden Energiewertes nach unterschiedlichen Arten durchzuführen.
  11. Anordnung, nach Anspruch 10, gekennzeichnet dadurch, dass eine Energiewertberechnung nach einer ersten und zweiten Art vom Mikroprozessor (8) durchgeführt wird, wobei die Energiemenge, die einem jeden Heizelement eines Thermotransferdruckkopfes (1) zugeführt werden soll, unter Einbeziehung von Maschinenparametern und abhängig von den unterschiedlichen Bildabschnitten des Frankierstempelbildes berechnet wird und wobei in bekannter Weise vergangenheitsbezogene Informationen und Umfeldinformation über die Ansteuerung eines jeden Heizelementes des Thermotransferdruckkopfes (1) ausgewertet wird, um die errechnete Energiemenge entsprechend zu modifizieren oder zur Erzeugung einer Energiemenge zur Vorheizung eines Heizelementes, sowie um die einem jedem Heizelement des Thermotransferdruckkopfes (1) jeweils zugehörigen Energiewerte zu ermittelten.
  12. Anordnung, nach den Ansprüchen 10 bis 11, gekennzeichnet dadurch, dass ein Pixelenergiespeicher (7), der die Energiewerte nichtflüchtig zwischenspeichert, über eine Druckdatensteuerung (4) mit dem Thermotransferdruckkopf (1) daten- und steuerungsmäßig verbunden ist.
  13. Anordnung, nach den Ansprüchen 10 und 12, gekennzeichnet dadurch, dass die Druckdatensteuerung (4) als ein feldprogrammierbarer Baustein (FPGA) realisiert ist.
  14. Anordnung, nach den Ansprüchen 10 und 12, gekennzeichnet dadurch, dass die Druckdatensteuerung (4) als ein anwender-spezifisch integrierter Schaltkreis (ASIC) realisiert ist.
DE102006009334A 2006-03-01 2006-03-01 Verfahren zur Qualitätsverbesserung des Druckens mit einem Thermotransferdruckkopf und Anordnung zur Durchführung des Verfahrens Withdrawn DE102006009334A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102006009334A DE102006009334A1 (de) 2006-03-01 2006-03-01 Verfahren zur Qualitätsverbesserung des Druckens mit einem Thermotransferdruckkopf und Anordnung zur Durchführung des Verfahrens
AT07002938T ATE490090T1 (de) 2006-03-01 2007-02-12 Verfahren zur qualitätsverbesserung des druckens mit einem thermotransferdruckkopf und anordnung zur durchführung des verfahrens
DE502007005811T DE502007005811D1 (de) 2006-03-01 2007-02-12 Verfahren zur Qualitätsverbesserung des Druckens mit einem Thermotransferdruckkopf und Anordnung zur Durchführung des Verfahrens
EP07002938A EP1829692B1 (de) 2006-03-01 2007-02-12 Verfahren zur Qualitätsverbesserung des Druckens mit einem Thermotransferdruckkopf und Anordnung zur Durchführung des Verfahrens
CA2578902A CA2578902C (en) 2006-03-01 2007-02-19 Method for quality improvement of printing with a thermotransfer print head and arrangement for implementation of the method
US11/677,164 US7609284B2 (en) 2006-03-01 2007-02-21 Method for quality improvement of printing with a thermotransfer print head and arrangement for implementation of the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006009334A DE102006009334A1 (de) 2006-03-01 2006-03-01 Verfahren zur Qualitätsverbesserung des Druckens mit einem Thermotransferdruckkopf und Anordnung zur Durchführung des Verfahrens

Publications (1)

Publication Number Publication Date
DE102006009334A1 true DE102006009334A1 (de) 2007-09-20

Family

ID=38055490

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102006009334A Withdrawn DE102006009334A1 (de) 2006-03-01 2006-03-01 Verfahren zur Qualitätsverbesserung des Druckens mit einem Thermotransferdruckkopf und Anordnung zur Durchführung des Verfahrens
DE502007005811T Active DE502007005811D1 (de) 2006-03-01 2007-02-12 Verfahren zur Qualitätsverbesserung des Druckens mit einem Thermotransferdruckkopf und Anordnung zur Durchführung des Verfahrens

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE502007005811T Active DE502007005811D1 (de) 2006-03-01 2007-02-12 Verfahren zur Qualitätsverbesserung des Druckens mit einem Thermotransferdruckkopf und Anordnung zur Durchführung des Verfahrens

Country Status (5)

Country Link
US (1) US7609284B2 (de)
EP (1) EP1829692B1 (de)
AT (1) ATE490090T1 (de)
CA (1) CA2578902C (de)
DE (2) DE102006009334A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007000547A1 (de) 2007-10-21 2009-04-23 Telefrank Gmbh Frankiermaschine und Verfahren zur Steuerung einer Frankiermaschine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7170050B2 (en) * 2004-09-17 2007-01-30 Pacific Biosciences Of California, Inc. Apparatus and methods for optical analysis of molecules
DE102007018903A1 (de) * 2007-04-19 2008-10-23 Deutsche Post Ag Verfahren zum Erfassen eines auf einer Postsendung aufgebrachten maschinenlesbaren Codes, Vorrichtung zur Durchführung des Verfahrens, Postsendung und Verfahren zum Versehen der Postsendung mit einem maschinenlesbaren Code
JP5793024B2 (ja) * 2011-08-24 2015-10-14 キヤノン株式会社 サーマルプリンタ及びその制御方法、プログラム
US20150009271A1 (en) * 2013-07-03 2015-01-08 Ctpg Operating, Llc System and Method of Thermal Printing Security Features
US10685317B2 (en) * 2015-09-22 2020-06-16 United States Postal Service Trackable postage

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2144081B (en) 1983-07-23 1987-10-28 Pa Consulting Services Postal franking machines
US4859093A (en) * 1988-03-21 1989-08-22 Kroy Inc. Pixel preheat system for an automated thermal transfer device
DE3833746A1 (de) 1988-09-30 1990-04-05 Siemens Ag Thermodruckverfahren mit vorheizung
JPH02121853A (ja) 1988-10-31 1990-05-09 Toshiba Corp サーマルヘッド制御回路
US5132703A (en) * 1991-03-08 1992-07-21 Yokogawa Electric Corporation Thermal history control in a recorder using a line thermal head
DE4133207A1 (de) 1991-10-07 1993-04-15 Francotyp Postalia Gmbh Verfahren zum steuern der speisung eines thermodruck-heizelements
US5625399A (en) 1992-01-31 1997-04-29 Intermec Corporation Method and apparatus for controlling a thermal printhead
JP2978672B2 (ja) * 1993-01-28 1999-11-15 株式会社東芝 記録装置
US5546112A (en) * 1994-10-28 1996-08-13 Pitney Bowes Inc. Epm having a system for detecting fault conditions of the thermal printhead
JP2857837B2 (ja) 1994-11-16 1999-02-17 日本電気エンジニアリング株式会社 サ−マルヘッドの発熱制御装置
US5953426A (en) 1997-02-11 1999-09-14 Francotyp-Postalia Ag & Co. Method and arrangement for generating and checking a security imprint
DE19748954A1 (de) 1997-10-29 1999-05-06 Francotyp Postalia Gmbh Verfahren für eine digital druckende Frankiermaschine zur Erzeugung und Überprüfung eines Sicherheitsabdruckes
JP2003048337A (ja) 2001-08-06 2003-02-18 Riso Kagaku Corp サーマルヘッドの制御方法および制御装置
US6788325B2 (en) * 2002-02-06 2004-09-07 Brady Worldwide, Inc. Processing multiple thermal elements with a fast algorithm using dot history
DE102004027517B4 (de) * 2004-06-03 2007-05-10 Francotyp-Postalia Gmbh Anordnung und Verfahren zur Ansteuerung eines Thermotransferdruckkopfes
DE202004015279U1 (de) 2004-10-01 2005-01-13 Francotyp-Postalia Ag & Co. Kg Anordnung für ein druckendes Postverarbeitungsgerät

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007000547A1 (de) 2007-10-21 2009-04-23 Telefrank Gmbh Frankiermaschine und Verfahren zur Steuerung einer Frankiermaschine
EP2053562A1 (de) 2007-10-21 2009-04-29 TeleFrank GmbH Frankiermaschine und Verfahren zur Steuerung einer Frankiermaschine

Also Published As

Publication number Publication date
EP1829692A3 (de) 2008-03-05
US7609284B2 (en) 2009-10-27
EP1829692A2 (de) 2007-09-05
US20070206043A1 (en) 2007-09-06
CA2578902A1 (en) 2007-09-01
CA2578902C (en) 2011-02-15
EP1829692B1 (de) 2010-12-01
DE502007005811D1 (de) 2011-01-13
ATE490090T1 (de) 2010-12-15

Similar Documents

Publication Publication Date Title
DE102005007220B4 (de) Verfahren und Anordnung zum Steuern des Druckens eines Thermotransferdruckgeräts
DE2501035C2 (de) Postwertzeichendruckvorrichtung für eine Frankiermaschine
EP1829692B1 (de) Verfahren zur Qualitätsverbesserung des Druckens mit einem Thermotransferdruckkopf und Anordnung zur Durchführung des Verfahrens
EP0352498A1 (de) Frankiermaschine
EP1857282B1 (de) Verfahren zum Freispritzen der Düsen eines Tintendruckkopfes
EP1416430A2 (de) Anordnung zum Drucken eines Druckbildes mit Bereichen unterschiedlicher Druckbildauflösung
DE69931577T2 (de) Vorrichtung zum Drucken von Postzeichen die lesbarer sind
DE4337542C2 (de) Anordnung für eine ETR-Druckkopfansteuerung
DE4118645A1 (de) Tintendruckeinrichtung mit einer in abhaengigkeit von einer lokalen tintentroepfchenanhaeufung gesteuerten tintentrocknungseinrichtung
EP1602495B1 (de) Anordnung und Verfahren zur Ansteuerung eines Thermotransferdruckkopfes
DE3147312A1 (de) Einstellvorrichtung fuer eine druckmaschine
DE3128360A1 (de) Elektrischer matrixdrucker
EP1519325A2 (de) Anordnung zur Erzeugung eines Druckbildes für Frankier- und Poststempelmaschinen
EP0583622B1 (de) Thermo-Transfer-Druckeinrichtung
EP1661716A2 (de) Verfahren zum Ansteuern eines Thermotransferdruckkopfes
DE4221275C2 (de) Ansteuerschaltung für eine elektrothermische Druckvorrichtung mit Widerstandsband
EP1244063B1 (de) Verfahren und Vorrichtung zum Erzeugen eines Druckbildes in mehreren Schritten
DE60132970T2 (de) Thermischer drucker
DE10051768A1 (de) Verfahren und Anordnung zum Bedrucken eines Poststückes
EP1950043B1 (de) Verfahren zum Ansteuern eines Thermotransferdruckkopfes
DE4214545C2 (de) Anordnung für eine ETR-Druckkopfansteuerung
EP1857283B1 (de) Verfahren zum Freispritzen der Düsen eines Tintendruckkopfes
DE4420483C2 (de) Stempelgerät mit Andruckwalze
DE102007022796A1 (de) Verfahren zum Ansteuern eines Thermotransferdruckkopfes
DE3033913A1 (de) Belegdrucker

Legal Events

Date Code Title Description
OR8 Request for search as to paragraph 43 lit. 1 sentence 1 patent law
8105 Search report available
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20121002