CN205803573U - 微型挤压丝锥复合涂层及其制备设备 - Google Patents

微型挤压丝锥复合涂层及其制备设备 Download PDF

Info

Publication number
CN205803573U
CN205803573U CN201620470726.6U CN201620470726U CN205803573U CN 205803573 U CN205803573 U CN 205803573U CN 201620470726 U CN201620470726 U CN 201620470726U CN 205803573 U CN205803573 U CN 205803573U
Authority
CN
China
Prior art keywords
composite coating
layer
utility
tic
thread forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201620470726.6U
Other languages
English (en)
Inventor
龚兴
张光星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XIAMEN YUANXING PRECISION TOOL CO Ltd
Original Assignee
XIAMEN YUANXING PRECISION TOOL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XIAMEN YUANXING PRECISION TOOL CO Ltd filed Critical XIAMEN YUANXING PRECISION TOOL CO Ltd
Priority to CN201620470726.6U priority Critical patent/CN205803573U/zh
Application granted granted Critical
Publication of CN205803573U publication Critical patent/CN205803573U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

本实用新型提供了一种微型挤压丝锥复合涂层,包括基体,还包括自内向外依次设置的N‑Fe固溶扩散层、纯Ti打底层、及若干层TiN‑TiC‑TiCN交替层。本实用新型还提供了所述复合涂层的制备设备,解决了现有丝锥基体强度不足、表面耐磨性欠佳以及丝锥表面自润滑和导热不理想的技术问题。本实用新型复合涂层的丝锥整体强度和表面加工性能大幅提高,平均寿命提高3倍;本实用新型复合涂层制备设备兼具等离子渗氮、碳‑氮共渗以及沉积纳米多层多元复合涂层的功能,可使得复合涂层的制备实现同炉、顺序完成。总之本实用新型复合涂层设计合理,具有较高的耐磨性能,且经久耐用,本实用新型复合涂层制备设备结构简单,使用方面,使用效果好。

Description

微型挤压丝锥复合涂层及其制备设备
技术领域
本实用新型涉及微型挤压丝锥表面处理技术领域,特别是一种微型挤压丝锥复合涂层及其制备设备。
背景技术
挤压丝锥是利用金属塑性变形原理而加工内螺纹的一种新型螺纹刀具,挤压丝锥挤压内螺纹是无屑加工工艺,特别适用于强度较低、塑性较好的铜合金和铝合金,也可用于不锈钢和低碳钢等硬度低、塑性大的材料攻丝。微型机用挤压丝锥主要用于IT行业、钟表行业的精细螺纹加工,而这两个行业主要加工材料以SUS304、SUS316、SUS301等为主的不锈钢材料,此类材料普遍存在粘性大,导热性差以及加工硬化现象,导致丝锥加工螺纹时切削热聚积,切削温升较快,从而造成丝锥磨损严重,加工出的螺纹表面粗糙度差,使用寿命偏低,尤其当丝锥的加工进给量加大时,丝锥基体的表面强度不足,硬度不够,润滑性较差的特性尤为明显,丝锥一旦出现磨损,丝锥的加工阻力急剧加大,极大可能导致丝锥断裂,且丝锥磨损后,表面也变得粗糙,刀口极易粘附加工材料,产生积屑瘤,造成热量聚积,导致丝锥刀口崩裂。
由此可见现有的微型挤压丝锥存在着基体强度不足、表面耐磨性欠佳以及丝锥表面自润滑和导热不理想的缺陷,一种新型的微型挤压丝锥的表面复合涂层及制备设备亟需研发问世。
发明内容
为了克服现有技术的不足,本实用新型提供了一种微型挤压丝锥复合涂层及其制备设备,采用等离子体辉光渗氮以及PVD物理气相沉积技术,沉积TiN-TiC-TiCN多层复合涂层,解决了现有丝锥基体强度不足、表面耐磨性欠佳以及丝锥表面自润滑和导热不理想的技术问题。
本实用新型解决其技术问题所采用的技术方案是:
首先,本实用新型提供一种微型挤压丝锥复合涂层,包括基体,还包括自内向外依次设置的N-Fe固溶扩散层、纯Ti打底层、及若干层TiN-TiC-TiCN交替层。
作为一种举例说明,所述TiN-TiC-TiCN交替层为3~5层,优选为4层。
作为一种举例说明,所述N-Fe固溶扩散层厚度为12~18μm ,优选15μm;所述纯Ti打底层厚度为0.03~0.07μm,优选为0.05μm;所述TiN-TiC-TiCN交替层中TiN层、TiC层、TiCN层的厚度均为0.12~0.18μm,优选为0.15μm。
本实用新型还提供一种上述微型挤压丝锥复合涂层的制备设备,包括真空炉体和与之相连的真空系统、工作气体控制系统及加热控温系统,还包括设置在真空炉体内的固定有工件的工装转架,所述真空炉体内还配置有两对相向分布的平面溅射靶,真空炉体上配置有若干电弧靶,所述工件、平面溅射靶及电弧靶分别与偏压电源、溅射靶材电源、电弧靶材蒸发电源相连接。
作为一种举例说明,所述工装转架包括相互平行的主轴、副轴及设置在副轴上的基盘,所述基盘上固定有若干工件,所述副轴可自转及绕主轴公转,所述工件上还连接一可使其自转的自转装置。
作为一种举例说明,所述电弧靶的数量为12个,在真空炉体内侧面呈螺旋形分布。
作为一种举例说明,所述工作气体控制系统包括若干并列设置的气瓶,所述气瓶通过输气管与混气盒相连,混气盒通过出气管与设置在真空炉体内的若干并列设置的布气管相连,所述输气管上依次设置有气体减压阀、气体稳压阀及质量流量控制计。
本实用新型的积极效果:
(1)本实用新型N-Fe固溶扩散层的设置在提高丝锥抗疲劳和抗蠕变变形强度的同时,可更好提高PVD沉积复合涂层的结合强度。
(2)本实用新型的TiN-TiC-TiCN纳米多层复合涂层,可有效解决加工SUS304、SUS316、SUS301等不锈钢的精细螺纹加工难题。
(3)本实用新型丝锥基层表面为15μm的单一扩散层(N-Fe固溶体),表面显微硬度Hv≥700,渗层至最外层依次为纯Ti、TiN-TiC-TiCN交替的多层复合组织结构,其中TiN为应力梯度缓释层,TiC为高强度支撑层,TiCN为耐磨层和润滑层,兼具TiN的韧性和TiC的高硬度和低摩擦系数。
(4)本实用新型涂层表面显微硬度为Hv3300Kg力/cm2,涂层表面摩擦系数为0.20,丝锥的整体强度和表面加工性能大幅提高,平均寿命提高3倍。
(5)本实用新型复合涂层制备设备兼具等离子渗氮、碳-氮共渗以及沉积纳米多层多元复合涂层的功能,可使得复合涂层的制备实现同炉、顺序完成。
总之本实用新型所述复合涂层,设计合理,具有较高的耐磨性能,且经久耐用,本实用新型复合涂层制备设备结构简单,使用方面,使用效果好。
附图说明
图1是本实用新型所述复合涂层的结构示意图;
图2是本实用新型所述制备设备的结构示意图;
图3是本实用新型所述工作气体控制系统的结构示意图。
具体实施方式
下面结合附图对本实用新型的优选实施例进行详细说明。
参照图1,本实用新型优选实施例提供一种微型挤压丝锥复合涂层,包括基体1,还包括自内向外依次设置的N-Fe固溶扩散层2、纯Ti打底层3、及若干层TiN-TiC-TiCN交替层,即TiN层4、TiC层5、TiCN层6组成的交替层。
所述TiN-TiC-TiCN交替层为4层。
所述N-Fe固溶扩散层厚度为15μm;所述纯Ti打底层厚度为0.05μm;所述TiN-TiC-TiCN交替层中TiN层、TiC层、TiCN层的厚度均为0.15μm。
参照图2和图3,本实施例还提供一种上述微型挤压丝锥复合涂层的制备设备,包括真空炉体7和与之相连的真空系统12、工作气体控制系统8及加热控温系统,还包括设置在真空炉体7内的固定有工件13的工装转架9,所述真空炉体7内还配置有两对相向分布的平面溅射靶10,真空炉体1上配置有若干电弧靶11,所述工件13、平面溅射靶10及电弧靶11分别与偏压电源14、溅射靶材电源、电弧靶材蒸发电源相连接。
优选的,所述工装转架9包括相互平行的主轴、副轴及设置在副轴上的基盘,所述基盘上固定有若干工件,所述副轴可自转及绕主轴公转,所述工件上还连接一可使其自转的自转装置。
所述电弧靶的数量为12个,在真空炉体内侧面呈螺旋形分布。
所述工作气体控制系统包括若干并列设置的气瓶15,分别为氢气瓶、氩气瓶、氮气瓶、乙炔气瓶,所述气瓶15通过输气管与混气盒19相连,混气盒19通过出气管与设置在真空炉体7内的若干并列设置的布气管20相连,所述输气管上依次设置有气体减压阀16、气体稳压阀17及质量流量控制计18。
利用上述制备设备制备所述微型挤压丝锥复合涂层的制备工艺,其步骤为:
步骤[1] 丝锥基体材料选择与热处理:基体材料采用M42粉末冶金高速钢,经1160℃真空加热,并经-196℃深冷处理后,560℃回火处理,硬度HRC66-67,经螺纹磨床磨制成型;
步骤[2] 磨制成型丝锥表面预处理:将丝锥装挂于清洗篮上,浸入带防锈蚀功能的金属清洗液中,超声波清洗20分钟;等离子水漂洗干净后经无水乙醇脱水,用压缩空气吹干,吹干后的丝锥装夹于刀具专用自动钝化机上卡套钝化10分钟,去毛刺、氧化膜、活化基体表面,可有效提高渗氮效果和PVD涂层结合强度;
步骤[3] 清洗线清洗:钝化后的丝锥经超声波脱蜡、超声波除油、去离子水漂洗、去离子水超声波清洗、热水漂洗、无水乙醇脱水,最后经烘箱热风烘干;
步骤[4] 等离子体渗氮:
a. 将经步骤(3)处理后的丝锥装卡在带有基盘公转、基盘自传和基盘上的工件二次自转的工装转架上,预设公转和自转速度均为1.5转/分钟,开始抽真空,当气压达到5*10-1Pa时,加热至530℃且至少保温20分钟,气压达到5*10-3Pa时,打开氩气质量流量控制计,通入60ml/分钟的氩气,调节截流阀,使气压稳定在2*100Pa,打开偏压电源,频率40KHz,占空比60%,偏压600V,辉光清洗丝锥表面,稳定时间30分钟;
b. 辉光清洗结束后,关闭氩气,通入流量分别为300ml/分钟和60ml/分钟的氮气和氢气,调节节流阀,使气压稳定在1.3*103Pa,偏压电源频率调至17KHz,占空比80%,偏压600V,进行等离子体辉光渗氮,时间30分钟,形成12~18μm 厚的N-Fe固溶扩散层;
步骤[5] 纳米多层多元复合涂层沉积:
a. 渗氮完成后,将温度降到350℃,调节节流阀并将真空抽至5*10-3Pa;
b. Ti离子轰击:打开氩气质量流量控制计通入30ml/分钟氩气,调节截流阀,使气压稳定在5*10-1Pa,开启偏压电源,频率40KHz,占空比60%,偏压在五分钟内从600V降至200V,电弧靶电流在五分钟内从120A降至70A;
c. 纯Ti打底:Ti离子轰击结束后沉积15分钟纯Ti;
d. 沉积TiN:逐渐减少氩气流量,十分钟内关闭,打开氮气质量流量控制控制计,通入氮气,十分钟内加到180ml/分钟,调节截流阀,使气压稳定在6.5*10-1Pa,然后沉积20分钟TiN;
e. 沉积TiC:打开乙炔质量流量控制计,十分钟内逐渐到150ml/分钟,同时逐渐减少氮气流量,十分钟内降到0,调节节流阀,使气压稳定在4.0*10-1Pa,然后沉积20分钟TiC;
f. 沉积TiCN:逐渐调节氮气流量,十分钟内加到90ml/分钟,同时逐渐减少乙炔流量,十分钟内降到90ml/分钟,气压稳定在4*10-1Pa,沉积20分钟TiCN;
j. 重复步骤d、e、f,直至涂层达到所需厚度后随炉冷却至120℃以下出炉。
步骤[6] 将冷却至室温的丝锥装夹于全自动钝化、抛光机卡套上,抛光10分钟,去除涂层中的大液滴和尖角处的积瘤,净化涂层表面(磨料采用300M金刚石粉)。
本实用新型渗、镀前预处理以及PVD涂层后处理设备为刀具专用全自动钝化机,转速可调,正、反方向可调,上、下振幅可调,时间可调,预处理选用核桃粉作为磨料,可达到去毛刺、氧化膜、粗化及活化丝锥表面的作用,不仅提高PVD沉积涂层时与基体的结合强度,也避免沉积涂层过程中因尖角处的放电产生涂层积瘤。
本实用新型采用的超声波清洗线具有超声波脱蜡、鼓泡、超声波除油、去离子水漂洗、超声波纯水清洗、热水漂洗、热风烘干等功能,脱蜡剂和金属清洗剂均为绿色环保无污染水剂。
本实用新型等离子渗氮和PVD沉积纳米多层多元复合涂层设备为自主研发的磁控溅射-多弧离子镀复合沉积设备(见附图2),该设备兼具等离子渗氮、碳-氮共渗以及沉积纳米多层多元复合涂层的功能,可实现同炉、顺序完成。
本实用新型经上机实际使用后,比未经过渗、镀复合强化处理的同型号丝锥使用加工效率提高30%,且无明显蠕性变形和粘刀现象,排屑顺畅,使用寿命提高3倍。
以上所述的仅为本实用新型的优选实施例,所应理解的是,以上实施例的说明只是用于帮助理解本实用新型的方法及其核心思想,并不用于限定本实用新型的保护范围,凡在本实用新型的思想和原则之内所做的任何修改、等同替换等等,均应包含在本实用新型的保护范围之内。

Claims (6)

1.一种微型挤压丝锥复合涂层,包括基体,其特征在于:还包括自内向外依次设置的N-Fe固溶扩散层、纯Ti打底层、及若干层TiN-TiC-TiCN交替层;所述TiN-TiC-TiCN交替层为3~5层,所述N-Fe固溶扩散层厚度为12~18μm;所述纯Ti打底层厚度为0.03~0.07μm;所述TiN-TiC-TiCN交替层中TiN层、TiC层、TiCN层的厚度均为0.12~0.18μm。
2.根据权利要求1所述的一种微型挤压丝锥复合涂层,其特征在于:所述TiN-TiC-TiCN交替层为4层,所述N-Fe固溶扩散层厚度为15μm;所述纯Ti打底层厚度为0.05μm;所述TiN-TiC-TiCN交替层中TiN层、TiC层、TiCN层的厚度均为0.15μm。
3.一种权利要求1所述微型挤压丝锥复合涂层的制备设备,包括真空炉体和与之相连的真空系统、工作气体控制系统及加热控温系统,其特征在于:还包括设置在真空炉体内的固定有工件的工装转架,所述真空炉体内还配置有两对相向分布的平面溅射靶,真空炉体上配置有若干电弧靶,所述工件、平面溅射靶及电弧靶分别与偏压电源、溅射靶材电源、电弧靶材蒸发电源相连接。
4.根据权利要求3所述的一种微型挤压丝锥复合涂层的制备设备,其特征在于:所述工装转架包括相互平行的主轴、副轴及设置在副轴上的基盘,所述基盘上固定有若干工件,所述副轴可自转及绕主轴公转,所述工件上还连接一可使其自转的自转装置。
5.根据权利要求3所述的一种微型挤压丝锥复合涂层的制备设备,其特征在于:所述电弧靶的数量为12个,在真空炉体内侧面呈螺旋形分布。
6.根据权利要求3所述的一种微型挤压丝锥复合涂层的制备设备,其特征在于:所述工作气体控制系统包括若干并列设置的气瓶, 所述气瓶通过输气管与混气盒相连,混气盒通过出气管与设置在真空炉体内的若干并列设置的布气管相连,所述输气管上依次设置有气体减压阀、气体稳压阀及质量流量控制计。
CN201620470726.6U 2016-05-23 2016-05-23 微型挤压丝锥复合涂层及其制备设备 Active CN205803573U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620470726.6U CN205803573U (zh) 2016-05-23 2016-05-23 微型挤压丝锥复合涂层及其制备设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620470726.6U CN205803573U (zh) 2016-05-23 2016-05-23 微型挤压丝锥复合涂层及其制备设备

Publications (1)

Publication Number Publication Date
CN205803573U true CN205803573U (zh) 2016-12-14

Family

ID=57500185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620470726.6U Active CN205803573U (zh) 2016-05-23 2016-05-23 微型挤压丝锥复合涂层及其制备设备

Country Status (1)

Country Link
CN (1) CN205803573U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106065460A (zh) * 2016-05-23 2016-11-02 圆兴(厦门)精密工具有限公司 微型挤压丝锥复合涂层及其制备工艺和制备设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106065460A (zh) * 2016-05-23 2016-11-02 圆兴(厦门)精密工具有限公司 微型挤压丝锥复合涂层及其制备工艺和制备设备
CN106065460B (zh) * 2016-05-23 2018-11-30 圆兴(厦门)精密工具有限公司 微型挤压丝锥复合涂层及其制备工艺和制备设备

Similar Documents

Publication Publication Date Title
CN106065460B (zh) 微型挤压丝锥复合涂层及其制备工艺和制备设备
CN103805996B (zh) 一种金属材料表面先镀膜再渗氮的复合处理方法
CN104131250B (zh) 一种梯度成分设计的纳米复合刀具涂层及其制备方法
CN104162662B (zh) 表面改性的非晶合金涂层及其制备方法
CN107653441B (zh) 一种在塑胶上生产pvd防菌膜的方法
CN107130222A (zh) 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法
CN101307428A (zh) 磁控溅射与多弧离子镀复合式真空镀膜方法
CN102962447B (zh) 一种碳化钛金属陶瓷粉末及激光熔覆该粉末的方法
CN103522627B (zh) 一种阀门密封件表面的复合涂层及其制备方法
CN105908126B (zh) 一种高Al含量的AlTiN复合涂层及制备方法
CN102899613B (zh) AlTiN高速切削刀具涂层的制备方法
CN105603424B (zh) 一种Si改性的β‑(Ni,Pt)Al涂层及其制备方法
CN106939404B (zh) 一种纳米α-氧化铝/氧化铬复合涂层及其制备方法
CN105088129B (zh) 微纳织构化氮化钛固体润滑膜的制备方法
CN104862649A (zh) 一种钛合金表面梯度Ni/TiN复合改性层的制备方法
CN205803573U (zh) 微型挤压丝锥复合涂层及其制备设备
CN105586573B (zh) 一种可调制多层复合薄膜的制备方法
CN104004998A (zh) 一种钛合金表面钛基非晶涂层的制备方法
JP5528559B2 (ja) 高温水蒸気におけるt91/p91鋼の耐酸化性を高める前処理方法
CN103552311A (zh) 一种用于单晶高温合金的防护涂层及其制备方法
CN108998794A (zh) 一种Re-Si共改性铝化物涂层及其制备方法
CN110819931B (zh) 一种粉芯焊丝及其制备方法和应用、多孔涂层及其制备方法
CN111876727A (zh) 一种碳钢表面无渗剂的渗铝方法
CN105154880B (zh) 汽轮机转子轮槽铣刀表面TiCN多层复合涂层制备工艺
CN103343313B (zh) 一种提高输电线路悬垂金具耐磨性的方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant