CN87103690A - 由水平拉带工艺制造的硅带切割 - Google Patents

由水平拉带工艺制造的硅带切割 Download PDF

Info

Publication number
CN87103690A
CN87103690A CN198787103690A CN87103690A CN87103690A CN 87103690 A CN87103690 A CN 87103690A CN 198787103690 A CN198787103690 A CN 198787103690A CN 87103690 A CN87103690 A CN 87103690A CN 87103690 A CN87103690 A CN 87103690A
Authority
CN
China
Prior art keywords
silicon
melt
ribbon
shielding
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN198787103690A
Other languages
English (en)
Inventor
理查德·福尔肯伯格
格哈特·霍伊勒
约瑟夫·格拉布梅尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN87103690A publication Critical patent/CN87103690A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/007Pulling on a substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10S117/90Apparatus characterized by composition or treatment thereof, e.g. surface finish, surface coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1036Seed pulling including solid member shaping means other than seed or product [e.g., EDFG die]
    • Y10T117/1044Seed pulling including solid member shaping means other than seed or product [e.g., EDFG die] including means forming a flat shape [e.g., ribbon]
    • Y10T117/1048Pulling includes a horizontal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1068Seed pulling including heating or cooling details [e.g., shield configuration]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)
  • Silicon Compounds (AREA)

Abstract

从由水平拉带工艺制造的硅带(4)切割盘状硅片,其中用一条石墨纤维编织带(1)作要结晶的硅的载体,用位于熔体槽(3)上方和下面的,并上下对准的热源(7)使熔化的液体硅(2)结晶,用下属方法实现切割:以一定的预先给出的,与用于太阳能电池的硅片大小相应的间隔(2A)通过一起运行的(V2=V1)屏蔽体(6)降低熔体表面(2)上方的辐射损失(5),使得限定的区域内不发生固化,由此在硅带(4)中形成一条切割条(11)。该方法能够实现太阳能电池用硅片的连续生产。

Description

用于太阳能电池的盘状硅片的方法和设备。
本发明涉及一种由水平拉带工艺制造的硅带切割用于太阳能电池的盘状硅片的方法,其中用一条向硅带拉伸方向运行的,最好由石墨纤维织成的织带作为形成硅带所用熔体的载体和结晶晶芽成份,将该织带向位于槽内的熔体上方切向拉出,在熔体上方和下面均有热源,其上下应调整得使硅带在考虑到熔体表面幅射损失的情况下以均匀的厚度凝结成硅带,然后才从熔体连续地侧向拉出,以及实施该方法的设备。
这种类型的方法例如已由欧洲专利申请0170119所公开。其中以米/分的高拉伸速度制造硅带,该硅带在进一步加工成太阳能电池之前必须切割成适合的切片。
为了不影响拉伸过程的连续性,必须在拉伸过程中和不变的拉伸速度下切割成一定长度的切片。通过切割工序时不允许硅带颤抖或振动,因为由此将会影响晶体生长过程。影响其生长会导致降低由这种材料加工成的太阳能电池的效率。
本发明的任务是发明一种无干扰的,可顺利地适用于连续制造过程的切割方法。
该任务可由具有下列特征的开头所述的方法来完成。以特定的,予先给示的,与太阳能电池所用硅片大小相应的距离,借助于一起运行的屏蔽体减少熔体表面的幅射损失,使得在限定的区域间不发生硬化,且因此在硅带中形成一条切割带。
本发明还包括,采用耐热而导电好的材料制成的桥状物体作屏蔽体,它放在不用于结晶的石墨织带外侧窄带上并以此崩紧的物体遮盖熔体表面。
本发明进一步的方案由以属权利要求得出。
下面的想法导致了本发明:在水平带拉伸工艺中,通过冷却硅熔体的表面和凝结成一个薄层来产生硅带。适当地控制凝结硬化时可从熔体连续侧向地拉出带状的薄层。为了结晶过程的稳定化而用一个与硅熔体相比放射因子E较高的材料制成的例如碳素纤维网作载体。硅表面硬化所必需的冷却主要是通过幅射进行的。
按照本发明的思想,以确定的、与期望的硅片大小相应的距离,降低熔体表面的幅射损失,使得凝固不再发生。这通过下属措施来实现,即使一个物体与形成的硅带一起运行,用它阻止固化所需的热幅射,原则上这里可以利用同行物体的四个特性,即:
1.自身内部温度,
2.放射度及吸收度Ek
3.反射能力    和
4.它的外形。
每单位面积熔体幅射的功率P由斯忒藩-波耳兹曼(热幅射)定律得出:
P= (ES·Ek)/(Es+Ek-Es·Ek) (1)
其中Es为熔体的幅射率,Ek为遮热体的幅射率,δ为斯忒藩-波耳兹曼常数,Ts是熔体的温度,Tk是遮热体的温度。
如果在等式(1)中用固体硅的幅射率EF代替Es,即可得到由结晶表面幅射的功率。在不加遮盖的表面和熔点温度在Fs时,固体硅的幅射功率比液体硅约高7W/Cm2
若在发热量PH不变的条件下导入熔体表面与在水平方向运行的碳素纤维网的接触式结晶,则幅射功率P增大约7W/Cm2。只要这项数额不能导致温度降低,则它由正在排放的潜在热量PL提供。
P=PH+PL(2)
在发热量不变时因此PL≤7W/Cm2。如果阻止3潜热产生的部分PL的排放,则结晶即不会发生。
下面用两个实施例和图1至3详细解释本发明。其中,
图1是用于解释上述发明原理的结构图;
图2和图3是实施该方法的装置示意图。
在所有图中对同样的部件采用同样的标号。
图1中标号含义如下:
1-以速度V1运行的碳素纤维网,
2-硅熔体
3-容纳硅熔体的石英槽
4-已结晶的硅带(V1
5-熔化热的幅射
6-以速度V2运行的,例如由条状钼板制成的屏蔽体
7-加热器(为了图面清楚起见,熔体上部P的加热器未画出)
11-切割位置
在本结构图中,V2=V1;箭头表示拉伸方向。
图2表示一个连续运转的结构方式,其中为了实现发明思想而采用3条状石墨体6。该石墨体6在带9上借助于一个辅助传动机构(未示出)以速度V2径导向辊轮8与正在涂层的石墨载体1同步运行。石墨体6由电源10加热到温度Tk。在Tk温度下石墨体6对其下面的硅的固有幅射的大小使得熔体2在该位置11不能结晶。位置11即为切割位置。
也可直接用硅熔体2放出的热幅射5来加热石墨体6。这时石墨体6必须具有很高的吸收率E,其构造应使其热容小而在避开熔体的侧面无热损失。实际上使用了一侧由石墨毡绝热的(图中未示出)薄石墨片或石墨编织条。
图2中标出的距离LA表示切片长度,也就是要切割成的盘状硅片的长度。
图3:反射率很高的物体6(例如钼片)一般不需要加热。有时有目的地采用截面为抛物线形状的钼板。以此方式使反射的幅射5集中在聚焦线上,从而得到带有极窄切割线11的硅带4。
长时间使用后,反射体6的表面由硅蒸汽所喷镀,反射效应将会降低。因此每次穿行后应该例如用等离子体烧灼去除喷镀的硅层。
如果不用真空而在保护气存在下操作,则物体6还有一个辅助的功能。物体6能够减轻造成硅表面冷却的对流流动,或者在图3的抛物线形结构中可显著着降低对流流动。
正如已经提及的(见图1)的那样,物体6必须与正在结晶的带r:4同步运行(V2=V1)。这可用下属方法实现:将所有物体6作成桥形,放置在不用于结晶的碳素纤维网带的外侧窄条上,以此遮盖熔体2。通过结晶区后用一叉状装置将其从涂层的载体1,4上提起并送回起点位置(图中未示出)。
如果切片长度LA小于结晶长度Lk(见图3),则必须同时采用若干屏蔽体,它们与硅带4同步(V2=V1)运行。
(附图后)
图中标号表:
1.碳素纤维网
2.硅熔体
3.石英槽
4.硅带
5.幅射
6.屏蔽体
7.加热器
8.导向辊
9.输送带
10.电源
11.切割位置

Claims (9)

1、由水平拉带工艺制造的硅带切割用于太阳能电池的盘状硅片的方法,其中用一条向硅带(1)拉伸方向运行的,最好由石墨纤维织成的织带作形成硅带(4)所用熔体(2)的载体和结晶晶芽成分,它向位于槽(3)内的熔体(2)上方切向拉出,在熔体(2)的上方和下面均有热源(7),其上下应调整得使硅带(4)在考虑到熔体表面(2)幅射损失(5)的情况下以均匀的厚度凝结成硅带(4)。然后才从熔体(2)连续地侧向拉出,本发明的特征在于,以特定的,予先给示的,与太阳能电池所用硅片大小相应的距离(LA)用一起运行的屏蔽体(6)在熔体表面(2)上减少幅射损失(5),使得在限定的区域内不发生固化且因此在硅带(4)中形成一条切割带(11)。
2、按照权利要求1的方法,其特征是,采用耐热而导电好的材料制成的桥状物体作屏蔽体(6),它放在石墨织带(1)上不用于结晶的外侧窄条上并以此崩紧的物体遮盖熔体表面(2)。
3、按照权利要求1或2的方法,其特征是,用条状的,可电加热的石墨体或钼体作屏蔽体(6)(图2)。
4、按照权利要求1或2的方法,其特征是,用高吸收率的材料制成的,具有小热容的形状的屏蔽体(6)。
5、按照权利要求4的方法,其特征是用一侧由石墨毡绝热的薄石墨片或石墨编织带。
6、按照权利要求1或2的方法,其特征是用具有高反射率的屏蔽体(6)。
7、按照权利要求6的方法,其特征是用具有抛物线形截面的屏蔽体(6)(图3)。
8、用于实施权利要求1至7其中之一方法的设备,具有以下特征:
a)一个容纳硅熔体(2)的由底部加热的熔体槽(3),
b)一个在熔体槽范围(2,3)之外安装的驱动装置,由其可将拉伸方向(V1)在相对于水平线倾角10°之内调整。
c)一个侧向位于熔体槽(3)上方的导向辊,用于形成晶芽形成中心,最好由石墨制成的织带(1),
d)一个与熔体槽(3)相连的熔体贮存器,它位于实际拉伸装置之前,
e)位于熔体槽(3)上方,其位置相对于熔体表面可调节的反射体,其特征是,
f)在熔体槽范围(2,3)之外装有驱动装置和导向辊(8),借助它们可使一条带有由耐热良导电材料制成的条状物体(6)的皮带(9)与将涂层的载体(1)同步运行(图2)。
9、实施按照权利要求1至8其中之一的方法的设备,其特征是,代替同步运行的皮带(9)在实际拉伸装置前装有一个配备装置,它使屏蔽体(6)以一定的间隔(LA)放在涂层带(1)的外侧窄条上,并带有一个叉状装置,它在屏蔽体(6)通过结晶区之后再从带(1,4)上将其取下。
CN198787103690A 1986-06-06 1987-06-06 由水平拉带工艺制造的硅带切割 Pending CN87103690A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3619018.7 1986-06-06
DE3619018 1986-06-06

Publications (1)

Publication Number Publication Date
CN87103690A true CN87103690A (zh) 1988-01-13

Family

ID=6302398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN198787103690A Pending CN87103690A (zh) 1986-06-06 1987-06-06 由水平拉带工艺制造的硅带切割

Country Status (6)

Country Link
US (1) US4871517A (zh)
EP (1) EP0252279B1 (zh)
JP (1) JPS62291977A (zh)
CN (1) CN87103690A (zh)
DE (1) DE3767932D1 (zh)
NO (1) NO872389L (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238879A (en) * 1988-03-24 1993-08-24 Siemens Aktiengesellschaft Method for the production of polycrystalline layers having granular crystalline structure for thin-film semiconductor components such as solar cells
JP2915434B2 (ja) * 1989-06-16 1999-07-05 キヤノン株式会社 半導体層の形成方法と形成装置及びこの形成方法を用いる太陽電池の製造方法
US5258325A (en) * 1990-12-31 1993-11-02 Kopin Corporation Method for manufacturing a semiconductor device using a circuit transfer film
US5256562A (en) * 1990-12-31 1993-10-26 Kopin Corporation Method for manufacturing a semiconductor device using a circuit transfer film
KR20030059745A (ko) * 2002-01-04 2003-07-10 주성엔지니어링(주) 반사기를 이용한 웨이퍼 온도 보상기
US7955433B2 (en) * 2007-07-26 2011-06-07 Calisolar, Inc. Method and system for forming a silicon ingot using a low-grade silicon feedstock
US20140097432A1 (en) * 2012-10-09 2014-04-10 Corning Incorporated Sheet of semiconducting material, laminate, and system and methods for forming same
US9957636B2 (en) * 2014-03-27 2018-05-01 Varian Semiconductor Equipment Associates, Inc. System and method for crystalline sheet growth using a cold block and gas jet

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2633961C2 (de) * 1975-07-28 1986-01-02 Mitsubishi Kinzoku K.K. Verfahren zum Ziehen eines dünnen Halbleiter-Einkristallbandes
DE2850805C2 (de) * 1978-11-23 1986-08-28 Siemens AG, 1000 Berlin und 8000 München Verfahren zum Herstellen von scheiben- oder bandförmigen Siliziumkristallen mit Kolumnarstruktur für Solarzellen
DE2850790A1 (de) * 1978-11-23 1980-06-12 Siemens Ag Verfahren zum herstellen von scheiben- oder bandfoermigen siliziumkristallen mit kolumnarstruktur fuer solarzellen
FR2493350B1 (fr) * 1980-11-03 1985-09-13 Labo Electronique Physique Nouveau substrat, en ruban, procede de depot de silicium sur ce ruban, et cellules solaires ainsi obtenues
DE3231326A1 (de) * 1982-08-23 1984-02-23 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zum herstellen von grossflaechigen, bandfoermigen siliziumkoerpern fuer solarzellen
DE3306515A1 (de) * 1983-02-24 1984-08-30 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zum herstellen von grossflaechigen, bandfoermigen siliziumkoerpern fuer solarzellen
US4647437A (en) * 1983-05-19 1987-03-03 Mobil Solar Energy Corporation Apparatus for and method of making crystalline bodies
US4554203A (en) * 1984-04-09 1985-11-19 Siemens Aktiengesellschaft Method for manufacturing large surface silicon crystal bodies for solar cells, and bodies so produced
EP0170119B1 (de) * 1984-07-31 1988-10-12 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Herstellen von bandförmigen Siliziumkristallen mit horizontaler Ziehrichtung

Also Published As

Publication number Publication date
US4871517A (en) 1989-10-03
JPS62291977A (ja) 1987-12-18
EP0252279B1 (de) 1991-02-06
NO872389L (no) 1987-12-07
EP0252279A2 (de) 1988-01-13
DE3767932D1 (de) 1991-03-14
NO872389D0 (no) 1987-06-05
EP0252279A3 (en) 1988-06-08

Similar Documents

Publication Publication Date Title
CN1146027C (zh) 光学系统及其装置和使用该光学系统制造半导体装置的方法
CN87103690A (zh) 由水平拉带工艺制造的硅带切割
CN1139678C (zh) 单晶生长方法
US20100307406A1 (en) Floating zone melting apparatus
CN1612295A (zh) 第ⅲ族氮化物晶体及其制备方法以及制备第ⅲ族氮化物晶体的设备
EP0072565A2 (de) Verfahren zur Herstellung grob- bis einkristalliner Folien aus Halbleitermaterial
CN1110068C (zh) 半导体杂质的激活方法以及激活装置
US3681033A (en) Horizontal growth of crystal ribbons
CN1167842A (zh) 含铈磁性石榴石单晶及其制造方法
US4664745A (en) Method and apparatus for manufacturing tape-shaped silicon crystals with a threaded carrier
CN115595671B (zh) 一种复合衬底的制备方法
Kikuma et al. Formation of defects in zinc selenide crystals grown from the melt under argon pressure
CN1075569C (zh) 制取固体激光器用的晶体薄膜的方法和装置
CN1469495A (zh) 一种颗粒硅带的制备方法及其专用设备
EP0032920B1 (en) Photo-induced temperature gradient zone melting
KR0134185B1 (ko) 수지상 웨브 결정 성장용의 서셉터리드 및 시일드로된 장치
DE10297102B4 (de) Vorrichtung und Verfahren zum Herstellen einer dünnen Platte
US11939696B2 (en) Thin plate-shaped single-crystal production equipment and thin plate-shaped single-crystal production method
JP3724870B2 (ja) 熱分解窒化ホウ素ルツボ
JPS6418988A (en) Single crystal growth unit
CN109860034B (zh) 激光退火装置和方法、显示面板及其制备装置
KR20110062361A (ko) 원통형 열반사 수단을 구비한 단결정 성장 장치
TW353235B (en) In-situ diffusion of dopant impurities during dendritic web growth of crystal ribbon a dendritic web formation process and apparatus for diffusing dopant impurities into a growing dendritic crystal web to produce photovoltaic cells
SU1213781A1 (ru) Устройство дл выращивани монокристаллических лент сапфира
SU949979A1 (ru) Устройство дл выращивани ориентированных кристаллических слоев

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication