DE102005038928A1 - Brennstoffzelle - Google Patents

Brennstoffzelle Download PDF

Info

Publication number
DE102005038928A1
DE102005038928A1 DE102005038928A DE102005038928A DE102005038928A1 DE 102005038928 A1 DE102005038928 A1 DE 102005038928A1 DE 102005038928 A DE102005038928 A DE 102005038928A DE 102005038928 A DE102005038928 A DE 102005038928A DE 102005038928 A1 DE102005038928 A1 DE 102005038928A1
Authority
DE
Germany
Prior art keywords
anode
electrolyte
fuel cell
cell
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102005038928A
Other languages
English (en)
Other versions
DE102005038928B4 (de
Inventor
Hiromi Tokoi
Nariyoshi Kobayashi
Shin Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of DE102005038928A1 publication Critical patent/DE102005038928A1/de
Application granted granted Critical
Publication of DE102005038928B4 publication Critical patent/DE102005038928B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0637Direct internal reforming at the anode of the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

In einer Feststoffoxid-Brennstoffzelle wird eine Ungleichmäßigkeit in der Temperaturverteilung in der Axialrichtung des Feststoffelektrolyten (1) und die damit verbundene Abnahme der Zellenleistung durch das Vorsehen eines Reformer-Katalysators (9) im Hochtemperaturabschnitt, der den Hochtemperaturabschnitt durch die Wärmeaufnahme bei der Reformierung kühlt, und/oder der Vorsehen eines Verbrennungs-Katalysators (11) im Niedrigtemperaturabschnitt vermieden, der den Niedrigtemperaturabschnitt durch die bei der Verbrennung entstehende Wärme aufheizt. Zusätzlich kann der Luftstrom von einem Luftzuführrohr (4) so verteilt werden, daß sich im Hochtemperaturbereich ein Kühleffekt ergibt.

Description

  • Die vorliegende Erfindung betrifft eine Brennstoffzelle und insbesondere eine Feststoffoxid-Brennstoffzelle.
  • Eine Brennstoffzelle ist eine Energie erzeugende Einrichtung mit einer Anode (Brennstoffelektrode) auf einer Seite und einer Kathode (Luftelektrode) auf der anderen Seite mit einem Elektrolyten dazwischen. Energie wird dadurch erzeugt, daß ein der Anodenseite zugeführtes Brennstoffgas elektrochemisch mit einem Oxidationsgas reagiert, das über den Elektrolyten der Kathodenseite zugeführt wird. Eine Feststoffoxid-Brennstoffzelle, die eine Art von Brennstoffzelle ist, weist nicht nur einen hohen Energieerzeugungswirkungsgrad auf, sondern wird auch bei einer hohen Temperatur von 600 bis 1000°C betrieben, so daß in der Zelle eine Brennstoff-Reformerreaktion erfolgen kann, ohne daß dazu ein Edelmetallkatalysator erforderlich ist. Außerdem kann eine Vielzahl von Brennstoffen eingesetzt werden. Da der Aufbau des Zellensystems einfach ist, besitzt die Feststoffoxid-Brennstoffzelle das Potential, die Kosten im Vergleich zu anderen Arten von Brennstoffzellen zu verringern. Wegen seiner hohen Temperatur kann das Abgas leicht weiter genutzt werden, so daß die Feststoffoxid-Brennstoffzelle nicht nur in der Regel in Systemen zur gleichzeitigen Erzeugung von zwei Energiearten wie Heizkraftanlagen in Gebrauch ist, sondern auch für Hybridsysteme mit einer Gasturbine und anderen Einrichtungen geeignet ist.
  • Die hohe Betriebstemperatur der Zelle von 600 bis 1000°C bietet zwar die genannten Vorteile, sie hat aber auch den Nachteil, daß es sehr schwer ist, die Temperaturverteilung in der Zelle gleichmäßig zu halten. Wenn die Variationen in der Temperaturverteilung im Reaktionsbereich der Zelle groß sind, sinkt der Zellenstrom, da der elektrische Widerstand in den Abschnitten mit niedrigerer Temperatur größer ist als in den Abschnitten höherer Temperatur. Da in den Abschnitten hoher Temperatur der elektrische Widerstand geringer ist, konzentriert sich hier auch der Strom. Es treten somit Ungleichmäßigkeiten im Zellenstrom auf, und es wird nicht der gesamte Reaktionsbereich der Zelle gleichmäßig ausgenutzt, was einem verringerten effektiven Reaktionsbereich entspricht, so daß die Leistungsfähigkeit der Zelle wie die Ausgangsleistung und der Wirkungsgrad sinken. Es entsteht auch das Problem, daß die Zelle durch die thermischen Spannungen, die durch die Temperaturunterschiede entstehen, und die verstärkte Korrosion und Degradation des Materials in den Hochtemperaturabschnitten geschädigt wird.
  • Es sind bereits Brennstoffzellen bekant, bei denen zur Verringerung der Variationen in der Temperaturverteilung in der Zelle in einer Brennstoffzelle mit einem rohrförmigen Feststoffelektrolyten das Oxidationsgas nicht nur an einer Stelle in der Nähe des Bodens des Rohrs zugeführt wird, sondern auch an mehreren Stellen in der Axialrichtung des Feststoffelektrolyten, um die Reaktivität zur erhöhen (siehe zum Beispiel die JP-A-3-238763).
  • Die Gleichmäßigkeit der Temperatur wird dabei dadurch erhöht, daß der Gradient der Sauerstoffkonzentration im Innenraum des Rohrs verringert wird.
  • Aufgabe der vorliegenden Erfindung ist es, eine Brennstoffzelle zu schaffen, bei der die Gleichmäßigkeit der Temperaturverteilung im Reaktionsbereich der Zelle durch einfache Mittel verbessert wird.
  • Diese Aufgabe wird erfindungsgemäß mit der in den Patentansprüchen 1, 2 und 9 definierten Brennstoffzelle gelöst.
  • Diese Aufgabe wird erfindungsgemäß somit dadurch gelöst, daß der Abschnitt im Reaktionsbereich, die sich gegenüber anderen Abschnitten auf einer höheren Temperatur befinden, gekühlt wird bzw. daß der oder die Abschnitte im Reaktionsbe reich, die sich auf einer niedrigeren Temperatur befinden, geheizt werden.
  • Dabei wird in dem Bereich der Zelle, der sich in einem Abschnitt des Reaktionsbereiches an der Anode mit höherer Temperatur befindet, ein Reformer-Katalysator zum Reformieren des Brennstoffes vorgesehen, um diesen Abschnitt mit höherer Temperatur im Reaktionsbereich der Zelle durch Ausnutzen der Kühlfunktion aufgrund der endothermen Reaktion am Reformer-Katalysator zu kühlen. Alternativ oder zusätzlich wird in dem Bereich oder den Bereichen der Zelle, der oder die sich in einem Abschnitt des Reaktionsbereiches der Zelle an der Anode mit niedrigerer Temperatur befindet oder befinden, ein Verbrennungs-Katalysator zum Verbrennen des Brennstoffs vorgesehen, um den Abschnitt oder die Abschnitte mit niedrigerer Temperatur durch die Heizfunktion aufgrund der exothermen Reaktion am Verbrennungs-Katalysator aufzuheizen.
  • Die Anordnung kann derart sein, daß im Hochtemperaturabschnitt im Reaktionsbereich der Zelle an der Anode ein Reformer-Katalysator vorgesehen wird und außerdem im Niedrigtemperaturabschnitt ein Verbrennungs-Katalysator. Die Temperaturverteilung kann dadurch weiter vergleichmäßigt werden, daß der Luftstrom von einem Luftzuführrohr an der Kathode so verteilt wird, daß im Hochtemperaturabschnitt ein Kühleffekt entsteht.
  • Erfindungsgemäß wird somit der Hochtemperaturabschnitt im Reaktionsbereich der Zelle an der Anode durch die endotherme Reaktion am Reformer-Katalysator gekühlt und der Niedrigtemperaturabschnitt im Reaktionsbereich der Zelle an der Anode durch die exotherme Reaktion am Verbrennungs-Katalysator aufgeheizt. Insgesamt kann dadurch eine gleichmäßige Temperaturverteilung im ganzen Reaktionsbereich der Zelle erhalten werden. Im Ergebnis wird die Ausgangsleistung der Zelle größer, die Korrosion und Degradation des Zellenmaterials ist geringer und dergleichen.
  • Im folgenden werden einige Ausführungsformen der erfindungsgemäßen Brennstoffzelle anhand der Zeichnung beispielhaft erläutert. Es zeigen:
  • 1 eine Schnittansicht einer ersten Ausführungsform der erfindungsgemäßen Feststoffoxid-Brennstoffzelle;
  • 2 eine Schnittansicht einer herkömmlichen Brennstoffzelle dieses Typs;
  • 3 eine Schnittansicht einer zweiten Ausführungsform der erfindungsgemäßen Feststoffoxid-Brennstoffzelle;
  • 4 eine Schnittansicht einer dritten Ausführungsform der erfindungsgemäßen Feststoffoxid-Brennstoffzelle;
  • 5 eine Schnittansicht einer Modifikation der erfindungsgemäßen Feststoffoxid-Brennstoffzelle; und
  • 6 eine Schnittansicht einer Anordnung mit mehreren Brennstoffzellen.
  • In den Zeichnungen bezeichnet das Bezugszeichen 1 einen Feststoffelektrolyt, 2 eine Anode, 3 eine Kathode, 4 ein Luftzuführrohr, 5 ein Zellengehäuse, 6 Brennstoff, 7 Luft, 8 Abgas, 9 einen Reformer-Katalysator, 10 eine Luftabgabeöffnung, 11 einen Verbrennungs-Katalysator, 12 eine Elektrode und 13 einen Luft-Hauptverteiler.
  • Feststoffoxid-Brennstoffzellen werden entsprechend der Form des Feststoffelektrolyten allgemein in Brennstoffzellen vom Rohrtyp und Brennstoffzellen vom Flachplattentyp unterteilt. Der Rohrtyp wird in der Axialrichtung des Elektrolyten in der Mitte am heißesten, beide Enden in Axialrichtung weisen die niedrigste Temperatur auf. Auch beim Flachplattentyp ergibt sich zwischen den Endabschnitten und dem Mittenabschnitt der flachen Platte in Abhängigkeit von der Richtung des Gasflusses ein Temperaturunterschied. Beispielhaft wird im folgenden eine Brennstoffzelle vom Rohrtyp genauer erläutert.
  • Als Beispiel für eine Brennstoffzelle vom Rohrtyp wird eine Einfachzelle mit einer Anode 2 an der Außenseite eines rohrförmigen Feststoffelektrolyten 1 und einer Kathode 3 an der Innenseite davon beschrieben. Im Innenraum des rohrförmigen Feststoffelektrolyten 1, der die Form eines unten geschlossenen Rohrs hat und der in einem Zellengehäuse 5 untergebracht ist, befindet sich ein Luftzuführrohr 4, das zum Zuführen des Oxidationsgases Luft vorgesehen ist. Das Luftzuführrohr 4 verteilt die zugeführte Luft 7 an seinem unteren Ende in der Nähe des Bodens des rohrförmigen Feststoffelektrolyten 1, wie es durch die schraffierten Pfeile angezeigt wird. Der Sauerstoff in der zugeführten Luft verwandelt sich an der Kathode 3 in Sauerstoffionen, die durch den Feststoffelektrolyten 1 wandern und an die Anode 2 gelangen. Der Anode 2 wird ein Kohlenwasserstoff-Brennstoff 6 wie Wasserstoff, Kohlenmonoxid, Methan, Propan, Stadtgas, ein flüssiger Brennstoff und dergleichen zugeführt. Die an der Anode 2 ankommenden Sauerstoffionen reagieren mit dem Brennstoff 6. Im Ergebnis fließt ein Strom zwischen der Anode 2 und der Kathode 3. Das sich bei der Zellenreaktion ergebende Abgas 8 wird aus dem Zellengehäuse 5 abgeführt.
  • Wie in der 1 und in der 2 gezeigt, ist die Temperaturverteilung an der Anode 2 im Reaktionsbereich der Zelle derart, daß in der Nähe des Mittelabschnitts in der Axialrichtung des Feststoffelektrolyten 1 die Temperatur am höchsten ist. Für den Betrieb der Zelle ist es erforderlich, daß sich der Reaktionsbereich der Zelle an der Anode 2 auf einer Temperatur von 600 bis 1000°C befindet. In dem in Axialrichtung des rohrförmigen Feststoffelektrolyten 1 unteren Abschnitt der Zelle befinden sich sowohl der zugeführte Brennstoff 6 als auch die zugeführte Luft 7 noch auf einer Temperatur, die unter der Betriebstemperatur der Zelle liegt. Außerdem ist die Wärmeabstrahlung an den Endabschnitten der Zelle größer als in der Mitte. An den Endabschnitten ist daher die Temperatur niedriger als im Mittelabschnitt, gesehen in der Axialrichtung des Feststoffelektrolyten 1, auch wenn durch die Energieerzeugungsreaktion in der Zelle Wärme er zeugt wird. Im Mittelabschnitt in der Axialrichtung des Feststoffelektrolyten 1 erhöht sich die Temperatur des Brennstoffs 6 durch die Zellenreaktion im unteren Abschnitt, und auch die zugeführte Luft 7 wird auf ihrem Weg vom unteren Abschnitt nach oben aufgeheizt, so daß insgesamt die Temperatur von unten nach oben zuerst ansteigt. Im oberen Abschnitt ist jedoch die Konzentration an Brennstoff 6 geringer, wodurch die Reaktionsdichte in der Zelle abnimmt, und die Wärmeabstrahlung am Endabschnitt ist groß, so daß in Axialrichtung die Temperatur im oberen Abschnitt im Vergleich zum Mittelabschnitt wieder abnimmt. Im Ergebnis steigt somit die Temperatur in der Axialrichtung der Zelle von einem relativ geringen Wert im unteren Abschnitt auf einen Höchstwert in der Mitte an und sinkt dann im oberen Abschnitt der Zelle wieder auf einen niedrigeren Wert ab. Der Temperaturunterschied in der Axialrichtung der Zelle erreicht etwa 100 bis 200°C.
  • Auch bei einem Zellenpaket (einer Anordnung von mehreren Zellen in einem gemeinsamen Gehäuse), bei dem die einzelnen Zellen elektrisch in Reihe oder parallel geschaltet sind, tritt eine große Ungleichmäßigkeit in der Temperatur zwischen dem Mittelabschnitt und den Endabschnitten des Pakets auf.
  • Diese ungleichmäßige Temperaturverteilung im Reaktionsbereich der Zelle wird bei den im folgenden beschriebenen Ausführungsformen beseitigt, so daß bei den beschriebenen Ausführungsformen eine gleichmäßige Temperaturverteilung erhalten wird.
  • Ausführungsform 1:
  • Die 1 zeigt als erste Ausführungsform eine Brennstoffzelle mit einem rohrförmigen Feststoffelektrolyten. Bei dieser Brennstoffzelle befindet sich an der Innenseite des rohrförmigen Feststoffelektrolyten 1 die Kathode 3 und an der Außenseite davon die Anode 2. In dem Abschnitt des Reaktionsbereiches der Zelle mit hoher Temperatur, das heißt in Axialrichtung im Mittelabschnitt der Zelle, ist an der Anode 2 ein Reformer-Katalysator 9 angeordnet. Das Luftzuführrohr 4 im Innenraum des rohrförmigen Feststoffelektrolyten 1 ist so ausgesstaltet, daß Luft an zwei Stellen abgegeben wird, einmal am unteren Ende des Luftzuführrohrs 4 im Bodenbereich des Feststoffelektrolyten 1, der die Form eines unten geschlossenen Rohrs hat, und dann noch an einer Stelle in der Nähe des Mittelabschnitts in der Axialrichtung des Elektrolyten. Das Luftzuführrohr 4 ist dazu im mittleren Abschnitt mit einer oder einer Anzahl von Luftabgabeöffnungen 10 versehen. Als Feststoffelektrolyt wurde Yttrium-stabilisiertes Zirkonoxid (YSZ) verwendet. Als Anode 2 wurde poröses Cermet aus Nickel und YSZ verwendet und als Kathode 3 Lanthan-Manganit. Als Reformer-Katalysator 9 wurde ein Katalysator auf Nickel-Lanthan-Basis verwendet, wie es allgemein für solche Katalysatoren üblich ist. Es können jedoch auch andere Reformer-Katalysatoren wie solche auf Rutheniumbasis verwendet werden. Der Katalysator auf Nickel-Lanthan-Basis wurde durch Sintern nach dem Auftragen auf die Anode 2 ausgebildet.
  • Zur Erläuterung der Zellentemperatur werden im folgenden eine Reaktionsformel für die Reformer-Reaktion am Reformer-Katalysator und eine Reaktionsformel für die Energie erzeugende Reaktion (die Zellenreaktion) angegeben. Zuerst wird ein Verfahren zum Erzeugen eines Wasserstoff enthaltenden Reformergases durch Reformieren eines Wasserkohlenstoff-Brennstoffes erläutert, wobei als Beispiel für den Wasserkohlenstoff-Brennstoff Methan verwendet wird. Am Reformer-Katalysator reagiert das Methan mit Wasserdampf hauptsächlich entsprechend der durch die Formel (1) angegebenen Reaktion und ergibt Wasserstoff (Reformerreaktion). Als Wasserdampf für die Reformerreaktion wird entweder dem Zellengehäuse 5 zusammen mit dem Brennstoff 6 zugeführter Wasserdampf oder aus dem Abgas 8 zurückgewonnener Wasserdampf verwendet. CH4 + H2O → CO + 3H2 (1).
  • Das bei dieser Reformerreaktion erhaltene CO wird durch die mit der folgenden Formel (2) ausgedrückte Reaktion mit H2O weiter in Wasserstoff umgewandelt (CO-Konversionsreaktion): CO + H2O → CO2 + H2 (2).
  • Die Reaktion, mit der Wasserstoff aus dem Wasserkohlenstoff-Brennstoff erhalten wird, ist eine endotherme Reaktion.
  • Damit diese Reaktion abläuft, ist es daher erforderlich, Wärme zuzuführen. Generell muß der Reformer-Katalysator auf einer Temperatur von etwa 400 bis 800°C gehalten werden. Um diese hohe Temperatur zu erzeugen, wird zum Beispiel der Brennstoff 6 bereits vorgeheizt dem Zellengehäuse 5 zugeführt.
  • Die Zellenreaktion (die Energie erzeugende Reaktion) an der Anode 2 wird durch die folgenden Formeln (3) und (4) ausgedrückt. Die Zellenreaktion ist eine exotherme Reaktion. H2 + 1/2O2 → H2O (3) CO + 1/2O2 → CO2 (4).
  • Wenn an der Anode 2 kein Reformer-Katalysator 9 vorgesehen ist, ist die Temperaturverteilung in der Axialrichtung des Feststoffelektrolyten 1 derart, daß die Temperatur im Mittelabschnitt höher ist. Wenn im Mittelabschnitt der Reformer-Katalysator 9 angebracht wird, erfolgt in diesem Abschnitt die durch die Formeln (1) und (2) ausgedrückte endotherme Reaktion, so daß die Temperaturverteilung in der Axialrichtung des Feststoffelektrolyten 1 gleichmäßiger wird. Im Ergebnis wird eine im wesentlichen flache Temperaturverteilung erhalten.
  • Außerdem wird bei der vorliegenden Ausführungsform die zugeführte Luft vom Luftzuführrohr 7 nicht nur in der Nähe des Bodens des rohrförmigen Feststoffelektrolyten 1 abgegeben, sondern durch die Luftabgabeöffnungen 10 auch in Axialrichtung im Mittelabschnitt, der der Abschnitt mit der höheren Temperatur ist. Durch diese Zufuhr von Luft, die eine niedrigere Temperatur hat, wird der Mittelabschnitt, der sich auf einer hohen Temperatur befindet, zusätzlich gekühlt. Die Temperaturverteilung in der Axialrichtung des Feststoffelektrolyten 1 nimmt daher eine Form an, die einer flachen Form sehr nahekommt, wie es in der 1 gezeigt ist. Das Ergebnis von Messungen des tatsächlichen Temperaturunterschiedes in der Axialrichtung des Elektrolyten bei der Einfachzelle der vorliegenden Ausführungsform hat ergeben, daß der Unterschied in der Temperatur zwischen dem Höchstwert und dem niedrigsten Wert auf etwa 70°C verringert werden konnte.
  • Durch das Reformieren des Brennstoffs am Reformer-Katalysator, der in Axialrichtung des Feststoffelektrolyten 1 im Mittelabschnitt davon an der Anode 2 angeordnet ist, erhöht sich die Konzentration des für die Brennstoffzelle günstigsten Brennstoffes Wasserstoff zum in Axialrichtung oberen Abschnitt der Zelle hin. Dadurch wird die Zellenreaktion in Richtung des Brennstoffflusses angeregt, in der die Brennstoffkonzentration sonst stark abnimmt, das heißt im oberen Abschnitt des rohrförmigen Feststoffelektrolyten 1. Da die Zellenreaktion eine exotherme Reaktion ist, erhöht sich im oberen Abschnitt dadurch auch die Temperatur.
  • Bei der beschriebenen Ausführungsform der Brennstoffzelle befindet sich die Kathode an der Innenseite des rohrförmigen Feststoffelektrolyten 1 und die Anode an der Außenseite davon. Es kann jedoch statt dessen auch eine Brennstoffzelle verwendet werden, bei der die Positionen der Kathode und der Anode vertauscht sind. Auch kann der Reformer-Katalysator im gesamten Reaktionsbereich der Zelle an der Anode vorgesehen werden, um die Aufbereitung durch den Reformer-Katalysator im Hochtemperaturabschnitt zu erhöhen. Die Anordnung kann auch derart sein, daß der Reformer-Katalysator im Hochtemperaturabschnitt des Reaktionsbereiches der Zelle an der Anode vorgesehen ist und im Niedrigtemperaturabschnitt zusätzlich auf die im folgenden beschriebene Art ein Verbrennungs-Katalysator.
  • Ausführungsform 2:
  • Die 3 zeigt eine zweite Ausführungsform der Brennstoffzelle. Bei dieser Ausführungsform erfolgte ein Sintern, nachdem ein Verbrennungs-Katalysator 11 auf die Niedrigtemperaturabschnitte der Einfachzelle aufgebracht wurde, das heißt auf die Anode 2 in den oberen und unteren Abschnitten in der Axialrichtung des rohrförmigen Feststoffelektrolyten 1. Als Verbrennungs-Katalysator 11 kann ein Katalysator auf Palladiumbasis verwendet werden.
  • Die Verbrennungsreaktion am Verbrennungs-Katalysator 11 ist eine exotherme Reaktion, die durch die folgende Formel (5) ausgedrückt wird: CH4 + 2O2 → CO2 + 2H2O (5).
  • Bei der Einfachzelle der vorliegenden Ausführungsform erhitzt sich der in den Niedrigtemperaturabschnitten der Anode 2 angebrachte Verbrennungs-Katalysator 11, so daß die Temperatur im oberen und unteren Abschnitt in der Axialrichtung des Feststoffelektrolyten 1 ansteigt. Die Temperaturverteilung im Reaktionsbereich der Zelle an der Anode kann daher in der Axialrichtung des Elektrolyten insgesamt gleichmäßiger ausgebildet werden.
  • Selbstverständlich kann diese Maßnahme auch bei einer Brennstoffzelle angewendet werden, bei der die Anode sich an der Innenseite des Feststoffelektrolyten befindet und die Kathode an der Außenseite davon.
  • Ausführungsform 3:
  • Die 4 zeigt eine dritte Ausführungsform der Brennstoffzelle, die eine Modifikation der ersten Ausführungsform ist. Bei der ersten Ausführungsform der 1 erfolgte ein Sintern, nachdem der Reformer-Katalysator 9 auf die Anode 2 selbst aufgebracht wurde, d.h. direkt auf die Anode 2 aufgebracht wurde. Bei der in der 4 gezeigten dritten Ausführungsform wird der Reformer-Katalysator 9 durch Plasmasprühen auf einer Elektrode 12 aufgebracht, die außen auf der Anode 2 angeordnet ist, um den Strom aus der Anode 2 aufzunehmen. Die Stelle, an der der Reformer-Katalysator 9 vorgesehen ist, ist die gleiche wie bei der ersten Ausführungsform, das heißt es ist die Stelle, die in der Axialrichtung des Feststoffelektrolyten 1 dem Mittelabschnitt entspricht. Die Funktion des Reformer-Katalysators 9 ist die gleiche wie bei der ersten Ausführungsform der 1.
  • Die 5 zeigt eine Modifikation der zweiten Ausführungsform. Bei der in der 3 gezeigten zweiten Ausführungsform ist der Verbrennungs-Katalysator 11 auf der Anode 2 selbst angeordnet, d.h. direkt auf die Anode 2 aufgebracht. Bei der in der 5 gezeigten Modifikation wird der Verbrennungs-Katalysator 11 durch Plasmasprühen auf die Elektrode 12 an der Außenseite der Anode 2 aufgebracht. Die Stelle, an der der Verbrennungs-Katalysator 11 vorgesehen ist, ist die gleiche wie bei der zweiten Ausführungsform, das heißt es sind die Stellen, die in der Axialrichtung des Feststoffelektrolyten 1 den oberen und unteren Abschnitten entsprechen. Die Funktion des Verbrennungs-Katalysators 11 ist die gleiche wie bei der zweiten Ausführungsform der 3.
  • Wie bei der ersten und zweiten Ausführungsform kann auch bei diesen Modifikationen die Temperaturverteilung im Reaktionsbereich der Zelle gleichmäßiger gemacht werden.
  • Ausführungsform 4:
  • Als vierte Ausführungsform wird anhand der 6 eine Mehrfach-Brennstoffzelle beschrieben, die aus einer Anzahl von Einfachzellen zusammengesetzt ist. Bei einer Mehrfach-Brennstoffzelle weist die Zelle bzw. weisen die Zellen in der Mitte des Bündels oder Pakets von Zellen eine höhere Zellentemperatur auf als die Zellen am Rand, da die Wärmeisolierung in der Mitte höher ist. Mit anderen Worten ist die Temperatur der Zellen am äußeren Umfangsrand des Pakets wegen der Wärmeabstrahlung niedriger als die Temperatur der Zellen in der Mitte des Bündels oder Pakets. An der Anode der Zelle oder Zellen in der Mitte des Bündels wird daher im Mittelabschnitt in der Axialrichtung des Feststoffelektrolyten 1 der Reformer-Katalysator 9 aufgebracht, um Wärme aufzunehmen. Andererseits wird im äußeren Umfangsabschnitt des Bündels, in dem die Temperatur niedrig ist, auf die Elektrode in den oberen und unteren Abschnitten in der Axialrichtung des Feststoffelektrolyten 1 der Verbrennungs-Katalysator 11 aufgebracht, um Wärme zu erzeugen und dort die Temperatur anzuheben.
  • Bei den Luftzuführrohren zum Zuführen von Luft zu den Kathoden der Zellen durch einen Luft-Hauptverteiler 13 werden darüberhinaus die Luftzuführrohre für die Zellen in der Mitte des Bündels jeweils mit Luftabgabeöffnungen nicht nur am unteren Ende des Rohrs, sondern auch im Mittelabschnitt in der Axialrichtung des Feststoffelektrolyten versehen, um eine geeignete Luftverteilung zu erhalten. Die Temperaturverteilung in dem Bündel oder Paket aus einer Anzahl von Zellen kann so gleichmäßig ausgebildet werden.
  • In allen Ausführungsformen waren die Brennstoffzellen vom Rohrtyp. Die beschriebenen Maßnahmen können jedoch auch bei Brennstoffzellen vom Flachplattentyp angewendet werden. Auch ist das Verfahren zum Aufbringen des Katalysators auf die Anode oder Elektrode nicht auf Sintern, Plasmasprühen und dergleichen beschränkt, sondern es kann jedes mögliche Verfahren angewendet werden.
  • Mit den beschriebenen Maßnahmen wird die Temperatur im Reaktionsbereich der Brennstoffzellen vom Feststoffoxidtyp vergleichmäßigt, so daß sich der effektive Reaktionsbereich vergrößert. Das Leistungsvermögen der Zellen steigt damit an. Außerdem werden Schäden aufgrund von thermischen Spannungen durch große Temperaturunterschiede in der Zelle vermieden.

Claims (12)

  1. Brennstoffzelle mit einer Anode (2) auf einer Seite und einer Kathode (3) auf der anderen Seite und einem Elektrolyten (1) dazwischen, dadurch gekennzeichnet, daß in dem Abschnitt des Reaktionsbereiches der Zelle an der Anode (2), der sich auf einer hohen Temperatur befindet, ein Reformer-Katalysator (9) zum Reformieren des Brennstoffes für die Zelle angeordnet ist.
  2. Brennstoffzelle mit einer Anode (2) auf einer Seite und einer Kathode (3) auf der anderen Seite und einem Elektrolyten (1) dazwischen, dadurch gekennzeichnet, daß in dem Abschnitt des Reaktionsbereiches der Zelle an der Anode (2), der sich auf einer niedrigen Temperatur befindet, ein Verbrennungs-Katalysator (9) zum Verbrennen von Brennstoff angeordnet ist.
  3. Brennstoffzelle nach Anspruch 1, dadurch gekennzeichnet, daß in dem Abschnitt des Reaktionsbereiches der Zelle an der Anode (2), der sich auf einer niedrigen Temperatur befindet, ein Verbrennungs-Katalysator (9) zum Verbrennen von Brennstoff angeordnet ist.
  4. Brennstoffzelle nach Anspruch 1, dadurch gekennzeichnet, daß der Elektrolyt ein rohrförmiger Feststoffelektrolyt (1) ist; daß die Anode (2) auf einer Oberfläche des Elektrolyten angeordnet ist und die Kathode (3) auf der anderen Oberfläche des Elektrolyten (1); und daß der Reformer-Katalysator (9) in der Axialrichtung des Feststoffelektrolyten (1) im Mittelabschnitt angeordnet ist.
  5. Brennstoffzelle nach Anspruch 2, dadurch gekennzeichnet, daß der Elektrolyt ein rohrförmiger Feststoffelektrolyt (1) ist; daß die Anode (2) auf einer Oberfläche des Elektrolyten angeordnet ist und die Kathode (3) auf der anderen Oberfläche des Elektrolyten (1); und daß der Verbrennungs-Katalysator (11) in der Axialrichtung des Feststoffelektrolyten (1) in den oberen und unteren Abschnitten angeordnet ist.
  6. Brennstoffzelle nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Kathode (3) auf der inneren Oberfläche des Elektrolyten (1) angeordnet ist und die Anode (2) auf der äußeren Oberfläche des Elektrolyten; daß ein Zuführrohr (4) zum Zuführen eines Oxidationsgases im Innenraum des rohrförmigen Feststoffelektrolyten (1) angeordnet ist; und daß in der Axialrichtung des Feststoffelektrolyten (1) im Oxidationsgas-Zuführrohr (4) sowohl an einer Stelle in der Nähe des Bodens des rohrförmigen Elektrolyten als auch im Mittelabschnitt eine Abgabeöffnung (10) für das Oxidationsgas vorgesehen ist.
  7. Brennstoffzelle nach Anspruch 1, dadurch gekennzeichnet, daß an der Außenseite der Anode (2) eine Elektrode (12) angeordnet ist; und daß der Reformer-Katalysator (9) auf der Elektrode (12) angebracht ist.
  8. Brennstoffzelle nach Anspruch 2, dadurch gekennzeichnet, daß an der Außenseite der Anode (2) eine Elektrode (12) angeordnet ist; und daß der Verbrennungs-Katalysator (11) auf der Elektrode (12) angebracht ist.
  9. Brennstoffzelle vom Pakettyp mit einer Anode (2) auf einer Seite und einer Kathode (3) auf der anderen Seite und einem Elektrolyten (1) dazwischen, dadurch gekennzeichnet, daß in dem Abschnitt des Reaktionsbereiches an der Anode einer oder einer Anzahl von Einfachzellen in der Mitte des Pakets, der sich auf einer hohen Temperatur befindet, ein Reformer-Katalysator (9) zum Reformieren des Brennstoffes angeordnet ist, und daß in dem Abschnitt des Reaktionsbereiches an der Anode einer oder einer Anzahl von Einfachzellen am äußeren Umfang des Pakets, der sich auf einer niedrigen Temperatur befindet, ein Verbrennungs-Katalysator (11) zum Verbrennen von Brennstoff angeordnet ist.
  10. Brennstoffzelle nach Anspruch 9, dadurch gekennzeichnet, daß sich in jeder Einfachzelle die Anode (2) auf der einen Seite eines rohrförmigen Feststoffelektrolyten (1) befindet und die Kathode (3) auf der anderen Seite davon.
  11. Brennstoffzelle nach Anspruch 10, dadurch gekennzeichnet, daß ein Zuführrohr (4) zum Zuführen eines Oxidationsgases im Innenraum des rohrförmigen Feststoffelektrolyten (1) angeordnet ist; und daß in der Axialrichtung des Feststoffelektrolyten (1) im Oxidationsgas-Zuführrohr (4) in einer oder einer Anzahl von Einfachzellen in der Mitte des Pakets sowohl an einer Stelle in der Nähe des Bodens des rohrförmigen Elektrolyten (1) als auch im Mittelabschnitt eine Abgabeöffnung (10) für das Oxidationsgas vorgesehen ist.
  12. Brennstoffzelle nach Anspruch 11, dadurch gekennzeichnet, daß bei einer oder einer Anzahl von Einfachzellen am äußeren Umfang des Pakets ein Zuführrohr (4) zum Zuführen eines Oxidationsgases mit einer Oxidationsgas-Abgabeöffnung an einer Stelle in der Nähe des Bodens des rohrförmigen Feststoffelektrolyten (1) vorgesehen ist.
DE102005038928A 2004-08-19 2005-08-17 Brennstoffzelle vom Pakettyp Expired - Fee Related DE102005038928B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004239100A JP4965066B2 (ja) 2004-08-19 2004-08-19 燃料電池
JP2004-239100 2004-08-19

Publications (2)

Publication Number Publication Date
DE102005038928A1 true DE102005038928A1 (de) 2006-03-09
DE102005038928B4 DE102005038928B4 (de) 2011-04-07

Family

ID=35852711

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102005038928A Expired - Fee Related DE102005038928B4 (de) 2004-08-19 2005-08-17 Brennstoffzelle vom Pakettyp

Country Status (3)

Country Link
US (1) US8247129B2 (de)
JP (1) JP4965066B2 (de)
DE (1) DE102005038928B4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010002276A1 (de) * 2010-02-24 2011-08-25 Robert Bosch GmbH, 70469 Brennstoffzellensystem mit einem Reformer in einer verbesserten Anordnung

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4965066B2 (ja) * 2004-08-19 2012-07-04 株式会社日立製作所 燃料電池
JP2008147026A (ja) * 2006-12-11 2008-06-26 Hitachi Ltd 固体酸化物形燃料電池
DE102007001153A1 (de) * 2007-01-05 2008-07-10 Enerday Gmbh Verfahren zum Betreiben einer Hochtemperatur-Brennstoffzelle und Brennstoffzellensystem
JP5164985B2 (ja) * 2007-07-27 2013-03-21 京セラ株式会社 燃料電池モジュールおよびそれを具備する燃料電池装置
US8043752B2 (en) * 2008-05-06 2011-10-25 Siemens Energy, Inc. Fuel cell generator with fuel electrodes that control on-cell fuel reformation
JP5317584B2 (ja) * 2008-08-28 2013-10-16 京セラ株式会社 燃料電池モジュールおよび燃料電池装置
JP5471008B2 (ja) * 2009-04-24 2014-04-16 アイシン精機株式会社 燃料電池
CN102881923B (zh) * 2011-07-14 2015-01-07 中国科学院大连化学物理研究所 一种由阳极支撑管型固体氧化燃料电池构建的电站
DE102011085224A1 (de) * 2011-09-27 2013-03-28 Siemens Aktiengesellschaft Speicherelement und Verfahren zu dessen Herstellung
JP5977143B2 (ja) * 2012-10-30 2016-08-24 京セラ株式会社 燃料電池モジュール
US20210075047A1 (en) * 2018-03-30 2021-03-11 Osaka Gas Co., Ltd. Fuel Cell Single Unit, Fuel Cell Module, and Fuel Cell Device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374184A (en) * 1981-09-29 1983-02-15 Westinghouse Electric Corp. Fuel cell generator and method of operating same
JPH02186565A (ja) * 1989-01-12 1990-07-20 Sanyo Electric Co Ltd 溶融炭酸塩燃料電池
US5158837A (en) * 1990-02-15 1992-10-27 Ngk Insulators, Ltd. Solid oxide fuel cells
JP2528987B2 (ja) * 1990-02-15 1996-08-28 日本碍子株式会社 固体電解質型燃料電池
JPH0758618B2 (ja) * 1990-02-15 1995-06-21 日本碍子株式会社 固体電解質型燃料電池
JPH04274168A (ja) * 1991-03-01 1992-09-30 Nippon Telegr & Teleph Corp <Ntt> 内部改質型燃料電池
JP2697461B2 (ja) * 1992-03-11 1998-01-14 松下電器産業株式会社 内部改質型溶融炭酸塩型燃料電池
JPH06111838A (ja) * 1992-09-30 1994-04-22 Toshiba Corp 改質器、改質システム、及び燃料電池システム
JPH08138697A (ja) * 1994-11-11 1996-05-31 Toyota Motor Corp 燃料電池
JPH08287927A (ja) * 1995-04-18 1996-11-01 Tonen Corp 固体電解質型燃料電池用アノード、それを用いた固体電解質型燃料電池及び固体電解質型燃料電池の運転方法
DE19519847C1 (de) * 1995-05-31 1997-01-23 Forschungszentrum Juelich Gmbh Anodensubstrat für eine Hochtemperatur-Brennstoffzelle
JP3358956B2 (ja) * 1996-09-30 2002-12-24 三菱重工業株式会社 固体電解質燃料電池モジュール
JP2001196084A (ja) * 2000-01-14 2001-07-19 Kansai Electric Power Co Inc:The 固体電解質型燃料電池
KR100584047B1 (ko) * 2000-10-30 2006-05-30 지텍 코포레이션 연료 전지, 개질기, 또는 열 플랜트로 작동 가능한 다기능에너지 시스템
US6632554B2 (en) * 2001-04-10 2003-10-14 Hybrid Power Generation Systems, Llc High performance cathodes for solid oxide fuel cells
JP2003115307A (ja) * 2001-10-05 2003-04-18 Nippon Steel Corp 固体電解質型燃料電池の内部改質器
WO2003041196A1 (en) * 2001-11-07 2003-05-15 Northwestern University Fuel-flexible anodes for solid oxide fuel cells
US20040121222A1 (en) * 2002-09-10 2004-06-24 Partho Sarkar Crack-resistant anode-supported fuel cell
JP2004111181A (ja) * 2002-09-18 2004-04-08 Ebara Corp ガス改質方法、ガス改質器およびそれを用いた発電システム
US7285350B2 (en) * 2002-09-27 2007-10-23 Questair Technologies Inc. Enhanced solid oxide fuel cell systems
JP4965066B2 (ja) * 2004-08-19 2012-07-04 株式会社日立製作所 燃料電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010002276A1 (de) * 2010-02-24 2011-08-25 Robert Bosch GmbH, 70469 Brennstoffzellensystem mit einem Reformer in einer verbesserten Anordnung

Also Published As

Publication number Publication date
DE102005038928B4 (de) 2011-04-07
US20060040153A1 (en) 2006-02-23
JP2006059614A (ja) 2006-03-02
JP4965066B2 (ja) 2012-07-04
US8247129B2 (en) 2012-08-21

Similar Documents

Publication Publication Date Title
DE102005038928B4 (de) Brennstoffzelle vom Pakettyp
DE19857398B4 (de) Brennstoffzellensystem, insbesondere für elektromotorisch angetriebene Fahrzeuge
EP3111499B1 (de) Brennstoffzellensystem
DE102006020145A1 (de) Brennstoffzellensystem mit integrierter Brennstoffbefeuchtereinheit
DE112005003103T5 (de) Reaktandenzufuhr für ineinander gesetzte geprägte Platten für eine kompakte Brennstoffzelle
DE19819291A1 (de) Brennstoffzellen-Modul
DE112011101295T5 (de) Wärmemanagement in einem Brennstoffzellenstapel
DE102015216257B4 (de) Brennstoffzellenmodul
CH682270A5 (de)
DE4319411A1 (de) Hochtemperaturbrennstoffzellenanlage
DE102010001011A1 (de) Verfahren zum Betrieb einer Kraft-Wärme-Kopplungsanlage
EP0551054A1 (de) Zentralsymmetrische Brennstoffzellenbatterie
EP0985241B1 (de) Integraler pem-brennstoffzellen-heizungsmodul und dessen verwendung sowie pem-brennstoffzellenstapel
DE10023036A1 (de) Verfahren zum Kaltstart von Brennstoffzellen einer Brennstoffzellenanlage und zugehörige Brennstoffzellenanlage
DE102015216254B4 (de) Brennstoffzellenmodul
DE112013006536B4 (de) Brennstoffzellenmodul
WO2023006724A2 (de) Elektrolysezelle mit temperiervorrichtung, elektrolyseurstack aufweisend eine temperiervorrichtung, elektrolysesystem aufweisend den elektrolyseurstack und verfahren zur temperierung eines elektrolyseurstacks
DE202022104076U1 (de) Brennstoffzellensysteme
WO1998013892A1 (de) Brennstoffzelleneinrichtung mit röhrenförmigen hochtemperatur-brennstoffzellen
DE112021002182T5 (de) Brennstoffzellen-Stromerzeugungssystem
DE102016113740A1 (de) Konditionierungsmodul für ein Betriebsmedium eines Brennstoffzellenstapels sowie Brennstoffzellensystem und Fahrzeug mit diesem Konditionierungsmodul
DE19636068C1 (de) Vorrichtung und Verfahren zur Wasserstoff- und/oder Synthesegasgewinnung
DE19505274C2 (de) Verfahren zum Betrieb eines Festelektrolyt-Hochtemperatur-Brennstoffzellenmoduls und dazu geeignetes Festelektrolyt-Hochtemperatur-Brennstoffzellenmodul
DE102007061650B4 (de) Tubulare Brennstoffzelle und Verfahren zum Betreiben einer tubularen Brennstoffzelle
DE102007024162A1 (de) Brennstoffzellenvorrichtung

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R020 Patent grant now final
R020 Patent grant now final

Effective date: 20110823

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H01M0008060000

Ipc: H01M0008060600