CN212386012U - 增材制造结构及用于其中的零部件保持特征的系统 - Google Patents
增材制造结构及用于其中的零部件保持特征的系统 Download PDFInfo
- Publication number
- CN212386012U CN212386012U CN201921920371.6U CN201921920371U CN212386012U CN 212386012 U CN212386012 U CN 212386012U CN 201921920371 U CN201921920371 U CN 201921920371U CN 212386012 U CN212386012 U CN 212386012U
- Authority
- CN
- China
- Prior art keywords
- adhesive
- component
- mechanical
- additive manufactured
- connection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000014759 maintenance of location Effects 0.000 title claims abstract description 51
- 239000000654 additive Substances 0.000 title claims abstract description 43
- 230000000996 additive effect Effects 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 40
- 230000001070 adhesive effect Effects 0.000 claims abstract description 153
- 239000000853 adhesive Substances 0.000 claims abstract description 152
- 239000000463 material Substances 0.000 claims description 21
- 239000012943 hotmelt Substances 0.000 claims description 17
- 230000007246 mechanism Effects 0.000 claims description 16
- 239000000843 powder Substances 0.000 description 39
- 238000000034 method Methods 0.000 description 27
- 238000001723 curing Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 13
- 238000013461 design Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 238000010146 3D printing Methods 0.000 description 10
- 239000003292 glue Substances 0.000 description 8
- 238000001125 extrusion Methods 0.000 description 7
- 238000007639 printing Methods 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 229920001169 thermoplastic Polymers 0.000 description 6
- 239000004416 thermosoftening plastic Substances 0.000 description 6
- 239000004831 Hot glue Substances 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000000565 sealant Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000008021 deposition Effects 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 235000012773 waffles Nutrition 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000000110 selective laser sintering Methods 0.000 description 2
- 241000191291 Abies alba Species 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910000669 Chrome steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- -1 etc.) Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/80—Plants, production lines or modules
- B22F12/88—Handling of additively manufactured products, e.g. by robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4805—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
- B29C65/481—Non-reactive adhesives, e.g. physically hardening adhesives
- B29C65/4815—Hot melt adhesives, e.g. thermoplastic adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/062—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/264—Arrangements for irradiation
- B29C64/268—Arrangements for irradiation using laser beams; using electron beams [EB]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/379—Handling of additively manufactured objects, e.g. using robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/18—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/52—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/72—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by combined operations or combined techniques, e.g. welding and stitching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/78—Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
- B29C65/7802—Positioning the parts to be joined, e.g. aligning, indexing or centring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B11/00—Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding
- F16B11/006—Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding by gluing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/10—Formation of a green body
- B22F10/18—Formation of a green body by mixing binder with metal in filament form, e.g. fused filament fabrication [FFF]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Robotics (AREA)
- General Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Composite Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
公开了增材制造结构及用于其中的零部件保持特征的系统。结构包括第一AM零部件,该第一AM零部件构造成经由施加于第一AM零部件与第二零部件之间的界面的初级连接而连接至第二零部件。该结构包括包括次级连接的至少一个保持元件。该次级连接包括构造成固定第一AM零部件和第二零部件的第一粘合剂。该次级连接可以定位成在第一AM零部件与第二零部件之间提供连接。
Description
相关申请的交叉引用
本申请要求于2018年11月8日提交的题为“SYSTEMS AND METHODS FOR ADHESIVE-BASED PART RETENTION FEATURES IN ADDITIVELY MANUFACTURED STRUCTURES”的美国专利申请号16/184,801的权益,其明确地通过引用整体并入本文。
技术领域
本公开总体上涉及制造中的设备和技术,并且更具体地涉及用于生产车辆、船舶、飞机和其它机械结构的增材制造结构中的基于粘合剂的零部件保持特征的系统和方法。
背景技术
三维(3D)打印,也可称为增材制造(AM),是用于创建3D对象的工艺。 3D对象可以基于对象的数字模型数据使用材料层来形成。3D打印机可以通过一次一层地打印结构来形成由数字模型数据定义的结构。3D打印的对象几乎可以是任何形状或几何结构。
3D打印机可以在操作表面上散布粉末层(例如,粉末金属)。3D打印机然后可以例如通过使用激光将粉末层的粉末熔化或烧结在一起,从而将粉末层的特定区域固结到对象的层中。这些步骤可以重复以顺次地形成每个层。因此, 3D打印的对象可以逐层地构建以形成3D对象。
3D打印是非设计特定的,它提供了常规制造工艺无法提供的几何结构和设计灵活性。更进一步,3D打印技术可以生产具有非常小的特征尺寸和使用常规制造工艺很难或不可能生产的几何形状的零部件。
超过打印机尺寸规格的非常大的部件可以在设计阶段分开、并行打印然后组合。3D打印的多样性及其创建高度复杂结构的能力正在推动其被业界越来越多地采用。
然而,随着3D打印零部件的特征的复杂性增加,产量将会减少。产量还随着3D打印部件的尺寸增加而减少。这些实际限制通常是某些3D打印工艺所固有的,这些工艺可能依赖较慢的打印速度来精确地渲染复杂的几何形状。
增材制造(AM)在车辆和其它运输结构的开发和制造中迈出了非常重要的进化步骤。在AM引入之前的近一个世纪里,制造商已经被束缚于使用常规机加工来构造和组装车辆零部件的车辆生产组装线技术。因为机加工的零部件通常是特定于车型设计的,并且获取新工具来构造改进的零部件可能成本过高,所以制造商对既定车辆设计进行修改的灵活性有限。因此,制造工厂通常使用仅限于生产单一车型的组装线。
由于非设计特定性,AM能够建造几乎无限多种具有不同几何形状和材料特性的结构。不同的AM打印机可以使用各种材料(包括金属、合金和热塑性塑料)提供这些结构。在申请人之前提出的新基础设施中,AM成为开发定制零部件的主要手段。经由传统机加工和铸造制造的零部件、以及广泛可获得的商业现货(COTS)零部件,可以经由这些定制的AM结构以模块化形式连结在一起,以形成车辆底盘、飞机机体、海船本体及诸如此类。AM模块化零部件也可以打印,从而形成运输结构的内部。设计修改直截了当,并且可能通过打印改进的AM结构来实现,这避免了获取新工具的费用。
AM可以包括制造一个或更多个节点。节点是结构构件,其可以包括用于连接至其它节点或跨接部件(比如管、挤压件、面板及诸如此类)的一个或更多个界面。利用AM,可以根据目标将节点构造成包括附加的特征和功能(包括界面功能)。
如上所述,节点和其它部件可以连接在一起。例如,一个或更多个节点和/ 或其它部件可以连接在一起以形成更大的部件。因此,独立的AM结构通常需要连接在一起,或者独立的AM结构通常需要连接至机加工或COTS零部件,以提供组合结构,例如,以实现上述模块化网络或在车辆中形成复杂的内部组件。示例包括节点到节点连接、节点到面板连接、节点到管连接和节点到挤压件连接等等。例如,为了将AM接头构件与车辆本体面板连接在一起,可以使用机械连接器(例如螺钉、夹具等)。替代地或附加地,可以使用粘合剂来形成牢固的结合。为了连接这些零部件,通常需要严格的公差,这意味着零部件必须定位成以既定取向精确地配合。例如,待粘合的两个零部件可能需要定位成避免彼此直接接触,以减轻可能的电化学腐蚀问题。一般而言,AM接头构件与面板之间的粘合连接应能实现精确配合。因此,例如,AM接头构件不应与本体面板错位或偏移,并且当建立永久结合时,零部件应保持正确取向。
当粘合剂最初施加在两个零部件之间时,粘合剂的力产生倾向于将两个零部件分离的正压力。这种分离会对所得连接的完整性产生不利影响,例如,分离会导致零部件在制造期间移位的情况。即使粘合剂以不会导致零部件分离或错位的方式正确地施加,粘合剂在固化时通常也会膨胀或移位。在这种情况下,粘合零部件的所得位置可能不符合最初预期的连接。
3D打印部件可以用于生产用于各种装置或设备的子部件。3D打印子部件可能有必要附接或连接至其它子部件,包括其它的3D打印子部件、挤压子部件、 COTS零部件、或另外的子部件。
发明内容
下文将参考三维打印技术更全面地描述用于增材制造结构中的基于粘合剂的零部件保持特征的系统和方法的设备的若干方面。
一个方面是一种包括增材制造的节点的设备。该设备还包括基于粘合剂的零部件保持特征。公开了用于增材制造结构中的基于粘合剂的零部件保持特征的系统和方法。结构包括第一AM零部件,该第一AM零部件构造成经由施加于第一AM零部件与第二零部件之间的界面的初级连接而连接至第二零部件。该结构包括具有次级连接的至少一个保持元件。次级连接包括构造成固定第一 AM零部件和第二零部件的第一粘合剂。次级连接可以定位成在第一AM零部件与第二零部件之间提供连接。
应该理解,根据以下详细描述,用于增材制造结构中的基于粘合剂的零部件保持特征的设备的其它方面对于本领域技术人员来说将变得显而易见,其中仅通过说明的方式示出和描述几个实施例。如本领域技术人员将认识到的,用于桥接的设备能够具有其它且不同的实施例,并且其若干细节能够在各种其它方面进行修改,所有这些都不背离本发明。因此,附图和详细描述本质上被认为是说明性的,而不是限制性的。
附图说明
现在将在附图中通过示例而非限制的方式在详细描述中呈现用于桥接的设备的各个方面,其中:
图1A-图1D示出了示例性3D打印机系统的相应侧视图;
图2是示出示例结构的图。
图3是示出组装状态下的示例结构的图。
图4是示出图3中的示例结构的一部分的图。
图5是示出图3中的示例结构的一部分的图。
图6是示出图3中的示例结构的一部分的图。
图7是用于将AM结构与另一结构粘合的示例性过程的流程图。
具体实施方式
下面结合附图阐述的详细描述旨在提供对本发明示例性实施例的描述。该描述不旨在表示本发明可以实施的唯一实施例。贯穿本公开使用的术语“示例性”和“示例”意指“用作示例、实例或例示”,并且不一定被解释为优选或优于本公开中提供的其它实施例。详细描述包括便于提供向本领域技术人员充分传达本发明范围的详尽且完整的公开内容的具体细节。然而,可以在没有这些具体细节的情况下实施本发明。在一些情况下,众所周知的结构和部件可以以框图形式示出,或者可以不按比例示出,或者完全省略,以避免模糊贯穿本公开提供的各种构思。
本公开涉及基于粘合剂的零部件保持特征,该零部件保持特征在用于将结构结合在一起的初级粘合剂的施加和固化中的至少一个期间用于将各种结构保持就位。在一些示例中,零部件保持特征可以是永久性的,并且可以与初级粘合剂一起形成附加结合。在其它示例中,基于粘合剂的零部件保持特征可以是临时性的,并且可以在形成结构之间的初级粘合剂结合之后移除。例如,待结合在一起的结构可以包括两个(或更多个)增材制造(AM)零部件、AM零部件和管、面板、挤压件或任何其它类型的常规制造的零部件、或者COTS零部件。本公开涵盖使用粘合剂来结合零部件,包括常规粘合剂,并且还包括密封剂或可能具有粘合性质的其它材料。
解决本文描述的问题的常规尝试包括使用支脚凸片。然而,支脚凸片通常具有大且笨重的轮廓,这使得处理步骤更加困难,并且对于自动化粘合剂注入中涉及的精密制造步骤的类型来说,通常是不切实际的。
在各种示例中,粘合过程中涉及的零部件之一是节点。节点是包括用于附接至另一结构(例如管、面板等)的特征(例如,有利于密封、粘合等的表面特征、插口、接收器等)的AM结构。除了能够互连不同类型的结构之外,节点还可以制造成执行各种不同的功能。例如,可以利用节点为车辆中的电路布线或实现流体流动。可以通过使粉末材料熔融来形成节点。例如,3D打印机可以熔化和/或烧结多个层中的粉末材料的至少一部分来形成节点。节点可以由一种或更多种金属和/或非金属材料形成。节点可以由大致刚性的材料形成。节点中的材料可以包括金属材料(例如铝、钛、不锈钢、黄铜、铜、铬钢、铁等)、复合材料(例如碳纤维等)、聚合物材料(例如塑料等)、这些材料和/或其它材料的组合等。
例如,节点在用于连接复杂结构的各个零件的接头设计中特别有用。在一些设计中,节点可以允许在组装复杂结构时可能需要的更高级别的尺寸公差接受度。基于节点的设计还可以允许减轻重量,减少后处理,并且增加组装的便利性。另外,节点可以用作插口,以调节设计中的公差,并且节点可以与其它零部件共同打印,这利用了3D打印的独特益处,以简化组装过程。
节点可以连接至其它节点、面板、管、挤压件和其它零部件。该连接可以包括机械连接、粘合连接或两者的某种组合。在节点的尺寸超过打印机尺寸(例如粉末床的尺寸)的实施例中,节点可以被3D打印为多个子节点,然后可以通过粘合来组合这些子节点。
两个零部件可以以各种方式粘合在一起。粘合可以手动、半自动或自动地进行。在节点到面板连接中使用的AM节点的示例性情况下,粘合剂、密封剂和/或真空端口可以被3D打印到AM节点中,以使得自动构造器能够在预先构造的端口注入粘合剂。自动构造器,比如机器人,可以使用专门设计用于将粘合剂注入到注入端口中的执行器。在某些情况下,只注入粘合剂。在其它情况下,可以注入密封剂来限定粘合剂可能流动到的区域。在一些情况下,也可以施加真空,以促进粘合剂流入位于AM节点的表面与面板的表面之间的界面处的粘合剂区域中。
无论粘合剂的施加是手动进行的,还是相反地使用自动化手段进行的,施加粘合剂的动作通常导致对被粘合的相应结构施加正压力,这可能导致被粘合的两个结构分离。这种未解决的分离可能导致错位或连接不当的结构组合,或导致其中零部件只是分离得远到足以避免粘合剂影响的连接的整体失效。
此外,在施加粘合剂时存在或不存在正压力问题的情况下,许多或大多数粘合剂在固化时(尤其是在热固化时)膨胀。这种膨胀同样会导致被粘合零部件的未正确对准或其它错误连接。例如,零部件可能被设计成在某些点处非常接近和/或实际接触。固化引起的膨胀可能导致零部件分离。
在本公开的一方面,一个或更多个零部件保持特征。所述零部件保持特征可以是机械结构,其可操作用于比如通过粘合来固定被连接的两个或多个零部件。零部件保持特征可以在用于结合零部件的初级粘合剂的施加或固化中的任一者或两者期间导致被连接零部件临时保持就位。零部件保持特征本质上可以是临时的,并且可以在粘合过程完成后移除。替代地,零部件保持特征可以是永久性的。在后一种情况下,这些特征可能不会给粘合结构增加明显的质量或其它不利影响,因此可能没有必要为制造过程增加移除步骤。在某些情况下,这些特征可能具有零部件保持以外的替代用途。
本文公开的许多零部件保持特征有利地具有比用于类似目的的常规支脚凸片更平坦的轮廓。因为这些特征不凸出并且不可能干扰其它相邻结构,所以可以避免移除这些特征的制造步骤。在其它情况下,更平坦的轮廓意味着具有较小零部件保持特征的结构可以更紧凑地放置在任何给定区域中,以进行粘合过程。进而,零部件保持特征所需的空间更小,这些特征本质上可以是辅助的或临时的。
3D打印的使用可以提供显著的灵活性,允许机械结构和机械化组件的制造商制造具有复杂几何形状的零部件。例如,3D打印技术使制造商能够灵活地设计和构建具有错综复杂的内部栅格结构和/或轮廓的零部件,这样的内部栅格结构和/或轮廓不可能经由传统制造工艺制造或者可能经由传统制造工艺制造但成本过高。如以上讨论的,3D打印子部件可能需要附接或连接至其它子部件,包括其它3D打印子部件、挤压子部件或另外的子部件。
图1A-图1D示出了可以用于制造本文描述的AM零部件的示例性3D打印机系统的相应侧视图。这些AM零部件可以形成可能需要附接或连接至其它子部件(包括其它的AM/3D打印子部件、挤压子部件、COTS零部件或另外的子部件)的子部件。在该示例中,3D打印机系统是粉末床熔融(PBF)系统100。图1A-图1D示出了在不同操作阶段期间的PBF系统100。图1A-图1D中所示的特定实施例是采用本公开原理的PBF系统的许多合适示例中的一个示例。还应指出的是,本公开中的图1A-图1D和其它附图的元件不一定按比例绘制,而是为了更好地图示本文描述的构思,可以绘制得更大或更小。PBF系统100可以包括可以沉积每层金属粉末的沉积器101、可以生成能量束的能量束源103、可以施加能量束以熔融粉末材料的偏转器105、以及可以支撑一个或更多个构建件(比如构建件109)的构建板107。PBF系统100还可以包括定位在粉末床接收器内的构建底板111。粉末床接收器的壁112通常限定粉末床接收器的边界,粉末床接收器从侧面被夹在壁112之间,并且在下面邻接构建底板111的一部分。构建底板111可以逐渐地降低构建板107,使得沉积器101可以沉积下一层。整个机构可处于室113中,该室可封闭其它部件,从而保护设备,允许大气和温度调节并减轻污染风险。沉积器101可以包括容纳粉末117(比如金属粉末)的料斗115以及可以使每层沉积粉末的顶部平齐的整平器119。
具体参考图1A,该图示出了在构建件109的切片熔融之后、但在下一层粉末沉积之前的PBF系统100。实际上,图1A示出了PBF系统100在多个层(例如150层)中沉积和熔融切片以形成例如由150个切片形成的构建件109的当前状态的时刻。已经沉积的多个层形成粉末床121,其包括沉积但未熔融的粉末。
图1B示出了处于构建底板111可以降低一粉末层厚度123的阶段的PBF 系统100。构建底板111的降低导致构建件109和粉末床121下降该粉末层厚度 123,使得构建件和粉末床的顶部比粉末床接收器壁112的顶部低等于粉末层厚度的量。这样,例如,在构建件109和粉末床121的顶部上可以形成具有与粉末层厚度123相等的一致厚度的空间。
图1C示出了处于沉积器101被定位成将粉末117淀积在构建件109和粉末床121的顶部表面上产生并由粉末床接收器壁112界定的空间中的阶段的PBF 系统100。在该示例中,沉积器101在限定的空间上方逐渐移动,同时从料斗 115释放粉末117。整平器119可以使释放的粉末平齐,以形成具有大致等于粉末层厚度123(参见图1B)的厚度的粉末层125。因此,PBF系统中的粉末可以由粉末材料支撑结构支撑,该粉末材料支撑结构可以包括例如构建板107、构建底板111、构建件109、壁112等。应该指出的是,粉末层125的所示厚度(即,粉末层厚度123(图1B))大于以上参考图1A讨论的包括150个先前沉积层的示例所使用的实际厚度。
图1D示出了处于在沉积粉末层125(图1C)之后能量束源103生成能量束 127并且偏转器105施加能量束以在构建件109中熔融下一切片的阶段的PBF 系统100。在各种示例性实施例中,能量束源103可以是电子束源,在这种情况下,能量束127构成电子束。偏转器105可以包括偏转板,所述偏转板可以生成选择性地偏转电子束的电场或磁场,以使电子束扫描指定为待熔融的区域。在各种实施例中,能量束源103可以是激光器,在这种情况下,能量束127是激光束。偏转器105可以包括利用反射和/或折射来操纵激光束以扫描待熔融的选定区域的光学系统。
在各个实施例中,偏转器105可以包括一个或更多个万向节和致动器,其可以旋转和/或平移能量束源以定位能量束。在各个实施例中,能量束源103和/ 或偏转器105可以调制能量束,例如当偏转器扫描时使能量束接通和关闭,使得能量束仅施加在粉末层的适当区域中。例如,在各个实施例中,能量束可以由数字信号处理器(DSP)调制。
图2是示出示例结构200的图。图2所示的示例结构200包括第一增材制造(AM)零部件202,其构造成经由施加到第一AM零部件202与第二零部件 204之间的界面208的初级连接206连接至第二零部件204。
在一方面,至少一个保持元件210包括次级连接302(参见图3)。次级连接302包括构造成固定第一AM零部件202和第二零部件204的第一粘合剂304 (参见图3)。次级连接定位成在第一AM零部件202与第二零部件204之间提供连接。
图3是示出处于组装状态的示例结构300的图。图3所示的示例结构300 包括第一AM零部件202,该第一AM零部件经由施加于第一AM零部件202 与第二零部件204之间的界面208的初级连接206连接至第二零部件204。
在一方面,至少一个保持元件210包括次级连接302。次级连接302包括构造成固定第一AM零部件202和第二零部件204的第一粘合剂304。次级连接可以定位成在第一AM零部件202与第二零部件204之间提供连接。
示例结构200可以包括第一增材制造(AM)零部件202和至少一个保持元件204。第一AM零部件202可以是节点、节点的子部件或其它类型的部件。 AM零部件202可以通过任何常规手段(包括例如经由PBF,例如,如参考图 1A-图1D所描述的)打印。PBF打印可以利用适合用于PBF打印的任何技术来进行。例如,这些技术可以包括选择性激光熔化(SLM)、选择性激光烧结(SLS)、选择性热烧结(SHS)、电子束熔化(EBM)、直接金属激光烧结(DMLS)及其它技术。在其它实施例中,AM零部件202可以利用不同的3D打印技术(比如熔融沉积建模(FDM))进行打印。FDM AM可能是打印各种塑料、热塑性塑料等的理想选择。一般而言,AM零部件202可以利用任何已知的一种或更多种 AM技术增材制造。
在组合零部件时使用AM的一个优点是,由于AM的设计灵活性,AM零部件202可以包括各种特征212、214、216,这些特征进而可以与基于粘合剂的零部件保持结合使用。例如,可以使用AM来生成粘合在一起的特征212和214、将粘合剂运送到AM零部件202可以粘合到另一零部件204的一个或更多个位置(例如,初级连接206和/或保持元件210、特征214)的特征216、或这两者的组合(例如,特征212、214、216)。更进一步,基于粘合剂的零部件保持可以与基于机械的零部件保持相结合。例如,初级基于粘合剂的零部件保持可以与基于机械的零部件保持相结合。次级基于粘合剂的零部件保持(例如,在施加、干燥和/或固化初级粘合剂时将零部件保持在一起)可以与基于机械的零部件保持相结合。初级基于粘合剂的零部件保持和次级基于粘合剂的零部件保持的某种组合可以与基于机械的零部件保持相结合。基于机械的零部件保持可以包括,例如,保持卡环的凹槽、螺钉与垫片、弹簧加载的夹子、夹子、卡扣状零部件保持元件、与另一零部件上的接收器可滑动接合的卡扣状零部件保持特征、倒钩紧固件(Christmas tree fastener)、磁体、榫槽连接、或者其它基于机械的连接。
在一示例中,第一AM零部件202可以构造成连接至第二零部件204。第二零部件204可以包括,例如,AM零部件、管、面板、挤压件、任何其它类型的常规制造的零部件、或COTS零部件。因此,所形成的结构可以通过将例如两个(或更多个)AM零部件(例如,其中一个AM零部件可以被认为是第一AM 零部件)或一个AM零部件(例如,其中该AM零部件可以被认为是第一AM 零部件)与管、面板、挤压件或任何其它类型的常规制造零部件或COTS零部件结合在一起来制造。
第一AM零部件202与第二零部件之间的连接可以经由初级连接实现。例如,初级连接可以包括用于将结构结合在一起的初级粘合剂。初级连接可以施加于第一AM零部件202与第二零部件204之间的界面。例如,可以施加初级粘合剂。
在一些实施例中,零部件保持特征(例如,零部件保持元件210)可以是临时性的,并且可以在形成结构之间的初级粘合剂结合之后移除。(多种)粘合剂也可以用于零部件保持特征。例如,可以包括至少一个保持元件。该至少一个保持元件可以包括次级连接302。次级连接302可以包括构造成固定第一AM零部件202和第二零部件204的粘合剂。更进一步,次级连接302可以定位成在第一AM零部件202与第二零部件204之间提供连接。
在一方面,第一粘合剂包括施加在与第一AM零部件202相关联的第一机械特征214和与第二零部件204相关联的第二机械特征212之间的热熔材料。热熔材料可以包括任何形式的热熔粘合剂、热熔胶或另一种热塑性粘合剂。然而,一般而言,热熔粘合剂、热熔胶或另一种热塑性粘合剂可以快速固化,使得热熔粘合剂、热熔胶或另一种热塑性粘合剂快速固化。因此,热熔材料可以是快速固化粘合剂或快速固化密封剂。
在一方面,可以使用热熔材料。热熔材料可以是快速固化粘合剂或快速固化密封剂,其可以施加于待连接的两个部件上的机械特征。这些特征可以具有增加的表面面积。增加的表面面积可以使足够的结合强度保持被连接的两个(或更多)零部件。一旦热熔保持流体固化,可以将粘合剂注入被连接的节点之间。固化的热熔特征将确保在粘合剂注入过程期间保持两个零部件202、204。保持力(即,由热熔物提供的将两个节点保持在一起的力)将高于粘合剂注入力,从而将零部件202、204牢固地保持在正确的取向上,并具有所需的分隔距离,以确保可重复的结合。
在一方面,第一粘合剂包括施加在与第一AM零部件202相关联的第一机械特征和与第二零部件相关联的第二机械特征之间的紫外线(UV)固化粘合剂。 UV固化系统306可以用作零部件保持特征。在该实施例中,保持特征处的粘合剂将被UV固化,使得它们在粘合剂注入和固化过程期间保持就位。UV固化粘合剂将施加于关键位置,以提供足够的保持力。UV固化粘合剂将构造成在粘合剂注入和固化之前固化。
在一方面,第一AM零部件202与第二零部件204之间的初级连接206包括第二粘合剂308。例如,次级粘合剂可以在第一AM零部件202和第二零部件 204相接(例如,如图3中所示)的情况下处于第一AM零部件202与第二零部件204之间。
在一方面,第一粘合剂304比第二粘合剂308固化得更快。例如,如以上论述的,可快速固化的热熔材料(比如热熔粘合剂、热熔胶或另一种热塑性粘合剂)可以用作第一粘合剂304。第二粘合剂308可以固化得更慢。
在一方面,次级连接302进一步包括机械结构(例如,构成保持元件210)。例如,次级连接可以包括基于粘合剂和机械的零部件保持。基于机械的零部件保持可以包括,例如,保持卡环的凹槽、螺钉与垫片、弹簧加载的夹子、夹子、卡扣状零部件保持元件、与另一零部件上的接收器可滑动接合的卡扣状零部件保持特征、倒钩紧固件、磁体、榫槽连接、或者除了粘合剂之外可以使用的其它基于机械的连接。
在一方面,机械结构可以与第一AM零部件202和第二零部件204中的至少一个集成一起。例如,机械结构218可以与第一AM零部件202集成一起。机械结构220可以与第二零部件204集成在一起。
在一方面,机械结构与第一AM零部件202和第二零部件204中的至少一个共同打印。例如,机械结构218可以与第一AM零部件202共同打印。机械结构220可以与第二零部件204共同打印。
在一方面,机械结构与第一AM零部件202和第二零部件204分开。例如,机械结构218可以在制造第一AM零部件202之后附接至第一AM零部件202。机械结构220可以在制造第二零部件204之后附接至第二零部件204。
图4是示出图3中的示例结构300的一部分400的图。示例结构300包括第一AM零部件202,其经由施加于第一AM零部件202与第二零部件204之间的界面208的初级连接206连接至第二零部件204。
在一方面,至少一个保持元件210包括次级连接302。次级连接302包括构造成固定第一AM零部件202和第二零部件204的第一粘合剂304。次级连接可以定位成在第一AM零部件202与第二零部件204之间提供连接。
如图4中所示,第二零部件204可以是具有凹槽402的节点。第一AM零部件202可以是具有榫舌404的节点。例如,当第一AM零部件202与第二零部件204组装以形成结构时,第一AM零部件202的榫舌404可以插入第二零部件204的凹槽402中。粘合剂304可以是热熔粘合剂,其可以施加在热熔保持特征(例如机械特征212)附近,该热熔保持特征与另一保持特征(例如机械特征210)匹配。
图5是示出图3中的示例结构300的一部分500的图。更具体地,图5示出了与另一保持特征(例如机械特征210)匹配的热熔保持特征(例如机械特征 212)的示例。如图5中所示,热熔保持特征(例如机械特征212)可以是单个杆保持特征。因此,机械特征212可以是穿过形成保持特征的开口圆形区域的单个杆或轴。此外,如图5中所示,热熔保持特征(例如机械特征210)可以是网球拍或华夫饼制作机保持特征。因此,机械特征210可以是横跨开口圆形区域的多个杆或轴,该开口圆形区域形成在形状上大体类似于网球拍或华夫饼制作机上的热板的保持特征。胶或粘合剂可以放置在机械特征210与机械特征212 之间。胶或粘合剂可以在机械特征210和机械特征212的各部分之间流动,并且可以结合到机械特征210和机械特征212的各部分。例如,胶或粘合剂可以结合到单个杆保持特征和/或网球拍或华夫饼制作机保持特征。
图6是示出图3中的示例结构300的一部分600的图。更具体地,图6示出了热熔保持特征(例如匹配在一起的机械特征210、212)的两个示例。机械特征210、212都是单个杆或轴。单个杆或轴各自穿过相应的圆形开口形成,每个圆形开口(以及对应的杆或轴)形成相应的保持特征。胶或粘合剂可以放置在机械特征210与机械特征212之间。胶或粘合剂可以在机械特征210和机械特征212的各部分之间流动,并且可以结合到机械特征210和机械特征212的各部分。例如,胶或粘合剂可以结合到单个杆保持特征。
在一方面,用于增材制造第一AM零部件202的机构可以包括3D打印机系统(例如,图1A-图1D的PBF系统100)或另一增材制造系统。用于增材制造第一AM零部件的机构可以制造第一AM零部件202,该第一AM零部件构造成经由施加到第一AM零部件202与第二零部件204之间的界面208的初级连接206连接至第二零部件204。
在一方面,用于将第二零部件204附接至第一AM零部件202的机构可以包括用于将第二零部件204附接至第一AM零部件202的一个或更多个机械装置(比如一个或更多个制造机器人)。例如,(多个)制造机器人可以将第二零部件204定位在第一AM零部件202附近。
在一方面,一个或更多个制造机器人可以将一种或更多种粘合剂施加到一个或更多个保持元件。因此,在一方面,用于施加第一粘合剂的机构可以包括一个或更多个制造机器人。例如,专用机器人(或多个机器人)可以用于施加 (多种)粘合剂。在另一示例中,用于将第二零部件204附接至第一AM零部件202的一个或更多个制造机器人还可以构造成施加(多种)粘合剂。因此,用于施加第一粘合剂的机构可以包括用于将第二零部件204附接至第一AM零部件202的施加(多种)粘合剂的机器人的各方面。
(多个)制造机器人可以利用包括次级连接302的至少一个保持元件210 将第二零部件204附接至第一AM零部件202。次级连接302可以包括构造成固定第一AM零部件202和第二零部件204的第一粘合剂。次级连接302可以定位成在第一AM零部件202与第二零部件204之间提供连接。
用于施加第一粘合剂的机构可以构造成在施加第二粘合剂、固化第二粘合剂期间、施加第二粘合剂之前和/或固化第二粘合剂之前中的一种期间施加第一粘合剂。在一方面,在施加第二粘合剂期间,可以施加(多种)粘合剂以固定第一AM零部件和第二零部件。在一方面,在固化第二粘合剂期间,可以施加 (多种)粘合剂以固定第一AM零部件和第二零部件。
图7是用于将AM结构与另一结构粘合的示例性过程的流程图。用于将AM 结构与另一结构粘合的示例性过程可以至少部分地利用示例性3D打印机系统来实现。如本文所讨论的,一些方面可以利用其它的工具、系统或装置来实现。例如,一个3D打印机系统可以是图1A-图1D中讨论的PBF系统100。
在一方面,框702包括增材制造第一AM零部件。例如,3D打印机系统或另一增材制造系统增材制造被构造成连接至第二零部件的第一AM零部件。第一AM零部件可以经由施加于第一AM零部件与第二零部件之间的界面的初级连接而连接至第二零部件。例如,框702包括3D打印机系统(例如,PBF系统 100)或另一增材制造系统增材制造被构造成连接至第二零部件204的第一AM 零部件202。第一AM零部件202可以经由施加于第一AM零部件202与第二零部件204之间的界面208的初级连接206连接至第二零部件204。在一些方面,第二零部件可以包括,例如,AM零部件、管、面板、挤压件、任何其它类型的常规制造的零部件、或COTS零部件。因此,在一些方面,3D打印机系统或另一增材制造系统可以制造第二零部件。(第二零部件的制造不一定是实现方法的一部分。)
在一方面,框704包括将第二零部件附接至第一AM零部件。例如,机械装置(比如制造机器人)和/或个人(或多个个人)可以利用包括次级连接的至少一个保持元件将第二零部件附接至第一AM零部件。次级连接可以包括被构造成固定第一AM零部件和第二零部件的第一粘合剂。此外,粘合剂可以定位成在第一AM零部件与第二零部件之间提供连接。例如,第二零部件204可以利用包括次级连接302的至少一个保持元件210附接至第一AM零部件202。次级连接302可以包括被构造成固定第一AM零部件202和第二零部件204的第一粘合剂。此外,粘合剂可以定位成在第一AM零部件202与第二零部件204 之间提供连接。
如框702中所示,次级连接302可以包括第一粘合剂。因此,在框704中,可以施加第一粘合剂。例如,机械装置(比如制造机器人)和/或个人(或多个个人)可以施加第一粘合剂。在一方面,第一粘合剂比第二粘合剂固化得更快。一方面可以包括在施加第二粘合剂期间施加第一粘合剂。另一方面可以包括在第二粘合剂固化期间施加第一粘合剂。另一方面可以包括在施加第二粘合剂之前施加第一粘合剂。另一方面可以包括在第二粘合剂固化之前施加第一粘合剂。另一方面可以包括在施加第二粘合剂期间施加第一粘合剂以固定第一AM零部件和第二零部件。另一方面可以包括在第二粘合剂固化期间施加第一粘合剂以固定第一AM零部件和第二零部件。
第一粘合剂可以包括施加在与第一AM零部件202相关联的第一机械特征 (例如,机械结构218)和与第二零部件204相关联的第二机械特征(例如,机械结构220)之间的热熔材料。
在一方面,第一粘合剂包括施加在与第一AM零部件202相关联的第一机械特征(例如,机械结构218)和与第二零部件204相关联的第二机械特征(例如,机械结构220)之间的UV固化粘合剂。
在一方面,第一AM零部件202与第二零部件204之间的初级连接可以包括第二粘合剂。
在一方面,次级连接可以进一步包括机械结构,比如机械结构218、220,或者基于机械的零部件保持,比如保持卡环的凹槽、螺钉与垫片、弹簧加载的夹子、夹子、卡扣状零部件保持元件、与另一零部件上的接收器可滑动接合的卡扣状零部件保持特征、倒钩紧固件、磁体、榫槽连接、或者其它基于机械的连接。
在一方面,机械结构(例如,机械结构218、220)与第一AM零部件202 和第二零部件204中的至少一个集成在一起。
在一方面,机械结构(例如,机械结构218、220)与第一AM零部件202 和第二零部件204中的至少一个共同打印。
在一方面,机械结构(例如,机械结构218、220)与第一AM零部件202 和第二零部件204分开。例如,机械结构(例如,机械结构218、220)可以与第一AM零部件202和/或第二零部件204单独制造。机械结构(例如,机械结构218、220)中的一个然后可以附接至第一AM零部件202或第二零部件204。因此,如关于机械结构218、220所使用的,“分开”可以意味着单独制造,而不是不附接在一起。
提供前面的描述是为了使任何本领域技术人员能够实施本文描述的各个方面。对于本领域技术人员来说,对贯穿本公开呈现的这些示例性实施例的各种修改将是显而易见的,并且本文公开的构思可以应用于增材制造结构中的基于粘合剂的零部件保持特征的设备。因此,权利要求不旨在限于贯穿本公开呈现的示例性实施例,而是要符合与语言权利要求一致的全部范围。贯穿本公开描述的示例性实施例的元件的所有结构和功能等同方案(对于本领域普通技术人员而言是已知的或后来将是已知的)均旨在被权利要求所包含。另外,本文公开的任何内容都不旨在贡献给公众,不管这种公开是否在权利要求中明确记载。权利要求要素不得根据35 U.S.C.§112(f)的规定或可适用权限中的类似法律来解释,除非要素使用短语“用于...的机构”明确记载,或者在方法权利要求的情况下,要素使用短语“用于...的步骤”记载。
Claims (24)
1.一种增材制造结构,其特征在于,包括:
第一增材制造零部件,其构造成经由施加到所述第一增材制造零部件与第二零部件之间的界面的初级连接而连接至所述第二零部件;以及
至少一个保持元件,其包括次级连接,所述次级连接包括被构造成固定所述第一增材制造零部件和所述第二零部件的第一粘合剂,并且定位成在所述第一增材制造零部件与所述第二零部件之间提供连接。
2.根据权利要求1所述的结构,其特征在于,所述第一粘合剂包括施加在与所述第一增材制造零部件相关联的第一机械特征和与所述第二零部件相关联的第二机械特征之间的热熔材料。
3.根据权利要求1所述的结构,其特征在于,所述第一粘合剂包括施加在与所述第一增材制造零部件相关联的第一机械特征和与所述第二零部件相关联的第二机械特征之间的紫外线固化粘合剂。
4.根据权利要求1所述的结构,其特征在于,所述第一增材制造零部件与所述第二零部件之间的初级连接包括第二粘合剂。
5.根据权利要求4所述的结构,其特征在于,所述第一粘合剂比所述第二粘合剂固化得更快。
6.根据权利要求1所述的结构,其特征在于,所述次级连接进一步包括机械结构。
7.根据权利要求6所述的结构,其特征在于,所述机械结构与所述第一增材制造零部件和所述第二零部件中的至少一个集成在一起。
8.根据权利要求6所述的结构,其特征在于,所述机械结构与所述第一增材制造零部件和所述第二零部件中的至少一个共同打印。
9.根据权利要求6所述的结构,其特征在于,所述机械结构与所述第一增材制造零部件和所述第二零部件分开。
10.一种用于增材制造结构中的零部件保持特征的系统,其特征在于,包括:
用于增材制造第一增材制造零部件的机构,所述第一增材制造零部件构造成经由施加到第一增材制造零部件与第二零部件之间的界面的初级连接而连接至所述第二零部件;以及
用于利用包括次级连接的至少一个保持元件将所述第二零部件附接至所述第一增材制造零部件的机构,所述次级连接包括被构造成固定所述第一增材制造零部件和所述第二零部件的第一粘合剂,并且定位成在所述第一增材制造零部件与所述第二零部件之间提供连接。
11.根据权利要求10所述的系统,其特征在于,所述第一粘合剂包括施加在与所述第一增材制造零部件相关联的第一机械特征和与所述第二零部件相关联的第二机械特征之间的热熔材料。
12.根据权利要求10所述的系统,其特征在于,所述第一粘合剂包括施加在与所述第一增材制造零部件相关联的第一机械特征和与所述第二零部件相关联的第二机械特征之间的紫外线固化粘合剂。
13.根据权利要求10所述的系统,其特征在于,所述第一增材制造零部件与所述第二零部件之间的初级连接包括第二粘合剂。
14.根据权利要求13所述的系统,其特征在于,所述第一粘合剂比所述第二粘合剂固化得更快。
15.根据权利要求13所述的系统,其特征在于,进一步包括用于在施加所述第二粘合剂期间施加所述第一粘合剂的机构。
16.根据权利要求13所述的系统,其特征在于,进一步包括用于在所述第二粘合剂固化期间施加所述第一粘合剂的机构。
17.根据权利要求13所述的系统,其特征在于,进一步包括用于在施加所述第二粘合剂之前施加所述第一粘合剂的机构。
18.根据权利要求13所述的系统,其特征在于,进一步包括用于在所述第二粘合剂固化之前施加所述第一粘合剂的机构。
19.根据权利要求13所述的系统,其特征在于,进一步包括用于在施加所述第二粘合剂期间施加所述第一粘合剂以固定所述第一增材制造零部件和所述第二零部件的机构。
20.根据权利要求13所述的系统,其特征在于,进一步包括用于在所述第二粘合剂固化期间施加所述第一粘合剂以固定所述第一增材制造零部件和所述第二零部件的机构。
21.根据权利要求10所述的系统,其特征在于,所述次级连接进一步包括机械结构。
22.根据权利要求21所述的系统,其特征在于,所述机械结构与所述第一增材制造零部件和所述第二零部件中的至少一个集成在一起。
23.根据权利要求21所述的系统,其特征在于,所述机械结构与所述第一增材制造零部件和所述第二零部件中的至少一个共同打印。
24.根据权利要求21所述的系统,其特征在于,所述机械结构与所述第一增材制造零部件和所述第二零部件分开。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/184,801 | 2018-11-08 | ||
US16/184,801 US12115583B2 (en) | 2018-11-08 | 2018-11-08 | Systems and methods for adhesive-based part retention features in additively manufactured structures |
Publications (1)
Publication Number | Publication Date |
---|---|
CN212386012U true CN212386012U (zh) | 2021-01-22 |
Family
ID=70551576
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921920371.6U Active CN212386012U (zh) | 2018-11-08 | 2019-11-08 | 增材制造结构及用于其中的零部件保持特征的系统 |
CN201911087428.3A Pending CN111216358A (zh) | 2018-11-08 | 2019-11-08 | 增材制造结构中基于粘合剂零部件保持特征的系统和方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911087428.3A Pending CN111216358A (zh) | 2018-11-08 | 2019-11-08 | 增材制造结构中基于粘合剂零部件保持特征的系统和方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US12115583B2 (zh) |
EP (1) | EP3877154A4 (zh) |
JP (1) | JP2022511684A (zh) |
KR (1) | KR20210108365A (zh) |
CN (2) | CN212386012U (zh) |
WO (1) | WO2020097420A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111216358A (zh) * | 2018-11-08 | 2020-06-02 | 戴弗根特技术有限公司 | 增材制造结构中基于粘合剂零部件保持特征的系统和方法 |
US11806941B2 (en) | 2020-08-21 | 2023-11-07 | Divergent Technologies, Inc. | Mechanical part retention features for additively manufactured structures |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11850804B2 (en) | 2020-07-28 | 2023-12-26 | Divergent Technologies, Inc. | Radiation-enabled retention features for fixtureless assembly of node-based structures |
CN115956050A (zh) * | 2020-08-19 | 2023-04-11 | 赛峰座椅美国有限责任公司 | 用于乘客座椅的结构护罩组件 |
US12083596B2 (en) * | 2020-12-21 | 2024-09-10 | Divergent Technologies, Inc. | Thermal elements for disassembly of node-based adhesively bonded structures |
US20230051372A1 (en) * | 2021-08-13 | 2023-02-16 | Divergent Technologies, Inc. | Integrating additively-manufactured components |
FR3140572A1 (fr) * | 2022-10-10 | 2024-04-12 | Safran | Procédé de fabrication d’une pièce par assemblage de pièces intermédiaires obtenues par fabrication additive par dépôt de filament |
Family Cites Families (332)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3960637A (en) | 1973-07-23 | 1976-06-01 | Ostrow Paul F | Composite structural member |
US4109944A (en) * | 1974-12-30 | 1978-08-29 | Curtin Hoyt S | Pipe coupling |
US4250596A (en) * | 1979-11-19 | 1981-02-17 | Nifco, Inc. | Fastening system for securing a trim-fixing device to a substrate |
US5203226A (en) | 1990-04-17 | 1993-04-20 | Toyoda Gosei Co., Ltd. | Steering wheel provided with luminous display device |
DE29507827U1 (de) | 1995-05-16 | 1995-07-20 | Edag Engineering + Design Ag, 36039 Fulda | Zum Zuführen von Schweißbolzen zu einer Schweißpistole bestimmte Zuführvorrichtung |
DE19518175A1 (de) | 1995-05-19 | 1996-11-21 | Edag Eng & Design Ag | Verfahren zum automatischen Einbau eines Bauteils einer Kraftfahrzeugkarosserie |
DE19519643B4 (de) | 1995-05-30 | 2005-09-22 | Edag Engineering + Design Ag | Behälter-Wechselvorrichtung |
US6252196B1 (en) | 1996-10-11 | 2001-06-26 | Technolines Llc | Laser method of scribing graphics |
US5990444A (en) | 1995-10-30 | 1999-11-23 | Costin; Darryl J. | Laser method and system of scribing graphics |
US6021753A (en) | 1996-07-03 | 2000-02-08 | Ford Global Technologies, Inc. | Adhesively bonded plastic automotive air intake assembly |
US5742385A (en) | 1996-07-16 | 1998-04-21 | The Boeing Company | Method of airplane interiors assembly using automated rotating laser technology |
CA2244731C (en) | 1996-12-05 | 2005-06-07 | Teijin Limited | Fiber aggregate molding method |
US6010155A (en) | 1996-12-31 | 2000-01-04 | Dana Corporation | Vehicle frame assembly and method for manufacturing same |
US6140602A (en) | 1997-04-29 | 2000-10-31 | Technolines Llc | Marking of fabrics and other materials using a laser |
SE509041C2 (sv) | 1997-10-23 | 1998-11-30 | Ssab Hardtech Ab | Krockskyddsbalk för fordon |
US5854431A (en) | 1997-12-10 | 1998-12-29 | Sandia Corporation | Particle preconcentrator |
US6363606B1 (en) * | 1998-10-16 | 2002-04-02 | Agere Systems Guardian Corp. | Process for forming integrated structures using three dimensional printing techniques |
DE19907015A1 (de) | 1999-02-18 | 2000-08-24 | Edag Eng & Design Ag | In Fertigungslinien für Kraftfahrzeuge einsetzbare Spannvorrichtung und Fertigungslinie mit einer solchen Spannvorrichtung |
SE513801C2 (sv) | 1999-02-18 | 2000-11-06 | Ericsson Telefon Ab L M | Metod att sammanfoga två element samt element av plastmaterial |
US6395207B2 (en) | 1999-05-24 | 2002-05-28 | Eastman Kodak Company | Micrograin adhesive method and a joint produced by it |
US6391251B1 (en) | 1999-07-07 | 2002-05-21 | Optomec Design Company | Forming structures from CAD solid models |
US6811744B2 (en) | 1999-07-07 | 2004-11-02 | Optomec Design Company | Forming structures from CAD solid models |
US6409930B1 (en) | 1999-11-01 | 2002-06-25 | Bmc Industries, Inc. | Lamination of circuit sub-elements while assuring registration |
US6468439B1 (en) | 1999-11-01 | 2002-10-22 | Bmc Industries, Inc. | Etching of metallic composite articles |
US6365057B1 (en) | 1999-11-01 | 2002-04-02 | Bmc Industries, Inc. | Circuit manufacturing using etched tri-metal media |
US6318642B1 (en) | 1999-12-22 | 2001-11-20 | Visteon Global Tech., Inc | Nozzle assembly |
US6585151B1 (en) | 2000-05-23 | 2003-07-01 | The Regents Of The University Of Michigan | Method for producing microporous objects with fiber, wire or foil core and microporous cellular objects |
