DE102005046908A1 - Elektrochemische Abscheidung von Selen in ionischen Flüssigkeiten - Google Patents

Elektrochemische Abscheidung von Selen in ionischen Flüssigkeiten Download PDF

Info

Publication number
DE102005046908A1
DE102005046908A1 DE102005046908A DE102005046908A DE102005046908A1 DE 102005046908 A1 DE102005046908 A1 DE 102005046908A1 DE 102005046908 A DE102005046908 A DE 102005046908A DE 102005046908 A DE102005046908 A DE 102005046908A DE 102005046908 A1 DE102005046908 A1 DE 102005046908A1
Authority
DE
Germany
Prior art keywords
pyrrolidinium
imidazolium
methyl
ethyl
hydroxyethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102005046908A
Other languages
English (en)
Inventor
Urs Dr. Welz-Biermann
Frank Prof. Dr. Endres
El Abedin Dr. Zein
Natalia Borissenko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Priority to DE102005046908A priority Critical patent/DE102005046908A1/de
Priority to US12/088,130 priority patent/US20080210566A1/en
Priority to EP06791833A priority patent/EP1951934B1/de
Priority to DE502006004616T priority patent/DE502006004616D1/de
Priority to PCT/EP2006/008631 priority patent/WO2007039035A1/de
Priority to JP2008532621A priority patent/JP2009510261A/ja
Priority to AT06791833T priority patent/ATE440157T1/de
Priority to TW095136252A priority patent/TW200728516A/zh
Publication of DE102005046908A1 publication Critical patent/DE102005046908A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • C25D3/665Electroplating: Baths therefor from melts from ionic liquids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemically Coating (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

Gegenstand der Erfindung ist ein Verfahren zur elektrochemischen Abscheidung von grauem Selen auf einem Substrat in einer ionischen Flüssigkeit, wobei die elektrochemische Abscheidung bei Temperaturen von mehr als 100 DEG C durchgeführt werden kann.

Description

  • Die Erfindung betrifft ein Verfahren zur elektrochemischen Abscheidung von Selen auf einem Substrat in einer ionischen Flüssigkeit.
  • Selen besitzt eine Reihe von Eigenschaften, die es für viele Einsatzgebiete in der Photovoltaik und Elektronik geeignet machen. Selen ist ein Photohalbleiter, der bei Belichtung mit sichtbaren Licht seine Leitfähigkeit um mehrere Größenordnungen ändert (vergrößert). Darüber hinaus ist Selen transparent für Wellenlängen größer als 650 nm.
  • Vielfach wird Selen als Bestandteil in Dünnschichtsolarzellen in Kombination mit Cu und Indium eingesetzt, wie beispielsweise in DE 44 47 866 oder in DE 199 177 58 beschrieben. Bei den üblicherweise zur Herstellung dieser Systeme genannten Herstellverfahren werden entweder alle Schichtkomponenten über Verdampfungsverfahren abgeschieden oder nur Kupfer oder Indium galvanisch aufgebracht. Das Selen wird vorzugsweise in beiden Fällen über die Gasphase in einem Verdampfer aufgebracht.
  • Eine elektrochemische Abscheidung von Kupfer-Indium-Gallium-Diselenid beschreibt US 2004/0206390. Die elektrochemische Abscheidung erfolgt dort in einem gepufferten Bad enthaltend Kaliumbiphthalat und Amidoschwefelsäure. Die genannten Komponenten sollen durch Elektrolyse entstehende H+- bzw. OH-Ionen abfangen. Das genannte Verfahren ist insgesamt aber ungeeignet, um eine singuläre Selen-Phase abzuscheiden.
  • Die elektrolytische Abscheidung von Selen beschreibt US 2,414,438 . Die Abscheidung erfolgt in wässrig alkalischen Lösungen von Ammonium-, Alkalimetall- oder Erdalkalimetallseleniden.
  • Die Abscheidung ist allerdings erschwert, da im Raumtemperaturbereich üblicherweise amorphes oder glasartiges rotes Selen abgeschieden wird, welches eine schlechte Elektronenleitfähigkeit aufweist. Nur bei höherer Temperatur wird eine graue, metallische Phase abgeschieden, allerdings bestehen die Deposite selbst bei Temperaturen um 100°C nicht singulär aus grauem Selen. Höhere Temperaturen, die die Abscheidung von grauem Selen fördern würden, sind in offenen galvanischen Bädern ausgeschlossen. Die elektrochemische Abscheidung würde aber einen kontinuierlichen Betrieb in Form einer Badgalvanik ohne geschlossene Verdampfer oder Sputtereinrichtungen ermöglichen.
  • Demgemäß war es Aufgabe der Erfindung, eine alternative Methode zur elektrochemischen Abscheidung von grauem Selen zu finden.
  • Die Aufgabe wird durch das erfindungsgemäße Verfahren gelöst.
  • Gegenstand der Erfindung ist ein Verfahren zur elektrochemischen Abscheidung von grauem Selen auf einem Substrat in einer ionischen Flüssigkeit.
  • Die Abscheidung von grauem Selen erfolgt auf die unterschiedlichsten Substrate in den unterschiedlichsten Anwendungen. Die Abscheidung kann allein der Deposition von Selen dienen, sie kann aber auch im Zusammenhang mit der Abscheidung weiterer Materialien wie z.B. Kupfer oder Indium eingesetzt werden.
  • Die für das erfindungsgemäße Verfahren geeigneten ionischen Flüssigkeiten sind gut leitfähig und in der Regel bis zu 400°C thermisch stabil. Insbesondere werden ionische Flüssigkeiten eingesetzt, die unter den weiter unten beschriebenen Abscheidungsbedingungen elektrochemisch stabil sind. Sie haben beispielsweise ein elektrochemisches Fenster im kathodischen Ast, welches von 0 mV bis –3500 mV gegen Ferrocen/Ferrocinium, vorzugsweise von –2000 mV bis –3000 mV gegen Ferrocen/Ferrocinium reicht. Im anodischen Ast weisen geeignete ionische Flüssigkeiten ein elektrochemisches Fenster auf, das von 0 mV bis +3500 mv gegen Ferrocen/Ferrocinium reicht, vorzugsweise von +2000 bis +3000 mV gegen Ferrocen/Ferrocinium. Die Angaben beziehen sich auf die weiter unten angeführten Messanordnungen und -bedingungen.
  • Geeignete Ionische Flüssigkeiten enthalten insbesondere mindestens ein Tetraalkylammonium-, Tetraalkylphosphonium-Kation, wobei die Alkylgruppen jeweils unabhängig voneinander 1 bis 10 C-Atome haben können, oder ein heterocyclisches Kation ausgewählt aus
    Figure 00030001
    wobei
    R1' bis R4' jeweils unabhängig voneinander
    Wasserstoff, -CN, -OR', -NR'2, -P(O)R'2, -P(O)(NR'2)2, -C(O)R',
    geradkettiges oder verzweigtes Alkyl mit 1-20 C-Atomen,
    geradkettiges oder verzweigtes Alkenyl mit 2-20 C-Atomen und einer oder mehreren Doppelbindungen,
    geradkettiges oder verzweigtes Alkinyl mit 2-20 C-Atomen und einer oder mehreren Dreifachbindungen,
    gesättigtes, teilweise oder vollständig ungesättigtes Cycloalkyl mit 3-7 C-Atomen, das mit Alkylgruppen mit 1-6 C-Atomen substituiert sein kann,
    gesättigtes, teilweise oder vollständig ungesättigtes Heteroaryl, Heteroaryl-C1-C6-alkyl oder Aryl-C1-C6-alkyl bedeutet,
    wobei die Substituenten R1', R2', R3' und/oder R4' zusammen auch ein Ringsystem bilden können,
    wobei ein oder mehrere Substituenten R1' bis R4' teilweise oder vollständig mit Halogenen, insbesondere -F und/oder -Cl, oder -OR', -CN, -C(O)OH, -C(O)NR'2, -SO2NR'2, -C(O)X, -SO2OH, -SO2X, -NO2, substituiert sein können, wobei jedoch nicht gleichzeitig R1' und R4' vollständig mit Halogenen substituiert sein dürfen, und wobei ein oder zwei nicht benachbarte und nicht am Heteroatom gebundene Kohlenstoffatome der Substituenten R1' bis R4', durch Atome und/oder Atomgruppierungen ausgewählt aus der -O-, -S-, -S(O)-, -SO2-, -C(O)-, -N+R'2-, -C(O)NR'-, -SO2NR'-, -P(O)(NR'2)NR'-, -PR'2=N- oder -P(O)R'- ersetzt sein können mit R' = H, nicht, teilweise oder perfluoriertes C1- bis C6-Alkyl, C3- bis C7-Cycloalkyl, unsubstituiertes oder substituiertes Phenyl und X = Halogen.
  • Der Substituent R2' oder R3' ist jeweils unabhängig voneinander insbesondere Wasserstoff, Methyl, Ethyl, Isopropyl, Propyl, Butyl, sek.-Butyl, tert.-Butyl, Cyclohexyl, Phenyl oder Benzyl. Besonders bevorzugt ist R2' Wasserstoff, Methyl, Ethyl, Isopropyl, Propyl, Butyl oder sek.-Butyl. Ganz besonders bevorzugt sind R2' und R3' Wasserstoff.
  • Die C1-C12-Alkylgruppe ist beispielsweise Methyl, Ethyl, Isopropyl, Propyl, Butyl, sek.-Butyl oder tert.-Butyl, ferner auch Pentyl, 1-, 2- oder 3-Methylbutyl, 1,1-, 1,2-oder 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl oder Dodecyl. Gegebenenfalls Difluormethyl, Trifluormethyl, Pentafluorethyl, Heptafluorpropyl oder Nonafluorbutyl.
  • Ein geradkettiges oder verzweigtes Alkenyl mit 2 bis 20 C-Atomen, wobei auch mehrere Doppelbindungen vorhanden sein können, ist beispielsweise Allyl, 2- oder 3-Butenyl, Isobutenyl, sek.-Butenyl, ferner 4-Pentenyl, iso-Pentenyl, Hexenyl, Heptenyl, Octenyl, -C9H17, -C10H19 bis -C20H39; vorzugsweise Allyl, 2- oder 3-Butenyl, Isobutenyl, sek.-Butenyl, ferner bevorzugt ist 4-Pentenyl, iso-Pentenyl oder Hexenyl.
  • Ein geradkettiges oder verzweigtes Alkinyl mit 2 bis 20 C-Atomen, wobei auch mehrere Dreifachbindungen vorhanden sein können, ist beispielsweise Ethinyl, 1- oder 2-Propinyl, 2- oder 3-Butinyl, ferner 4-Pentinyl, 3-Pentinyl, Hexinyl, Heptinyl, Octinyl, -C9H15, -C10H17 bis -C20N37, vorzugsweise Ethinyl, 1- oder 2-Propinyl, 2- oder 3-Butinyl, 4-Pentinyl, 3-Pentinyl oder Hexinyl.
  • Aryl-C1-C6-alkyl bedeutet beispielsweise Benzyl, Phenylethyl, Phenylpropyl, Phenylbutyl, Phenylpentyl oder Phenylhexyl, wobei sowohl der Phenylring als auch die Alkylenkette, wie zuvor beschrieben teilweise oder vollständig mit Halogenen, insbesondere -F und/oder -Cl, oder teilweise mit -OR', -CN, -C(O)OH, -C(O)NR'2, -SO2NR'2, -C(O)X, -SO2OH, -SO2X, -NO2 substituiert sein können.
  • Unsubstituierte gesättigte oder teilweise oder vollständig ungesättigte Cycloalkylgruppen mit 3-7 C-Atomen sind daher Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclopentenyl, Cyclopenta-1,3-dienyl, Cyclohexenyl, Cyclohexa-1,3-dienyl, Cyclohexa-1,4-dienyl, Phenyl, Cycloheptenyl, Cyclohepta-1,3-dienyl, Cyclohepta-1,4-dienyl oder Cyclohepta-1,5-dienyl, welche mit C1- bis C6-Alkylgruppen substituiert sein können, wobei wiederum die Cycloalkylgruppe oder die mit C1- bis C6-Alkylgruppen substituierte Cycloalkylgruppe auch mit Halogenatomen wie F, Cl, Br oder I, insbesondere F oder Cl oder mit -OR', -CN, -C(O)OH, -C(O)NR'2, -SO2NR'2, -C(O)X, -SO2OH, -SO2X, -NO2 substituiert sein kann.
  • In den Substituenten R1' bis R4' können auch ein oder zwei nicht benachbarte und nicht α-ständig zum Heteroatom gebundene Kohlenstoffatome, durch Atome und/oder Atomgruppierungen ausgewählt aus der Gruppe -O-, -S-, -S(O)-, -SO2-, -N+R'2-, -C(O)NR'-, -SO2NR'-, -P(O)(NR'2)NR'- oder -P(O)R'- ersetzt werden, mit R' = nicht, teilweise oder perfluoriertes C1- bis C6-Alkyl, C3- bis C7-Cycloalkyl, unsubstituiertes oder substituiertes Phenyl.
  • Ohne Einschränkung der Allgemeinheit sind Beispiele für derart modifizierte Substituenten R1' bis R4':
    -OCH3, -OCH(CH3)2, -CH2OCH3, -CH2-CH2-O-CH3, -C2H4OCH(CH3)2, -C2H4SC2H5, -C2H4SCH(CH3)2, -S(O)CH3, -SO2CH3, -SO2C6H5, -SO2C3H7, -SO2CH(CH3)2, -SO2CH2CF3, -CH2SO2CH3, -O-C4H8-O-C4H9, -CF3, -C2F5, -C3F7, -C4F9, -C(CF3)3, -CF2SO2CF3, -C2F4N(C2F5)C2F5, -CHF2, -CH2CF3, -C2F2H3, -C3FH6, -CH2C3F7, -C(CFH2)3, -CH2C(O)OH, -CH2C6H5 oder P(O)(C2H5)2.
  • In R' ist C3- bis C7-Cycloalkyl beispielweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl.
  • In R' bedeutet substituiertes Phenyl, durch C1- bis C6-Alkyl, C1- bis C6-Alkenyl, NO2, F, Cl, Br, I, C1-C6-Alkoxy, SCF3, SO2CF3, COOH, SO2X', SO2NR''2 oder SO3H substituiertes Phenyl, wobei X' F, Cl oder Br und R'' ein nicht, teilweise oder perfluoriertes C1- bis C6-Alkyl oder C3- bis C7-Cycloalkyl wie für R' definiert bedeutet, beispielsweise, o-, m- oder p-Methylphenyl, o-, m- oder p-Ethylphenyl, o-, m- oder p-Propylphenyl, o-, m- oder p-Isopropylphenyl, o-, m- oder p-tert.-Butylphenyl, o-, m- oder p-Nitrophenyl, o-, m- oder p-Methoxyphenyl, o-, m- oder p-Ethoxyphenyl, o-, m-, p-(Trifluormethyl)phenyl, o-, m-, p-(Trifluormethoxy)phenyl, o-, m-, p-(Trifluormethylsulfonyl)phenyl, o-, m- oder p-Fluorphenyl, o-, m- oder p-Chlorphenyl, o-, m- oder p-Bromphenyl, o-, m- oder p-Iodphenyl, weiter bevorzugt 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dimethylphenyl, 2,3-, 2,4-, 2,5- 2,6-, 3,4- oder 3,5-Dihydroxyphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Difluorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dichlorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dibromphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dimethoxyphenyl, 5-Fluor-2-methylphenyl, 3,4,5-Trimethoxyphenyl oder 2,4,5-Trimethylphenyl.
  • In R1' bis R4' wird als Heteroaryl ein gesättigter oder ungesättigter mono- oder bicyclischer heterocyclischer Rest mit 5 bis 13 Ringgliedern verstanden, wobei 1, 2 oder 3 N- und/oder 1 oder 2 S- oder O-Atome vorliegen können und der heterocyclische Rest ein- oder mehrfach durch C1- bis C6-Alkyl, C1- bis C6-Alkenyl, NO2, F, Cl, Br, I, C1-C6-Alkoxy, SCF3, SO2CF3, COOH, SO2X', SO2NR''2 oder SO3H substituiert sein kann, wobei X' und R'' eine zuvor angegebene Bedeutung haben.
  • Der heterocyclische Rest ist vorzugsweise substituiertes oder unsubstituiertes 2- oder 3-Furyl, 2- oder 3-Thienyl, 1-, 2- oder 3-Pyrrolyl, 1-, 2-, 4- oder 5-Imidazolyl, 3-, 4- oder 5-Pyrazolyl, 2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-Isoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-Isothiazolyl, 2-, 3- oder 4-Pyridyl, 2-, 4-, 5- oder 6-Pyrimidinyl, weiterhin bevorzugt 1,2,3-Triazol-1-, -4- oder -5-yl, 1,2,4-Triazol-1-, -4- oder -5-yl, 1- oder 5-Tetrazolyl, 1,2,3-Oxadiazol-4- oder -5-yl 1,2,4-Oxadiazol-3- oder -5-yl, 1,3,4-Thiadiazol-2- oder -5-yl, 1,2,4-Thiadiazol-3- oder -5-yl, 1,2,3-Thiadiazol-4- oder -5-yl, 2-, 3-, 4-, 5- oder 6-2H-Thiopyranyl, 2-, 3- oder 4-4H-Thiopyranyl, 3- oder 4-Pyridazinyl, Pyrazinyl, 2-, 3-, 4-, 5-, 6- oder 7-Benzofuryl, 2-, 3-, 4-, 5-, 6- oder 7-Benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- oder 7-1H-Indolyl, 1-, 2-, 4- oder 5-Benzimidazolyl, 1-, 3-, 4-, 5-, 6- oder 7-Benzopyrazolyl, 2-, 4-, 5-, 6- oder 7-Benzoxazolyl, 3-, 4-, 5-, 6- oder 7-Benzisoxazolyl, 2-, 4-, 5-, 6- oder 7-Benzthiazolyl, 2-, 4-, 5-, 6- oder 7-Benzisothiazolyl, 4-, 5-, 6- oder 7-Benz-2,1,3-oxadiazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7- oder 8-Chinolinyl, 1-, 3-, 4-, 5-, 6-, 7- oder 8-Isochinolinyl, 1-, 2-, 3-, 4- oder 9-Carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- oder 9-Acridinyl, 3-, 4-, 5-, 6-, 7- oder 8-Cinnolinyl, 2-, 4-, 5-, 6-, 7- oder 8-Chinazolinyl oder 1-, 2- oder 3-Pyrrolidinyl.
  • Unter Heteroaryl-C1-C6-alkyl wird nun in Analogie zu Aryl-C1-C6-alkyl beispielsweise Pyridinyl-methyl, Pyridinyl-ethyl, Pyridinyl-propyl, Pyridinyl-butyl, Pyridinyl-pentyl, Pyridinyl-hexyl verstanden, wobei weiterhin die zuvor beschriebenen Heterocyclen in dieser Weise mit der Alkylenkette verknüpft werden können.
  • R1' bis R4' sind insbesondere Alkylgruppen mit 1 bis 10 C-Atomen oder Hydroxyalkylgruppen mit 1 bis 10 C-Atomen.
  • Besonders geeignete ionische Flüssigkeiten enthalten ein Tetraalkylammonium-, Tetraalkylphosphonium-, 1,1-Dialkylpyrrolidinium-, 1-Hydroxyalkyl-1-alkyl-pyrrolidinium-, 1-Hydroxyalkyl-3-alkyl-imidazolium- oder 1,3-Bis(hydroxyalkyl)imidazolium-Kation, wobei die Alkylgruppen oder die Alkylenkette der Hydroxyalkylgruppe jeweils unabhängig voneinander 1 bis 10 C-Atome haben können.
  • Unter einer Alkylgruppe mit 1 bis 10 C-Atomen versteht man beispielsweise Methyl, Ethyl, Isopropyl, Propyl, Butyl, sek.-Butyl oder tert.-Butyl, ferner auch Pentyl, 1-, 2- oder 3-Methylbutyl, 1,1-, 1,2- oder 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, Heptyl, Octyl, Nonyl oder Decyl. Die Alkylgruppen können auch teilweise oder vollständig mit Fluor substituiert sein. Fluorierte Alkylgruppen sind beispielsweise Difluormethyl, Trifluormethyl, Pentafluorethyl, Pentafluorpropyl, Heptafluorpropyl, Heptafluorbutyl oder Nonafluorbutyl.
  • Unter einer Hydroxyalkylgruppe mit 1 bis 10 C-Atomen versteht man beispielsweise 1-Hydroxymethyl, 2-Hydroxyethyl, 3-Hydroxyropyl, 4-Hydroxybutyl, ferner auch 5-Hydroxypentyl, 6-Hydroxyhexyl, 7-Hydroxyheptyl, 8-Hydroxyoctyl, 9-Hydroxynonyl oder 10-Hydroxydecyl. Die Alkylenkette der Hydroxygruppe kann auch teilweise oder vollständig mit Fluor substituiert sein. Fluorierte Hydroxyalkylgruppen können beispielsweise durch die Teilformel -(CHF)n-OH oder -(CF2)n-OH beschrieben werden, wobei n 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeuten kann.
  • Geeignete Anionen, die in Kombination mit den erfindungsgemäßen Kationen, die zuvor genannte Bedingung in bezug auf die Stabilität erfüllen, können aus der Gruppe PF6, BF4, Alkylsulfat, Perfluoralkylsulfonat, Perfluoracetat, Bis(fluorsulfonyl)imid, Bis(perfluoralkylsulfonyl)imid, Tris(perfluoralkyl)trifluorphosphat, Bis(perfluoralkyl)tetrafluorphosphat, Tris(perfluoralkylsulfonyl)methid oder Perfluoralkylborat ausgewählt werden.
  • Der Begriff Perfluoralkylgruppe bedeutet, dass alle H-Atome der entsprechenden Alkylgruppe durch F-Atome ersetzt sind. Bevorzugt haben die Alkyl- bzw. Perfluoralkylgruppen in den angegebenen Anionen jeweils unabhängig voneinander 1 bis 10 C-Atome, besonders bevorzugt 1, 2, 3 oder 4 C-Atome.
  • Anionen, die erfindungsgemäß geeignet sind, können beispielsweise aus der Gruppe Trifluormethylsulfonat, Pentafluorethylsulfonat, Heptafluorpropylsulfonat, Nonafluorbutylsulfonat, Bis(fluorsulfonyl)imid, Perfluoracetat, Bis(trifluormethylsulfonyl)imid, Bis(pentafluorethylsulfonyl)imid, Bis(heptafluorpropylsulfonyl)imid, Bis(nonafluorbutylsulfonyl)imid, Tris(trifluormethylsulfonyl)methid, Tris(pentafluorethylsulfonyl)methid, Tris(heptafluorpropylsulfonyl)methid, Tris(nonafluorbutylsulfonyl)methid, Tris(pentafluorethyl)trifluorphosphat, Tris(heptafluorpropyl)trifluorphosphat, Tris(nonafluorbutyl)trifluorphosphat, Bis(pentafluorethyl)tetrafluorphosphat, Tetrakis(trifluormethyl)borat, Tetrakis(pentafluorethyl)borat, Trifluormethyltrifluorborat, Pentafluorethyltrifluorborat, Bis(trifluormethyl)difluorborat, Bis(pentafluorethyl)difluorborat, Tris(trifluormethyl)fluorborat, Tris(pentafluorethyl)fluorborat oder Bis(pentafluorethyl)trifluormethylfluorborat ausgewählt werden.
  • Sobald in den Anionen mehrere Perfluoralkylgruppen auftreten, so können diese unabhängig voneinander verschiedene Perfluoralkylgruppen bedeuten. Unter die oben genannte Definition fallen daher beispielsweise auch gemischte Anionen wie Trifluormethylsulfonyl pentafluorethylsulfonylimid, Bis(trifluormethyl)sulfonylpentafluorethylsulfonylmethid.
  • Besonders bevorzugt werden die Anionen Trifluormethansulfonat, Bis(trifluormethylsulfonyl)imid oder Tris(pentafluorethyl)trifluorphosphat ausgewählt.
  • Geeignete Kationen sind insbesondere, gegebenenfalls lineares oder verzweigtes,
    Tetramethylammonium, Tetraethylammonium, Tetrapropylammonium, Tetrabutylammonium, Tetrapentylammonium, Tetrahexylammonium, Tetraheptylammonium, Tetraoctylammonium, Tetranonylammonium, Tetradecylammonium, Trimethylalkylammonium,
    Trimethyl(ethyl)ammonium, Triethyl(methyl)ammonium, Trihexylammonium, Methyl(trioctyl)ammonium,
    Tetramethylphosphonium, Tetraethylphosphonium, Tetrapropylphosphonium, Tetrabutylphosphonium, Tetrapentylphosphonium, Tetrahexylphosphonium, Tetraheptylphosphonium, Tetraoctylphosphonium, Tetranonylphosphonium, Tetradecylphosphonium, Trihexyl-tetradecylphosphonium, Triisobutyl(methyl)phosphonium, Tributyl(ethyl)phosphonium, Tributyl(methyl)phosphonium,
    1,1-Dimethyl-pyrrolidinium, 1-Methyl-1-ethyl-pyrrolidinium, 1-Methyl-1-propyl-pyrrolidinium, 1-Methyl-1-butyl-pyrrolidinium, 1-Methyl-1-pentyl-pyrrolidinium, 1-Methyl-1-hexyl-pyrrolidinium, 1-Methyl-1-heptyl-pyrrolidinium, 1-Methyl-1-octyl-pyrrolidinium, 1-Methyl-1-nonyl-pyrrolidinium, 1-Methyl-1-decyl-pyrrolidinium, 1,1-Diethyl-pyrrolidinium, 1-Ethyl-1-propyl-pyrrolidinium, 1-Ethyl-1-butyl-pyrrolidinium, 1-Ethyl-1-pentyl-pyrrolidinium, 1-Ethyl-1-hexyl-pyrrolidinium, 1-Ethyl-1-heptyl-pyrrolidinium, 1-Ethyl-1-octyl-pyrrolidinium, 1-Ethyl-1-nonyl-pyrrolidinium, 1-Ethyl-1-decyl-pyrrolidinium, 1,1-Dipropyl-pyrrolidinium, 1-Propyl-1-butyl-pyrrolidinium, 1-Propyl-1-pentyl-pyrrolidinium, 1-Propyl-1-hexyl-pyrrolidinium, 1-Propyl-1- heptyl-pyrrolidinium, 1-Propyl-1-octyl-pyrrolidinium, 1-Propyl-1-nonyl-pyrrolidinium, 1-Propyl-1-decyl-pyrrolidinium, 1,1-Dibutyl-pyrrolidinium, 1-Butyl-1-pentyl-pyrrolidinium, 1-Butyl-1-hexyl-pyrrolidinium, 1-Butyl-1-heptyl-pyrrolidinium, 1-Butyl-1-octyl-pyrrolidinium, 1-Butyl-1-nonyl-pyrrolidinium, 1-Butyl-1-decyl-pyrrolidinium, 1,1-Dipentyl-pyrrolidinium, 1-Pentyl-1-hexyl-pyrrolidinium, 1-Pentyl-1-heptyl-pyrrolidinium, 1-Pentyl-1-octyl-pyrrolidinium, 1-Pentyl-1-nonyl-pyrrolidinium, 1-Pentyl-1-decyl-pyrrolidinium, 1,1-Dihexyl-pyrrolidinium, 1-Hexyl-1-heptyl-pyrrolidinium, 1-Hexyl-1-octyl-pyrrolidinium, 1-Hexyl-1-nonyl-pyrrolidinium, 1-Hexyl-1-decyl-pyrrolidinium, 1,1-Dihexyl-pyrrolidinium, 1-Hexyl-1-heptyl-pyrrolidinium, 1-Hexyl-1-octyl-pyrrolidinium, 1-Hexyl-1-nonyl-pyrrolidinium, 1-Hexyl-1-decyl-pyrrolidinium, 1,1-Diheptyl-pyrrolidinium, 1-Heptyl-1-octyl-pyrrolidinium, 1-Heptyl-1-nonyl-pyrrolidinium, 1-Heptyl-1-decyl-pyrrolidinium, 1,1-Dioctyl-pyrrolidinium, 1-Octyl-1-nonyl-pyrrolidinium, 1-Octyl-1-decyl-pyrrolidinium, 1-1-Dinonyl-pyrrolidinium, 1-Nony-1-decyl-pyrrolidinium oder 1,1-Didecyl-pyrrolidinium,
    1-Hydroxymethyl-1-methyl-pyrrolidinium, 1-Hydroxymethyl-1-ethyl-pyrrolidinium, 1-Hydroxymethyl-1-propyl-pyrrolidinium, 1-Hydroxymethyl-1-butyl-pyrrolidinium, 1-(2-Hydroxyethyl)-1-methyl-pyrrolidinium, 1-(2-Hydroxyethyl)-1-ethyl-pyrrolidinium, 1-(2-Hydroxyethyl)-1-propyl-pyrrolidinium, 1-(2-Hydroxyethyl)-1-butyl-pyrrolidinium, 1-(3-Hydroxypropyl)-1-methyl-pyrrolidinium, 1-(3-Hydroxypropyl)-1-ethyl-pyrrolidinium, 1-(3-Hydroxypropyl)-1-propyl-pyrrolidinium, 1-(3-Hydroxypropyl)-1-butyl-pyrrolidinium, 1-(4-Hydroxybutyl)-1-methyl-pyrrolidinium, 1-(4-Hydroxybutyl)-1-ethyl-pyrrolidinium, 1-(4-Hydroxybutyl)-1-propyl-pyrrolidinium oder 1-(4-Hydroxybutyl)-1-butylpyrrolidinium, 1-(1-Hydroxymethyl)-3-methyl-imidazolium, 1-(1-Hydroxymethyl)-3-ethyl-imidazolium, 1-(1-Hydroxymethyl)-3-propyl-imidazolium, 1-(1-Hydroxymethyl)-3-butyl-imidazolium, 1-(2-Hydroxyethyl)-3-methyl-imidazolium, 1-(2-Hydroxyethyl)-3-ethyl-imidazolium, 1-(2-Hydroxyethyl)-3-propyl-imidazolium, 1-(2-Hydroxyethyl)-3-butyl-imidazolium, 1-(3-Hydroxypropyl)-3-methyl-imidazolium, 1-(3-Hydroxypropyl)-3-ethyl- imidazolium, 1-(3-Hydroxypropyl)-3-propyl-imidazolium, 1-(3-Hydroxypropyl)-3-butyl-imidazolium, 1-(4-Hydroxybutyl)-3-methyl-imidazolium, 1-(4-Hydroxybutyl)-3-ethyl-imidazolium, 1-(4-Hydroxybutyl)-3-propyl-imidazolium, 1-(4-Hydroxybutyl)-3-butyl-imidazolium, 1,3-Bis(1-hydroxymethyl)-imidazolium, 1,3-Bis(2-hydroxyethyl)-imidazolium, 1,3-Bis(3-hydroxypropyl)-imidazolium, 1,3-Bis(4-hydroxybutyl)-imidazolium, 1-(2-Hydroxyethyl)-3-(1-hydroxymethyl)-imidazolium, 1-(2-Hydroxyethyl)-3-(3-hydroxypropyl)-imidazolium, 1-(2-Hydroxyethyl)-3-(4-hydroxybutyl)-imidazolium, 1-(3-Hydroxypropyl)-3-(1-hydroxymethyl)-imidazolium, 1-(3-Hydroxypropyl)-3-(2-hydroxyethyl)-imidazolium, 1-(3-Hydroxypropyl)-3-(4-hydroxybutyl)-imidazolium, 1-(4-Hydroxybutyl)-3-(1-hydroxymethyl)-imidazolium, 1-(4-Hydroxybutyl)-3-(2-hydroxyethyl)-imidazolium oder 1-(4-Hydroxybutyl)-3-(3-hydroxypropyl)-imidazolium.
  • Besonders geeignete Kationen sind Tetramethylammonium, Trimethylalkylammonium, wobei die Alkylgruppe 1 bis 10 C-Atome haben kann, Trihexyl-tetradecylphosphonium, Tri-isobutyl(methyl)phosphonium, Tributyl(ethyl)phosphonium, Tributyl(methyl)phosphonium, 1-Butyl-1-methylpyrrolidinium, 1-Butyl-1-ethylpyrrolidinium, 1-Hexyl-1-methylpyrrolidinium, 1-Methyl-1-octylpyrrolidinium oder 1-(2-Hydroxyethyl)-3-methyl-imidazolium, ganz besonders geeignete Kationen sind 1-Butyl-1-methylpyrrolidinium, 1-Hexyl-1-methylpyrrolidinium, 1-Methyl-1-octylpyrrolidinium oder 1-(2-Hydroxyethyl)-3-methyl-imidazolium.
  • Besonders geeignete ionische Flüssigkeiten für den Einsatz in dem erfindungsgemäßen Verfahren sind
    1-Butyl-1-methylpyrrolidinium Trifluormethansulfonat,
    1-Butyl-1-methylpyrrolidinium Bis(trifluormethylsulfonyl)imid,
    1-Butyl-1-methylpyrrolidinium Tris(pentafluorethyl)trifluorphosphat,
    1-Hexyl-1-methylpyrrolidinium Trifluormethansulfonat,
    1-Hexyl-1-methylpyrrolidinium Bis(trfluormethylsulfonyl)imid,
    1-Hexyl-1-methylpyrrolidinium Tris(pentafluorethyl)trifluorphosphat,
    1-Methyl-1-octylpyrrolidinium Trifluormethansulfonat,
    1-Methyl-1-octylpyrrolidinium Bis(trifluormethylsulfonyl)imid,
    1-Methyl-1-octylpyrrolidinium Tris(pentafluorethyl)trifluorphosphat,
    1-(2-Hydroxyethyl)-3-methylimidazolium Trifluormethansulfonat,
    1-(2-Hydroxyethyl)-3-methylimidazolium Bis(trifluormethylsulfonyl)imid oder
    1-(2-Hydroxyethyl)-3-methylimidazolium Tris(pentafluorethyl)trifluorphosphat.
  • Nach dem erfindungsgemäßen Verfahren werden Selen-Ionen in einer geeigneten ionischen Flüssigkeit, wie zuvor beschrieben, gelöst.
  • Dies kann durch Auflösung eines Selensalzes in der ionischen Flüssigkeit erfolgen.
  • Geeignete Selensalze sind beispielsweise Selentetrahalogenide, z.B. Selentetrachlorid oder Selentetrabromid, aber auch Selendioxid. Prinzipiell ist jedes Selensalz geeignet, dass unter den genannten Bedingungen eine Selenabscheidung ermöglicht.
  • Die Ionenkonzentration in der ionischen Flüssigkeit zur Metallabscheidung ist vorzugsweise 10–5 bis 10 mol/l. Bevorzugt wird mit einer Ionenkonzentration von 10–3 bis 10–1 mol/l gearbeitet.
  • Die erfindungsgemäße Abscheidung erfolgt in einer Schutzgasatmosphäre, beispielsweise unter Argon, wobei der Sauerstoff- und Wassergehalt und insbesondere der Wassergehalt unter 1 ppm liegen sollte. Die Abscheidung wird in einer 3-Elektrodenzelle durchgeführt, wie sie dem Fachmann bekannt ist (beispielsweise aus A.J. Bard, L.R. Faulkner, Electrochemical Methods, Wiley). Bei der Abscheidung auf ein geeignetes Substrat werden bevorzugt Platin- oder Selenelektroden als Gegen- und Referenzelektroden verwendet. Generell können alle Metalle oder Kohlenstoff als Elektrodenmaterialien eingesetzt werden, so lange die an der Gegenelektrode entstehenden Produkte die Prozesse an der Arbeitselektrode nicht stören, d.h. so lange die Elektrodenmaterialien unter den experimentellen Bedingungen nicht mit Selen zusammen abgeschieden werden. Die Auswahl der geeigneten Materialien erfolgt hierbei im Rahmen des Fachwissens des Fachmanns.
  • Das erfindungsgemäße Verfahren wird vorzugsweise potentiostatisch durchgeführt, bei Elektrodenpotentialen zwischen 0 und –2000 mV und bei Temperaturen zwischen 10°C und 230°C, vorzugsweise zwischen 100°C bis 150°C.
  • Das erfindungsgemäße Verfahren kann jedoch auch mittels gepulster Techniken durchgeführt werden, wie sie dem Fachmann bekannt sind, beispielsweise wie sie in J.-C. Puippe, F. Leaman, Pulse-Plating: Elektrolytische Metallabscheidung mit Pulsstrom, Eugen G. Leuze Verlag, 1990 beschrieben sind.
  • Mit dem erfindungsgemäßen Verfahren kann graues Selen in beliebigen Schichtdicken, z.B. zwischen 200 μm und 300 pm abgeschieden werden und zwar in mikro- oder nanokristallin deckenden Schichten. Die gewünschte Schichtdicke wird über das Elektrodenpotential und die geflossene Ladung sowie die elektrochemischen Parameter gesteuert.
  • Dieser Zusammenhang wird allgemeingültig über das Faraday-Gesetz beschrieben:
    Figure 00140001
    wobei F = Faradaykonstante, A = Fläche, p = Dichte des Metalls, I = Strom, t = Zeit und M = molare Masse des Metalls bedeutet.
  • Letztendlich kann man über Strom und Zeit die Schichtdicke einstellen.
  • 1 zeigt ein Zyklovoltammogramm einer ca. 0.1 molaren Lösung von SeCl4 in 1-Butyl-1-methylpyrrolidiniumbis(trifluormethylsulfonyl)imid (BMP Tf2N) bei Raumtemperatur auf Au(111). Bei –1 V vs. Pt-quasi-Referenz ergibt sich ein erster Reduktionspeak, bei –1.75 V ein zweiter. Bei +0,5 Volt zeigt sich ein Oxidationsprozess, wobei das Verhältnis der geflossenen anodischen zu den kathodischen Strömen deutlich kleiner als 1 ist.
  • Bei 120°C (2) ändert sich die Form des Zyklovoltammogramms beträchtlich. Anstelle von 2 deutlichen Reduktionsprozessen beobachtet man nur noch einen mehr oder weniger stark ansteigenden kathodischen Strom mit einem ausgeprägten Oxidationsprozess bei etwa 1 Volt vs. Pt-quasi-Referenz.
  • 3 zeigt die Morphologie von Selen-Depositen, die bei 150°C aus SeCl4 in BMP Tf2N abgeschieden wurden.
  • 4 zeigt ein Röntgendiffraktogramm (XRD = X-ray diffraction, Cobalt K alpha als Röntgenstrahlung) von Selen, das aus SeCl4/BMP Tf2N [0.1 mol/l SeCl4 in BMP Tf2N] bei 150°C auf Platin abgeschieden wurde.
  • Für die erfindungsgemäße elektrochemische Selenabscheidung sind vielfältige Substrate möglich, die als Kathode eingesetzt werden können. Die Geometrie dieser Substrate ist frei wählbar und keiner Einschränkung unterworfen.
  • Geeignete Substrate sind beispielweise aus allen Kategorien wählbar, beispielsweise Nichtmetalle, Halbmetalle, Metalle, Metalllegierungen, leitfähige oder metallisierte Keramiken oder leitfähige oder metallisierte Kunststoffe sind möglich.
  • Ein bevorzugtes Nichtmetall ist beispielsweise Graphit. Ein bevorzugtes Halbmetall ist beispielsweise Silicium.
  • Bevorzugte Metalle sind beispielsweise Gold, Platin, Kupfer, Eisen, Kobalt, Nickel oder Molybdän.
  • Bevorzugte Metalllegierungen sind beispielsweise die verschiedensten Stähle oder Nickel-Legierungen.
  • Geeignete Substrate können beispielsweise auch schon bereits aus mehreren Schichten bestehen, auf die eine weitere Schicht als Zwischenschicht oder abschließende Schicht Selen nach dem erfindungsgemäßen Verfahren aufgebracht wird. Die Aufzählung der Substrate ist daher in keinster Weise als limitierend aufzufassen. Der Fachmann auf dem jeweiligen Anwendungsgebiet kann die Auswahl des geeigneten Substrats ohne weitere Informationen treffen.
  • Nach Abscheidung von Selen kann die ionische Flüssigkeit mit organischen Lösungsmitteln ausgewaschen werden. Geeignete organische Lösungsmittel sind beispielsweise Toluol, Benzol, Methylenchlorid, Acetonitril, Aceton, Methanol, Ethanol oder Isopropanol. Bei verwendung von Selentetrachlorid kann dieses beispielsweise auch durch Erhitzen im Vakuum durch Destillation aus der ionischen Flüssigkeit entfernt werden.
  • Die detaillierten Bedingungen der Abscheidung sowie die geeigneten ionischen Flüssgkeiten und die Nachbehandlung des beschichteten Substrats sind den zuvor beschriebenen Ausführungen zu entnehmen.
  • Auch ohne weitere Ausführungen wird davon ausgegangen, dass ein Fachmann die obige Beschreibung im weitesten Umfang nutzen kann. Die bevorzugten Ausführungsformen und Beispiele sind deswegen lediglich als beschreibende, keineswegs als in irgendeiner Weise limitierende Offenbarung aufzufassen.
  • Die elektrochemischen Messungen wurden mit einem PAR 2263 Potentiostat/Galvanostat der Firma Princeton Applied Research (EG & G) durchgeführt.
  • Generell sind jeder Potentiostat sowie jede Konstantstromquelle sowie Batterien jeweils mit oder ohne Pulsgenerator geeignet.
  • Beispiel 1: Abscheidung von Selen aus SeCl4 auf Gold
  • Es wird eine Lösung von SeCl4 in der ionischen Flüssigkeit 1-Butyl-1-methylpyrrolidinium Bis(trifluormethylsulfonyl)imid hergestellt und unter Schutzgasatmosphäre bei Raumtemperatur in die 3-Elektrodenmeßzelle überführt. Es wurde eine typische 3-Elektrodenmeßzelle benutzt, wie sie beispielsweise in A.J. Bard und L.R. Faulkner, Electrochemical Methods, Wiley, beschrieben wird.
  • Die 3-Elektrodenmeßzelle hat als Arbeitselektrode (Kathode) eine Goldelektrode und Platindrähte dienen als Quasi-Referenz und Gegenelektrode.
  • Das Elektrodenpotential wird auf –1500 mV vs. Platin-quasi-Referenz eingestellt.
  • Die Abscheidung von Selen beginnt bei –1000 mV.
  • Beispiel 2: Abscheidung von Selen aus SeBr4 auf Platin
  • Analog zu Beispiel 1 wird eine 0,25 molare Lösung von SeBr4 in der ionischen Flüssigkeit 1-Butyl-1-methylpyrrolidinium Bis(trifluormethylsulfonyl)imid hergestellt und unter Schutzgasatmosphäre bei Raumtemperatur in die 3-Elektrodenmeßzelle überführt. Es wurde eine typische 3-Elektrodenmeßzelle benutzt, wie sie beispielsweise in A.J. Bard und L.R. Faulkner, Electrochemical Methods, Wiley, beschrieben wird.
  • Die 3-Elektrodenmeßzelle hat als Arbeitselektrode (Kathode) eine Platinelektrode und Platindrähte dienen als Quasi-Referenz und Gegenelektrode.
  • Das Elektrodenpotential wird auf –1500 mV vs. Platin-quasi-Referenz eingestellt.
  • Die Abscheidung von Selen beginnt bei –1000 mV.
  • Beispiel 3: Abscheidung von Selen aus SeBr4 auf Indium
  • Analog zu Beispiel 1 wird eine 0,25 molare Lösung von SeBr4 in der ionischen Flüssigkeit 1-Butyl-1-methylpyrrolidinium Bis(trifluormethylsulfonyl)imid hergestellt und unter Schutzgasatmosphäre bei Raumtemperatur in die 3-Elektrodenmeßzelle überführt. Es wurde eine typische 3-Elektrodenmeßzelle benutzt, wie sie beispielsweise in A.J. Bard und L.R. Faulkner, Electrochemical Methods, Wiley, beschrieben wird.
  • Die 3-Elektrodenmeßzelle hat als Arbeitselektrode (Kathode) eine Indiumelektrode und Platindrähte dienen als Quasi-Referenz und Gegenelektrode.
  • Das Elektrodenpotential wird auf –1500 mV vs. Platin-quasi-Referenz eingestellt.
  • Die Abscheidung von Selen beginnt bei –1000 mV.

Claims (10)

  1. Verfahren zur elektrochemischen Abscheidung von grauem Selen auf einem Substrat in einer Ionischen Flüssigkeit.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Ionische Flüssigkeit mindestens ein Tetraalkylammonium-, Tetraalkylphosphonium-, wobei die Alkylgruppen jeweils unabhängig voneinander 1 bis 10 C-Atome haben können, oder ein heterocyclisches Kation ausgewählt aus
    Figure 00190001
    wobei R1' bis R4' jeweils unabhängig voneinander Wasserstoff, -CN, -OR', -NR'2, -P(O)R'2, -P(O)(NR'2)2, -C(O)R', geradkettiges oder verzweigtes Alkyl mit 1-20 C-Atomen, geradkettiges oder verzweigtes Alkenyl mit 2-20 C-Atomen und einer oder mehreren Doppelbindungen, geradkettiges oder verzweigtes Alkinyl mit 2-20 C-Atomen und einer oder mehreren Dreifachbindungen, gesättigtes, teilweise oder vollständig ungesättigtes Cycloalkyl mit 3-7 C-Atomen, das mit Alkylgruppen mit 1-6 C-Atomen substituiert sein kann, gesättigtes, teilweise oder vollständig ungesättigtes Heteroaryl, Heteroaryl-C1-C6-alkyl oder Aryl-C1-C6-alkyl bedeutet, wobei die Substituenten R1', R2', R3' und/oder R4' zusammen auch ein Ringsystem bilden können, wobei ein oder mehrere Substituenten R1' bis R4' teilweise oder vollständig mit Halogenen, insbesondere -F und/oder -Cl, oder -OR', -CN, -C(O)OH, -C(O)NR'2, -SO2NR'2, -C(O)X, -SO2OH, -SO2X, -NO2, substituiert sein können, wobei jedoch nicht gleichzeitig R1' und R4' vollständig mit Halogenen substituiert sein dürfen, und wobei ein oder zwei nicht benachbarte und nicht am Heteroatom gebundene Kohlenstoffatome der Substituenten R1' bis R4', durch Atome und/oder Atomgruppierungen ausgewählt aus der -O-, -S-, -S(O)-, -SO2-, -C(O)-, -N+R'2-, -C(O)NR'-, -SO2NR'-, -P(O)(NR'2)NR'-, -PR'2=N- oder -P(O)R'- ersetzt sein können mit R' = H, nicht, teilweise oder perfluoriertes C1- bis C6-Alkyl, C3- bis C7-Cycloalkyl, unsubstituiertes oder substituiertes Phenyl und X = Halogen.
  3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Ionische Flüssigkeit mindestens ein Tetraalkylammonium-, Tetraalkylphosphonium-, 1,1-Dialkylpyrrolidinium-, 1-Hydroxyalkyl-1-alkyl-pyrrolidinium-, 1-Hydroxyalkyl-3-alkyl-imidazolium- oder 1,3-Bis(hydroxyalkyl)imidazolium-Kation enthält, wobei die Alkylgruppen oder die Alkylenkette der Hydroxyalkylgruppe jeweils unabhängig voneinander 1 bis 10 C-Atome haben können.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Ionische Flüssigkeit ein elektrochemisches Fenster von 0 mV bis –3500 mV gegen Ferrocen/Ferrocinium im kathodischen Ast und von 0 mV bis +3500 mV gegen Ferrocen/Ferrocinium im anodischen Ast hat.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Anion der Ionischen Flüssigkeit aus der Gruppe PF6, BF4, Alkylsulfat, Perfluoralkylsulfonat, Perfluoracetat, Bis(fluorsulfonyl)imid, Bis(perfluoralkylsulfonyl)imid, Tris(perfluoralkyl)trifluorphosphat, Bis(perfluoralkyl)tetrafluorphosphat, Tris(perfluoralkylsulfonyl)methid oder Perfluoralkylborat ausgewählt wird.
  6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Kation ausgewählt wird aus der Gruppe, lineares oder verzweigtes Tetramethylammonium, Tetraethylammonium, Tetrapropylammonium, Tetrabutylammonium, Tetrapentylammonium, Tetrahexylammonium, Tetraheptylammonium, Tetraoctylammonium, Tetranonylammonium, Tetradecylammonium, Trimethylalkylammonium, Trimethyl(ethyl)ammonium, Triethyl(methyl)ammonium, Trihexylammonium, Methyl(trioctyl)ammonium, Tetramethylphosphonium, Tetraethylphosphonium, Tetrapropylphosphonium, Tetrabutylphosphonium, Tetrapentylphosphonium, Tetrahexylphosphonium, Tetraheptylphosphonium, Tetraoctylphosphonium, Tetranonylphosphonium, Tetradecylphosphonium, Trihexyl-tetradecylphosphonium, Tri-isobutyl(methyl)phosphonium, Tributyl(ethyl)phosphonium, Tributyl(methyl)phosphonium, 1,1-Dimethyl-pyrrolidinium, 1-Methyl-1-ethyl-pyrrolidinium, 1-Methyl-1-propyl-pyrrolidinium, 1-Methyl-1-butyl-pyrrolidinium, 1-Methyl-1-pentyl-pyrrolidinium, 1-Methyl-1-hexyl-pyrrolidinium, 1-Methyl-1-heptyl-pyrrolidinium, 1-Methyl-1-octyl-pyrrolidinium, 1-Methyl-1-nonyl-pyrrolidinium, 1-Methyl-1-decyl-pyrrolidinium, 1,1-Diethyl-pyrrolidinium, 1-Ethyl-1-propyl-pyrrolidinium, 1-Ethyl-1-butyl-pyrrolidinium, 1-Ethyl-1-pentyl-pyrrolidinium, 1-Ethyl-1-hexyl-pyrrolidinium, 1-Ethyl-1-heptyl-pyrrolidinium, 1-Ethyl-1-octyl-pyrrolidinium, 1-Ethyl-1-nonyl-pyrrolidinium, 1-Ethyl-1-decyl-pyrrolidinium, 1,1-Dipropyl-pyrrolidinium, 1-Propyl-1-butyl-pyrrolidinium, 1-Propyl-1-pentyl-pyrrolidinium, 1-Propyl-1-hexyl-pyrrolidinium, 1-Propyl-1-heptyl-pyrrolidinium, 1-Propyl-1-octyl-pyrrolidinium, 1-Propyl-1-nonyl-pyrrolidinium, 1-Propyl-1-decyl-pyrrolidinium, 1,1-Dibutyl-pyrrolidinium, 1-Butyl-1-pentyl-pyrrolidinium, 1-Butyl-1-hexyl-pyrrolidinium, 1-Butyl-1-heptyl-pyrrolidinium, 1-Butyl-1- octyl-pyrrolidinium, 1-Butyl-1-nonyl-pyrrolidinium, 1-Butyl-1-decyl-pyrrolidinium, 1,1-Dipentyl-pyrrolidinium, 1-Pentyl-1-hexyl-pyrrolidinium, 1-Pentyl-1-heptyl-pyrrolidinium, 1-Pentyl-1-octyl-pyrrolidinium, 1-Pentyl-1-nonyl-pyrrolidinium, 1-Pentyl-1-decyl-pyrrolidinium, 1,1-Dihexyl-pyrrolidinium, 1-Hexyl-1-heptyl-pyrrolidinium, 1-Hexyl-1-octyl-pyrrolidinium, 1-Hexyl-1-nonyl-pyrrolidinium, 1-Hexyl-1-decyl-pyrrolidinium, 1,1-Dihexyl-pyrrolidinium, 1-Hexyl-1-heptyl-pyrrolidinium, 1-Hexyl-1-octyl-pyrrolidinium, 1-Hexyl-1-nonyl-pyrrolidinium, 1-Hexyl-1-decyl-pyrrolidinium, 1,1-Diheptyl-pyrrolidinium, 1-Heptyl-1-octyl-pyrrolidinium, 1-Heptyl-1-nonyl-pyrrolidinium, 1-Heptyl-1-decyl-pyrrolidinium, 1,1-Dioctyl-pyrrolidinium, 1-Octyl-1-nonyl-pyrrolidinium, 1-Octyl-1-decyl-pyrrolidinium, 1-1-Dinonyl-pyrrolidinium, 1-Nony-1-decyl-pyrrolidinium oder 1,1-Didecyl-pyrrolidinium, 1-Hydroxymethyl-1-methyl-pyrrolidinium, 1-Hydroxymethyl-1-ethyl-pyrrolidinium, 1-Hydroxymethyl-1-propyl-pyrrolidinium, 1-Hydroxymethyl-1-butyl-pyrrolidinium, 1-(2-Hydroxyethyl)-1-methyl-pyrrolidinium, 1-(2-Hydroxyethyl)-1-ethyl-pyrrolidinium, 1-(2-Hydroxyethyl)-1-propyl-pyrrolidinium, 1-(2-Hydroxyethyl)-1-butyl-pyrrolidinium, 1-(3-Hydroxypropyl)-1-methyl-pyrrolidinium, 1-(3-Hydroxypropyl)-1-ethyl-pyrrolidinium, 1-(3-Hydroxypropyl)-1-propyl-pyrrolidinium, 1-(3-Hydroxypropyl)-1-butyl-pyrrolidinium, 1-(4-Hydroxybutyl)-1-methyl-pyrrolidinium, 1-(4-Hydroxybutyl)-1-ethyl-pyrrolidinium, 1-(4-Hydroxybutyl)-1-propyl-pyrrolidinium oder 1-(4-Hydroxybutyl)-1-butylpyrrolidinium, 1-(1-Hydroxymethyl)-3-methyl-imidazolium, 1-(1-Hydroxymethyl)-3-ethyl-imidazolium, 1-(1-Hydroxymethyl)-3-propyl-imidazolium, 1-(1-Hydroxymethyl)-3-butyl-imidazolium, 1-(2-Hydroxyethyl)-3-methyl-imidazolium, 1-(2-Hydroxyethyl)-3-ethyl-imidazolium, 1-(2-Hydroxyethyl)-3-propyl-imidazolium, 1-(2-Hydroxyethyl)-3-butyl-imidazolium, 1-(3-Hydroxypropyl)-3-methyl-imidazolium, 1-(3-Hydroxypropyl)-3-ethyl-imidazolium, 1-(3-Hydroxypropyl)-3-propyl-imidazolium, 1-(3-Hydroxypropyl)-3-butyl-imidazolium, 1-(4-Hydroxybutyl)-3-methyl- imidazolium, 1-(4-Hydroxybutyl)-3-ethyl-imidazolium, 1-(4-Hydroxybutyl)-3-propyl-imidazolium, 1-(4-Hydroxybutyl)-3-butyl-imidazolium, 1,3-Bis(1-hydroxymethyl)-imidazolium, 1,3-Bis(2-hydroxyethyl)-imidazolium, 1,3-Bis(3-hydroxypropyl)-imidazolium, 1,3-Bis(4-hydroxybutyl)-imidazolium, 1-(2-Hydroxyethyl)-3-(1-hydroxymethyl)-imidazolium, 1-(2-Hydroxyethyl)-3-(3-hydroxypropyl)-imidazolium, 1-(2-Hydroxyethyl)-3-(4-hydroxybutyl)-imidazolium, 1-(3-Hydroxypropyl)-3-(1-hydroxymethyl)-imidazolium, 1-(3-Hydroxypropyl)-3-(2-hydroxyethyl)-imidazolium, 1-(3-Hydroxypropyl)-3-(4-hydroxybutyl)-imidazolium, 1-(4-Hydroxybutyl)-3-(1-hydroxymethyl)-imidazolium, 1-(4-Hydroxybutyl)-3-(2-hydroxyethyl)-imidazolium oder 1-(4-Hydroxybutyl)-3-(3-hydroxypropyl)-imidazolium.
  7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in der Ionischen Flüssigkeit Selen-Ionen gelöst vorliegen.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Selen-Ionen durch Lösen eines Selensalzes erzeugt werden.
  9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Substrat ein Nichtmetall, Halbmetall, Metall, eine Metalllegierung oder leitfähige und/oder metallisierte Keramiken oder leitfähiger und/oder metallisierter Kunststoff ist.
  10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Verfahren bei Temperaturen zwischen 10°C und 230°C durchgeführt wird.
DE102005046908A 2005-09-30 2005-09-30 Elektrochemische Abscheidung von Selen in ionischen Flüssigkeiten Withdrawn DE102005046908A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE102005046908A DE102005046908A1 (de) 2005-09-30 2005-09-30 Elektrochemische Abscheidung von Selen in ionischen Flüssigkeiten
US12/088,130 US20080210566A1 (en) 2005-09-30 2006-09-05 Electrochemical Deposition of Selenium in Ionic Liquids
EP06791833A EP1951934B1 (de) 2005-09-30 2006-09-05 Elektrochemische abscheidung von selen in ionischen flüssigkeiten
DE502006004616T DE502006004616D1 (de) 2005-09-30 2006-09-05 Elektrochemische abscheidung von selen in ionischen flüssigkeiten
PCT/EP2006/008631 WO2007039035A1 (de) 2005-09-30 2006-09-05 Elektrochemische abscheidung von selen in ionischen flüssigkeiten
JP2008532621A JP2009510261A (ja) 2005-09-30 2006-09-05 イオン性液体中でのセレンの電気化学沈着
AT06791833T ATE440157T1 (de) 2005-09-30 2006-09-05 Elektrochemische abscheidung von selen in ionischen flüssigkeiten
TW095136252A TW200728516A (en) 2005-09-30 2006-09-29 Electrochemical deposition of selenium in ionic liquids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005046908A DE102005046908A1 (de) 2005-09-30 2005-09-30 Elektrochemische Abscheidung von Selen in ionischen Flüssigkeiten

Publications (1)

Publication Number Publication Date
DE102005046908A1 true DE102005046908A1 (de) 2007-04-05

Family

ID=37575197

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102005046908A Withdrawn DE102005046908A1 (de) 2005-09-30 2005-09-30 Elektrochemische Abscheidung von Selen in ionischen Flüssigkeiten
DE502006004616T Active DE502006004616D1 (de) 2005-09-30 2006-09-05 Elektrochemische abscheidung von selen in ionischen flüssigkeiten

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE502006004616T Active DE502006004616D1 (de) 2005-09-30 2006-09-05 Elektrochemische abscheidung von selen in ionischen flüssigkeiten

Country Status (7)

Country Link
US (1) US20080210566A1 (de)
EP (1) EP1951934B1 (de)
JP (1) JP2009510261A (de)
AT (1) ATE440157T1 (de)
DE (2) DE102005046908A1 (de)
TW (1) TW200728516A (de)
WO (1) WO2007039035A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030150A1 (en) * 2009-09-08 2011-03-17 Astron Advanced Materials Limited Soldering process using electrodeposited indium and/or gallium, and article comprising an intermediate layer with indium and/or gallium

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009055828A1 (de) 2008-12-19 2010-07-01 Merck Patent Gmbh Verfahren zur Herstellung metallbeschichteter Partikel
CN102044697A (zh) * 2009-10-13 2011-05-04 法拉赛斯能源公司 锂离子电池及其制备方法
DE102011080230A1 (de) 2011-08-01 2013-02-07 Helmholtz-Zentrum Dresden - Rossendorf E.V. Extraktion von Edelmetall(ionen) mittels ionischer Flüssigkeiten
US20130299453A1 (en) * 2012-05-14 2013-11-14 United Technologies Corporation Method for making metal plated gas turbine engine components
CN103122471B (zh) * 2013-03-01 2015-10-28 沈阳师范大学 一种无氰镀铟的电镀液
JPWO2017099189A1 (ja) * 2015-12-09 2018-10-04 学校法人慶應義塾 イオン液体を用いた放射性廃棄物からの長寿命核分裂生成物の分離および回収方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2414438A (en) * 1942-12-01 1947-01-21 Standard Telephones Cables Ltd Electrodeposition of selenium
BE476039A (de) * 1943-07-30 1900-01-01
GB1409977A (en) * 1973-02-06 1975-10-15 Standard Telephones Cables Ltd Electrophoretic deposition of colloidal materials particularly selenium
US4121981A (en) * 1977-09-23 1978-10-24 Xerox Corporation Electrochemical method for forming a selenium-tellurium layer in a photoreceptor
US4253919A (en) * 1980-01-21 1981-03-03 The International Nickel Company, Inc. Electrodeposition of cadmium-selenium semiconducting photoelectrodes from an acid citrate bath
US4548800A (en) * 1982-08-02 1985-10-22 Xerox Corporation Process for selenium purification
US4452675A (en) * 1982-10-18 1984-06-05 Allied Corporation Process for the activation of nickel electrodes via the electrochemical deposition of selenium and/or tellurium
JPH11158681A (ja) * 1997-11-20 1999-06-15 Mitsui Mining & Smelting Co Ltd セレン含有被処理水の処理方法
US6323417B1 (en) * 1998-09-29 2001-11-27 Lockheed Martin Corporation Method of making I-III-VI semiconductor materials for use in photovoltaic cells
JP3089407B2 (ja) * 1998-10-09 2000-09-18 工業技術院長 太陽電池薄膜の作製方法
US6259016B1 (en) * 1999-03-05 2001-07-10 Matsushita Electric Industrial Co., Ltd. Solar cell
DE19958878B4 (de) * 1999-12-07 2012-01-19 Saint-Gobain Glass Deutschland Gmbh Dünnschicht-Solarzelle
WO2001078154A2 (en) * 2000-04-10 2001-10-18 Davis, Joseph & Negley Preparation of cigs-based solar cells using a buffered electrodeposition bath
US6534707B1 (en) * 2000-10-11 2003-03-18 Visteon Global Technologies, Inc. Method for absorbing active, external and dynamic magnetic fields using a ferrite encapsulated coating
US6548751B2 (en) * 2000-12-12 2003-04-15 Solarflex Technologies, Inc. Thin film flexible solar cell
GB0104253D0 (en) * 2001-02-21 2001-04-11 British Nuclear Fuels Plc Process for separating metals
US6429368B1 (en) * 2001-03-20 2002-08-06 Trw Inc. Shortened solar cell array
US6537845B1 (en) * 2001-08-30 2003-03-25 Mccandless Brian E. Chemical surface deposition of ultra-thin semiconductors
US6862125B2 (en) * 2003-05-05 2005-03-01 The Regents Of The University Of California Reversible electro-optic device employing aprotic molten salts and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030150A1 (en) * 2009-09-08 2011-03-17 Astron Advanced Materials Limited Soldering process using electrodeposited indium and/or gallium, and article comprising an intermediate layer with indium and/or gallium

Also Published As

Publication number Publication date
EP1951934B1 (de) 2009-08-19
US20080210566A1 (en) 2008-09-04
TW200728516A (en) 2007-08-01
JP2009510261A (ja) 2009-03-12
WO2007039035A1 (de) 2007-04-12
ATE440157T1 (de) 2009-09-15
DE502006004616D1 (de) 2009-10-01
EP1951934A1 (de) 2008-08-06

Similar Documents

Publication Publication Date Title
EP1951934B1 (de) Elektrochemische abscheidung von selen in ionischen flüssigkeiten
EP1831433A2 (de) Elektrochemische abscheidung von tantal und/oder kupfer in ionischen fl]ssigkeiten
Li et al. Cobalt electrodeposition using urea and choline chloride
EP3825444A1 (de) Metallische beschichtung und anwendungsverfahren
DE102009055828A1 (de) Verfahren zur Herstellung metallbeschichteter Partikel
TWI507571B (zh) 藉由電鑄法但不使用有毒金屬或類金屬而獲致黃金合金沉積的方法
Sulcius et al. Influence of different electrolysis parameters on electrodeposition of γ-and α-Mn from pure electrolytes—a review with special reference to Russian language literature
Suneesh et al. Electrodeposition of aluminium and aluminium-copper alloys from a room temperature ionic liquid electrolyte containing aluminium chloride and triethylamine hydrochloride
Abood et al. Morphology of electrodeposited aluminium metal from aluminium chloride-urea room temperature ionic liquid (RTIL) at variable parameters
EP3259383B1 (de) Zinn-nickel-schicht mit hoher härte
AT510422B1 (de) Verfahren zur abscheidung von hartchrom aus cr(vi)- freien elektrolyten
Hreid et al. Investigation of the electrochemical growth of a Cu–Zn–Sn film on a molybdenum substrate using a citrate solution
DE959243C (de) Galvanisches Bad und Verfahren fuer die Abscheidung von Antimonueberzuegen
de Carvalho et al. Study of the influence of the trisodium nitrilotriacetic as a complexing agent on the copper, tin and zinc co-deposition, morphology, chemical composition and structure of electrodeposits
Maizelis Stripping voltammetry of nanoscale films of Zn–Ni alloy
US2432894A (en) Electrodeposition of iron-tungsten alloys
Tripathy Methods of forming a metal coated article
Mais Electrodeposition of Nb, Ta, Zr and Cu from ionic liquid for nanocomposites preparation
Ovchinnikova et al. Functional composite electrochemical coating Ni-Co-Al2O3-an alternative to chromium plating
DE10223622B4 (de) Alkalisches Zink-Nickelbad sowie entsprechende Galvanisierungsverfahren mit erhöhter Stromausbeute
Ali et al. Electroless and electrodeposition of silver from a choline chloride-based ionic liquid
RU2666180C2 (ru) Способ изготовления выпрямляющих контактов к арсениду галлия электрохимическим осаждением рутения
Qin et al. Electrodeposition of Sn-Cu solder alloy for electronics interconnection
Malkova et al. MODERN HIGH-SPEED ELECTROLYTES FOR ELECTROPLATING PROFILED NICKEL SEDIMENTS
Mayzelis et al. Dynamics of redox processes in the electrolyte for electrodeposition of Cu-Sn alloy

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee