CZ296102B6 - Zpusob zmeny smácivosti tiskarské formy a tiskarská forma - Google Patents
Zpusob zmeny smácivosti tiskarské formy a tiskarská forma Download PDFInfo
- Publication number
- CZ296102B6 CZ296102B6 CZ20010867A CZ2001867A CZ296102B6 CZ 296102 B6 CZ296102 B6 CZ 296102B6 CZ 20010867 A CZ20010867 A CZ 20010867A CZ 2001867 A CZ2001867 A CZ 2001867A CZ 296102 B6 CZ296102 B6 CZ 296102B6
- Authority
- CZ
- Czechia
- Prior art keywords
- state
- chemical
- semiconductor surface
- laser
- wettability
- Prior art date
Links
- 238000007639 printing Methods 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000009736 wetting Methods 0.000 title abstract description 8
- 239000004065 semiconductor Substances 0.000 claims abstract description 51
- 239000000126 substance Substances 0.000 claims abstract description 42
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 34
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 25
- 229910052710 silicon Inorganic materials 0.000 claims description 25
- 239000010703 silicon Substances 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 20
- 229910052732 germanium Inorganic materials 0.000 claims description 10
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 9
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 5
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims description 4
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 4
- 238000001311 chemical methods and process Methods 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 125000001153 fluoro group Chemical group F* 0.000 claims description 2
- 230000015556 catabolic process Effects 0.000 claims 1
- 238000006731 degradation reaction Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 239000013078 crystal Substances 0.000 description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 6
- 230000005661 hydrophobic surface Effects 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 230000005660 hydrophilic surface Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000007645 offset printing Methods 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 229910020175 SiOH Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 210000000746 body region Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 125000001165 hydrophobic group Chemical group 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 150000004682 monohydrates Chemical class 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- 238000003854 Surface Print Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
- 238000007704 wet chemistry method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C1/00—Forme preparation
- B41C1/10—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
- B41C1/1058—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by providing a magnetic pattern, a ferroelectric pattern or a semiconductive pattern, e.g. by electrophotography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41N—PRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
- B41N1/00—Printing plates or foils; Materials therefor
- B41N1/006—Printing plates or foils; Materials therefor made entirely of inorganic materials other than natural stone or metals, e.g. ceramics, carbide materials, ferroelectric materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0042—Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Printing Plates And Materials Therefor (AREA)
- Manufacture Or Reproduction Of Printing Formes (AREA)
- Materials For Photolithography (AREA)
- Coloring (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Pri zpusobu zmeny smácivosti tiskarské formy (10)s polovodicovým povrchem (12) se polovodicový povrch (12) tiskarské formy (10) uvede do jednotného chemického stavu ci skupenství s první smácivostí,hydrofobní nebo hydrofilní. Návazne se pak cást oblastí polovodicového povrchu (12) uvede do druhého chemického stavu ci skupenství, které má jinou smácivost, odlisnou od první smácivosti. Tiskarskáforma (10) nese vzor skládající se z hydrofilnícha hydrofobních oblastí.
Description
Způsob změny smáčivosti tiskařské formy a tiskařská forma
Oblast techniky
Vynález se týká způsobu změny smáčivosti tiskařské formy a tiskařské formy s polovodičovým povrchem, který má různou smáčivost při použití v ofsetovém způsobu tisku.
Dosavadní stav techniky
Ze spisu EP 262 475 B1 jejíž známý tiskařský stroj, který je vybavený tiskařskou formou, na níž je znázornitelný obraz, který se má tisknout, prostřednictvím příslušných hydrofobních a hydrofilních oblastí. Aby byla umožněna přeměna mezi hydrofilním stavem, případně hydrofobním stavem, je na tiskařské formě předpokládaný feroelektrický materiál, který je místně polarizovatelný, případně depolarizovatelný. Hydrofilace případně opětovná hydrofilace tiskařské formy se příslušným způsobem uskutečňuje prostřednictvím polarizačního mechanismu, případně depolarizačního mechanismu, který je uskutečnitelný reverzibilně uvnitř tiskařského stroje. Tento způsob má však tu nevýhodu, že efekt v širokém rozsahu závisí na elektrostatických přitažlivých silách a tomu odpovídající rozlišování obrazu, který se má tisknout, je ohraničené rozsáhlými elektrickými přitažlivými silami.
Kromě toho je ze spisu US 3 678 852 známa tiskařská forma, která je potažená amorfním polovodičem. Amorfní stav polovodiče lze pomocí laserového paprsku změnit z neuspořádaného amorfního stavu na vysoce uspořádaný krystalický stav. V krystalickém stavuje povrch polovodiče drsnější, takže přeměna na uspořádaný stav povrchu polovodiče způsobuje, že kapaliny lépe přilnou v oblasti drsnějšího povrchu než v amorfních hladkých oblastech. Rozlišovací schopnost tiskařské formy, která je vyhotovená podle tohoto způsobu, je omezená nejmenší velikostí krystalických oblastí.
Podstata vynálezu
Úkolem předkládaného vynálezu je vytvořit alternativní způsob pro lokální a opakovanou změnu smáčivosti tiskařské formy s polovodičovým povrchem a navrhnout odpovídající tiskařskou formu.
Vynález se týká způsobu změny smáčivosti tiskařské formy s polovodičovým povrchem, kde podstata vynálezu spočívá v tom, že polovodičový povrch se uvede do prvního chemického stavu či skupenství s první smáčivosti, pak se část všech oblastí polovodičového povrchu uvede do druhého chemického stavu či skupenství s druhou smáčivosti, přičemž tato druhá smáčivost je odlišná od první smáčivosti.
Vynález je možno provádět též tak, že druhé chemické skupenství či stav nastane prostřednictvím změny atomových skupin prvních atomových vrstev v oblasti polovodičového povrchu.
Vynález je možno provádět též tak, že jedna ze smáčivosti je hydrofílní a druhá ze smáčivosti je hydrofobní.
Vynález je možno provádět též tak, že první chemické skupenství čí stav je vytvořen prostřednictvím odbourání vrstvy na polovodičovém povrchu v atomární dimenzi, přednostně roztokem fluorovodíku HF anebo roztokem fluoridu amonného AF.
Vynález je možno provádět též tak, že druhý chemický stav či skupenství je vytvořeno prostřednictvím lokalizovaného chemického procesu v částech oblastí polovodičového povrchu.
Vynález je možno provádět též tak, že proces se uskutečňuje prostřednictvím řízeného energetického zdroje řízeného podle obrazové informace určené k tisku nebo podle negativu této obrazové informace.
Vynález je možno provádět též tak, že řízeným energetickým zdrojem je laser, zejména pulzní laser nebo běžný energetický zdroj, jako je např. UV - lampa.
Vynález je možno provádět též tak, že laser je fluorový laser s vlnovou délkou 157 nm nebo laser s vlnovou délkou ultrafialového záření < 308 nm, nebo laser s pevnou fází, jako např. laser typu Nd: YAG' s vlnovou délkou < 355 nm.
Vynález je možno provádět též tak, že polovodičovým povrchem je amorfní polokrystalický nebo krystalický křemík, germanium nebo slitina obsahující křemík či germanium, zejména SiGe. SiC, SiCN.
Vynález je možno provádět též tak, že druhý chemický stav či skupenství se provádí lokálně ohraničenou změnou chemické struktury v oblasti povrchu s tloušťkou do 5 nm.
Vynález se též týká tiskařské formy, zejména tiskařské desky nebo tiskařského válce s polovodičovým povrchem, který nese vzor skládající se z hydrofilních a hydrofobních oblastí, přičemž podstata vynálezu spočívá v tom, že hydrofilní oblasti mají chemické koncové skupiny v prvním chemickém stavu či skupenství a hydrofobní oblasti mají chemické koncové skupiny v druhém chemickém stavu či skupenství, přičemž první chemický stav či skupenství je odlišné od druhého chemického stavu či skupenství.
Vynález je možno provést též tak, že hydrofobní oblasti odpovídají obrazové informaci určené pro tisk nebo negativu této obrazové informace.
Vynález je možno provést též tak, že polovodičovým povrchem je amorfní polokrystalický nebo krystalický křemík, germanium nebo např. slitina obsahující křemík nebo germanium (SiGe), zejména též SiC nebo SiCN.
Vynález je možno provést též tak, že druhý chemický stav či skupenství zasahuje od polovodičového povrchu do polovodiče až do tloušťky maximálně 5 nm.
Základní myšlenka předkládaného vynálezu tedy spočívá v tom, že lokální smáčivost či smáčecí reakce, tedy lokální hydrofilní, případně hydrofobní reakce tiskařské formy se změní pomocí kontroly chemických koncových skupin povrchu s příslušně různými elektronickými vlastnostmi, to znamená vlastnostmi vzájemného působení. K. tomu je nejprve vytvořen povrch s chemickou strukturou, který má přednostně v podstatě jednotnou hydrofilní nebo hydrofobní vlastnost. Tento povrch je pak v místně ohraničených částkových plochách přeměněn prostřednictvím lokálně ohraničených změn chemické struktury na vždy jiný stav smáčecí vlastnosti, tedy z hydrofilní na hydrofobní vlastnost, případně z hydrofobní na hydrofilní vlastnost. V tomto procesu chemické změny není třeba používat speciální feromagnetické materiály nebo vyvolávat změnu drsnosti povrchu například krystalizaci. Smáčecí reakce je v jednotlivých oblastech povrchu polovodiče řízená spíše tím, že povrch polovodiče je cíleně opatřený hydrofilními a hydrofobními chemickými koncovými skupinami.
-2CZ 296102 B6
Tento lokalizovaný proces změny se může uskutečnit pomocí takzvaného chemického procesu, při němž dojde k chemické změně prostřednictvím fototermických anebo fotochemických procesů, anebo všeobecně prostřednictvím laserem indukovaných reakčních procesů.
U jednoho přednostního způsobu uskutečnění je jako polovodič zvolen křemík. Tento polovodičový povrch je nejprve uveden do hydrofobního stavu, přičemž jsou do povrchu uloženy, nebo na něj navrstveny skupiny SiH, skupiny SiH2 a/nebo skupiny SiH3. S cílem změnit hydrofobní reakci je poté hydrofobní atomová skupina lokálně vyměněna za hydrofilní atomovou skupinu anebo přeměněna tak, že například jednotky SiOH, jednotky SiOSi a/nebo jednotky SiO nahradí hydrofobní skupiny.
Při použití povrchu křemíku s prostorovou orientací 111 jako povrchu tiskařské formy vyplývá z toho zvláštní výhoda, že povrch může být atomárně hladký a hydrofilní, případně hydrofobní koncové skupiny mohou být v podstatě navrstveny ve stejných vzájemných vzdálenostech.
K vytvoření hydrofilní, případně hydrofobní skupiny výchozí vrstvy a postupu změny mezi hydrofilním a hydrofobním stavem přicházejí v úvahu dva různé způsoby.
Tak například může být tiskařská forma podrobena vhodnému mokrému chemickému modifikačnímu procesu k vytvoření jednotného hydrofilního povrchu, čímž lze za vhodných podmínek vytvořit silně hydrofilní smáčivost povrchu, což může být například způsobené tím, že se do prvních atomových vrstev osadí skupiny SiOH a/nebo skupiny SiO. Ozářením vhodnou vlnovou délkou pomocí laseru, zejména pomocí pulzního laseru, je pak možné hydrofilní smáčivost cíleně a lokálně změnit na hydrofobní vlastnost, přičemž jsou hydrofilující atomové skupiny nahrazené hydrofobní konfigurací povrchu.
Je však možný i opačně probíhající proces. Přitom je nejprve vytvořen v podstatě hydrofobní povrch tiskařské formy. K tomu může být upravena tiskařská forma například zředěným roztokem fluorovodíku (HF) nebo roztokem fluoridu amonného, přičemž jsou odebrány jen nejvrchnější vrstvy polovodiče a vznikne hydrofobní, vodíkem termínovaný povrch. Tento povrch může být pak opět v jednotlivých oblastech hydrofilizovaný, přičemž se těmto oblastem lokálně přivede energie.
Po použití tiskařské formy, tedy po tisku, může být celý povrch opět uveden do výchozího stavu. Návazně je tiskařská forma k dispozici pro novou ilustraci.
Tímto způsobem podle vynálezu se dosáhne vytvoření tiskařské formy, která je použitelná k opakované ilustraci a tím k mnoha po sobě následujícím cyklům. Kromě toho není rozlišitelnost tiskařské formy ohraničitelná velikostí krystalů nebo elektrickou interakcí
Další výhody a další výhodné konstrukce jsou náplní následujících obrázků a rovněž jejich popisů.
Přehled obrázků na výkresech
Na připojených výkresech jsou znázorněny příklady způsobů změny polovodičového povrchu tiskařské formy podle vynálezu, přičemž na obr. 1 je schematicky znázorněn vynálezecký způsob a na obr. 2 je principiálně znázorněna změna polovodičového povrchu z hydrofilního na hydrofobní s uvedením příkladu koncových skupin SiH a koncových skupin SiOH.
-3CZ 296102 B6
Příklady provedení vynálezu
Jak znázorňuje obr. 1, je výchozím bodem způsobu podle vynálezu tiskařská forma 10, která může být zhotovena jako tiskařská deska nebo tiskařský válec. Tiskařská forma 10 má polovodičový povrch 12, zejména z křemíku, nanesený na tiskařské formě 10. Tato výchozí tiskařská forma 10 je po svém procesu výroby pokryta obvykle nějakou nativní, to znamená přesně nedefinovanou oxidovou vrstvou, jejíž hloubka činí obvykle 1 až 3 nm.
V prvním kroku způsobu podle vynálezu je tato tiskařská forma 10 přeměněna na tiskařskou formu 10 s definovanou, v podstatě hydrofobní povrchovou vrstvou 14. Polovodičový povrch 12 tiskařské formy 10 je pro tento účel terminován vodíkem. Volné valence, například atomy křemíkového povrchu, jsou tedy nasyceny vodíkem. Přiměřeně k ploše krystalu, která existuje na povrchu polovodiče, může polovodič, kterým je přednostně křemík, vázat jeden nebo více atomů vodíku. V případě plochy krystalu křemíku s prostorovou orientací 111 je příslušně kolmo na tento povrch každým atomem křemíku pohlcen jeden atom vodíku. V případě ploch s prostorovou orientací 001 anebo jiných ploch krystalu může existovat na atom křemíku na povrchu více volných valencí, takže atom povrchu křemíku může být nasycen dvěma nebo více atomy vodíku. Protože polokrystalický povrch křemíku pozůstává ze směsi různých povrchů krystalu, s orientacemi 111, 101 nebo jinými, vyplývá z toho, že polokrystalický, resp. amorfní povrch polovodiče je směsí monohydrátu, dihydrátů a trihydrátů.
Výše popsaný proces terminace vodíkem k vytvoření hydrofobního povrchu polovodiče se může uskutečňovat například úpravou povrchu zředěným roztokem fluorovodíku (HF) nebo tlumeným roztokem fluoridu amonného, přičemž pouze nejvrchnější vrstvy polovodiče jsou odebrány v atomových dimenzích až po několik málo nanometrů a vzniká výše popsaná hydrofobní hydrátová vrstva.
Zatímco použití rozředěného roztoku NH4F (pH « 8) k anizotropnímu leptacímu procesu u monokrystalu podél roviny Si s orientací 111 způsobuje další zarovnání, to znamená má za následek atomární rovinný povrch, který má v ideálním případě pouze atomární stupně, u polokrystalického povrchu křemíku se anizotropním leptacím procesem zvyšuje mikroskopická drsnost. Naproti tomu se zředěným roztokem fluorovodíku - HF u polokrystalického povrchu křemíku odebírá pouze oxidová vrstva, nemění se tedy mikroskopická drsnost. Po tomto procesu má tiskařská forma 10 hydrofobní povrchovou vrstvu 14, která je použitelná pro další způsoby podle vynálezu.
Hydrofobní povrchová vrstva 14 tiskařské formy 10 je teď v částečných oblastech svého povrchu hydrofilizována v dalších krocích. Toto lze uskutečnit například tak, že se oblast povrchu, která má být hydrofilizována, podrobí lokálně chemickému přetvořeni, a tím se povrch lokálně dehydruje a dehydrovaná místa se obsadí hydrofílními atomovými skupinami. K lokální modifikaci povrchu se ukázaly jako zvláště vhodné dva způsoby. Jak je znázorněno na obr. 1, může se lokální přívod energie a iniciování procesu uskutečnit např. prostřednictvím energetického zdroje 16, např. laseru. Zvlášť vhodné jsou k tomu pulzní lasery, které mají malý průměr paprsku, takže dehydraci lze uskutečňovat v prostorově omezené oblasti. Jako laser může být například použit laser o délce vlny 157 nm (fluorový laser s viditelným ultrafialovým zářením), má-li být modifikace uskutečněna fotochemicky.
K fototermické modifikaci, která vyžaduje lokální ohřev podle hydrátu na 300-550 °C, přicházejí v úvahu v podstatě všechny ultrafialové lasery, například plynové lasery a lasery s pevnou fází, např. frekvenčně násobné lasery typu Nd:YAG.
-4CZ 296102 B6
Tyto lasery jsou obvykle řízeny řídicí jednotkou 18, jejíž pomocí je paprsek 20 energetického zdroje 16, tedy laseru, veden přes tiskařskou formu 10, a přitom je zapínán a vypínán nebo nastavován a tlumen, takže může být tiskařský obraz 22 nebo jeho negativ jako hydrofilní obraz stažen na jinak hydrofobní povrchovou vrstvu 14. Pouhým okem nelze rozeznat tuto molekulární změnu vlastností na povrchu tiskařské formy 10. Stažený tiskařský obraz 22 běžně odpovídá předloze 21, kterou lze vytvořit různým způsobem. Takto přicházejí přitom v úvahu všechny známé digitální či digitalizační způsoby vyhotovení předlohy, jakož i přímé digitální vyhotovení obrazu, například pomocí grafického programu nebo digitální kamery.
Obvykle jsou poté tyto obrazy uschovány v takzvaném procesoru RIP (Raster Imaging Processor), přičemž tyto paměti mohou být umístěny v řídicí jednotce 18 anebo i mimo ni. Na základě toho, že údaje jsou uloženy v RlPu, je laserový paprsek 16 řízen tak, že se tiskařský obraz 22 stáhne na tiskařskou formu 10. Kromě této ilustrace prostřednictvím lokálního přívodu energie s pomocí laseru je možné rovněž nanášení energie širokoplošněji, například UV - lampou (zvláště komerčně přístupnými lampami typu Excimer s různými vlnovými délkami ultrafialového záření). Přitom je zvlášť výhodné přikrýt tiskařskou desku tiskařské formy 10 před jejím ozářením maskou, takže účinek lampy může připadnout pouze na určitou oblast povrchové vrstvy 14 tiskařské formy 10.
Pomocí obou způsobů je možné odpovídajícím způsobem dosáhnout toho, že na hydrofobní povrchovou vrstvu 14 tiskařské formy 10 je prostřednictvím lokálního fotograficky indexovaného procesu reakce v částečných oblastech vytvořen změněný, jiný chemický stav, který je hydrofilní.
Na obr. 2 je schematicky a idealizované znázorněn strukturní vzorec povrchu tělesa křemíkového polovodiče, přičemž v ideálním případě dělicí čára 24 odděluje oblast 26 pevného tělesa od oblasti 28 mimo pevné těleso. Každý atom křemíku, který leží na povrchu, má jednu volnou valenci, která v případě terminace vodíkem povrch křemíkového polovodiče monohydratuje, to znamená, že se nasytí atomem vodíku. Prostřednictvím fotoindukovaného procesu je skupenství či stav povrchu v oblasti 30 dehydrován a přeměněn na jiný chemický stav či skupenství, které je hydrofilní. Tento hydrofilní stav či skupenství je dáno prostřednictvím atomových skupin ležících mimo dělicí čáry 24, v daném případě skupin OH. Kromě toho je též možné, že se v oblasti povrchu v jedné nebo více atomových vrstvách polovodiče v oblasti 26 uloží atomy kyslíku, takže se v těchto oblastech ještě více zvýší vlastnosti hydrofilní smáčivosti. Takto upravený povrch tiskařské formy 10 má tedy první chemické stavy, které jsou hydrofobní, a druhé chemické stavy, které jsou hydrofilní. Prostřednictvím této přilnavé reakce vzhledem k vodě lze tiskařskou formu 10 používat k ofsetovému tisku.
Po tisku je na polovodičovém povrchu 12 v oblasti 28 zachycená barva odstraněna běžnými způsoby ke smytí barvy, přičemž je zvlášť snadné odstranit tuto tiskařskou barvu, neboť u způsobu navrženého podle vynálezu je na povrchu pouze mikroskopická drsnost a je vytvořen rozdíl mezi hydrofobním a hydrofilním povrchem na základě chemického složení, jakož i bezprostředně pod povrchem ležícími modifikovanými oblastmi. Jakmile je tiskařská barva odstraněna z povrchu tiskařské formy 10, může tato být znovu uvedena do svého původního hydrofobního stavu, v němž se povrch podrobí takové úpravě, která ji znovu terminuje vodíkem, takže se znovu dosáhne původního stavu označeného na obr. 2 jako I. Toto lze uskutečnit například tak, že se z povrchu odeberou oblasti atomárního velkého uspořádání (málo monovrstev), jak to znázorňuje na obr. 2 stav označený II, čímž znovu vznikne čistá křemíková vrstva, kterou lze lehce nasytit atomy vodíku.
Přitom přicházejí v úvahu, jako jeden z chemicky použitelných způsobů, úprava povrchu roztokem chloridu amonného nebo fluorovodíku, přičemž pomocí tohoto způsobu se uskuteční odebrání nejvrchnější vrstvy a současně terminace povrchu vodíkem.
-5 CZ 296102 B6
Způsob znázorněný na obr. 2 se vztahuje jen na křemíkový povrch, u něhož leží krystalická rovina s prostorovou orientací 111 na povrchu pevného křemíkového tělesa. Samozřejmě je také možné, že je povrch krystalický, takže na povrchu existuje směs krystalických rovin. Tím mohou být zesíleny hydrofobní vlastnosti. Zvlášť přitom mohou vznikat např. orientace 001 a jiné krystalické plochy na povrchu pevného křemíkového tělesa, takže mohou být dostatečně volné valence nasyceny dalšími atomy vodíku.
Vedle již popsaného mokrého chemického procesu k terminaci vodíkem přicházejí v úvahu veškeré další způsoby, které vyvolávají v podstatě úplnou terminaci vodíkem nebo alkylaci povrchu křemíkového polovodiče.
Až dosud popsaný způsob postupu podle vynálezu je zaměřen na to, že se určitý výchozí hydrofobní povrch lokálně hydrofilizuje. Podle vynálezu je možný i opačný způsob postupu, při němž se určitý hydrofílní povrch prostřednictvím určitého fotoindukčního procesu stává v těchto oblastech hydrofobním. Aby se toho dosáhlo, vytvoří se nejprve hydrofílní povrch, což lze uskutečnit například tak, že tiskařská forma 10 je upravena mokrou chemickou cestou s H2O2. Jinou možností je oxidace indukovaná laserem ve vlhké atmosféře.
Ozářením laserem za přítomnosti alkoholu (např. CH3OH) se skupiny OH odstraní z povrchu. Přitom vznikají kromě skupin SiH také hydrofobní skupiny SiCH3 a skupiny SiOCH3. Tím je tiskařská forma 10 na ozářených plochách hydrofobní vůči vodě a tím je vhodná k tiskařskému procesu.
Kromě popsaného křemíku jako polovodiče je použitelné i germanium nebo určitá slitina, která obsahuje germanium a křemík (SiGe), ale i SiC nebo SiCN.
Navržený způsob lze použít jak uvnitř tiskařského stroje, tak i mimo něj, takže je jeho velkou výhodou použitelnost v mnohých oblastech ofsetového tisku, a dále to, že tiskařská forma 10 je opětovně použitelná. Zvláště pak při využití způsobu uvnitř tiskařského stroje vzniká podstatná časová úspora, neboť tiskařská forma 10 se nemusí vymontovávat.
Claims (12)
- PATENTOVÉ NÁROKY1. Způsob změny smáčivosti tiskařské formy (10) s polovodičovým povrchem (12), vyznačující se tím, že polovodičový povrch (12) se uvede do prvního chemického stavu či skupenství s první smáčivosti, pak se část všech oblastí polovodičového povrchu (12) uvede do druhého chemického stavu či skupenství s druhou smáčivosti, přičemž tato druhá smáčivost je odlišná od první smáčivosti.
- 2. Způsob podle nároku 1, vyznačující se tím, že druhé chemické skupenství či stav nastane prostřednictvím změny atomových skupin prvních atomových vrstev v oblasti polovodičového povrchu (12).
- 3. Způsob podle kteréhokoliv z nároků 1 nebo 2, vyznačující se tím, že jedna ze smáčivosti je hydrofílní a druhá ze smáčivosti je hydrofobní.-6CZ 296102 B6
- 4. Způsob podle kteréhokoliv z nároků 1 až 3, vyznačující se t í m , že první chemické skupenství či stav je vytvořen prostřednictvím odbourání vrstvy na polovodičovém povrchu (12) v atomární dimenzi, přednostně roztokem fluorovodíku HF anebo roztokem fluoridu amon-
- 5 ného AF,5. Způsob podle kteréhokoliv z nároků 1 až 4, vyznačující se tím, že druhý chemický stav či skupenství je vytvořeno prostřednictvím lokalizovaného chemického procesu v částech oblastí polovodičového povrchu (12).
- 6. Způsob podle nároku 5, vyznačující se t í m , že proces se uskutečňuje prostřednictvím řízeného energetického zdroje (16) řízeného podle obrazové informace určené k tisku nebo podle negativu této obrazové informace.15
- 7. Způsob podle nároku 6, vyznačující se t í m , že řízeným energetickým zdrojem (16) je laser, zejména pulzní laser nebo běžný energetický zdroj, jako je např. UV - lampa.
- 8. Způsob podle nároku 7, vyznačující se t í m , že laser je fluorový laser s vlnovou délkou 157 nm nebo laser s vlnovou délkou ultrafialového záření < 308 nm, nebo laser s pevnou20 fází, jako např. laser typu Nd.YAG' s vlnovou délkou < 355 nm.
- 9. Způsob podle kteréhokoli z nároků laž8, vyznačující se tím, že polovodičovým povrchem (12) je amorfní polokrystalický nebo krystalický křemík, germanium nebo slitina obsahující křemík či germanium, zejména SiGe, SiC, SiCN.
- 10. Způsob podle kteréhokoli z nároků 1 až 9, vyznačující se t í m , že druhý chemický stav či skupenství se provádí lokálně ohraničenou změnou chemické struktury v oblasti povrchu s tloušťkou do 5 nm.30
- 11. Tiskařská forma (10), zejména tiskařská deska nebo tiskařský válec s polovodičovým povrchem (12), která nese vzor skládající se z hydrofilních a hydrofobních oblastí, k provádění způsobu podle alespoň jednoho z nároků lažlO, vyznačující se tím, že hydrofilní oblasti mají chemické koncové skupiny v prvním chemickém stavu či skupenství a hydrofobní oblasti mají chemické koncové skupiny v druhém chemickém stavu či skupenství, přičemž první35 chemický stav či skupenství je odlišné od druhého chemického stavu Či skupenství.
- 12. Tiskařská forma (10) podle nároku 11, vyznačující se tím, že hydrofobní oblasti odpovídají obrazové informaci určené pro tisk nebo negativu této obrazové infoímace.40 13. Tiskařská forma (10) podle kteréhokoliv z nároků 11 nebo 12, vyznačující se t í m, že polovodičovým povrchem (12) je amorfní polokrystalický nebo krystalický křemík, ger manium nebo např. slitina obsahující křemík nebo germanium (SiGe), zejména též SiC nebo SiCN.45 14. Tiskařská forma (10) podle kteréhokoliv z nároků 11 až 13, vyznačující se tím, že druhý chemický stav či skupenství zasahuje od polovodičového povrchu (12) do polovodiče až do tloušťky maximálně 5 nm.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19846808 | 1998-10-10 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CZ2001867A3 CZ2001867A3 (cs) | 2001-09-12 |
| CZ296102B6 true CZ296102B6 (cs) | 2006-01-11 |
Family
ID=7884094
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CZ20010867A CZ296102B6 (cs) | 1998-10-10 | 1999-09-24 | Zpusob zmeny smácivosti tiskarské formy a tiskarská forma |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US6546868B2 (cs) |
| EP (1) | EP1082224B1 (cs) |
| AT (1) | ATE259298T1 (cs) |
| CZ (1) | CZ296102B6 (cs) |
| DE (2) | DE59908521D1 (cs) |
| DK (1) | DK1082224T3 (cs) |
| RU (1) | RU2241600C2 (cs) |
| WO (1) | WO2000021753A1 (cs) |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10037998A1 (de) * | 2000-08-04 | 2002-02-14 | Heidelberger Druckmasch Ag | Verfahren und Vorrichtung zum Löschen einer wiederbebilderbaren Druckform |
| DE10039818A1 (de) * | 2000-08-09 | 2002-02-21 | Koenig & Bauer Ag | Verfahren zur Erzeugung einer Druckmaschinen-Druckform |
| DE10206938A1 (de) * | 2002-02-19 | 2003-09-04 | Oce Printing Systems Gmbh | Verfahren und Einrichtung zum Drucken, wobei eine hydrophile Schicht erzeugt und diese strukturiert wird |
| DE10227054B4 (de) * | 2002-06-17 | 2013-01-03 | Heidelberger Druckmaschinen Ag | Wiederverwendbare Druckform, Druckwerk und Druckmaschine damit sowie Verfahren zur Bebilderung der Druckform |
| US6851366B2 (en) | 2002-06-17 | 2005-02-08 | Heidelberger Druckmaschinen Ag | Reusable printing form |
| ATE486718T1 (de) * | 2002-12-19 | 2010-11-15 | Heidelberger Druckmasch Ag | Verfahren zum ändern der benetzungseigenschaften einer druckform |
| US7152530B2 (en) | 2002-12-19 | 2006-12-26 | Heidelberger Druckmaschinen Ag | Printing form and method for modifying its wetting properties |
| US7121209B2 (en) * | 2004-01-16 | 2006-10-17 | Nandakumar Vaidyanathan | Digital semiconductor based printing system and method |
| EP2319630A1 (de) * | 2009-11-05 | 2011-05-11 | Heidelberger Druckmaschinen AG | Verfahren zum mehrfarbigen, permanenten Lackieren eines Produkts |
| US9126452B2 (en) * | 2013-07-29 | 2015-09-08 | Xerox Corporation | Ultra-fine textured digital lithographic imaging plate and method of manufacture |
| RU2546477C1 (ru) * | 2013-10-09 | 2015-04-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" | Способ изготовления печатных форм для офсетной печати |
| JP6413859B2 (ja) * | 2015-03-17 | 2018-10-31 | 株式会社デンソー | パターニング方法、半導体装置の製造方法および光学部品の製造方法 |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE262475C (cs) | ||||
| US3271591A (en) * | 1963-09-20 | 1966-09-06 | Energy Conversion Devices Inc | Symmetrical current controlling device |
| US3615937A (en) * | 1968-06-17 | 1971-10-26 | Ibm | Plasticizer additive to photoresist for the reduction of pin holes |
| US3530441A (en) * | 1969-01-15 | 1970-09-22 | Energy Conversion Devices Inc | Method and apparatus for storing and retrieving information |
| US3678852A (en) * | 1970-04-10 | 1972-07-25 | Energy Conversion Devices Inc | Printing and copying employing materials with surface variations |
| US3844790A (en) * | 1972-06-02 | 1974-10-29 | Du Pont | Photopolymerizable compositions with improved resistance to oxygen inhibition |
| DE3633758A1 (de) * | 1986-10-03 | 1988-04-07 | Man Technologie Gmbh | Druckmaschine |
| DE3836931C2 (de) * | 1988-10-29 | 1993-11-04 | Roland Man Druckmasch | Druckform fuer eine druckmaschine mit wiederholt aktivierbaren und loeschbaren bereichen |
| US5206102A (en) * | 1991-11-15 | 1993-04-27 | Rockwell International Corporation | Photoelectrochemical imaging system |
| DE4205304A1 (de) * | 1992-02-21 | 1993-08-26 | Heidelberger Druckmasch Ag | Schaltungsanordnung fuer einen reversiblen bildaufbau einer druckform einer druckmaschine |
| DE4235242C1 (de) * | 1992-10-20 | 1993-11-11 | Roland Man Druckmasch | Löschbare Druckform |
| DE4442235C2 (de) * | 1993-12-01 | 2002-12-05 | Roland Man Druckmasch | Verfahren zur Herstellung einer Druckform für einen Formzylinder einer Druckmaschine und danach hergestellte Druckform |
| US6014930A (en) * | 1997-07-25 | 2000-01-18 | Kodak Polychrome Graphics Llc | Single layer direct write lithographic printing plates |
| DE69841947D1 (de) * | 1997-08-08 | 2010-11-25 | Dainippon Printing Co Ltd | Verfahren zur Herstellung einer Linse |
| US5927206A (en) * | 1997-12-22 | 1999-07-27 | Eastman Kodak Company | Ferroelectric imaging member and methods of use |
| JP3739962B2 (ja) * | 1998-05-18 | 2006-01-25 | 富士写真フイルム株式会社 | 平版印刷版用原版、これを用いた平版印刷版の製版方法および平版印刷版用原版の製造方法 |
-
1999
- 1999-09-24 CZ CZ20010867A patent/CZ296102B6/cs not_active IP Right Cessation
- 1999-09-24 AT AT99948856T patent/ATE259298T1/de not_active IP Right Cessation
- 1999-09-24 DE DE59908521T patent/DE59908521D1/de not_active Expired - Lifetime
- 1999-09-24 EP EP99948856A patent/EP1082224B1/de not_active Expired - Lifetime
- 1999-09-24 WO PCT/EP1999/007119 patent/WO2000021753A1/de active IP Right Grant
- 1999-09-24 DE DE19945847A patent/DE19945847A1/de not_active Withdrawn
- 1999-09-24 RU RU2001106990/12A patent/RU2241600C2/ru not_active IP Right Cessation
- 1999-09-24 DK DK99948856T patent/DK1082224T3/da active
-
2001
- 2001-03-29 US US09/822,030 patent/US6546868B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| US20020035938A1 (en) | 2002-03-28 |
| US6546868B2 (en) | 2003-04-15 |
| RU2241600C2 (ru) | 2004-12-10 |
| WO2000021753A1 (de) | 2000-04-20 |
| DE19945847A1 (de) | 2000-06-21 |
| DK1082224T3 (da) | 2004-06-14 |
| CZ2001867A3 (cs) | 2001-09-12 |
| EP1082224B1 (de) | 2004-02-11 |
| EP1082224A1 (de) | 2001-03-14 |
| ATE259298T1 (de) | 2004-02-15 |
| DE59908521D1 (de) | 2004-03-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CZ296102B6 (cs) | Zpusob zmeny smácivosti tiskarské formy a tiskarská forma | |
| US9411237B2 (en) | Resist hardening and development processes for semiconductor device manufacturing | |
| US7625694B2 (en) | Selective provision of a diblock copolymer material | |
| US6071376A (en) | Method and apparatus for cleaning photomask | |
| US8546067B2 (en) | Material assisted laser ablation | |
| JP4952997B2 (ja) | 偏光レチクル・フォトリソグラフィ・システム、及び偏光レチクルを偏光とともに用いてパターンを形成する方法 | |
| TWI604510B (zh) | 使用次解析度開口以幫助影像反轉、定向自組裝及選擇性沉積 | |
| CN111819497A (zh) | 构建3d功能性光学材料堆叠结构的方法 | |
| EP0084444B1 (en) | Products and processes for use in planographic printing | |
| JP2010503993A (ja) | リフトオフ・パターニング向けの向上したエッチング技法 | |
| KR101064900B1 (ko) | 패턴 형성방법 | |
| KR102306307B1 (ko) | 하부층의 패터닝 방법 | |
| KR920005631B1 (ko) | 반도체 장치 제조용 석판 인쇄방법 및 상기 방법에 의해 제조된 제품 | |
| RU2001106990A (ru) | Печатная форма и способ изменения ее свойств смачиваемости | |
| US7152530B2 (en) | Printing form and method for modifying its wetting properties | |
| KR100413334B1 (ko) | 모세관 효과를 이용한 미세 패턴 형성 방법 | |
| KR20150069788A (ko) | 미세구리배선의 제조 방법 및 이를 이용한 트랜지스터제조방법 | |
| US6296700B1 (en) | Method of producing a structured layer | |
| Preuss et al. | Incubation/ablation patterning of polymer surfaces with sub-μm edge definition for optical storage devices | |
| JP2004195979A (ja) | 版およびその濡れ特性を変えるための方法 | |
| HK1053087A1 (en) | Imaging and erasing of a printing form made of polymer material containing imide groups | |
| JPH11216578A (ja) | ガラス基材のレーザ加工方法、この方法によって得られる回折格子及びマイクロレンズアレイ | |
| KR102034000B1 (ko) | 롤투롤 그라비어 방법을 이용한 에칭장치 및 이를 이용한 에칭방법 | |
| JP4786867B2 (ja) | 毛管力を用いて基板上に微細パターンを形成する方法 | |
| KR20100079148A (ko) | 레티클의 이온 제거 장치 및 방법 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MM4A | Patent lapsed due to non-payment of fee |
Effective date: 20100924 |