DE102004026324A1 - Transparente Mischungen aus Styrol-Butadien-Blockcopolymeren und Polystyrol - Google Patents

Transparente Mischungen aus Styrol-Butadien-Blockcopolymeren und Polystyrol Download PDF

Info

Publication number
DE102004026324A1
DE102004026324A1 DE200410026324 DE102004026324A DE102004026324A1 DE 102004026324 A1 DE102004026324 A1 DE 102004026324A1 DE 200410026324 DE200410026324 DE 200410026324 DE 102004026324 A DE102004026324 A DE 102004026324A DE 102004026324 A1 DE102004026324 A1 DE 102004026324A1
Authority
DE
Germany
Prior art keywords
block
molecular weight
styrene
range
dollar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200410026324
Other languages
English (en)
Inventor
Philippe Dr. Desbois
Volker Dr. Warzelhan
Konrad Dr. Knoll
Norbert Dr. Nießner
Jürgen Dr. Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE200410026324 priority Critical patent/DE102004026324A1/de
Priority to PCT/EP2005/005521 priority patent/WO2005118663A1/de
Publication of DE102004026324A1 publication Critical patent/DE102004026324A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Ein Verfahren zur Herstellung von Mischungen aus Blockcopolymeren S¶1¶-B-S¶2¶ und Styrolpolymeren, umfassend die Stufen: DOLLAR A a) Herstellen einer lithium-terminierten Blockcopolymerlösung S¶1¶-B-Li durch sequentielle anionische Polymerisation, DOLLAR A b) Stabilisierung der Lösung aus Stufe a) durch Zugabe eines Magnesium- oder Aluminiumorganyls, DOLLAR A c) Zugabe von vinylaromatischen Monomeren und einem anionischen Polymerisationsinhibitor, DOLLAR A d) Zugabe eines Kettenabbruch- oder Kopplungsmittels und Isolierung der Mischung, DOLLAR A wobei S¶1¶ für einen Block aus vinylaromatischen Monomeren und einem zahlenmittleren Molekulargewicht M¶n¶ im Bereich von 8000-40000 g/mol, DOLLAR A S¶2¶ für einen Block aus vinylaromatischen Monomeren und einem zahlenmittleren Molekulargewicht M¶n¶ im Bereich von 50000-250000 g/mo und DOLLAR A B für einen, gegebenenfalls aus mehreren Unterblöcken zusammengesetzten Block aus Dienen und/oder Dienen und vinylaromatischen Monomeren steht, DOLLAR A nach diesem Verfahren erhältliche Mischungen.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Mischungen aus Blockcopolymeren S1-B-S2 und Styrolpolymeren, umfassend die Stufen:
    • a) Herstellen einer lithium-terminierten Blockcopolymerlösung S1-B-Li durch sequentielle anionische Polymerisation,
    • b) Stabilisierung der Lösung aus Stufe a) durch Zugabe eines Magnesium- oder Aluminiumorganyls,
    • c) Zugabe von vinylaromatischen Monomeren und einem anionischen Polymerisationsinitiator,
    • d) Zugabe eines Kettenabbruch- oder Kopplungsmittels und Isolierung der Mischung,
    wobei S1 für einen Block aus vinylaromatischen Monomeren und einem zahlenmittleren Molekulargewicht Mn im Bereich von 8.000 – 40.000 g/mol,
    S2 für eine Block aus vinylaromatischen Monomeren und einem zahlenmittleren Molekulargewicht Mn im Bereich von 50.000 – 250.000 g/mol und
    B für einen, gegebenenfalls aus mehreren Unterblöcken zusammengesetzten Block aus Dienen und/oder Dienen und vinylaromatischen Monomeren steht, nach diesem Verfahren erhältliche Mischungen.
  • Blend aus Styrolpolymeren mit Styrol-Butadien-Blockcopolymeren werden üblicherweise durch Aufschmelzen und Mischen der Ausgangspolymeren in Extrudern hergestellt, um auf diese Weise die mechanischen oder verarbeitungsrelevanten Eigenschaften auf die Erfordernisse der jeweiligen Anwendung anzupassen.
  • Die EP-A 0 710 681 beschreibt ein Verfahren, bei dem ein Blend aus einem Styrol-Butadien-Blockcopolymeren mit Polystyrol durch zweifache Initiierung und gleichzeitige Polymerisation des zweiten Stryolblockes und des Polystyrols beschrieben. Die Molekulargewichte der Mischungen sind jedoch sehr niedrig.
  • Die Herstellung von schlagzähem Polystyrol durch anionische Polymerisation von Styrol in Gegenwart von Styrol-Butadien-Blockcopolymeren ist beispielsweise bekannt aus US 6,506,846 , DE-A 102 06 213 und der nicht vorveröffentlichten DE-A 102 502 80. Bei diesen Verfahren kommt es während der Polymerisation zu einer Phaseninversion und die Styrol-Butadien-Blockcopolymeren liegen in Form von Kautschukeinschlüssen in einer Polystyrolmatrix vor. Dies Produkte sind daher in der Regel nicht transparent.
  • Aufgabe der vorliegenden Erfindung war es, Styrolpolymermischungen mit hoher Steifigkeit, Zähigkeit und hoher Transparenz sowie ein kostengünstiges Verfahren zu de ren Herstellung zur Verfügung zu stellen. Die Mischungen sollten außerdem eine geringe Trübung aufweisen.
  • Demgemäß wurden das oben beschriebene Verfahren und die danach erhältlichen Mischungen gefunden.
  • Für das erfindungsgemäße Verfahren ist es wesentlich, dass das gebildete Styrol-Butadien-Blockcopolymer S1-B-S2 und das Styrolpolymere ausreichend kompatibel sind, damit keine Phasenseparation auftritt.
  • Bevorzugt beträgt der Dienanteil weniger als 50 Gew.-%, bevorzugt liegt er im Bereich von 15 bis 35 Gew.-%, besonders bevorzugt im Bereich von 18 bis 30 Gew.-%, bezogen auf das Blockcopolymer S1-B-S2. Er wird durch den Dienanteil der in Stufe a) gebildeten Blockcopolymerlösung S1-B-Li und der Menge des in Stufe c) zugegebenen vinylaromatischen Monomeren sowie dem molaren Verhältnis von anionischem Polymerisationsinitator in Stufe c) und S1-B-Li bestimmt.
  • Die Molekulargewichte der Blöcke des Blockcopolymeren S1-B-S2 und des Styrolpolymeren können durch die Menge der eingesetzten Polymerisationsinitiatoren und der jeweiligen Menge der zugegebenen Monomeren gesteuert werden.
  • Der Block S1 wir in der Stufe a) durch sequentielle anionische Polymerisation gebildet, wobei das molare Verhältnis von vinylaromatischen Monomeren und Lithiumorganyl als anionischem Polymerisationinitiator so gewählt wird, das der Block S1 ein zahlenmittleres Molekulargewicht Mn im Bereich von 8.000 – 40.000 g/mol, bevorzugt im Bereich von 10.000 bis 30.000 g/mol aufweist.
  • An den Block S1 wird in der selben Stufe a) der Block B durch sequentielle Zugabe von Dienen und/oder vinylaromatischen Monomeren, gegebenenfalls in Gegenwart von Randomizern wie Tetrahydrofuran oder Kaliumsalzen, gebildet. Der Block B weist in der Regel ein zahlenmittleres Molekulargewicht Mn im Bereich von 20.000-200.000 g/mol, bevorzugt im Bereich von 50.000 bis 150.000 g/mol auf. Der Block B kann aus Dienblöcken oder Copolymerblöcken B/S aus Dienen und vinylaromatischen Monomeren aufgebaut sein. Die Copolymerblöcke B/S können statistisch aufgebaut sein oder einen Gradienten aufweisen. Der Block B kann auch aus mehreren Unterblöcken B aus Dienen, Unterblöcken S aus vinylaromatischen Monomeren oder Unterblöcken B/S aus Dienen und vinylaromatischen Monomeren aufgebaut sein. Besonders bevorzugt ist ein Block B, der sich aus 2 bis 10, bevorzugt 3 bis 5 Copolymerblöcken B/S zusammen setzt. Bevorzugt liegt die Glasübergangstemperatur Tg im Bereich von –90 bis + 10 °C, bevorzugt im Bereich von –60 bis –10°C.
  • Die Gegenwart von Randomizern begünstigt die statistische Verteilung der Dieneinheiten und vinylaromatischen Einheiten in den Weichblöcken. Als Randomizer eignen sich Donorlösungmittel, wie Ether, beispielsweise Tetrahydrofuran, oder tertiäre Amine, oder lösliche Kaliumsalze.
  • Für eine ideale statistische Verteilung der Monomereinheiten werden im Falle von Tetrahydrofuran als Randomizer Mengen von in der Regel über 0,25 Volumenprozent, bezogen auf das Lösungsmittel, verwendet. Bei geringen Konzentrationen erhält man „tapered"-Blöcke mit einem Gradienten in der Zusammensetzung der Comonomeren. Bei den angegebenen höheren Mengen an Tetrahydrofuran erhöht sich gleichzeitig der relative Anteil der 1,2-Verknüpfungen der Dieneinheiten auf etwa 30 bis 35 %.
  • Bei Verwendung von Kaliumsalzen als Randomizer erhöht sich der 1,2-Vinylgehalt in den Weichblöcken dagegen nur unwesentlich. Die erhaltenen Blockcopolymeren sind daher weniger vernetzungsanfällig und weisen bei gleichem Butadiengehalt eine niedrigere Glasübergangstemperatur auf.
  • Das Kaliumsalz wird im allgemeinen in Bezug auf den anionischen Polymerisationsinitiator im molaren Unterschuß eingesetzt. Bevorzugt wählt man ein molares Verhältnis von anionischem Polymerisationsinitiator zu Kaliumsalz im Bereich von 10:1 bis 100:1, besonders bevorzugt im Bereich von 30:1 bis 70:1. Das verwendete Kaliumsalz sollte im allgemeinen in Reaktionsmedium löslich sein. Geeignete Kaliumsalze sind beispielsweise Kaliumalkoholate, insbesondere ein Kaliumalkoholat eines tertiären Alkohols mit mindestens 5 Kohlenstoffatomen. Besonders bevorzugt werden Kalium-2,2-dimethyl-1-propanolat, Kalium-2-methyl-2-butanolat (Kalium-tert.-amylat, KTA), Kalium-2,3-dimethyl-3-pentanolat, Kalium-2-methyl-hexanolat, Kalium-3,7-dimethyl-3-octanolat (Kaliumtetrahydrolinalolat) oder Kalium-3-ethyl-3-pentanolat eingesetzt. Die Kaliumalkoholate sind beispielsweise durch Umsetzung von elementarem Kalium, Kalium/Natrium-Legierung oder Kaliumalkylaten und den entsprechenden Alkoholen in inertem Lösungsmittel zugänglich.
  • Der Block S2 und das Styrolpolymer werden in Stufe c) gleichzeitig gebildet. Ihr Molekulargewicht und Mengenverhältnis ergibt sich aus der Menge der vinylaromatischen Monomeren und dem molaren Verhältnis von anionischem Polymerisationsinitiator zu S1-B-Li. Das zahlenmittlere Molekulargewicht Mn des Blockes S2 liegt im Bereich von 50.000 – 250.000 g/mol, bevorzugt im Bereich von 100.00 – 200.000. Das Styrolpolymer besitzt bevorzugt ein Molekulargewicht Mn im Bereich von 15.000 bis 250.000 g/mol, besonders bevorzugt im Bereich von 40.000 bis 150.000 g/mol.
  • Bevorzugt enthält die Mischung 20 bis 90 Gew.-%, besonders bevorzugt 30 bis 60 Gew.-% des Blockcopolymeren S1-B-S2 und 10 bis 80 Gew.-%, bevorzugt 40 bis 70 Gew.-% des Styrolpolymeren.
  • Bedingt durch Kettenabbruch, Kettenübertragungen oder Reinitiierungen ist es möglich, dass die Mischung noch Anteile an Blockcopolymeren der Struktur S1-B in Mengen von 0 bis 20 Gew.-% enthält. Der Anteil an S1-B kann durch Zugabe von Abbruchmitteln nach der Stufe a) gesteuert werden.
  • Besonders bevorzugt enthält die Mischung 30 bis 50 Gew.-% des Blockcopolymeren, S1-B-S2, 40 bis 60 Gew.-% Styrolpolymer und 5 bis 15 Gew.-% Blockcopolymer S1-B.
  • Bevorzugt werden die Stufen a) und b) batchweise in einem Rührkessel K1 und die Stufen c) und d) kontinuierlich in einer Reaktorkaskade, umfassend einen Rührkessel K2 und einen Rohrreaktor R, durchgeführt.
  • Hierbei kann die aus den Stufen a) und b) erhaltene Blockcopolymerlösung S1-B-Li über einen Puffertank P kontinuierlich in eine Reaktorkaskade bestehende aus einem Rührkessel K2 zur Durchführung der Stufe c) und einem Rohreaktor R geführt werden.
  • Durch die Rückvermischung in der kontinuierlichen Stufe im Rührkessel K2 kann die Molekulargewichtsverteilung des Styrolpolymeren sowie des Blockes S2 verbreitert werden. Bevorzugt beträgt die Molekulargewichtsverteilung Mw/Mn für den Block S1 unter 1,5 und für den Block S2 über 1,5, bevorzugt im Bereich von 1.8 bis 2.5.
  • Die Stufe c) und die Polymerisation des Blockes S2 und des Styrolpolymeren kann in einer kontinuierlich durchströmten Reaktorkaskade aus mindestens einem rückvermischenden Reaktor und mindestens einem nachgeschalteten nicht rückvermischenden Reaktor durchgeführt werden. Die kontinuierliche Verfahrensweise ermöglicht einen Feststoffgehalt von über 50 Gew.-% am Ende des nicht rückvermischenden Reaktors und damit ein besonders wirtschaftliches Verfahren.
  • Als rückvermischende Reaktoren eignen sich kontinuierlich durchströmte Rührkessel (CSTR). Sie gewährleisten eine ausreichend schnelle Durchmischung der Zuläufe mit der Polymerisationsmischung und eine effektive Abfuhr der Reaktionswärme durch Siedekühlung. In der Regel laufen die hierbei gebildeten Brüden wieder in den Reaktor zurück. Ein Teil des lösungsmittelhaltigen Kondensats kann aber auch unter Ausnutzung der Reaktionswärme ausgeschleust werden.
  • Als nicht rückvermischende Reaktoren (PFR) sind vor allem Rohrreaktoren oder Rohrbündelreaktoren mit oder ohne Einbauten geeignet. Einbauten können statische oder bewegliche Einbauten sein. Ebenso können Ringscheiben- oder Turmreaktoren verwendet werden. Bevorzugt wird das Verfahren in einer Reaktorkaskade, die aus einem Rührkessel und einem nachgeschalteten Rohrreaktor R besteht, durchgeführt.
  • Bevorzugt wird das Verfahren in einer Reaktorkaskade, die aus einem Rührkessel K1, einem Puffertank P, einem Rührkessel K2 und einem nachgeschalteten Rohrreaktor R besteht, durchgeführt.
  • 1 zeigt eine solche Reaktorkaskade, die aus einem Rührkessel K1, einem Puffertank P, einem Rührkessel K2 mit Siedekühler und einem nachgeschalteten Rohrreaktor R, besteht. Über den Zulauf Z1 und Z2 können die Monomeren und über den Zulauf Z3 eine Initiatorlösung dem Rührkessel K1 zudosiert werden. Über Zulauf Z4 wird Aluminiumorganyl über einen Mischer 1a in der Zuleitung eingemischt. Der Austrag aus dem Rührkessel erfolgt mittels einer Zahnradpumpe. Über den Zulauf Z5 und Z6 werden dem Rührkessel K2 weiteres Styrol und Initiator zudosiert. Dem Rohreaktor nachgeschaltet ist ein Mischer 1b, über den Kettenabbruchmittel und Stabilisator über Zulauf Z7 eingemischt werden können. Anschließend wird die Polymerlösung durch Flash-Entgasung in einem Entgasungstopf(E) vom Lösungsmittel befreit.
  • Bevorzugt wird das Aluminiumorganyl mit der Initiatormischung in einem Rührkessel bei Temperaturen im Bereich von 40 bis 100°C und 15 bis 250 Minuten gealtert und anschließend gegebenenfalls nach Abkühlung auf Raumtemperatur über den Zulauf Z4 und Mischer 1a zugegeben.
  • Nach dem Austritt aus der Reaktorkaskade kann die Polymerlösung über einen Entgaser E bei Temperaturen im Bereich von 200 bis 280°C geführt werden.
  • Als vinylaromatische Monomere können Styrol und Styrolderivate, insbesondere Styrol und α-Methylstyrol oder Mischungen verschiedener Styrolderivate eingesetzt werden.
  • Geeignete Diene sind 1,3-Butadien, 1,3-Pentadien, 1,3-Hexadien, 2,3-Dimethylbutadien, Isopren, Piperylen oder Mischungen davon. Bevorzugt sind 1,3-Butadien eingesetzt.
  • Das erfindungsgemäße Verfahren kann in inerten Lösungsmitteln, beispielsweise aliphatischen, cycloaliphatischen oder aromatischen Kohlenwasserstoffen oder Mischungen davon durchgeführt werden. Bevorzugte Kohlenwasserstoffe sind solche mit 3 bis 12 Kohlenstoffatomen. Bevorzugte Lösungsmittel sind Toluol, Ethylbenzol, Cyclohexan oder Methylcyclohexan.
  • Als anionische Polymerisationsinitiatoren können die üblichen mono-, bi- oder multifunktionellen Alkalimetallalkyle, -aryle oder -aralkyle verwendet werden. Bevorzugt werden lithiumorganische Verbindungen, wie Ethyl-, Propyl-, Isopropyl-, N-Butyl-, sec.-Butyl-, tert.-Butyl-, Phenyl-, Diphenylhexyl-, Hexamethyldi-, Butadienyl-, Isoprenyl oder Polystyryllithium sowie 1,4-Dilithiumbutan, 1,4-Dilithium-buten-2 oder 1,4-Dilithiumbenzol eingesetzt. Die benötigte Menge richtet sich nach dem gewünschten Molekular gewicht. In der Regel liegt sie im Bereich von 0,001 bis 5 Mol-%, bezogen auf die Gesamtmonomermenge.
  • Geeignet sind ferner Mischungen aus Aluminiumorganyl mit einem Alkalimetallanhydrid, wie Lithiumhydrid, Natriumhydrid oder Kaliumhydrid, wie sie beispielsweise in DE-A 102 18 161 beschrieben sind.
  • In alkylaromatischem Lösungsmittel können im Hinblick auf ein bestimmtes zu erzielendes Molekulargewicht aufgrund Übertragungsreaktionen auf das Lösungsmittel auch unterstöchiometrische Mengen ausreichen. In Abhängigkeit von der Polymerisationstemperatur kann die Einsparung bis zu 50 %, bezogen auf die stöchiometrische Menge, betragen.
  • Als Aluminiumorganyle können solche der Formel R3Al verwendet werden, wobei die Reste R unabhängig voneinander Wasserstoff, Halogen, C1-C20-Alkyl oder C6-C20-Aryl bedeuten. Bevorzugte Aluminiumorganyle sind die Aluminiumtrialkyle wie Triethylaluminium, Tri-iso-butylaluminium, Tri-n-butylaluminium, Triiso-propylaluminium, Tri-n-hexylaluminium. Besonders bevorzugt wird Triisobutylaluminium eingesetzt. Als Aluminiumorganyle können auch solche verwendet werden, die durch teilweise oder vollständige Hydrolyse, Alkoholyse, Aminolyse oder Oxidation von Alkyl- oder Arylaluminiumverbindungen entstehen oder die Alkoholat-, Thiolat-, Amid-, Imid-, oder Phosphide-Gruppen tragen. Beispiele sind Diethylaluminium-(N,N-dibutylamid), Diethylaluminium-ethoxid, Diisobutylaluminium-ethoxid, Diisobutyl-(2,6-di-tert.-butyl-4-methylphenoxy)aluminium (CAS-Nr. 56252-56-3), Methylaluminoxan, isobutyliertes Methylaluminoxan, Isobutylaluminoxan, Tetraisobutyldialuminoxan oder Bis(diisobutyl)aluminiumoxid.
  • Die Aluminiumorganylverbindung kann in Stufe b) in Mengen eingesetzt werden, die zu einer Stabilisierung der lebenden Polymerketten ausreicht ohne zu einer starken Retardierung der Polymerisation in Stufe c) zu führen und auf den Zusatz weiterer, retardierend wirkender Metallorganyle, wie Magnesium- oder Zink-organyle gänzlich zu verzichten. Bevorzugt werden die Aluminiumorganylverbindung und der anionische Initiator I in Mengen eingesetzt, so dass das molare Verhältnis Al/l im Bereich von 0,001 bis 0,95 besonders bevorzugt im Bereich von 0,45 bis 0,90 nach der Stufe c) beträgt.
  • Nach Beendigung der Polymerisation können die lebenden Polymerketten mit einem Kettenabbruchmittel verschlossen werden. Als Kettenabbruchmittel eignen sich protonaktive Substanzen oder Lewis-Säuren, wie beispielsweise Wasser, Alkohole, aliphatische oder aromatische Carbonsäuren sowie anorganische Säuren wie Kohlensäure oder Borsäure.
  • Der Polymermischung können noch übliche Zusatzstoffe und Verarbeitungshilfsmittel in einer Menge von 0 bis 30 Gew.-%, bezogen auf das Gesamtgewicht der Formmassen, zugegeben werden. Die Zusatzstoffe bzw. Verarbeitungshilfsmittel sollten die Transparenz nicht beeinträchtigen. Solche Zusatzstoffe und Verarbeitungsmittel sind z.B. Gleit- und Entformungsmittel, Farbmittel wie z.B. Farbstoffe, Flammschutzmittel, Antioxidantien, Stabilisatoren gegen Lichteinwirkung und Antistatika, in den für diese Mittel üblichen Mengen.
  • Die nach dem erfindungsgemäßen Verfahren erhaltenen Polymermischungen weisen eine Morphologie mit Polystyroldomänen unter 0,4 μm und eine sehr geringe Lichtstreuung auf. Neben einer hohen Steifigkeit (E-Modul) und Zähigkeit (Reißdehnung) zeigen sie daher gleichzeitig eine hohe Transparenz und niedriger Trübung (Haze).
  • Blockcopolymerlösung S1-B-Li
  • Die Herstellung der Blockcopolymerlösung (Stufe a) wurden in einem 1500 l Rührkessel K1 Styrol S1 und Lösungsmittel vorgelegt und bei 35°C mit sec-Butyllithium (12%ige Lösung in Cyclohexan) die Polymerisation des Blockes S1 initiiert. Nach vollständigem Umsatz wird der Block B durch mehrmalige Dosierung von Styrol (Zulaufgeschwindigkeit 218 kg/h) und Butadien (156 kg/h) anpolymerisiert. Nach jeder Zugabe wurde der Ansatz auf 50 bis 60°C gekühlt. Die jeweils eingesetzten Mengen und Molekulargewichte sind der Tabelle 1 zu entnehmen.
  • Die Lösung wurde anschließend auf 80°C gekühlt und mit Triethylaluminium (20%ige Lösung in Toluol) stabilisiert (Stufe b) und in einem Puffertank P gelagert. Der Feststoffgehalt lag bei etwa 30 Gew.-% und der Restbutadiengehalt lag unter 10 ppm.
  • Initiatorlösung (TEA/NaH) für Stufe (c):
  • 895 g Toluol, 932 g Styrol und 25,34 g einer 60%igen Natriumhydrid-Dispersion (NaH) in Weisöl (Fa. Chemmetall) wurden bei 25°C zusammegegeben und mit 362 g einer 20%igen Lösung von Triethylaluminium (TEA) in Toluol versetzt. Die erhaltene Initiatorlösung wurde 3 Stunden auf 50°C erwärmt und anschließend gekühlt.
  • Herstellung der Mischungen S1-B-S2/Polystyrol (PS) (Stufe c)
  • Stufe c) wurde kontinuierlich in einer Reaktorkaskade aus einem doppelwandigen 50 l Rührkessel K2 mit einem Standard-Ankerrührer und einem anschließenden Rohrreaktor R (Länge 7 m, Durchmesser 500 mm) durchgeführt. Hierzu wurden in den Rührkessel (Füllstand 50%, Rührerdrehzahl 115 Upm, Außentemperatur 130°C) kontinuierlich 5,53 kg/h Styrol, 9,3 kg/h der Blockcopolymerlösung S1-B-Li und 370 g/h der Initiator lösung TEA/NaH zudosiert. Die Polymerlösung wurde in einem Rohrreaktor (Länge 7 m, Durchmesser 500 mm mit drei gleich langen Heizrohren (Außentemp. 130/150/180°C) weiter gefördert. Die eingesetzten Mengen und Verfahrensparameter sind der Tabelle 2 zu entnehmen.
  • Der Austrag aus dem Rohreaktor wurde zum Kettenabbruch (Stufe d) und Stabilisierung mit 15 g/h Irganox® 1010 (Ciba-Geigy), 20 g/h Sumilizer® GS (Sumitomo) 13 g/h Weisöl, 400 g/h Ethylhexansäure und 130 g/h Ethylbenzol über einen Mischer versetzt und die Schmelze über einen Teilverdampfer und einen bei 10 mbar betriebenen Vacuumtopf entspannt und über eine Schnecke ausgetragen. Das abgezogenen Lösungsmittel wurde nach Destillation wieder in Stufe a) eingesetzt.
  • Nach kurzer Anfahrzeit stellt sich ein konstanter Feststoffgehalt am Ausgang des Rührkessels von etwa 48 Gew.-% ein. Der Umsatz am Ende des Rohreaktors war vollständig. Der Gehalt an Styrol lag unter 5 ppm, der Gehalt an Ethylbenzol unter 200 ppm. Die mechanischen Eigenschaften sind in Tabelle 3 zusammengefasst.
  • Prüfmethoden:
  • Die Probekörper für die mechanischen Prüfungen wurden bei 220°C Massetemperatur und 45°C Formtemperatur gespritzt. E-Modul, Streckspannung, Bruchspannung, Streckdehnung und Bruchdehnung wurden im Zugversuch nach ISO 527 mit Zugstäben gemäß ISO 3167 ermittelt.
  • Die Molekulargewichte wurden mittels Gelpermeationschromatographie (GPC) an Polystyrol-Gel-Säulen vom Typ Mixed B der Fa. Polymer Labs. mit monodispersen Polystyrolstandards bei Raumtemperatur und Tetrahydrofuran als Eluens bestimmt. Der hochmolekulare Polystyrolanteil wurde durch das Fällen des Lotes am Minimum der Molmassenverteilunsdarstellung nach Kalibrierung und Integration der Teilflächen bestimmt.
  • Gelbwert YI: ermittelt als Yellowness Index YI durch Bestimmung der Farbkoordinaten X, Y, Z nach DIN 5033 bei Normlicht D 65 und 10°-Normalbeobachter.
  • Tabelle 1: Herstellung und Eigenschaften der Blockcopolymerlösung S1-B-Li
    Figure 00090001
  • Figure 00100001
  • Figure 00110001
  • Figure 00120001

Claims (10)

  1. Verfahren zur Herstellung von Mischungen aus Blockcopolymeren S1-B-S2 und Styrolpolymeren, umfassend die Stufen a) Herstellen einer lithium-terminierten Blockcopolymerlösung S1-B-Li durch sequentielle anionische Polymerisation, b) Stabilisierung der Lösung aus Stufe a) durch Zugabe eines Magnesium- oder Aluminiumorganyls, c) Zugabe von vinylaromatischen Monomeren und einem anionischen Polymerisationinitiator, d) Zugabe eines Kettenabbruch- oder Kopplungsmittels und Isolierung der Mischung, wobei S1 für einen Block aus vinylaromatischen Monomeren und einem zahlenmittleren Molekulargewicht Mn im Bereich von 8.000 – 40.000 g/mol, S2 für eine Block aus vinylaromatischen Monomeren und einem zahlenmittleren Molekulargewicht Mn im Bereich von 50.000 – 250.000 g/mol und B für einen, gegebenenfalls aus mehreren Unterblöcken zusammengesetzten Block aus Dienen und/oder Dienen und vinylaromatischen Monomeren steht.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Dienanteil, bezogen auf das Blockcopolymer S1-B-S2 weniger als 50 Gew.-% beträgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Block B ein zahlenmittleres Molekulargewicht Mn im Bereich von 20.000 – 200.000 g/mol aufweist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Block B aus ein oder mehreren Copolymerblöcken B/S zusammengesetzt ist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Styrolpolymer Polystyrol mit einem Molekulargewicht Mn im Bereich von 15.000 bis 250.000 g/mol ist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Stufen a) und b) batchweise in einem Rührkessel K1 und die Stufen c) und d) kontinuierlich in einer Reaktorkaskade, umfassend einen Rührkessel K2 und einen Rohrreaktor R, durchgeführt werden.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, das die aus den Stufen a) und b) erhaltene Blockcopolymerlösung über einen Puffertank P kontinuierlich in eine Reaktorkaskade bestehende aus einem Rührkessel K2 zur Durchführung der Stufe c) und einem Rohreaktor R geführt wird.
  8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Molekulargewichtsverteilung Mw/Mn für den Block S1 unter 1,5 und für den Block S2 über 1,5 beträgt.
  9. Mischungen aus Blockcopolymeren S1-B-S2 und Styrolpolymeren, erhältlich nach einem der Verfahren gemäß den Ansprüchen 1 bis 8.
  10. Mischungen nach Anspruch 9, enthaltend 20 bis 90 Gew.-% eines Styrol-Butadien-Blockcopolymeren S1-B-S2 und 10 bis 80 Gew.-% Polystyrol.
DE200410026324 2004-05-26 2004-05-26 Transparente Mischungen aus Styrol-Butadien-Blockcopolymeren und Polystyrol Withdrawn DE102004026324A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE200410026324 DE102004026324A1 (de) 2004-05-26 2004-05-26 Transparente Mischungen aus Styrol-Butadien-Blockcopolymeren und Polystyrol
PCT/EP2005/005521 WO2005118663A1 (de) 2004-05-26 2005-05-21 Transparente mischungen aus styrol-butadien-blockcopolymeren und polystyrol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200410026324 DE102004026324A1 (de) 2004-05-26 2004-05-26 Transparente Mischungen aus Styrol-Butadien-Blockcopolymeren und Polystyrol

Publications (1)

Publication Number Publication Date
DE102004026324A1 true DE102004026324A1 (de) 2005-12-15

Family

ID=34972397

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200410026324 Withdrawn DE102004026324A1 (de) 2004-05-26 2004-05-26 Transparente Mischungen aus Styrol-Butadien-Blockcopolymeren und Polystyrol

Country Status (2)

Country Link
DE (1) DE102004026324A1 (de)
WO (1) WO2005118663A1 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU86698A1 (fr) * 1986-12-04 1988-07-14 Labofina Sa Procede pour fabriquer des copolymeres blocs transparents
DE19914075A1 (de) * 1999-03-27 2000-09-28 Basf Ag Glasklares, schlagzähes Polystyrol auf Basis von Styrol-Butadien-Blockcopolymeren
DE10250280A1 (de) * 2002-10-28 2004-05-13 Basf Ag Verfahren zur anionischen Polymerisation von schlagzähem Polystyrol

Also Published As

Publication number Publication date
WO2005118663A1 (de) 2005-12-15

Similar Documents

Publication Publication Date Title
EP1171497B1 (de) Glasklares, schlagzähes polystyrol auf basis von styrol-butadien-blockcopolymeren
EP1054912A1 (de) Verfahren zur retardierten anionischen polymerisation
EP2254947B1 (de) Zähsteife mischungen aus alpha-methylstyrol-acrylnitril-copolymeren und blockcopolymeren
DE10218161A1 (de) Initiatorzusammensetzung und Verfahren zur anionischen Polymerisation
DE60030328T2 (de) Verfahren zur herstellung eines extrusionsfähigen abs-polymeren mit verbesserten eigenschaften
EP0993477B1 (de) Glycidylether aliphatischer polyalkohole als kopplungsmittel in der anionischen polymerisation
DE19806785A1 (de) Verfahren zur Herstellung von Blockcopolymeren durch retardierten anionischen Polymerisation
DE10306891B4 (de) Transparente Blockcopolymere aus Vinylaromaten und Dienen
WO2005082959A1 (de) Verbessertes verfahren zur herstellung von schlagzähem polystyrol
DE10250280A1 (de) Verfahren zur anionischen Polymerisation von schlagzähem Polystyrol
EP1095078B1 (de) Schlagzähes polystyrol mit hoher steifigkeit und zähigkeit
EP2867267A1 (de) Verfahren zur herstellung von unsymmetrisch aufgebauten, sternförmig verzweigten vinylaromat - dien- blockcopolymeren
DE10307058A1 (de) Verfahren zur anionischen Polymerisation von α-Methylstyrol
DE102004059783A1 (de) Transparente Mischungen linearer Styrol-Butadien-Blockcopolymerer
DE10253147B4 (de) Verfahren zur Herstellung eines Polymerkautschuks und ölgestreckter Polymerkautschuk
DE102004026324A1 (de) Transparente Mischungen aus Styrol-Butadien-Blockcopolymeren und Polystyrol
WO1999011679A1 (de) Styrolpolymere mit bimodaler molekulargewichtsverteilung
EP1280839A1 (de) Anionisch polymerisiertes, schlagzähes polystyrol mit kapselteilchenmorphologie
EP1682592A1 (de) Verfahren zur anionischen polymerisation von monomeren in alpha-methylstyrol
EP1274754A1 (de) Verfahren zur polymerisation von konjugierten diolefinen (dienen) mit katalysatoren der seltenen erden in gegenwart vinylaromatischer lösungsmittel
WO2004031252A2 (de) Anionisch polymerisiertes schlagzähes polystyrol mit guter fliessfähigkeit
WO2005082958A1 (de) Vereinfachtes verfahren zur herstellung von schlagzähem polystyrol
WO2001034699A1 (de) Thermoplastische formmassen mit geringer eigenfarbe und guter verarbeitbarkeit
WO2005118713A1 (de) Polymerblends aus styrolpolymeren und oxiran-copolymeren
DE102005029019A1 (de) Verfahren zur Herstellung von Copolymeren aus Styrolmonomeren und Dienmonomeren

Legal Events

Date Code Title Description
8130 Withdrawal