US6849150B1 (en) | 2001-01-16 | 2005-02-01 | Lockheed Martin Corporation | System and method of forming structural assemblies with 3-D woven joint pre-forms |
US6919035B1 (en) | 2001-05-18 | 2005-07-19 | Ensci Inc. | Metal oxide coated polymer substrates |
JP3889940B2 (ja) | 2001-06-13 | 2007-03-07 | 株式会社東海理化電機製作所 | 金型装置、金型装置の使用方法、及び金型装置の共用方法 |
DE50207123D1 (de) | 2001-08-31 | 2006-07-20 | Edag Eng & Design Ag | Rollfalzkopf und verfahren zum falzen eines flansches |
WO2003039804A1 (en) | 2001-11-02 | 2003-05-15 | The Boeing Company | Apparatus and method for forming weld joints having compressive residual stress patterns |
US6644721B1 (en) | 2002-08-30 | 2003-11-11 | Ford Global Technologies, Llc | Vehicle bed assembly |
DE10325906B4 (de) | 2003-06-05 | 2007-03-15 | Erwin Martin Heberer | Vorrichtung zur Abschirmung von kohärenter elektromagnetischer Strahlung sowie Laserkabine mit einer solchen Vorrichtung |
DE102004014662A1 (de) | 2004-03-25 | 2005-10-13 | Audi Ag | Anordnung mit einer Fahrzeug-Sicherung und einem Analog/Digital-Wandler |
US7745293B2 (en) | 2004-06-14 | 2010-06-29 | Semiconductor Energy Laboratory Co., Ltd | Method for manufacturing a thin film transistor including forming impurity regions by diagonal doping |
ES2296034T3 (es) | 2004-09-24 | 2008-04-16 | Edag Engineering + Design Aktiengesellschaft | Dispositivo y procedimiento de rebordeado con proteccion de la pieza. |
US20060108783A1 (en) | 2004-11-24 | 2006-05-25 | Chi-Mou Ni | Structural assembly for vehicles and method of making same |
DE102005004474B3 (de) | 2005-01-31 | 2006-08-31 | Edag Engineering + Design Ag | Bördelvorrichtung und Bördelverfahren zum Umlegen eines Bördelstegs eines Bauteils um eine Bördelkante |
US7645406B2 (en) | 2005-04-21 | 2010-01-12 | The Boeing Company | Adhesive injection process for Pi-joint assemblies |
DE102005030944B4 (de) | 2005-06-30 | 2007-08-02 | Edag Engineering + Design Ag | Verfahren und Vorrichtung zum Fügen von Fügestrukturen, insbesondere in der Montage von Fahrzeugbauteilen |
ES2384269T3 (es) | 2005-09-28 | 2012-07-03 | Dip Tech. Ltd. | Tintas con un efecto comparable al del grabado para imprimir sobre superficies cerámicas |
DE102006012411A1 (de) | 2005-10-04 | 2007-04-05 | Böllhoff Verbindungstechnik GmbH | Verbindungselement und Verfahren zu seiner Befestigung auf einer Oberfläche |
US7716802B2 (en) | 2006-01-03 | 2010-05-18 | The Boeing Company | Method for machining using sacrificial supports |
DE102006014279A1 (de) | 2006-03-28 | 2007-10-04 | Edag Engineering + Design Ag | Spannvorrichtung zum Aufnehmen und Spannen von Bauteilen |
DE102006014282A1 (de) | 2006-03-28 | 2007-10-04 | Edag Engineering + Design Ag | Spannvorrichtung zum Aufnehmen und Spannen von Bauteilen |
JP2007292048A (ja) | 2006-03-29 | 2007-11-08 | Yamaha Motor Co Ltd | 鞍乗型車両用排気装置および鞍乗型車両 |
WO2008020899A2 (en) | 2006-04-17 | 2008-02-21 | Cdm Optics, Inc. | Arrayed imaging systems and associated methods |
US7670527B2 (en) | 2006-05-09 | 2010-03-02 | Lockheed Martin Corporation | Failsafe injected adhesive joint |
DE102006021755A1 (de) | 2006-05-10 | 2007-11-15 | Edag Engineering + Design Ag | Energiestrahl-Löten oder -Schweißen von Bauteilen |
JP2007317750A (ja) | 2006-05-23 | 2007-12-06 | Matsushita Electric Ind Co Ltd | 撮像装置 |
DE102006038795A1 (de) | 2006-08-18 | 2008-03-20 | Fft Edag Produktionssysteme Gmbh & Co. Kg | Überwachungsvorrichtung für eine Laserbearbeitungsvorrichtung |
PL1900709T3 (pl) | 2006-09-14 | 2010-11-30 | Ibiden Co Ltd | Sposób wytwarzania korpusu o strukturze plastra miodu i kompozycja materiałowa do wypalanego korpusu o strukturze plastra miodu |
DE202006018552U1 (de) | 2006-12-08 | 2007-02-22 | Edag Engineering + Design Ag | Bördelhandgerät |
US7344186B1 (en) | 2007-01-08 | 2008-03-18 | Ford Global Technologies, Llc | A-pillar structure for an automotive vehicle |
DE102007002856B4 (de) | 2007-01-15 | 2012-02-09 | Edag Gmbh & Co. Kgaa | Vorrichtung zum Bördeln und Schweißen oder Löten von Bauteilen |
EP1949981B1 (en) | 2007-01-18 | 2015-04-29 | Toyota Motor Corporation | Composite of sheet metal parts |
DE202007003110U1 (de) | 2007-03-02 | 2007-08-02 | Edag Engineering + Design Ag | Automobil mit erleichtertem Fahrgastausstieg |
US7710347B2 (en) | 2007-03-13 | 2010-05-04 | Raytheon Company | Methods and apparatus for high performance structures |
DE102007022102B4 (de) | 2007-05-11 | 2014-04-10 | Fft Edag Produktionssysteme Gmbh & Co. Kg | Bördeln von Bauteilen in Serienfertigungen mit kurzen Taktzeiten |
DE202007007838U1 (de) | 2007-06-01 | 2007-09-13 | Edag Engineering + Design Ag | Rollbördelwerkzeug |
ES2760927T3 (es) | 2007-07-13 | 2020-05-18 | Advanced Ceramics Mfg Llc | Mandriles basados en áridos para la producción de piezas de material compuesto y métodos de producción de piezas de material compuesto |
KR101239927B1 (ko) | 2007-07-20 | 2013-03-06 | 신닛테츠스미킨 카부시키카이샤 | 하이드로폼 가공 방법 및 하이드로폼 가공 부품 |
KR20090032543A (ko) * | 2007-09-28 | 2009-04-01 | 한국과학기술원 | 3차원 대형 조형물의 제작방법 |
US8286236B2 (en) | 2007-12-21 | 2012-10-09 | The Invention Science Fund I, Llc | Manufacturing control system |
US9818071B2 (en) | 2007-12-21 | 2017-11-14 | Invention Science Fund I, Llc | Authorization rights for operational components |
US8429754B2 (en) | 2007-12-21 | 2013-04-23 | The Invention Science Fund I, Llc | Control technique for object production rights |
US9071436B2 (en) | 2007-12-21 | 2015-06-30 | The Invention Science Fund I, Llc | Security-activated robotic system |
US9626487B2 (en) | 2007-12-21 | 2017-04-18 | Invention Science Fund I, Llc | Security-activated production device |
US9128476B2 (en) | 2007-12-21 | 2015-09-08 | The Invention Science Fund I, Llc | Secure robotic operational system |
US8752166B2 (en) | 2007-12-21 | 2014-06-10 | The Invention Science Fund I, Llc | Security-activated operational components |
DE102008003067B4 (de) | 2008-01-03 | 2013-05-29 | Edag Gmbh & Co. Kgaa | Verfahren und Biegewerkzeug zum Biegen eines Werkstücks |
US7908922B2 (en) | 2008-01-24 | 2011-03-22 | Delphi Technologies, Inc. | Silicon integrated angular rate sensor |
DE102008008306A1 (de) | 2008-02-07 | 2009-08-13 | Edag Gmbh & Co. Kgaa | Drehtisch |
DE102008013591B4 (de) | 2008-03-11 | 2010-02-18 | Edag Gmbh & Co. Kgaa | Werkzeug, Anlage und Verfahren zur Herstellung eines Kabelbaums |
DE102008001653A1 (de) | 2008-05-08 | 2009-12-03 | Schleifring Und Apparatebau Gmbh | Linsenanordnung für optische Drehübertrager |
DE102008047800B4 (de) | 2008-05-09 | 2021-11-18 | Fft Produktionssysteme Gmbh & Co. Kg | Verfahren und Werkzeug zur Herstellung einer Fixierverbindung an formschlüssig gefügten Bauteilen |
ES2818918T3 (es) | 2008-05-21 | 2021-04-14 | Fft Edag Produktionssysteme Gmbh & Co Kg | Unión de componentes sin marcos de fijación |
US9870629B2 (en) | 2008-06-20 | 2018-01-16 | New Bis Safe Luxco S.À R.L | Methods, apparatus and systems for data visualization and related applications |
US8383028B2 (en) | 2008-11-13 | 2013-02-26 | The Boeing Company | Method of manufacturing co-molded inserts |
JP5343543B2 (ja) | 2008-12-08 | 2013-11-13 | 日本電産株式会社 | スピンドルモータ及びそれを用いたディスク駆動装置 |
US8452073B2 (en) | 2009-04-08 | 2013-05-28 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Closed-loop process control for electron beam freeform fabrication and deposition processes |
DE102009018618B4 (de) | 2009-04-27 | 2018-09-06 | Fft Produktionssysteme Gmbh & Co. Kg | Spannvorrichtung, Anlage und Verfahren zur Bearbeitung wechselnder Bauteiltypen |
DE102009018619B4 (de) | 2009-04-27 | 2014-07-17 | Fft Edag Produktionssysteme Gmbh & Co. Kg | Roboterabstützung |
DE102009024344B4 (de) | 2009-06-09 | 2011-02-24 | Edag Gmbh & Co. Kgaa | Verfahren und Werkzeug zum Bördeln eines Werkstücks |
DE202009012432U1 (de) | 2009-09-15 | 2010-01-28 | Edag Gmbh & Co. Kgaa | Karosseriebauteil |
US8354170B1 (en) | 2009-10-06 | 2013-01-15 | Hrl Laboratories, Llc | Elastomeric matrix composites |
US8610761B2 (en) | 2009-11-09 | 2013-12-17 | Prohectionworks, Inc. | Systems and methods for optically projecting three-dimensional text, images and/or symbols onto three-dimensional objects |
US8606540B2 (en) | 2009-11-10 | 2013-12-10 | Projectionworks, Inc. | Hole measurement apparatuses |
US8755923B2 (en) | 2009-12-07 | 2014-06-17 | Engineering Technology Associates, Inc. | Optimization system |
US8686997B2 (en) | 2009-12-18 | 2014-04-01 | Sassault Systemes | Method and system for composing an assembly |
EP2383669B1 (en) | 2010-04-02 | 2018-07-11 | Dassault Systèmes | Design of a part modeled by parallel geodesic curves |
EP2583253A2 (en) | 2010-06-21 | 2013-04-24 | Johan Gielis | Computer implemented tool box systems and methods |
US8289352B2 (en) | 2010-07-15 | 2012-10-16 | HJ Laboratories, LLC | Providing erasable printing with nanoparticles |
US8978535B2 (en) | 2010-08-11 | 2015-03-17 | Massachusetts Institute Of Technology | Articulating protective system for resisting mechanical loads |
EP2799150B1 (en) | 2013-05-02 | 2016-04-27 | Hexagon Technology Center GmbH | Graphical application system |
US9898776B2 (en) | 2010-09-24 | 2018-02-20 | Amazon Technologies, Inc. | Providing services related to item delivery via 3D manufacturing on demand |
US9672550B2 (en) | 2010-09-24 | 2017-06-06 | Amazon Technologies, Inc. | Fulfillment of orders for items using 3D manufacturing on demand |
US9684919B2 (en) | 2010-09-24 | 2017-06-20 | Amazon Technologies, Inc. | Item delivery using 3D manufacturing on demand |
US9858604B2 (en) | 2010-09-24 | 2018-01-02 | Amazon Technologies, Inc. | Vendor interface for item delivery via 3D manufacturing on demand |
US9566758B2 (en) | 2010-10-19 | 2017-02-14 | Massachusetts Institute Of Technology | Digital flexural materials |
AU2012214506B2 (en) | 2011-02-07 | 2015-12-17 | Ion Geophysical Corporation | Method and apparatus for sensing underwater signals |
EP2495292B1 (de) | 2011-03-04 | 2013-07-24 | FFT EDAG Produktionssysteme GmbH & Co. KG | Fügeflächenvorbehandlungsvorrichtung und Fügeflächenvorbehandlungsverfahren |
GB201104675D0 (en) * | 2011-03-18 | 2011-05-04 | Aston Martin Lagonda Ltd | Methods of forming bonded structures and bonded structures formed thereby |
WO2012166552A1 (en) | 2011-06-02 | 2012-12-06 | A. Raymond Et Cie | Fasteners manufactured by three-dimensional printing |
US20130015596A1 (en) * | 2011-06-23 | 2013-01-17 | Irobot Corporation | Robotic fabricator |
US9246299B2 (en) | 2011-08-04 | 2016-01-26 | Martin A. Stuart | Slab laser and amplifier |
US9101979B2 (en) | 2011-10-31 | 2015-08-11 | California Institute Of Technology | Methods for fabricating gradient alloy articles with multi-functional properties |
DE102012105219A1 (de) | 2011-12-23 | 2013-06-27 | Guido Schulte | Leimloser Korpus |
US10011089B2 (en) | 2011-12-31 | 2018-07-03 | The Boeing Company | Method of reinforcement for additive manufacturing |
DE102012101939A1 (de) | 2012-03-08 | 2013-09-12 | Klaus Schwärzler | Verfahren und Vorrichtung zum schichtweisen Aufbau eines Formkörpers |
US9566742B2 (en) | 2012-04-03 | 2017-02-14 | Massachusetts Institute Of Technology | Methods and apparatus for computer-assisted spray foam fabrication |
EP2849931B1 (en) | 2012-05-18 | 2018-04-25 | 3D Systems, Inc. | Use of an adhesive for 3d printing |
US8873238B2 (en) | 2012-06-11 | 2014-10-28 | The Boeing Company | Chassis system and method for holding and protecting electronic modules |
US9533526B1 (en) | 2012-06-15 | 2017-01-03 | Joel Nevins | Game object advances for the 3D printing entertainment industry |
WO2013192599A1 (en) | 2012-06-21 | 2013-12-27 | Massachusetts Institute Of Technology | Methods and apparatus for digital material skins |
US9672389B1 (en) | 2012-06-26 | 2017-06-06 | The Mathworks, Inc. | Generic human machine interface for a graphical model |
EP2689865B1 (de) | 2012-07-27 | 2016-09-14 | FFT Produktionssysteme GmbH & Co. KG | Bördelpresse |
WO2014019998A1 (en) | 2012-07-30 | 2014-02-06 | Materialise Nv | Systems and methods for forming and utilizing bending maps for object design |
US8437513B1 (en) | 2012-08-10 | 2013-05-07 | EyeVerify LLC | Spoof detection for biometric authentication |
US10029415B2 (en) | 2012-08-16 | 2018-07-24 | Stratasys, Inc. | Print head nozzle for use with additive manufacturing system |
EP2936052B1 (en) | 2012-12-19 | 2021-04-28 | Basf Se | Detector for optically detecting at least one object |
US9329020B1 (en) | 2013-01-02 | 2016-05-03 | Lockheed Martin Corporation | System, method, and computer program product to provide wireless sensing based on an aggregate magnetic field reading |
US9244986B2 (en) | 2013-01-11 | 2016-01-26 | Buckyball Mobile, Inc. | Method and system for interactive geometric representations, configuration and control of data |
US9609755B2 (en) | 2013-01-17 | 2017-03-28 | Hewlett-Packard Development Company, L.P. | Nanosized particles deposited on shaped surface geometries |
US9555608B2 (en) | 2013-02-22 | 2017-01-31 | The Boeing Company | System and method of forming an injection-bonded joint |
US9626489B2 (en) | 2013-03-13 | 2017-04-18 | Intertrust Technologies Corporation | Object rendering systems and methods |
US20140277669A1 (en) | 2013-03-15 | 2014-09-18 | Sikorsky Aircraft Corporation | Additive topology optimized manufacturing for multi-functional components |
US9764415B2 (en) | 2013-03-15 | 2017-09-19 | The United States Of America As Represented By The Administrator Of Nasa | Height control and deposition measurement for the electron beam free form fabrication (EBF3) process |
US9555580B1 (en) | 2013-03-21 | 2017-01-31 | Temper Ip, Llc. | Friction stir welding fastener |
CA3121870A1 (en) | 2013-03-22 | 2014-09-25 | Markforged, Inc. | Three dimensional printing |
US9186848B2 (en) | 2013-03-22 | 2015-11-17 | Markforged, Inc. | Three dimensional printing of composite reinforced structures |
US9156205B2 (en) | 2013-03-22 | 2015-10-13 | Markforged, Inc. | Three dimensional printer with composite filament fabrication |
US9149988B2 (en) | 2013-03-22 | 2015-10-06 | Markforged, Inc. | Three dimensional printing |
US9126365B1 (en) | 2013-03-22 | 2015-09-08 | Markforged, Inc. | Methods for composite filament fabrication in three dimensional printing |
WO2014169238A1 (en) | 2013-04-11 | 2014-10-16 | Digimarc Corporation | Methods for object recognition and related arrangements |
AU2014257624B2 (en) | 2013-04-26 | 2017-03-02 | Covestro (Netherlands) B.V. | Vinyl functionalized urethane resins for powder coating compositions |
ES2556564T3 (es) | 2013-05-22 | 2016-01-18 | Fft Produktionssysteme Gmbh & Co. Kg | Ensamblaje de una pieza de trabajo con una soldadura de ensamblaje escondida |
ES2541428T3 (es) | 2013-06-07 | 2015-07-20 | Fft Produktionssysteme Gmbh & Co. Kg | Dispositivo para su uso en la manipulación de una carga y procedimiento para fabricar un dispositivo de este tipo |
CN105452894B (zh) | 2013-06-13 | 2019-04-30 | 巴斯夫欧洲公司 | 用于光学地检测至少一个对象的检测器 |
EP2813432B1 (en) | 2013-06-13 | 2017-12-20 | Airbus Operations GmbH | Method of installing a fixture |
KR102252336B1 (ko) | 2013-06-13 | 2021-05-14 | 바스프 에스이 | 광학 검출기 및 그의 제조 방법 |
US9724877B2 (en) | 2013-06-23 | 2017-08-08 | Robert A. Flitsch | Methods and apparatus for mobile additive manufacturing of advanced structures and roadways |
US9688032B2 (en) | 2013-07-01 | 2017-06-27 | GM Global Technology Operations LLC | Thermoplastic component repair |
GB201313839D0 (en) | 2013-08-02 | 2013-09-18 | Rolls Royce Plc | Method of Manufacturing a Component |
GB201313840D0 (en) | 2013-08-02 | 2013-09-18 | Rolls Royce Plc | Method of Manufacturing a Component |
GB201313841D0 (en) | 2013-08-02 | 2013-09-18 | Rolls Royce Plc | Method of Manufacturing a Component |
KR102191139B1 (ko) | 2013-08-19 | 2020-12-15 | 바스프 에스이 | 광학 검출기 |
WO2015024870A1 (en) | 2013-08-19 | 2015-02-26 | Basf Se | Detector for determining a position of at least one object |
US10197338B2 (en) | 2013-08-22 | 2019-02-05 | Kevin Hans Melsheimer | Building system for cascading flows of matter and energy |
US10052820B2 (en) | 2013-09-13 | 2018-08-21 | Made In Space, Inc. | Additive manufacturing of extended structures |
US9248611B2 (en) | 2013-10-07 | 2016-02-02 | David A. Divine | 3-D printed packaging |
EP3055604B1 (en) | 2013-10-07 | 2021-03-31 | Raytheon Technologies Corporation | Additively grown enhanced impact resistance features for improved structure and joint protection |
US10705509B2 (en) | 2013-10-21 | 2020-07-07 | Made In Space, Inc. | Digital catalog for manufacturing |
US10086568B2 (en) | 2013-10-21 | 2018-10-02 | Made In Space, Inc. | Seamless scanning and production devices and methods |
CN105873742B (zh) | 2013-11-21 | 2017-10-17 | 沙特基础工业全球技术有限公司 | 密度减小的制品 |
ES2661250T3 (es) | 2013-11-21 | 2018-03-28 | Dsm Ip Assets B.V. | Composiciones de revestimiento en polvo termoestables que comprenden peróxido de benzoílo sustituido con metilo |
CN104661470A (zh) | 2013-11-22 | 2015-05-27 | 富泰华工业(深圳)有限公司 | 移动终端壳体 |
WO2015074158A1 (en) | 2013-11-25 | 2015-05-28 | 7D Surgical Inc. | System and method for generating partial surface from volumetric data for registration to surface topology image data |
US9604124B2 (en) | 2013-12-05 | 2017-03-28 | Aaron Benjamin Aders | Technologies for transportation |
US9555315B2 (en) | 2013-12-05 | 2017-01-31 | Aaron Benjamin Aders | Technologies for transportation |
EP2886448B1 (en) | 2013-12-20 | 2017-03-08 | Airbus Operations GmbH | A load bearing element and a method for manufacturing a load bearing element |
US9527241B2 (en) * | 2013-12-20 | 2016-12-27 | Xerox Corporation | Three dimensional (3D) printing of epoxy, hardener, and parts of an object to be assembled later |
JP6613017B2 (ja) * | 2013-12-25 | 2019-11-27 | Dic株式会社 | 積層体、木質板、化粧板、及び、積層体の製造方法 |
TW201527070A (zh) | 2014-01-06 | 2015-07-16 | Prior Company Ltd | 裝飾薄膜及其製造方法以及加飾成型品的製造方法 |
CN105899314B (zh) | 2014-01-10 | 2017-12-15 | 近藤胜义 | 钛粉末材料、钛材以及氧固溶钛粉末材料的制备方法 |
US10213837B2 (en) | 2014-01-24 | 2019-02-26 | Hi-Lex Corporation | Titanium powder containing solid-soluted nitrogen, titanium material, and method for producing titanium powder containing solid-soluted nitrogen |
US9424503B2 (en) | 2014-08-11 | 2016-08-23 | Brian Kieser | Structurally encoded component and method of manufacturing structurally encoded component |
US10204216B2 (en) | 2014-02-24 | 2019-02-12 | Singapore University Of Technology And Design | Verification methods and verification devices |
US9817922B2 (en) | 2014-03-01 | 2017-11-14 | Anguleris Technologies, Llc | Method and system for creating 3D models from 2D data for building information modeling (BIM) |
US9782936B2 (en) | 2014-03-01 | 2017-10-10 | Anguleris Technologies, Llc | Method and system for creating composite 3D models for building information modeling (BIM) |
US9703896B2 (en) | 2014-03-11 | 2017-07-11 | Microsoft Technology Licensing, Llc | Generation of custom modular objects |
US20160061381A1 (en) * | 2014-03-17 | 2016-03-03 | Igor K. Kotliar | Pressure Vessels, Design and Method of Manufacturing Using Additive Printing |
US10006156B2 (en) | 2014-03-21 | 2018-06-26 | Goodrich Corporation | Systems and methods for calculated tow fiber angle |
US9765226B2 (en) | 2014-03-27 | 2017-09-19 | Disney Enterprises, Inc. | Ultraviolet printing with luminosity control |
US10294982B2 (en) | 2014-03-28 | 2019-05-21 | The Boeing Company | Systems, methods, and apparatus for supported shafts |
KR101588762B1 (ko) | 2014-04-09 | 2016-01-26 | 현대자동차 주식회사 | 차체 전방 구조물 |
US10018576B2 (en) | 2014-04-09 | 2018-07-10 | Texas Instruments Incorporated | Material detection and analysis using a dielectric waveguide |
US9706816B2 (en) | 2014-04-09 | 2017-07-18 | Northeastern University | Zipper guide for facilitating closure of open-ended zipper |
US9604411B2 (en) * | 2014-05-04 | 2017-03-28 | Eoplex Limited | Multi-material three dimensional printer |
US9597843B2 (en) | 2014-05-15 | 2017-03-21 | The Boeing Company | Method and apparatus for layup tooling |
US9884663B2 (en) | 2014-05-16 | 2018-02-06 | Divergent Technologies, Inc. | Modular formed nodes for vehicle chassis and their methods of use |
US9643361B2 (en) | 2014-05-27 | 2017-05-09 | Jian Liu | Method and apparatus for three-dimensional additive manufacturing with a high energy high power ultrafast laser |
US10074128B2 (en) | 2014-06-08 | 2018-09-11 | Shay C. Colson | Pre-purchase mechanism for autonomous vehicles |
DE202014102800U1 (de) | 2014-06-17 | 2014-06-27 | Fft Produktionssysteme Gmbh & Co. Kg | Segmentierte Bauteilauflage |
US9399256B2 (en) | 2014-06-20 | 2016-07-26 | Velo3D, Inc. | Apparatuses, systems and methods for three-dimensional printing |
CN106573586B (zh) | 2014-07-25 | 2020-07-10 | 沙特基础工业全球技术有限公司 | 可压碎聚合物纵梁延伸件、系统及其制作和使用方法 |
JP6740211B2 (ja) | 2014-08-04 | 2020-08-12 | ワシントン ステイト ユニバーシティー | 複合圧力容器における極低温貯蔵用の蒸気冷却遮蔽ライナ |
US9783324B2 (en) | 2014-08-26 | 2017-10-10 | The Boeing Company | Vessel insulation assembly |
JP5688669B1 (ja) | 2014-09-09 | 2015-03-25 | グラフェンプラットフォーム株式会社 | グラフェン前駆体として用いられる黒鉛系炭素素材、これを含有するグラフェン分散液及びグラフェン複合体並びにこれを製造する方法 |
US9696238B2 (en) | 2014-09-16 | 2017-07-04 | The Boeing Company | Systems and methods for icing flight tests |
CA2961026C (en) | 2014-09-24 | 2022-11-08 | Holland Lp | Grating connector and spacer apparatus, system, and methods of using the same |
US10285219B2 (en) | 2014-09-25 | 2019-05-07 | Aurora Flight Sciences Corporation | Electrical curing of composite structures |
US9854828B2 (en) | 2014-09-29 | 2018-01-02 | William Langeland | Method, system and apparatus for creating 3D-printed edible objects |
US10081140B2 (en) | 2014-10-29 | 2018-09-25 | The Boeing Company | Apparatus for and method of compaction of a prepreg |
US10108766B2 (en) | 2014-11-05 | 2018-10-23 | The Boeing Company | Methods and apparatus for analyzing fatigue of a structure and optimizing a characteristic of the structure based on the fatigue analysis |
EP3018051A1 (en) | 2014-11-06 | 2016-05-11 | Airbus Operations GmbH | Structural component and method for producing a structural component |
CN107000798B (zh) | 2014-11-13 | 2019-08-02 | 沙特基础工业全球技术有限公司 | 减阻空气动力车辆部件及其制造方法 |
US10016852B2 (en) | 2014-11-13 | 2018-07-10 | The Boeing Company | Apparatuses and methods for additive manufacturing |
US10022792B2 (en) | 2014-11-13 | 2018-07-17 | The Indian Institute of Technology | Process of dough forming of polymer-metal blend suitable for shape forming |
US9915527B2 (en) | 2014-11-17 | 2018-03-13 | The Boeing Company | Detachable protective coverings and protection methods |
DE102014116938A1 (de) | 2014-11-19 | 2016-05-19 | Airbus Operations Gmbh | Herstellung von Komponenten eines Fahrzeugs unter Anwendung von Additive Layer Manufacturing |
US9600929B1 (en) | 2014-12-01 | 2017-03-21 | Ngrain (Canada) Corporation | System, computer-readable medium and method for 3D-differencing of 3D voxel models |
US9595795B2 (en) | 2014-12-09 | 2017-03-14 | Te Connectivity Corporation | Header assembly |
DE102014225488A1 (de) | 2014-12-10 | 2016-06-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Polymerzusammensetzung mit verzögertem Kristallisationsverhalten, das Kristallisationsverhalten beeinflussende Additivzusammensetzung, Verfahren zur Herabsetzung des Kristallisationspunktes sowie Verwendung einer Additivzusammensetzung |
US10160278B2 (en) | 2014-12-16 | 2018-12-25 | Aktv8 LLC | System and method for vehicle stabilization |
US9789922B2 (en) | 2014-12-18 | 2017-10-17 | The Braun Corporation | Modified door opening of a motorized vehicle for accommodating a ramp system and method thereof |
US9821339B2 (en) | 2014-12-19 | 2017-11-21 | Palo Alto Research Center Incorporated | System and method for digital fabrication of graded, hierarchical material structures |
US9486960B2 (en) | 2014-12-19 | 2016-11-08 | Palo Alto Research Center Incorporated | System for digital fabrication of graded, hierarchical material structures |
US9854227B2 (en) | 2015-01-08 | 2017-12-26 | David G Grossman | Depth sensor |
DE102015100659B4 (de) | 2015-01-19 | 2023-01-05 | Fft Produktionssysteme Gmbh & Co. Kg | Bördelsystem, Bördeleinheit und Bördelverfahren für ein autarkes Bördeln |
US9718434B2 (en) | 2015-01-21 | 2017-08-01 | GM Global Technology Operations LLC | Tunable energy absorbers |
GB2534582A (en) | 2015-01-28 | 2016-08-03 | Jaguar Land Rover Ltd | An impact energy absorbing device for a vehicle |
US10589466B2 (en) | 2015-02-28 | 2020-03-17 | Xerox Corporation | Systems and methods for implementing multi-layer addressable curing of ultraviolet (UV) light curable inks for three dimensional (3D) printed parts and components |
US10124546B2 (en) | 2015-03-04 | 2018-11-13 | Ebert Composites Corporation | 3D thermoplastic composite pultrusion system and method |
US9616623B2 (en) | 2015-03-04 | 2017-04-11 | Ebert Composites Corporation | 3D thermoplastic composite pultrusion system and method |
US10449737B2 (en) | 2015-03-04 | 2019-10-22 | Ebert Composites Corporation | 3D thermoplastic composite pultrusion system and method |
US9731773B2 (en) | 2015-03-11 | 2017-08-15 | Caterpillar Inc. | Node for a space frame |
WO2016149400A1 (en) | 2015-03-16 | 2016-09-22 | Sabic Global Technologies B.V. | Fibrillated polymer compositions and methods of their manufacture |
US10065367B2 (en) | 2015-03-20 | 2018-09-04 | Chevron Phillips Chemical Company Lp | Phonon generation in bulk material for manufacturing |
US10040239B2 (en) | 2015-03-20 | 2018-08-07 | Chevron Phillips Chemical Company Lp | System and method for writing an article of manufacture into bulk material |
US9611667B2 (en) | 2015-05-05 | 2017-04-04 | West Virginia University | Durable, fire resistant, energy absorbing and cost-effective strengthening systems for structural joints and members |
US9809977B2 (en) | 2015-05-07 | 2017-11-07 | Massachusetts Institute Of Technology | Digital material assembly by passive means and modular isotropic lattice extruder system |
CA2929340A1 (en) | 2015-05-08 | 2016-11-08 | Raymond R. M. Wang | Airflow modification apparatus and method |
US9481402B1 (en) | 2015-05-26 | 2016-11-01 | Honda Motor Co., Ltd. | Methods and apparatus for supporting vehicle components |
US9796137B2 (en) | 2015-06-08 | 2017-10-24 | The Boeing Company | Additive manufacturing methods |
US9963978B2 (en) | 2015-06-09 | 2018-05-08 | Ebert Composites Corporation | 3D thermoplastic composite pultrusion system and method |
US10131132B2 (en) | 2015-07-31 | 2018-11-20 | The Boeing Company | Methods for additively manufacturing composite parts |
US10343330B2 (en) | 2015-07-31 | 2019-07-09 | The Boeing Company | Systems for additively manufacturing composite parts |
US10343355B2 (en) | 2015-07-31 | 2019-07-09 | The Boeing Company | Systems for additively manufacturing composite parts |
US10232550B2 (en) | 2015-07-31 | 2019-03-19 | The Boeing Company | Systems for additively manufacturing composite parts |
US10289875B2 (en) | 2015-07-31 | 2019-05-14 | Portland State University | Embedding data on objects using surface modulation |
US10201941B2 (en) | 2015-07-31 | 2019-02-12 | The Boeing Company | Systems for additively manufacturing composite parts |
CA2994415A1 (en) | 2015-08-14 | 2017-02-23 | Scrape Armor, Inc. | Vehicle protection apparatus |
EP3135442B1 (en) | 2015-08-26 | 2018-12-19 | Airbus Operations GmbH | Robot system and method of operating a robot system |
EP3135566B1 (de) | 2015-08-28 | 2020-11-25 | EDAG Engineering GmbH | Fahrzeugleichtbaustruktur in flexibler fertigung |
US9789548B2 (en) | 2015-08-31 | 2017-10-17 | The Boeing Company | Geodesic structure forming systems and methods |
US9957031B2 (en) | 2015-08-31 | 2018-05-01 | The Boeing Company | Systems and methods for manufacturing a tubular structure |
DE202015104709U1 (de) | 2015-09-04 | 2015-10-13 | Edag Engineering Gmbh | Mobile Kommunikationseinrichtung und Softwarecode sowie Verkehrsentität |
US9590699B1 (en) | 2015-09-11 | 2017-03-07 | Texas Instuments Incorporated | Guided near field communication for short range data communication |
JP6755316B2 (ja) | 2015-09-14 | 2020-09-16 | トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング | 少なくとも1つの物体の少なくとも1つの画像を記録するカメラ |
US9718302B2 (en) | 2015-09-22 | 2017-08-01 | The Boeing Company | Decorative laminate with non-visible light activated material and system and method for using the same |
WO2017062454A2 (en) | 2015-10-07 | 2017-04-13 | Velez Michael D | Flow alarm |
KR20180061344A (ko) | 2015-10-07 | 2018-06-07 | 더 리전트 오브 더 유니버시티 오브 캘리포니아 | 그래핀-기반의 다중-모드형 센서 |
DE202015105595U1 (de) | 2015-10-21 | 2016-01-14 | Fft Produktionssysteme Gmbh & Co. Kg | Absolutes robotergestütztes Positionsverfahren |
US10065270B2 (en) | 2015-11-06 | 2018-09-04 | Velo3D, Inc. | Three-dimensional printing in real time |
US10022912B2 (en) | 2015-11-13 | 2018-07-17 | GM Global Technology Operations LLC | Additive manufacturing of a unibody vehicle |
US9846933B2 (en) | 2015-11-16 | 2017-12-19 | General Electric Company | Systems and methods for monitoring components |
US10048769B2 (en) | 2015-11-18 | 2018-08-14 | Ted Selker | Three-dimensional computer-aided-design system user interface |
US9783977B2 (en) | 2015-11-20 | 2017-10-10 | University Of South Florida | Shape-morphing space frame apparatus using unit cell bistable elements |
EP3377314A1 (en) | 2015-11-21 | 2018-09-26 | ATS Mer, LLC | Systems and methods for forming a layer onto a surface of a solid substrate and products formed thereby |
US10436038B2 (en) | 2015-12-07 | 2019-10-08 | General Electric Company | Turbine engine with an airfoil having a tip shelf outlet |
US10286603B2 (en) | 2015-12-10 | 2019-05-14 | Velo3D, Inc. | Skillful three-dimensional printing |
US10343331B2 (en) | 2015-12-22 | 2019-07-09 | Carbon, Inc. | Wash liquids for use in additive manufacturing with dual cure resins |
CN115195104B (zh) | 2015-12-22 | 2023-12-05 | 卡本有限公司 | 用于用双重固化树脂的增材制造的双重前体树脂系统 |
US10289263B2 (en) | 2016-01-08 | 2019-05-14 | The Boeing Company | Data acquisition and encoding process linking physical objects with virtual data for manufacturing, inspection, maintenance and repair |
US10294552B2 (en) | 2016-01-27 | 2019-05-21 | GM Global Technology Operations LLC | Rapidly solidified high-temperature aluminum iron silicon alloys |
CN107009614B (zh) | 2016-01-28 | 2019-10-25 | 东莞市瑞迪三维电子科技有限公司 | 一种3d产品的打印方法及用于该方法中的3d打印机 |
WO2017142953A1 (en) | 2016-02-16 | 2017-08-24 | Board Of Regents, University Of Texas System | Mechanisms for constructing spline surfaces to provide inter-surface continuity |
WO2017143077A1 (en) | 2016-02-18 | 2017-08-24 | Velo3D, Inc. | Accurate three-dimensional printing |
US10336050B2 (en) | 2016-03-07 | 2019-07-02 | Thermwood Corporation | Apparatus and methods for fabricating components |
US9976063B2 (en) | 2016-03-11 | 2018-05-22 | The Boeing Company | Polyarylether ketone imide sulfone adhesives |
US10011685B2 (en) | 2016-03-11 | 2018-07-03 | The Boeing Company | Polyarylether ketone imide adhesives |
US10234342B2 (en) | 2016-04-04 | 2019-03-19 | Xerox Corporation | 3D printed conductive compositions anticipating or indicating structural compromise |
CA3016761A1 (en) | 2016-04-20 | 2017-10-26 | Arconic Inc. | Fcc materials of aluminum, cobalt, iron and nickel, and products made therefrom |
WO2017184778A1 (en) | 2016-04-20 | 2017-10-26 | Arconic Inc. | Fcc materials of aluminum, cobalt and nickel, and products made therefrom |
US10393315B2 (en) | 2016-04-26 | 2019-08-27 | Ford Global Technologies, Llc | Cellular structures with twelve-cornered cells |
CN113001987B (zh) | 2016-05-24 | 2023-12-26 | 戴弗根特技术有限公司 | 用于运输结构的增材制造的系统和方法 |
ES2873503T3 (es) | 2016-05-24 | 2021-11-03 | Airbus Operations Gmbh | Sistema y método para manipular un componente |
US10384393B2 (en) | 2016-05-27 | 2019-08-20 | Florida State University Research Foundation, Inc. | Polymeric ceramic precursors, apparatuses, systems, and methods |
CN109311070A (zh) | 2016-06-09 | 2019-02-05 | 戴弗根特技术有限公司 | 用于弧形件和节点的设计和制造的系统及方法 |
US10275564B2 (en) | 2016-06-17 | 2019-04-30 | The Boeing Company | System for analysis of a repair for a structure |
EP3263316B1 (en) | 2016-06-29 | 2019-02-13 | VELO3D, Inc. | Three-dimensional printing and three-dimensional printers |
US10406750B2 (en) | 2016-08-04 | 2019-09-10 | The Regents Of The University Of Michigan | Fiber-reinforced 3D printing |
US10254499B1 (en) | 2016-08-05 | 2019-04-09 | Southern Methodist University | Additive manufacturing of active devices using dielectric, conductive and magnetic materials |
US9933092B2 (en) | 2016-08-18 | 2018-04-03 | Deflecto, LLC | Tubular structures and knurling systems and methods of manufacture and use thereof |
US10359756B2 (en) | 2016-08-23 | 2019-07-23 | Echostar Technologies Llc | Dynamic 3D object recognition and printing |
US10179640B2 (en) | 2016-08-24 | 2019-01-15 | The Boeing Company | Wing and method of manufacturing |
US10220881B2 (en) | 2016-08-26 | 2019-03-05 | Ford Global Technologies, Llc | Cellular structures with fourteen-cornered cells |
US10392131B2 (en) | 2016-08-26 | 2019-08-27 | The Boeing Company | Additive manufactured tool assembly |
JP2018034398A (ja) * | 2016-08-31 | 2018-03-08 | 株式会社ミマキエンジニアリング | 三次元造形物 |
US10291193B2 (en) | 2016-09-02 | 2019-05-14 | Texas Instruments Incorporated | Combining power amplifiers at millimeter wave frequencies |
US10429006B2 (en) | 2016-10-12 | 2019-10-01 | Ford Global Technologies, Llc | Cellular structures with twelve-cornered cells |
JP2018065355A (ja) * | 2016-10-21 | 2018-04-26 | 株式会社ミマキエンジニアリング | 立体造形物及び立体造形物の造形方法 |
DK179387B1 (en) | 2016-10-31 | 2018-05-28 | Vkr Holding As | A method for attaching two window components |
US10214248B2 (en) | 2016-11-14 | 2019-02-26 | Hall Labs Llc | Tripartite support mechanism for frame-mounted vehicle components |
US9879981B1 (en) | 2016-12-02 | 2018-01-30 | General Electric Company | Systems and methods for evaluating component strain |
US10015908B2 (en) | 2016-12-07 | 2018-07-03 | The Boeing Company | System and method for cryogenic cooling of electromagnetic induction filter |
US10210662B2 (en) | 2016-12-09 | 2019-02-19 | Fyusion, Inc. | Live augmented reality using tracking |
US9996945B1 (en) | 2016-12-12 | 2018-06-12 | Fyusion, Inc. | Live augmented reality guides |
US10017384B1 (en) | 2017-01-06 | 2018-07-10 | Nanoclear Technologies Inc. | Property control of multifunctional surfaces |
DE102017200191A1 (de) | 2017-01-09 | 2018-07-12 | Ford Global Technologies, Llc | Glätten einer aus einem Kunststoff gebildeten Oberfläche eines Artikels |
US10071525B2 (en) | 2017-02-07 | 2018-09-11 | Thermwood Corporation | Apparatus and method for printing long composite thermoplastic parts on a dual gantry machine during additive manufacturing |
US10392097B2 (en) | 2017-02-16 | 2019-08-27 | The Boeing Company | Efficient sub-structures |
US10087320B2 (en) | 2017-02-17 | 2018-10-02 | Polydrop, Llc | Conductive polymer-matrix compositions and uses thereof |
US10337542B2 (en) | 2017-02-28 | 2019-07-02 | The Boeing Company | Curtain retention bracket |
US20180250744A1 (en) | 2017-03-02 | 2018-09-06 | Velo3D, Inc. | Three-dimensional printing of three-dimensional objects |
US10356395B2 (en) | 2017-03-03 | 2019-07-16 | Fyusion, Inc. | Tilts as a measure of user engagement for multiview digital media representations |
US10343725B2 (en) | 2017-03-03 | 2019-07-09 | GM Global Technology Operations LLC | Automotive structural component and method of manufacture |
US10068316B1 (en) | 2017-03-03 | 2018-09-04 | Fyusion, Inc. | Tilts as a measure of user engagement for multiview digital media representations |
US10440351B2 (en) | 2017-03-03 | 2019-10-08 | Fyusion, Inc. | Tilts as a measure of user engagement for multiview interactive digital media representations |
US20180281284A1 (en) | 2017-03-28 | 2018-10-04 | Velo3D, Inc. | Material manipulation in three-dimensional printing |
US10178800B2 (en) | 2017-03-30 | 2019-01-08 | Honeywell International Inc. | Support structure for electronics having fluid passageway for convective heat transfer |
US10639864B2 (en) | 2017-04-05 | 2020-05-05 | United Technologies Corporation | Surface geometry for adhesive bonding of polymer components |
WO2018187611A1 (en) | 2017-04-05 | 2018-10-11 | Aerion Intellectual Property Management Corporation | Solid modeler that provides spatial gradients of 3d cad models of solid objects |
US10200677B2 (en) | 2017-05-22 | 2019-02-05 | Fyusion, Inc. | Inertial measurement unit progress estimation |
US10313651B2 (en) | 2017-05-22 | 2019-06-04 | Fyusion, Inc. | Snapshots at predefined intervals or angles |
US10237477B2 (en) | 2017-05-22 | 2019-03-19 | Fyusion, Inc. | Loop closure |
US10343724B2 (en) | 2017-06-02 | 2019-07-09 | Gm Global Technology Operations Llc. | System and method for fabricating structures |
US10221530B2 (en) | 2017-06-12 | 2019-03-05 | Driskell Holdings, LLC | Directional surface marking safety and guidance devices and systems |
US10781846B2 (en) | 2017-06-19 | 2020-09-22 | Divergent Technologies, Inc. | 3-D-printed components including fasteners and methods for producing same |
US10391710B2 (en) | 2017-06-27 | 2019-08-27 | Arevo, Inc. | Deposition of non-uniform non-overlapping curvilinear segments of anisotropic filament to form non-uniform layers |
US10171578B1 (en) | 2017-06-29 | 2019-01-01 | Texas Instruments Incorporated | Tapered coax launch structure for a near field communication system |
US10425793B2 (en) | 2017-06-29 | 2019-09-24 | Texas Instruments Incorporated | Staggered back-to-back launch topology with diagonal waveguides for field confined near field communication system |
US10461810B2 (en) | 2017-06-29 | 2019-10-29 | Texas Instruments Incorporated | Launch topology for field confined near field communication system |
US10389410B2 (en) | 2017-06-29 | 2019-08-20 | Texas Instruments Incorporated | Integrated artificial magnetic launch surface for near field communication system |
US10572963B1 (en) | 2017-07-14 | 2020-02-25 | Synapse Technology Corporation | Detection of items |
US10605285B2 (en) | 2017-08-08 | 2020-03-31 | Divergent Technologies, Inc. | Systems and methods for joining node and tube structures |
DE202017104785U1 (de) | 2017-08-09 | 2017-09-07 | Edag Engineering Gmbh | Lager für Fahrerhaus eines Fahrzeugs |
DE202017105281U1 (de) | 2017-09-01 | 2017-09-11 | Fft Produktionssysteme Gmbh & Co. Kg | Fahrwagen zum Befördern und Positionieren eines Flugzeugbauteils |
DE102017120422B4 (de) | 2017-09-05 | 2020-07-23 | Edag Engineering Gmbh | Schwenkgelenk mit zusätzlichem Freiheitsgrad |
DE102017120384B4 (de) | 2017-09-05 | 2023-03-16 | Fft Produktionssysteme Gmbh & Co. Kg | Befüllvorrichtung zum Befüllen von Klimaanlagen mit CO2 |
DE202017105474U1 (de) | 2017-09-08 | 2018-12-14 | Edag Engineering Gmbh | Materialoptimierter Verbindungsknoten |
DE202017105475U1 (de) | 2017-09-08 | 2018-12-12 | Edag Engineering Gmbh | Generativ gefertigte Batteriehalterung |
US10421496B2 (en) | 2017-09-15 | 2019-09-24 | Honda Motor Co., Ltd. | Panoramic roof stiffener reinforcement |
US10356341B2 (en) | 2017-10-13 | 2019-07-16 | Fyusion, Inc. | Skeleton-based effects and background replacement |
US11786971B2 (en) | 2017-11-10 | 2023-10-17 | Divergent Technologies, Inc. | Structures and methods for high volume production of complex structures using interface nodes |
GB2571557B (en) | 2018-03-01 | 2020-09-30 | Dyson Technology Ltd | A method of mounting a rotor assembly to a frame of an electric motor |
US10382739B1 (en) | 2018-04-26 | 2019-08-13 | Fyusion, Inc. | Visual annotation using tagging sessions |
US10310197B1 (en) | 2018-09-17 | 2019-06-04 | Waymo Llc | Transmitter devices having bridge structures |
US12115583B2 (en) * | 2018-11-08 | 2024-10-15 | Divergent Technologies, Inc. | Systems and methods for adhesive-based part retention features in additively manufactured structures |
US20210154950A1 (en) | 2019-11-21 | 2021-05-27 | Divergent Technologies, Inc. | Fixtureless robotic assembly |
-
2018
- 2018-11-08 US US16/184,801 patent/US12115583B2/en active Active
-
2019
- 2019-11-08 CN CN201921920371.6U patent/CN212386012U/zh active Active
- 2019-11-08 JP JP2021524347A patent/JP2022511684A/ja active Pending
- 2019-11-08 EP EP19882138.1A patent/EP3877154A4/en active Pending
- 2019-11-08 WO PCT/US2019/060400 patent/WO2020097420A1/en unknown
- 2019-11-08 CN CN201911087428.3A patent/CN111216358A/zh active Pending
- 2019-11-08 KR KR1020217017018A patent/KR20210108365A/ko active Search and Examination
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111216358A (zh) * | 2018-11-08 | 2020-06-02 | 戴弗根特技术有限公司 | 增材制造结构中基于粘合剂零部件保持特征的系统和方法 |
US11806941B2 (en) | 2020-08-21 | 2023-11-07 | Divergent Technologies, Inc. | Mechanical part retention features for additively manufactured structures |
Also Published As
Publication number | Publication date |
---|---|
JP2022511684A (ja) | 2022-02-01 |
CN111216358A (zh) | 2020-06-02 |
EP3877154A4 (en) | 2022-09-07 |
US12115583B2 (en) | 2024-10-15 |
EP3877154A1 (en) | 2021-09-15 |
KR20210108365A (ko) | 2021-09-02 |
US20200147684A1 (en) | 2020-05-14 |
WO2020097420A1 (en) | 2020-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN212386012U (zh) | 增材制造结构及用于其中的零部件保持特征的系统 | |
US11699942B2 (en) | Hybrid additive manufacturing assisted prototyping for making electro-mechanical components | |
CN109306993B (zh) | 用于螺母板组装件的整体螺母保持支架和使用增材制造的制造方法 | |
US11548236B2 (en) | Methods and apparatuses for universal interface between parts in transport structures | |
US20220042534A1 (en) | Methods and apparatus for forming node to panel joints | |
WO2019118267A1 (en) | Apparatus and methods for connecting nodes to tubes in transport structures | |
KR102494559B1 (ko) | 공동-프린팅된 위치결정 피쳐를 갖는 노드 및 그 제조 방법 | |
KR102532839B1 (ko) | 공동-프린팅된 상호연결부를 갖는 노드 및 그 제조 방법 | |
CN110090940B (zh) | 用于共同铸造增材制造的接口节点的系统和方法 | |
CN111163884A (zh) | 用于桥接部件的系统和方法 | |
US11413686B2 (en) | Methods and apparatuses for sealing mechanisms for realizing adhesive connections with additively manufactured components | |
US11806941B2 (en) | Mechanical part retention features for additively manufactured structures | |
US20230080324A1 (en) | Assembling structures comprising 3d printed components and standardized components utilizing adhesive circuits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |