CN1981031A - 调节性t细胞及它们在免疫治疗和抑制自身免疫反应中的应用 - Google Patents

调节性t细胞及它们在免疫治疗和抑制自身免疫反应中的应用 Download PDF

Info

Publication number
CN1981031A
CN1981031A CNA2005800145368A CN200580014536A CN1981031A CN 1981031 A CN1981031 A CN 1981031A CN A2005800145368 A CNA2005800145368 A CN A2005800145368A CN 200580014536 A CN200580014536 A CN 200580014536A CN 1981031 A CN1981031 A CN 1981031A
Authority
CN
China
Prior art keywords
cell
treg
inhibition
people
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800145368A
Other languages
English (en)
Other versions
CN1981031B (zh
Inventor
B·R·布莱泽尔
C·朱恩
W·R·歌德弗雷
R·G·卡洛尔
B·莱文
J·L·芮雷
P·泰勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Arkansas
University of Pennsylvania Penn
Original Assignee
University of Arkansas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Arkansas filed Critical University of Arkansas
Publication of CN1981031A publication Critical patent/CN1981031A/zh
Application granted granted Critical
Publication of CN1981031B publication Critical patent/CN1981031B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4621Cellular immunotherapy characterized by the effect or the function of the cells immunosuppressive or immunotolerising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/46434Antigens related to induction of tolerance to non-self
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/122Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells for inducing tolerance or supression of immune responses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/31Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/38Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/51B7 molecules, e.g. CD80, CD86, CD28 (ligand), CD152 (ligand)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/515CD3, T-cell receptor complex

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Transplantation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

基于调节性T细胞(Treg细胞)与细胞毒性T细胞反应的抑制或预防之间的密切关系,提供了体外生产经活化并培养增殖的、分离的CD+CD25+抑制性Treg细胞的方法,用于预防或抑制宿主(特别是人类)体内的免疫反应,包括自动免疫反应。由此生成的体外培养增殖的Treg细胞提供了足量(而非少量)具有长期抑制能力的细胞,可供治疗用途,包括预防、抑制、阻断或限制移植组织在人体或其他动物宿主体内的排斥,或抵制移植物抗宿主疾病。还提供了利用体外培养增殖的Treg细胞的治疗和免疫抑制方法,用于人类治疗,以及用于研究的高效方法。

Description

调节性T细胞及它们在免疫治疗和抑制自身免疫反应中的应用
技术领域
本发明涉及调节性T细胞和长期、培养扩增、活化以及在免疫治疗和抑制免疫反应(包括移植物抗宿主疾病,GVHD)中使用该细胞的方法。
背景技术
长期以来,抑制细胞被认为在癌症发展中起作用(Dye等人,J.Exp.Med.154:1033-1042(1981))。事实上,T调节细胞的活性抑制作用在下调T细胞对外源和自身抗原反应中起着重要的作用。
T细胞是一类淋巴细胞,具有以基因重排结果而形成的特异性T细胞受体(TCR)。T细胞具有各种作用,由T细胞不同亚基的分化来完成,可由基因表达的分离模式来识别。几种主要T细胞亚基是基于受体表达而被识别,如TCR-α/β、TCRγ/Δ和未变异的自然杀伤细胞。其他T细胞亚基由表面分子和其分泌的细胞因子来确定。例如,T辅助细胞(CD4细胞)分泌细胞因子,帮助B细胞和细胞毒性T细胞来存活并实现效应因子作用。细胞毒性T细胞(CTL)通常是CD8细胞,它们专门杀伤靶细胞,如感染细胞或肿瘤细胞。自然杀伤(NK)细胞涉及T细胞,尽管它们与T细胞共有某些功能并能够分泌细胞因子并杀伤某些种类的靶细胞,但是它们没有T细胞受体(TCR),且生命期短。
人和鼠的外周血液包含小量的T淋巴细胞,表现为T调节性表型(“Treg”),即,对CD4和CD25抗原都呈阳性(即,那些CD4+T细胞也明显对CD25呈阳性)。该细胞首先在小鼠中得到鉴定,构成淋巴结和脾脏CD4+T细胞数量的6-10%,这个数量的CD4+CD25+细胞大约只是人外周血液单核细胞(PBMC)的5-10%,或是CD4+T细胞的2-7%,尽管一些供体表现出更加不同的CD4+和CD25+细胞数量。大约有1-2%的人外周血液PBMC同时是CD4阳性(CD4+)和CD25阳性(CD25+)的细胞。
有几种Treg细胞的亚基(Bluestone等人,Nature Rev.Immunol.3:253(2003))。调节细胞的一种亚基形成于胸腺。胸腺衍生的Treg细胞功能是通过一种细胞因子非依赖性的机制,涉及细胞与细胞的接触(Shevach,Nature Rev.Immunol 2:389(2002))。它们对自身耐受性的诱导和维持以及对自身免疫的预防来说是必需的(Shevach,Annu.Rev.Immunol.18:423-449(2000);Stephens等人,2001;Taams等人,2001;Thornton等人,1998;Salomon等人,Immunity 12:431-440(2000);Sakaguchi等人,Immunol.Rev.182:18-32(2001))。这些专门的调节细胞防止那些逃过胸腺清除的自身反应性T细胞的活化和繁殖或者识别胸腺外抗原,因而它们对内环境稳定和免疫调节是至关重要的,同时也保护宿主抵制自身免疫的发展(Suri-Payer等人,J.Immunol.157:1799-1805(1996);Asano等人,J.Exp.Med.184:387-396(1996);Bonomo等人,J.Immunol.154:6602-6611(1995);Willerford等人,Immunity 3:521-530(1995);Takahashi等人,Int.Immunol.10:1969-1980(1998);Salomon等人,Immunity 12:431-440(2000);Read等人,J.Exp.Med.192:295-302(2000))。因此,免疫调节性CD4+CD25+T细胞经常被称为“专业抑制细胞”。
但是,Treg细胞也能通过成熟的外周CD4+T细胞的活化而生成。研究表明外周衍生Treg细胞通过生成免疫抑制性细胞因子来介导其抑制活性,如转化生长因子β(TGF-β)和IL-10(Kingsley等人,J.Immunol.168:1080(2002);Nakamura等人,J.Exp.Med.194:629-644(2001))。抗原特异性活化之后,这些Treg细胞能够非特异性的抑制CD4+或CD25+T细胞的增殖(Baecher-Allan等人在小剂量固定的抗CD3mAb基共培养抑制试验中通过FACS分类证实,J.Immunol.167(3):1245-1253(2001))。
研究表明,当与自身抗原呈递细胞(APC)共培养,但只通过直接接触的方式时,CD4+CD25+细胞能够抑制T细胞的抗CD3刺激(Stephens等人,Eur.J.Immunol.31:1247-1254(2001);Taams等人,Eur.J.Immunol.31:1122-1131(2001);Thornton等人,J.Exp.Med.188:287-296(1998))。但是,小鼠体内的这种抑制作用不能克服固定化的抗CD3或抗CD3/CD28的直接T细胞刺激(Thornton等人,1998)。之前的报道中,从外周血液分离的人CD4+CD25+T细胞需要预活化来表现其抑制特性,由于调节细胞的直接培养物一般不足以介导抑制作用(Dieckmann等人,J.Exp.Med.193:1303-1310(2001))。其他人也已经发现,人CD4+CD25+T细胞的抑制特性是活化依赖性的,而非抗原特异性(Jonuleit等人,J.Exp.Med.193:1285-1294(2001);Levings等人.,J.Exp.Med.193(11):1295-1302(2001);Yamagiwa等人,J.Immunol.166:7282-7289(2001)),并证明了细胞内存在的细胞毒性T淋巴细胞抗原-4(CTLA-4)的组成性表达(Jonuleit等人,2001;Read等人,J.Exp.Med.192:295-302(2000);Yamagiwa等人,2001;Takahashi等人,J.Exp.Med.192:303-310(2000))。另外,在T细胞受体介导的刺激后,CD4+CD25+T细胞抑制了由同种抗原和分裂素对原始CD4+CD25+T细胞的活化(Jonuleit等人,2001)。
鼠和人的Treg细胞都表达CTLA-4,但是,CTLA-4在耐受诱导中的作用以及它赋予调节性CD4+CD25+T细胞抑制功能的能力还存在争议。CTLA-4(已知为CD152)是CD28的同系物,是CD80和CD86配基的一个受体。CTLA-4以一种抗原及TCR依赖的方式抑制T细胞反应。CTLA-4功能受损的T细胞具有增强的繁殖和细胞因子生成能力。相反,提高的CTLA-4功能在体外和体内导致细胞因子分泌的抑制和细胞周期进程的损伤。在鼠中,Treg细胞的抑制功能不需要CTLA-4,这与人体中需要的情况正好相反。这可以通过最近的发现得到一些解释,发现存在多种形式的CTLA-4,并在鼠和人之间有所不同。
最近的一项研究也表明Treg细胞在体内广泛生长(Tang,J.Immunol.171:3348(2003)),而其他研究表明治疗性癌症疫苗的功效可以通过去除CD4+CD25+T细胞而得到提高(Sutmuller等人.,J.Exp.Med.194:823-832(2001))。研究还表明调节细胞的清除在不同于无反应动物中引起了提高的肿瘤特异性免疫反应和肿瘤消除(Onizuka等人.,Cancer Res.59:3128-3133(1999);Shimizu等人.,J.Immunol.163:5211-5218(1999))。通过新生期胸腺切除而致使CD4+CD25+缺陷的易感小鼠表现出广谱的组织特异性自身免疫,可以通过在其10-14天时注入CD4+CD25+T细胞来预防(Suri-Payer等人,J.Immunol.160:1212-1218(1998))。这项研究还发现,CD4+CD25+T细胞能够抑制由自身抗原特异性T细胞克隆诱导的自身免疫。据报道,CD4+CD25-T细胞转入裸小鼠还导致了自身免疫性疾病的发生,这可以通过CD4+CD25+T的共转移来预防,利用首先消除了CD25+细胞的淋巴细胞(Sakaguchi等人,J.Immunol.155:1151-1164(1995))。但是,数据还表明CD4+CD25+细胞的作用不限于自身耐受和自身免疫预防。几项研究已经说明了CD4+CD25+T细胞在同种反应或移植中的作用,报道CD4+CD25+T细胞在体外和体内都能预防同种移植排斥(Hara等人,J.Immunol.166:3789-3796(2001);Taylor等人,J.Exp.Med.193:1311-1318(2001))。人T细胞繁殖的同种刺激也被CD4+CD25+T细胞阻断(Yamagiwa等人,2001),而Wood的实验室已经表明CD4+CD25+T细胞抑制混合淋巴细胞反应(MLR),但只适用于同种抗原通过间接的,而非直接的,同种识别途径的情况(Hara等人,2001)。直接的抗原呈递很可能发生于调节性T细胞和抗CD3/28刺激反应T细胞之间,因为这类CD4+CD25+细胞是高度清除的专业APC。
该发明人已经表明CD4+CD25+T细胞高比例存在于非小细胞肺癌(NSCLC)患者的肿瘤浸润淋巴细胞中(Woo等人,Cancer Res.61:4766-4772(2001)),并且表明CD4+CD25+细胞对于通过共刺激阻断进行的同种抗原耐受的体外诱导来说是必需的(Taylor等人,J.Exp.Med.193:1311-1318(2001)。但是,大多数文献说明免疫系统对外周实体肿瘤处于无知状态,因而是无反应性的(Ochsenbein,等人,Nature411:1058-1064(2001);Staveley-O′Carroll等人,Proc.Natl.Acad.Sci.USA 95:1178-1183(1998))。解释CD4+CD25+T细胞抑制自体和同种异体的T细胞繁殖的差异化能力是很复杂的。因此,CD4+CD25+T细胞在人肿瘤中的作用或在预防宿主产生对自体抗原(如肿瘤抗原)免疫反应过程中的任何作用至今还是未知的。
文献已经报道了Treg在体外的再生障碍性(Sakaguchi,Ann.Rev.Immunol. 22:531(2004))。Trenado等人提供了体外活化并扩增的CD4+CD25+调节细胞在一种体内疾病动物模型中的治疗效果的首次评价(Trenado等人,J.Clin.Invest.112(11):1688-1696(2002))。在那个环境下,体外活化并扩增的供体CD4+CD25+细胞的融合显著抑制了快速致死GVHD,但是,这些数据只针对小鼠,而不是在人体中。另外,在确定实验条件的鼠研究中,尽管新分离或培养的Treg细胞已经能够抑制GVHD,但是移植物抗白血病作用(GVL活性)被允许(Trenado等人,2002;Jones等人.,Biol.Blood Marrow Transplant9(4):243-256(2003);Edinger等人,Nat.Med.9(9):1144-1150(2003))作为免疫重建(Trenado等人,2002)。
但是,人血液在组成上完全不同于鼠的血液,这意味着如果没有多方面的实验,鼠的研究不能转变为人细胞中的等价反应。人血液含有记忆细胞(~50%),可以是CD25暗淡细胞,并与CD4+CD25+抑制细胞群重叠,使Treg细胞非常难于纯化。通过比较,CD25暗淡细胞只以最低量存在于啮齿类动物,或者在幼小的无病原体的小鼠(大多数鼠研究中利用的条件)中完全不存在。人体中,基于CD25选择的Treg纯化(唯一已知的循环抑制细胞表面标志物,因为CTLA-4不是位于新生细胞的表面)导致了Treg细胞的富集,但这不足以完全纯化。部分纯化的抑制细胞可以暂时证明短期培养/活化后的抑制作用,但是这些细胞因染有常规T细胞而快速生长过度。
因此,还没有报道与Trenado等人的发现相当的关于人类细胞的结果。那些显示了CD4+CD25+细胞繁殖的公开报道没能发现抑制功能,在本发明之前,没有人能够获得人类Treg细胞的体外大量增殖,并同时保持GMP条件。只有一份在先公开描述了人类CD4+CD25+细胞的增殖(Levings等人,2001)。然而,在这篇文献中,只有一张图显示了抑制功能,且只显示了一种温和的效果。抑制细胞与响应细胞的比例为1∶1,只记录有大约60%-65%的繁殖抑制作用,这要低于使用鼠Treg细胞所观察到的一般效果。因此,该报道的抑制作用的强度是如此之小,以至于可能产生于非特异性作用(如,生长因子消耗、过度密集、来自抗原呈递细胞的替换等等)。另外,该培养物只被Levings等人短期保持(只有14天),这些细胞极可能是调节细胞和常规T细胞的混合培养物。
为培养Treg细胞,Leavings等人使用了JY淋巴样干细胞(EBV病毒性转化淋巴样干细胞系),用含有同种PBMC喂养细胞混合物的可溶性抗CD3(1μg/ml)培养。根据他们的报道,CD4+CD25+细胞的繁殖采用了两步磁珠的实验设计,其中,首先使用抗CD8、CD11b、CD16、CD19、CD36和CD56的抗体来清除非T细胞和CD8型T细胞,这使得到的产品不适合人体中医疗用途。然后,选择CD25阳性细胞。
而且,虽然Leavings等人报道了90%纯度的Treg细胞,但是没有公开有关严格性(stringency)的内容。这是有问题的,因为很高水平的严格性是绝对关键的,对于分离足够纯(CD25+)的人细胞而用于抑制细胞系的生成,在本发明之前的在先技术中没有讨论或评价这样的发现。但是,正如下文将要表明的,其他用于生成抑制细胞系的分离和增殖方法的不足已经显著阻碍了关于人Treg细胞研究的进展。因此,之前还不可能使用Treg细胞有效用于治疗目的。
因此,需要用于生成足够数量的这些Treg细胞的方法,来实现鉴定并提供对人类患者安全有效的治疗应用。还需要更多理解CD4+CD25+细胞及其在肿瘤免疫监视和癌症(特别是实体瘤癌症,如肺癌)的免疫治疗或免疫抑制中的功能。同样重要的,还需要抑制体内异体反应和自身免疫反应,例如(但不限于)移植物抗宿主疾病(GVHD),还需要阐明并扩展CD4+CD25+细胞治疗以及确定分离或生产这样的CD4+CD25+抑制细胞的方法。
发明内容
针对上文说明的现有技术中存在的需求,本发明提供了一些方法,用于处理和调控调节性T细胞(Treg细胞)亚群,CD4+CD25+T细胞,作为实体肿瘤(如肺癌)中癌症免疫治疗的组成部分,以及用于异体反应和自身免疫反应的抑制、阻碍和预防。发现CD4+CD25+T细胞介导了对自体T细胞繁殖的有效抑制;而来自患者肿瘤的调节性T细胞不能抑制同种异体T细胞的繁殖并显示出诱导或保持肺癌患者体内肿瘤的耐受性。因此,本发明的一个目的是提供调节和控制体内Treg细胞形成的方法,Treg细胞能够导致肿瘤免疫监视故障或增加的肿瘤生长。
另外,本文提供的数据表明CD4+CD25+细胞在体内同种反应中起着重要的作用,特别是移植物抗宿主病(GVHD)的生成。CD4+CD25+细胞从T细胞接种物的体外清除或者受体移植前的体内CD25清除导致了增加的GVHD反应。这些发现被观察到,不考虑种间结合或全身照射(TBI)调节疗法,也不考虑GVHD是由CD4+T细胞介导还是由CD4+和CD8+T细胞共同介导。
因此,本发明还有一个目的是提供促进人体移植组织植入的方法,所述移植组织包括血液或骨髓移植物的全部或选用群落,特别是通过体内注入活化的并在体外培养增殖的Treg细胞来抑制、阻碍、阻断或预防GVHD。有利的是,这样的方法的实施带来了降低强度的疗法和很少或没有免疫抑制。因此,这样的移植物植入促进作用能够作为一种较少或不需要调节疗法而获得免用药物耐受性的方法被应用于实体组织移植患者,或者作为免疫系统重建方法被应用于具有自体或同种异体骨髓的同种异体骨髓或自体免疫患者。
本发明的另外一个目的是提供一种用于体外处理CD4+CD25+调节性T细胞的方法,以便经活化并培养增殖的细胞可以被注入宿主来产生免疫治疗性反应。在其最简单的方式中,本发明提供了CD4+CD25+调节细胞的优选的体外长期培养增殖方法,同时保持升高的抑制活性,包括:a)从患者或同种异体供者获得调节性T细胞;b)通过严格的微珠纯化方法从获得的细胞中分离CD4+CD25+Treg细胞群;接着c)活化并长期培养物提高经培养的CD4+CD25+细胞,从而增加培养物中改良的CD4+CD25+抑制细胞数目。
优选的细胞分离方法被设计成是对CD25+细胞分离高度严格的,只要发明人确定了CD25暗淡细胞不是抑制细胞。因此,CD25暗淡细胞必需被仔细的挑除。因此,非常高水平的严格性对分离用于抑制细胞系生成的足够纯(CD25+)的细胞而来说是绝对关键的,因为CD25暗淡细胞生长的比CD25+细胞快,如果被引入了初始细胞群,将过度生长而盖过CD25+细胞并阻碍了抑制功能的表现。如果缺乏一种严格的方法学,不可能分离纯度足够用于有效抑制并长期生长的抑制细胞群。
本公开的纯化方法实现了对CD25细胞亚型的评价。CD45RA亚基,一种只包含~15%CD25+细胞的较小的亚基,似乎包含大部分能够生成细胞系的抑制细胞。本发明的这一新发现使抑制细胞能在所有受试供体中的生成(12/12),而现有技术报道了一贯10-20%的失败率(甚至使用非常严格的CD25纯化和/或谱系清除)。
作为单一选择性纯化的一种选择,选择性培养方法也能实现有效抑制性细胞的生成。因此,本发明还提供了优选的体外长期培养扩增人CD4+CD25+细胞的方法,用于生成抑制活性提高的治疗性人类Treg细胞。这种方法是优选的,但不是必需结合高度严格性分离技术而使用的。该独特的细胞增殖方法包括两个步骤的第二代谱系清除实验设计和可分开的微珠。使用了专门的细胞大小的微珠(磁性葡聚糖铁珠-Dynabeads),磁珠由抗CD3和CD28抗体包被。抗CD28提供了用于增强激活和再生障碍性Treg细胞生长的关键信号。令人惊讶的是,发明人发现不同的CD3/CD28比例具有一些选择性的培养效果。与低比例(抗CD3比抗CD28低)磁珠生长的CD4+CD25+细胞系要稳定的多,并不容易被常规T细胞过度生长而覆盖。可以通过将培养细胞通过磁性柱而容易的去除磁性珠。不需要对细胞进行分类。具体实施中,优选方法还使用了自体CD4+T细胞作为滋养层。因此,不需要转化的肿瘤细胞系来促进生长。
另外,如流式细胞仪的表型鉴定所证明的,通过优选方法生成的细胞系是均一的,并且它们能够被培养2个月或更长时间。附加的优点是,培养增殖的细胞保留了有效的功能性抑制活性(>95%抑制作用,即使是将抑制细胞对响应细胞的比例稀释至1∶10,所述抑制作用排除潜在的非特异性原因引起的抑制)。滴定实验揭示获得的抑制细胞能够被滴定至1∶16(抑制细胞∶响应细胞)的低比例,并依然获得90%的抑制。
测定时,本发明中培养增殖的人抑制细胞能够95%的MLR抑制,使用新鲜的CD4+细胞或培养的CD4+CD25-细胞作为响应T细胞。另外,这些CD25暗淡的干扰细胞是CD45RO+记忆细胞(说明它们不存在于无病原体的幼鼠中)。通过使用CD45RA(初始细胞标记物),可以分离纯净的CD4+CD25+CD45RA+细胞群,能统一生成有效抑制细胞系,>90%供者(n=20)。另外,功能性数据表明所得培养增殖细胞对响应T细胞活化的阻断和对细胞因子生成的预防。在另外一个实施方式中,活化并增殖的CD4+CD25+细胞抑制了外周血液细胞的自体繁殖。另外一个实施方式中,活化并增殖的CD4+CD25+细胞阻断或预防了GVHD,或者抑制或逆转了发展中的疾病。在另外一个实施方式中,活化并增殖的细胞被导入不同的宿主;而另外一个实施方式中,细胞被建立成为一个细胞系,用于持续治疗应用。
另外,培养增殖方法的提供还使用了可选择的增殖策略,该策略不是必然依赖滋养细胞,例如通过使用抗CD3/28磁珠+IL-2。而且,当这类如抗CD3/28磁珠+IL-2的可选方法被使用时,培养增殖能够在有或没有宿主APCs和/或DCs的情况下完成。尽管本发明也包括了动物-包括模拟人类疾病状态的动物模型,且本文也考虑了这类动物的治疗方法,但是优选的,宿主是人类宿主且培养增殖细胞是人的。本发明的体外刺激方法具有明显的优点,例如:1)活化和增殖是CD4+CD25+细胞特异性的;2)长期培养物中的刺激作用考虑了在宿主体内细胞再导入之前去除刺激性抗原;和3)在体内没有系统暴露于刺激性和增强性抗原,清除了与天然产生或诱导产生的免疫源反应的显著干扰。而且,使用体外活化和培养技术成功获得了最低的宿主毒性,并且抑制细胞组合物完全按照GMP条件制备,意味着体外培养增殖的CD4+CD25+细胞能够很快被批准用于人体注入。
对于临床应用,细胞产品必须在体内达到一定比例的靶向效应,目的是获得预期的有益效果。在许多情况下,在细胞培养初期的输入细胞将是受限制的,由于抑制性前体细胞的稀少或有限量的临床材料。本发明提供的方法被设计来生成109级次的培养增殖细胞,用于临床应用。而且,为了使组织培养过程与临床适应,必须能够定量扩增,并适应FDA批准的操作和试剂。相应的,本发明方法经特别设计来满足这些要求,有利于生成扩增的CD4+CD25+抑制性细胞输入,其特异性足以克服体积相关问题,这些问题会导致使用自然发生Treg细胞而不能获得免疫抑制或预防性治疗效果,本发明方法利用了已经被批准用于人类治疗的条件。
本发明长期、培养扩增的方法生成的培养扩增细胞可以被视为本发明所提供的一种用于治疗GVHD的试剂,包含了经活化和扩增的(修饰的)CD4+CD25+细胞。优选的,T细胞悬浮在适合静注给人移植物或癌症患者的介质中,如包含生理缓冲溶液的介质。尽管不限于任何一种机制,但相信细胞以上述方式长期培养导致了有效的亚基富集和活化,从而产生足够的细胞群而对患者产生治疗益处。
本发明的另外一个目的是提供一种体内诱导抗GVHD反应的方法,包括:在体外将CD4+CD25+细胞与活化和/或提高组分接触;进而将经活化和/或提高的CD4+CD25+细胞注入具有或即将接受同种异体移植物的自体宿主,所述移植物可以产生或已经引发了移植物受体内的GVHD反应。细胞是典型的造血细胞,例如外周血液淋巴细胞、脾细胞、肿瘤浸润淋巴细胞或淋巴结细胞。
因此,如本发明提供的,优选的人类治疗方法包括:a)从患者或同种异体供者获得调节T细胞;b)从获得的细胞分离CD4+CD25+细胞群体;然后c)活化并长期培养物增殖上述培养的CD4+CD25+细胞,其中用于在培养液中生成修饰CD4+CD25+细胞的培养物增殖和活化方法包括了人IL-2、IL-15或其他公开的白介素或化合物的存在,来进一步提高细胞增殖,从而增加培养物中经修饰的CD4+CD25+抑制细胞的数目;和d)将至少一部分经修饰的CD4+CD25+抑制T细胞重新导入宿主患者,以便诱导体内治疗性反应。这种反应预防、阻断、抑制、限制或逆转了GVHD或其他自体免疫反应,或癌症患者体内的外周血液细胞繁殖。
在另外一个实施方式中,本方法利用了体内长期培养物增殖的CD4+CD25+细胞,该细胞是用本文提供的培养方法生成的。而在另外一个实施方式中,本方法利用了来源于骨髓的体外长期培养物增殖的CD4+CD25+Treg细胞,使用本文提供的用于外周血液的培养方法,除了这种情况,骨髓抽吸物将用于获得Treg细胞群。
本发明的另外一个目的是在癌症发作之前从无癌宿主体内获得淋巴细胞并使用常规技术保存该细胞,直到疾病发作而被需要,此时,细胞可以如本文之前所描述的被解冻、培养、活化并增殖,用于重新注入宿主。可选择的,已构建的细胞系可以从无癌患者获得(同种异体或自体)。该细胞系能够如上保存至需要时而被活化并培养增殖。相似的,本发明的目的是在同种异体移植之前从移植物受体中获得淋巴细胞,使用常规技术保存该细胞直至移植完成,此时,细胞可以如本文所述被解冻、CD25+消除和/或培养增殖并活化,用于重新注入宿主,来阻断、抑制、限制或预防GVHD,或者逆转已经引发的GVHD。可选择的,已构建的细胞系可以在移植前从宿主制备并保存、或经CD25+消除和/或培养增殖并活化,直到被需要。
在一个实施方式中,本方法还包括在重新导入修饰CD4+CD25+细胞后为宿主患者体内注入人IL-2、IL-15或其他已知试剂。自体重新导入的、体外修饰的细胞因此被认为是一种细胞移植物。在一个可选的实施方式中,在经修饰的CD4+CD25+供体细胞同种异体导入受体后,用同样的方法处理宿主。
本发明的其他目的、优点和新颖特点将在下述说明、实施例和附图中作部分阐述,这些内容只是为了说明性目的,而非以任何方式来限制本发明,部分内容对本领域技术人员来说将是显而易见的,或可以通过本发明实践而获知的。
附图说明
通过参阅附图,将更好的理解前面的概述,以及接下来对本发明的详细说明。但是,应该理解,对本发明不限于附图所示的精确设计和手段。
图1,图形显示了CD4+CD25+淋巴细胞在从肺癌肿瘤样本分离的总CD4+细胞的出现频率(%),与肺癌患者的外周血液淋巴细胞(PBL)相比较,使用流式细胞仪检测。分布和平均值如图所示:正常供体的PBL,n=7(左);来自NSCLC患者的未经刺激的肿瘤浸润淋巴细胞(TIL),n=8(中);或来自NSCLC患者的未经刺激的PBL,n=9(右)。使用Student2-tailed(双侧)t检验来计算P值。
图2A-2B,图形显示了肿瘤浸润性CD4+CD25+细胞中增加的CTLA-4表达。图2A是2个典型患者的流量直方图,说明CTLA-4在CD4+CD25-与CD4+CD25+的TIL和PBMC中的表达。图2B显示了来自5个连续NSCLC患者的CD4+CD25-肿瘤浸润淋巴细胞(左)、CD4+CD25+肿瘤浸润淋巴细胞(中)和CD4+CD25+外周血液单核细胞(PBMC)(右)中CTLA-4表达细胞的平均百分比((±S.E.)。
图3A-3B,图形显示了肿瘤浸润CD4+CD25+细胞对抗CD3或抗CD3/CD28诱导的自体T细胞繁殖的直接抑制。自体PBL被单独培养,或者用数目增加的来自肺癌样本的一类纯化的CD4+CD25+或CD4+CD25-肿瘤浸润淋巴细胞(TIL)培养,所述细胞被可溶的或平皿固定的抗CD3(图3A)或被塑胶固定的抗CD3/CD28所刺激(图3B),[3H]胸腺嘧啶的整合被测量。结果表示为单独培养的PBL的%反应;对CD25-曲线的100%繁殖=37081±4094cpm,对CD25+曲线的100%繁殖=29465±1007cpm。
图4A-4D显示了肿瘤浸润CD4+CD25+细胞没能抑制来自同种异体正常供体或肺癌患者的T细胞。来自正常供体的同种异体外周T细胞(图4A)或来自NSCLC患者的自体PBL(图4B)与来自癌症患者的已知数目的肿瘤浸润CD4+CD25+细胞一起培养。在图4C中,来自正常供体的外周血液T细胞与自体类纯化的外周血液CD4+CD25+供体T细胞一起培养。在图4D中,肿瘤浸润CD4+CD25+或CD4+CD25-细胞与来自NSCLC患者的同种异体PBL一起培养。所有的细胞培养物都用平皿固定的抗CD3/CD28来刺激,检测[3H]胸腺嘧啶的整合。结果表示为3次(图4A)、2次(图4B)、2次(图4C)或4次(图4D)独立实验中的一次的三重培养物的平均值(±S.E.),每一次的结果相似。
图5A和5B显示了由肿瘤浸润CD4+CD25+细胞分泌的组成性TGF-β分泌物对于自体PBL繁殖的抑制作用是不需要的。图5A是来源于肺癌患者的CD4+CD25+细胞培养物和CD3+细胞消除的CD4+CD25+细胞培养物的上清液的ELISA,来检测TGF-β。结果是6例(三重板孔的±S.E)患者中有代表性的一例。在图5B中,自体PBL单独培养或与可变数目的CD4+CD25+细胞一起培养,用平皿固定的抗CD3/CD28刺激。加入抗TGF-β中性抗体,检测[3H]胸腺嘧啶的整合。结果表示为三重培养物的平均值(±S.E.),两次独立实验中的每一次的结果相似。
图6A和6B,图形显示CD4+CD25+细胞的消除加速了GVHD致死率。全部的CD4+或CD25清除的CD4+B6 T细胞被转入经致死量以下辐射的bm12受体(在图6A中,每个动物注入1×105个细胞;在图6B中,每个动物注入5×104个细胞)。x轴=细胞转移后的天数;y轴=受体存活的比例。n=8/组图6A,p=0.024;图6B,p=0.0068。
图7,图形显示了CD4+CD25+细胞的清除加速了不同种属组合中的GVHD致死率。经致命辐射的BALB/c小鼠被植入B6BM和全部CD4+T细胞或CD25清除的(CD25-)CD4+T细胞。x轴=移植后天数;y轴=受体比例。n=8/组;p=0.016。
图8,图形显示了CD25+细胞从全T细胞接种物中的清除加速了非辐射的SCID GVHD模型中的GVHD。全部或CD25+清除的B6 T细胞被注入事先经抗anti-asialo GM1进行NK清除的、非辐射的BALB/c SCID小鼠中。x轴=细胞转移后天数,y轴=受体存活比例,n=4/组;p=0.021。
图9,图形显示了CD25+细胞从全部脾的清除加速了GVHD致死率。经致命辐射的B10.BR小鼠被植入B6 BM和15×106全脾或CD25清除的脾。x轴=细胞转移后天数。y轴=受体比例。n=8/组;p=0.055。
图10,图形显示了体内移植前的CD25+细胞的清除加速了GVHD。经抗CD25单克隆抗体(mAb)处理的或对照mAb处理的切除胸腺的B6小鼠被致命辐射并被植入BALB/c BM和15×106脾细胞。抗CD25mAb在植入后第4、7和4天被注入。x轴=细胞转移后天数。y轴=受体比例。n=8/组;p=0.0063。
图11,图形显示了体外扩增和活化的CD25+细胞抑制了GVHD。原始的B6 CD4+T细胞被注入非辐射的、NK清除的BALB/c SCID受体。小鼠队列接受了活化CD4+CD25+细胞或CD4+CD25-细胞的分别注射。细胞经固定化的抗经抗CD3mAb和高剂量的IL-2的活化和扩增。x轴=细胞转移后天数。y轴=受体存活比例。n=8/组;p=0.022,CD4+对CD4++CD25+
图12,图形显示了不同条件下培养的CD25+细胞抑制GVHD。CD25清除的(CD25-)B6T细胞被注入非辐射的、NK清除的BALB/cSCID受体。第2组小鼠接受了如图11所扩增的CD25+细胞的分别注射,采用固定化的抗CD3mAb和高剂量的IL-2(开放盒)。第3组小鼠接受了经辐射的BALB/c脾细胞和高剂量IL-2培养的CD25+细胞的分别注射(开放三角形)。第4组小鼠接受了经辐射的BALB/c脾细胞、低剂量IL-2和TGF-β(星形)的分别注射。x轴=细胞转移后天数。y轴=受体存活比例。n=6/组;所有的p≤0.016,与对照组相比(闭合环)。
图13,图形显示了活化并扩增的CD4+CD25+细胞的多重注入抑制了经致命辐射的、完全MHC分离供体移植物受体中的GVHD死亡率。
图14,图形显示了GVHD发作后,经活化并扩增的CD4+CD25+的单次注入将40%的致死辐射受体从长的GVHD死亡期(时间至少是对照组的3倍以上)中拯救出来。
图15A-15D描述了使用代表性的PBMC的双色FACS曲线从外周血液中纯化CD4+CD25+细胞,以及经纯化的CD4+CD25+和CD4+CD25-细胞。图15A显示,外周血液检测结果揭示了CD4+CD25+细胞组成1-3%的PBMC。有可变数目的非CD4+细胞表达CD25,通常是低密度表达(主要是B细胞)。图15B显示,一些供体证明了更明显的CD4+CD25+群体。图15C显示,CD4+CD25+细胞经过抗CD25-FITC和抗FITC可分微珠纯化并随后进行谱系清除。事先用抗CD25-FITC进行的染色轻微降低了CD25-PE染色的强度。图15D显示,CD4+CD25-细胞经PBMC的CD25清除而被纯化,随后进行CD4+阳性选择。数据是20个供体评价和10个细胞纯化实验中有代表性的。
图16A-16C,图形描述了CD4+CD25+抑制细胞系的扩增,以短期实验中CD4+CD25+细胞的繁殖和长期培养的累积方式。图16A显示了高度纯化的CD4+CD25-细胞(△)和双柱谱系阴性(double columnlineage negative)CD4+CD25+细胞(■)在短期96孔3H-胸腺嘧啶掺入实验中的繁殖。CD4+CD25-细胞显著增殖,而CD4+CD25+细胞只有最低限度的短暂繁殖。图16B显示了高度纯化的双柱谱系阴性CD4+CD25+细胞(■)繁殖的增强,在短期96孔3H-胸腺嘧啶掺入实验中。100IU/ml的IL-2增进了繁殖(◆)。但是,受辐射的CD4+CD25-滋养细胞添加物(1∶1的比例)(●)提供了更加持久的提高的增殖。4次实验的代表。图16C显示了CD4+CD25+细胞系的长期培养物累积。细胞系经抗CD3/抗CD28mAb包被珠(□)或固定化的抗CD3(■)刺激一次,都补充滋养细胞。细胞被分开并每3-4天给入所需IL2。数据报告为细胞数目的倍增,是22个抗CD3/CD28mAb包被珠培养物和3个塑胶固定的抗CD3mAb培养物的代表。
图17A-17C描述了显著抑制MLR的纯化培养的CD4+CD25+细胞。MLR培养物包含各种测试细胞群,其抑制细胞/响应细胞比例为1∶2。图示是MLR一周的动态繁殖曲线。培养物每天经3H-胸腺嘧啶脉冲,持续16小时。图17A显示,衍生自CD4+CD25+细胞的典型细胞系(双柱谱系清除纯化,double column-lineage depletionpurification)是良好的抑制细胞(●)。相反,衍生自CD25-细胞(△)的细胞系增强了MLR,相对于对照MLR培养物(□)。结果代表了22次实验。图17B显示了新鲜的标准MACS纯化的CD4+CD25+细胞(◆),加入MLR,与典型的弱抑制性CD4+CD25+细胞系(●)相比较,对照MLR(□)。结果代表了4次实验。图17C显示,MLR反应几乎完全被有效抑制培养的CD4+CD25+细胞(●)所阻断,对照MLR(□)。7个有效抑制细胞系的代表性,在14个MLR中测试。
图18A-18K展示了CD25+与CD25-细胞系在3-4州培养增殖后的流式细胞计数比较。FACS分析描绘了抗原表达。图示为细胞系衍生CD25-的典型图,与有效抑制细胞系和弱抑制性细胞系比较(图18A-18C)。图18A显示,衍生自CD25-细胞的细胞系表达了低水平的CD25,因为它们回复到一个更加休眠的状态。图18B显示,有效抑制细胞系保持高水平的CD25表达。图18C显示,弱抑制功能的CD4+CD25+细胞衍生的细胞系表达了中等水平CD25。(图18D-18F)。图18D显示,CD4+CD25-衍生细胞系表达了最低的胞内CTLA4。图18E显示,有效抑制细胞系保持了高的细胞内CTLA4表达。图18F显示,弱抑制细胞系表达水平为中等。(图18G-18I)。图18G显示,CD25-衍生细胞系表达了可变水平的CD62L和减少的CD27。图18H显示,有效抑制细胞系含有高百分比的细胞,表达CD62L和CD27。图18I显示,弱抑制细胞系含有低百分比的细胞,表达CD62L和CD27。图18J-18K显示,抑制性细胞系亚基的分类揭示了有效抑制细胞表达CD62L和CD27。图18J是FACS图,显示了CD62L和CD27亚基的分类门。图18K展示了MLR中的功能性分析,揭示了单独存在于CD62L和CD27双阳性亚基(条纹柱)中的抑制活性。对照MLR培养物(灰色柱)和受抑制的MLR(黑色柱)。如图所示,CD62L+/CD27-亚基(砖块柱)和CD62L-/CD27-亚基(编织柱)都增强了MLR。
图19A-19D,图形描述了培养的CD4+CD25+细胞持久显著抑制MLR繁殖和细胞因子分泌。有效CD25+抑制细胞系在来自多个无关供体的多重MLR中被检测。图19A显示了8个单独的MLR,表现了对照和受抑制繁殖的差异。在所有供体结合中,大多数被显著损伤。对照MLR培养物(灰色柱)和受抑制的MLR(黑色柱)。结果是7个不同的有效抑制细胞系的20次实验的代表。图19B显示了当分级数目的有效的、经培养的抑制细胞加入MLR反应中来测定抑制所需最小数目时的效果。当使用最有效的抑制细胞系时,直到稀释至1∶16(大约3125个抑制细胞),依然显著损伤MLR。三个图显示了6个有效抑制细胞系的代表性。图19C展示了培养上清液中IL-2水平的每日评估,揭示了受抑制的MLR培养物(●)中IL2累积的强烈阻断,对照MLR培养物(□)。4个MLR分析的典型代表。图19D反映了由活化的T细胞生成的其他细胞因子的评估,揭示了对累积的强烈损伤。没有生成有效水平的TNF-α、IFN-γ、GM-CSF5、IL-6或IL-10。图示为第6天的水平,对照MLR培养物中的累积峰(亮柱)与受抑制的MLR培养物(暗柱)。4个MLR分析的典型代表。
图20A-20G显示,培养的Treg细胞影响了响应性T细胞的活化,并能抑制成熟DC驱动的MLR。在培养一天后评估MLR中活化抗原的表达。图示为对照MLR的CD69染色(图20A)、CD25染色(图20B)和OX40染色(CD134)(图20C)。在受抑制MLR中,响应性T细胞首次在HLA-A2上门控来使之与HLA-A2阴性抑制细胞区分开。分别显示的是来自受抑制MLR的响应细胞的CD69染色(图20D)、CD25(图20E)和OX40(CD134)(图20F)。结果是3次实验的典型代表。图20G显示了DC的成熟,在MLR之前,通过LPS或TNF/多聚IC结合,或这些MLR中刺激因子的包含物没能绕过抑制作用。对照MLR培养物(灰柱)和受抑制的MLR(黑色柱)。
图21A-21D图形描述了MLR中抑制的功能性分析结果。图21A显示,在铬释放测定中,抑制细胞系缺乏对DC显著的细胞毒性(·)。由NK细胞系NK92介导的对照裂解(□)。图21B显示,抑制细胞系缺乏自然杀伤(NK)或淋巴素活化杀伤(LAK)型活性,并在铬释放测定中没有显示出对K562的裂解活性(·)。由NK细胞系NK92介导的对照裂解(□)。图21A和21B中都使用了5000个标记靶标,效应/靶标比例都达到20∶1。图21C显示,在MLR实验中使用了针对免疫抑制性因子IL-10和TGF-β的抗体和抗IL-10R抗体,或者是三者的结合使用-每一个都没能逆转由经培养的抑制细胞系介导的抑制作用。图21D显示,有效抑制细胞系具有最低抑制活性,加入DC驱使的MLR,DC与抑制细胞是自体的(而与响应细胞是异体的)。抑制细胞系Ts-A(阴影交叉柱)被用于抑制由DC-A(来自与抑制细胞相同的供体)或DC-B(来自与抑制细胞不同的供体)驱使的MLR培养物。抑制细胞系Ts-B(方格柱)也经过DC-A和DC-B的测试。代表4次实验。
具体实施方式
在本发明中,来自早期肺癌患者的原发肺肿瘤样本被发现含有大量具有之前所述调节T细胞表型的T细胞(“Treg细胞”)。与之前所述的调节T细胞相反,肿瘤中的CD4+CD25+淋巴细胞具有非常高的CTLA-4表面表达,它们直接抑制自体(而不是异体)T细胞的繁殖。肿瘤寄居的CD4+CD25+T细胞的抑制作用是有效的,即使在响应性T细胞的充分活化之后也会发生,在Treg细胞和细胞毒性细胞的响应及抑制活化之间建立强大的联系。因此,本发明提供了体外活化并特异性长期培养增殖Treg细胞的方法、经活化增殖的Treg细胞本身、在免疫治疗中应用经活化增殖的Treg细胞的方法和用于抑制自身免疫反应(包括GVHD)的方法。
如本文所使用的,“异体细胞”(异体同源)是那些从某一个体(供体)分离并注入另外一个个体(受体或宿主)的细胞;而“自体细胞”(自身)是指那些从个体分离并被重新注入相同个体(受体或宿主)的细胞。相应的,异体T细胞的繁殖由来自另外个体的抗原呈递细胞(“APC”)刺激,而自体T细胞的繁殖由自身APC来刺激。除非特别说明,本发明中的APC可以是现有技术已知的任何类型。
“抗原”是引发免疫反应的实体。“异体抗原”指导致某一个体的免疫系统识别并消灭另外个体的细胞(当两者混合时)的因子。“分裂素”是诱导所有T细胞以抗原非特异性方式繁殖的因子。
“混合淋巴细胞反应”、“混合淋巴细胞培养”、“MLR”和“MLC”被互换使用来指一种包含了最少两种异型细胞群的混合物。至少一种异型细胞是淋巴细胞。细胞在适宜条件下共同培养一段时间来导致淋巴细胞(本发明特指Treg细胞)的刺激。MLC的通常目的是提供异体刺激,例如可以引发Treg细胞的繁殖;但除非指明,培养过程中的繁殖不是必需的。在适当的语言环境中,这些术语还可以指从这种培养中衍生的细胞的混合物。当来自MLC的细胞被成团注入人体时,它被称为“细胞移植物”。
尽管CD4+CD25+免疫调节细胞是体内稳态的重要调节因子且是预防自身免疫所必需的,但是这些专职抑制细胞在异体反应中的作用还没有被很好的研究。基于Treg细胞抑制细胞毒T细胞活性的发现,本发明的一个优选实施方式利用专职抑制细胞来调节T细胞对异体抗原的反应并考察移植物抗宿主疾病(GVHD)的生成。这由本实施方式中发生的GVHD加速和/或死亡率增加而得到说明,其中CD25+细胞在体外从供体T细胞接种物中被清除,或者通过移植前注入抗CD25单克隆抗体(mAb)在体内对受体条件化。CD25+细胞的清除导致了GVHD的增加,不论供体抗宿主反应是由CD4+T细胞介导还是由CD4+和CD8+T细胞介导。
这与其他文献(例如,Piccirillo等人,J.Immunol.167:1137-1140(2001);Gao等人,Transplantation 68:1891-1897(1999))相一致。另外,发现CD25+细胞清除能够加速几个种属组合中的GVHD,不论条件形成的强度如何,这表明即使是在高度致炎细胞因子环境中,CD25+细胞也可以行使异体反应抑制因子的功能。因此,本发明关于清除的资料指明了CD25+细胞在抑制异体反应中的作用,并显示了CD25+细胞的注入能够预防或改善GVHD;而以前的文献指出新鲜的原始CD4+CD25+细胞没有单独影响GVHD致死率,而只是当与GVHD诱导T细胞以1∶1的比例一起注入时具有适度的保护作用(Taylor等人,2001)。
虽然存在两个CD25阳性细胞群体,而CD25+细胞一般只构成人外周血液单核细胞(PBMCs)中CD4+细胞总数的5-10%。然而,只有1-2%的CD25+细胞表达高水平的CD25,并被认为是真正的Treg细胞或至少是功能提高的Treg细胞。因此,要注入足够数量的纯化的调节细胞来达到显著的治疗效果将是困难的。
Thornton和Shevach的研究使用了APC并结合抗CD3和IL-2来激活Treg细胞,资料指出在小鼠中,CD4+CD25+细胞能够成为对体外活化更有效的抑制细胞(Thornton等人,J.Immunol.164:183-190(2000))。不幸的是,Thornton注入没有为人类提供治疗性益处,因为该方法既不能获得FDA的批准,也没有说明任何扩增细胞的方法。如之前提到的,鼠T细胞生长与人T细胞生长的要求明显不同(参见Mestas,J.Immunol.172:2731(2004))。另外,虽然抗CD40L(CD154)或抗B7(抗CD80和CD86)完全阻断了体外反应,但没有一个能有效防止体内GVHD。
有趣的是,一种高效的早期方法利用了抗CD3/28珠(Takahashi等人,Int.Immunol.10:1969-80(1998)),但Takahashi声称可溶性抗CD28mAb和抗CD3mAb的包含体阻断了抑制。CD4+CD25+细胞已经显示出体外对多重刺激物(除了抗CD3+IL-2)的无反应性。然而,经过旺盛扩增的无反应细胞变成有反应性。因此,该文献表明旺盛扩增的发生将以抑制细胞活性停滞为代价,并只报道了低水平的扩增。因此,现有技术没有预期本发明方法能够在不损失抑制活性的同时而扩增CD4+CD25+细胞,也没有预料本发明方法能够提供如此旺盛的扩增并提高了抑制细胞的功能。
但是,意识到需要一种有效的治疗病人的治疗方法来抑制和预防GVHD,本发明利用了符合GMP的培养体系来活化并增殖Treg细胞。本发明的一个优选实施方式使用了抗CD3/28mAb包被珠并结合IL-2和受辐射的滋养细胞来诱导:(i)旺盛增殖100倍以上,(ii)抑制细胞活性的增加。另外,本文公开的旺盛增殖率伴随着比之前文献报道(参见Godfrey等人,Blood in press 2004,在网上电子公开,March 18,2004)更有效的抑制细胞活性。
“细胞系”或“细胞培养物”表示体内生长或维持的高等真核细胞。可以理解为细胞后代可能与母细胞不完全相同(在形态、基因型或表型方面)。骨髓移植鼠模型中的初期研究显示CD4+CD25+细胞能够防止GVHD越过主要组织相容性(MHC)障碍(Taylor等人,Blood99(10):3493-3499(2002),Hoffman等人,J.Exp.Med.196(3):389-399(2002),Cohen等人,J.Exp.Med.196(3):401-406(2002))。但是,本实施方式证明,CD4+CD25+细胞能够被扩增到比之前所能达到的更高的水平并有更长的培养时期(“长期”)。因此,本发明的优选实施方式描述了“长期培养增殖的”CD4+CD25+细胞或Treg细胞或CD25+细胞。
“长期”意味着培养时间持续超过一周,优选的≥10天,更优选的>2周,更优选的>3-4周,更优选的>1月,更优选的>6-8周,更优选的>2月,更优选的>3月,更优选的>6月,最优选的是1年或更长的时间-只要保持一定的细胞功能,特别是抑制活性。相应的,本发明提供的资料表明,尽管不同的体外活化方案产生不同的回收率或CD4+CD25+细胞增殖,但所有方案都产生了显著抑制或限制GVHD的细胞。
这些研究中考察的体外活化方案旨在成为医护人员可效仿的方法,并为该原则的有效性提供证明。但是,所提供的方案决不意味着是对增殖和活化可能策略的穷尽性列举,因为有很多已知的体外处理血液的方法可以使用,例如在一些美国专利6251385;6203787;6051227;5962318;5728388;5472867;5399493中使用的方法,同时,还会发现有更新的方法将对本文所述原则做出改良。如本文使用的,“治疗”或“疗法”指临床介入,旨在改变接受治疗的个体或细胞的自然病程,并可以为预防目的或在临床病理过程中施行。期望的作用包括但不限于:防止疾病的发生或复发,缓解症状,抑制、减少或限制任何直接或间接的疾病病理结果,防止病灶转移,降低疾病进展速度,改善或缓和疾病状态,引起缓和或改善的预后。与疾病状态相关的“病理”是包含了健康、正常生理或受感染者生活质量的任何状况。这可以包括但不限于:受感染组织破坏性侵入之前未感染的区域,损害正常组织功能的生长,不规则或受抑制的生物活性,炎症或免疫反应的恶化或抑制,对其他致病生物或因子增加的敏感性,如疼痛、发热、恶心、疲乏、心境改变以及其他由主治医师确定的其他特征等不希望的临床症状。
“有效量”是足以产生有益或期望的临床结果的量,特别是产生免疫反应或临床状况显著提高的量。“致免疫量”是在接受治疗或检测(患病或没有患病)的受体中显示的足以引发免疫反应的量,所述免疫反应包括体液反应或细胞反应或两者都有。优选的,根据本发明,获得的抑制作用比没使用本文公开的培养增殖方法而产生的抑制作用超出>30%。更优选的,抑制作用>40%,更优选的>50%,更优选的>70%,更优选的>85%,更优选的>90%,更优选的>95%,更优选的>99%,更优选的>100%,只要细胞的体外培养可以长期维持。
术语“抑制”、“限制”、“防止”在本文中的使用是根据普遍接受的定义,即,当进行中的免疫反应被阻断或者与未经本发明治疗的结果相比明显降低时,即产生了“抑制”。相似的,“限制”指阻断一种免疫反应的发生或与未经本发明治疗的结果相比显著降低了这种免疫反应。当预防性给药时,这种阻断可以是完全的,以至于没有特定的免疫反应发生,一般把免疫反应发生之前的完全阻断称为“防止”;在本发明中,治疗可以有利于减轻作用(与正常的未治疗状态相比),一般称为抑制或限制。
对于肿瘤性疾病患者的临床反应,有效量是足以缓解、改善、稳定、逆转或减慢疾病进程,或者其他减轻疾病病理结果的量。相似的,在经历GVHD发作的或易感GVHD的移植患者中,有效量是足以阻断或防止其发作的量,或者如果GVHD病理已经发作,能够足以缓解、改善、稳定、逆转或减慢疾病进程,或者其他减轻疾病病理结果的量。无论如何,有效量可以单次或分次剂量给药。本文其他地方公开了以有效量优选使用的量和细胞比例。
由于CD4+CD25+免疫调节细胞是非常异质的细胞群,似乎不同的活化和增殖方法可以产生具有潜在不同的抑制/效应功能的不同细胞群。CD4+CD25+免疫调节细胞的非均质性还在研究中。目前,它们可以被分为两个主要类别:适应性的和天然的。这些细胞类型已经被Bluestone等人所定义(2003),总结于下面的表格(表1)中。
表1.天然和适应性调节细胞的比较
特点   天然Treg细胞   适应性Treg细胞
诱导位点   胸腺   外周
CD28-CD80/CD66依赖性   是   否
  IL-2依赖性
  CD25表达 是(高) 可变的
  特异性 胸腺中的自身抗原 组织特异性抗原和外源性抗原
  效应细胞抑制机制 T细胞-T细胞/APC接触;细胞因子依赖性 T细胞-T细胞/APC接触;细胞因子依赖性
例如,一些类型的T调节细胞依靠外源性TGF-β或者IL-I0与TGF-β的结合来产生和传播抑制细胞的活性,而本发明的细胞群不依赖这些外源性生长因子。这是人的CD4+CD25+细胞和动物模型(鼠)类似物之间的另一个差别。如IL-10的研究中所显示的,鼠细胞生成的TGF-β比人Treg细胞生成的TGF-β要少。这给使用经培养的鼠细胞而形成的报告结果增加了未能解释的可变性,例如包含各种水平的TGF-β。
因为抗CD3/28珠+IL-2表现出能扩增所有CD4+CD25+亚群,本发明的一个优点是CD4+CD25+细胞能够从异质细胞群或具有更强功能的CD4+CD25+亚群增殖而来。最近的发现已经证实,表达高水平L-选择蛋白(一种引导蛋白)的CD4+CD25+细胞是一种比低水平表达L-选择蛋白的亚群(CD62L)更强的GVHD抑制细胞(参见下面的实施例)。
人类CD4+CD25+细胞培养和扩增。分生抑制细胞培养物的最初含义包括固定化的抗CD3加上用于培养的IL-2和TGF-β(参见,例如,Kung等人,Science 206(4416):347-349关于CD3抗体克隆OKT3)。细胞在预先以各种浓度固定了抗CD3的塑料平皿中生长,抗CD3的最佳固定化浓度为1-5μg/ml。如后面实施例所描述的,在早期,对发明人来说明显的是TGF-β对功能不是必需的(图5),但是它似乎确实轻微增强了抑制活性。但当条件变化时,对TGF-β的需求/受益可能变化。例如,使用实施例中描述的CD62L(L-选择蛋白hi)时,可以不需要TGF-β,因为后者是比未分化的CD4+CD25+细胞更有效的GVHD抑制细胞。
抗CD3/抗CD28磁珠的使用诱导了抑制细胞的旺盛繁殖,具有塑料结合抗体的作用。CD28刺激也提高了Treg细胞的活化,本发明的一个实施方式显示:包被了抗CD3和抗CD28(抗CD3/CD28)抗体(与Treg细胞混合的最佳比例为1∶10)的磁珠扩增并保持了Treg功能。CD28是以二硫键结合的同型二聚体,表达在大部分T细胞表面(June等人,Immunol Today 11:211(1990))。正如现有技术人员知道的,CD28能够被许多可商业获得的CD28单克隆抗体所识别。
初期对共刺激可能会消除抑制的担心(因为在短期实验中确实有消除作用)被证明是没有根据的。有趣的是,只用CD3包被的磁珠是一种弱的繁殖诱导物。事实上,细胞生长是等量的固定化CD3培养物的5-10倍,并保持了抑制功能。与IL-2或IL15一起的培养物诱导了等量的繁殖和抑制功能(图11、12)。
本发明一经开发出了一种可用于适当重复分离和培养和检测抑制细胞的可操作体系,发明人就可以系统的改变参数来确定改良的细胞分离和培养的方法。通过执行更严格的纯化策略,分离到了更加有效的可重现的抑制细胞系。这导致了抗CD25微珠滴定实验(滴定度1∶6),以及双柱纯化方案的发展,随之导致了有效抑制细胞系的持续生成(具有>80%的成功率)。CD25是IL-2Rα分子(参见,例如,Waldmann,Immunol Today 14:264(1993)),由许多可商业获得的单克隆抗体(如本文使用的Ab或mAb)或标记IL-2与CD25的结合来识别。
本发明中,CD25 Ab被用来富集CD4+CD25+细胞群,基于其CD25表达。在刺激之前进行该步骤,提高了增殖那些具有有效抑制活性的Treg细胞的能力。事实上,当在微珠上检测各种比例的抗CD3-抗CD28(分别为20∶1,5∶1,1∶1,1∶20)时,较高比例的抗CD28磁珠诱导了抑制性T细胞的选择性扩增。抗CD3/抗CD28比例为1∶5和1∶20的磁珠生成的细胞系中掺杂的非抑制性T细胞较少。使用较低量的抗CD3衍生而得的细胞系作用更强,并保持了显著增加的CD27和CD62L表达,意味着这些细胞的原始T细胞表型得到了保持。这些通常是用来区分原始和记忆T细胞的细胞表面标志物(参见,例如,DeRosa,Nat.Med.7:245(2001))。CD27是一种受体,在效应细胞分化中丢失,CD62L和CCR7对细胞向淋巴组织的迁移是重要的。因此,在体内,这些抑制细胞理论上正常位于淋巴组织并限制这些部位的异体反应性细胞的活化和增殖,包括对GVHD诱导来说关键的派伊尔(Peyers)淋巴集结。
已经报道,在人体系统中,必需分离CD4+CD25+细胞的CD25+明亮亚群以便在基于抗体的共培养实验中检测抑制活性(与新分离的细胞一起)(Baecher-Allan等人,2001)。这也在本发明的优选培养体系中被发现,其中最严格纯化的CD4+CD25+细胞组成了最好的抑制细胞系前体。CD25+馏分中掺入的CD25-暗淡细胞能够更快生长并压过CD25+明亮细胞,从而妨碍了抑制细胞功能的完全表现。因此,在本发明的优选实施方式中强调了“严格纯化”(优选的,两个选择循环和扩展洗涤)。“高度严格”是优选的来提高纯度,甚至是以较低的细胞产量为代价。这种严格技术对于现有技术人员来说是已知并可以理解的。
较低的抗CD25磁性微珠滴定度(1/5的生产商推荐)以及第二柱的再次纯化极大促进了具有有效抑制能力的Treg细胞系的生成。通过比较,使用更低滴定度的抗CD25mAb包被磁性微珠或者加入第三柱的纯化步骤,都没有显著提高优选培养体系的结果(见实施例8),而且事实上,产生了产量减少的不利结果。
通过提高CD4+CD25+T细胞纯化的严格性,最终分离到的CD25明亮细胞不再生长,即使是使用抗CD3/抗CD28磁珠。但是,在尝试了各种辅助细胞群之后,发现经辐射的CD4+T细胞(作为“滋养细胞”)在本发明中对促进生长是最好的。该细胞似乎分泌了抑制性细胞生长因子,包括(但不限于)IL-2)。但是,条件培养基(CD3/抗CD28刺激的CD4+T细胞的上清液)大大促进了抑制细胞的生长,甚至强于添加IL-2所产生的结果。
然而,可选的培养增殖策略(例如对现有技术人员已知的)也被考虑到可能不需要添加滋养细胞群。例如,可以使用抗CD3/28磁珠+IL-2,其中宿主APC和/或树状突细胞可以是有益的或必需的,也可以不是。
改良的抑制细胞系的生成。在实验过程中发现,抑制细胞系对CD8+非抑制细胞的过度生长是敏感的。因此,开发出两步纯化方案来清除CD8+T细胞。这包括了一个多孔磁性微珠方法,其中,首先通过公知方法对细胞进行抗CD25 FITC(荧光素-5-异硫氰酸盐)染色,然后用抗FITC微珠分离,再次使用已知方法。然后将微珠从制备物中分离,随后进行第二步,其中抗CD8微珠被用来清除CD8+T细胞。加入抗CD19、抗CD20、抗CD14和抗CD56来同时清除制备物中的B细胞、单核细胞和NK细胞。根据此纯化策略生成的细胞系显示出更能重复再生(>90%),并且比其他方法在更长的培养期间更加稳定。
利用两步纯化方案,可以在新分离的抑制细胞群上得到CD4+CD25+亚群。发现CD4+CD25+细胞的次要亚群包括整联蛋白β7和CD200(~10%的),并发现主要亚群包括LAIR(白血球偶联免疫球蛋白样受体-1,参见,例如,Meyaard等人,Immunity(2):283-90)、CD101细胞(代表~80%的CD4+CD25+细胞,参见,例如,Allez等人,Gastroenterology 123(5):1516-1526(2002))。该细胞系不表达在鼠CD4+CD25+细胞的一个亚群上高水平表达的CD103(整联蛋白-α-E)。另外,大约20%的CD4+CD25+细胞表达CD45RA。这一抗原被预期在抑制细胞上不表达,因为有几篇报道说明了它们是CD45RO阳性(通常与CD45RA是互相排斥表达,除了在原始细胞的活化过程中短暂表达)。但是,这些细胞的分离物对于生成抑制细胞系来说比CD45RA-细胞要好的多(目前通过该方法分离的12细胞系都是有效的抑制细胞)。原始T细胞时,CD45RA剪切变体表达在T细胞表面。一旦T细胞分化成记忆细胞,它通常表达CD45RO异构体(参见,例如,DeRosa,2001;Tchilian等人,Arch.Immunol.Ther.Exp.(Warsz)50(2):85-93(2002))。
尽管具有最低回收率的培养方法(异体脾细胞、低剂量IL-2和生长因子(TGF-β),如下实施例所示)介导了最佳的保护(不考虑较低数量的注入细胞),但是培养方案能够得到改良,根据本文提供的信息和已知原理来优化增殖和抑制功能。在基于鼠模型结果而建立的临床上适用于人的条件下,异体脾细胞没有产生足够的CD4+CD25+细胞增殖,即使有高剂量IL-2的存在。但是,预计有更有效的抗原呈递细胞(如一种活化的单核衍生树突细胞(DC))将会通过多重生理信号的传递而产生更好的增殖和抑制功能,所述信号还可以帮助细胞存活,如下实施例所示。
但是,因为CD4+CD25+细胞不需要通过异体抗原激活来抑制异体抗原反应性CD25-T细胞(即,清除了CD25+细胞的Treg细胞群),它可以通过TCR信号传导的多克隆诱导物而获得最大程度的激活(并扩增),只要活化诱导的细胞死亡没有完全抵消有益作用。“激活”指刺激或增强细胞繁殖和细胞分化,这对原始细胞群产生后代细胞是必需的。尽管经固定化抗CD3mAb和高剂量IL-2培养的CD25+细胞具有显著的GVHD抑制作用,但是可以保证在任何活化方案中包含TGF-β,因为本文数据表明TGF-β是CD25+调节细胞的一种生长因子,另外它还赋予CD25+调节细胞对活化诱导细胞死亡更强的抵抗(Yamagiwa等人,2001;Nakamura等人.,2001)。
令人惊讶的是,树突细胞的激活或成熟没有导致绕过抑制。“成熟”是APC的形态和功能从未成熟到活化成熟状态的转变。活化的DC是最有效的APC。树突细胞经历未成熟>成熟>活化状态。通过比较,“活化”是未成熟或成熟细胞的细胞表面分子和生物学活性的获得。因此,APC/DC细胞能够支持免疫反应。一系列信号和细胞因子引发了细胞分化。TNF、PGE2和干扰素能够使DC从未成熟走向成熟,而CD40L信号传导或LPS能够使DC从成熟走向活化。
因此,本发现提供了人类细胞与已经报道的新分离鼠Treg细胞的显著差别,其中LPS或CpG-包含DNA寡聚脱氧核苷酸介导的脾衍生DC的信号传导导致了绕过抑制(Pasare等人.,Science 299(5609):1033-1036(2003))。但是,在该系统中,Treg细胞既没有培养激活也没有培养扩增。
与本发明的优选实施方式不同的,活化并扩增的人Treg细胞能够越过经活化的DC所表达的细胞因子和共刺激分子,而依然阻断MLR反应。经培养后的抑制功能增强的发现与鼠Treg细胞激活的表现相一致。抑制功能是激活依赖性的(Shevach等人,2002,同上),而与抗CD3和IL2的短期培养增强了抑制能力(Thornton等人,2000)。这可以解释为,长期培养的Treg细胞对于TCR的再激活是首要的(更加敏感),因此TCR诱导的抑制功能是更容易表达的。
在一个可选的实施方式中,为提高CD4+CD25+细胞产量并从而提高抗GVHD作用,在培养物中加入了细胞因子,例如:IL-4和IL-7增加了T细胞存活率(Vella等人,Proc.Natl.Acad.ScL USA95:3810-3815(1998)),IL-10负责调节性T细胞的生成(Groux等人,Nature 389:737-42(1997)),IL-15与低剂量IL-2协同诱导人CD4+CD25+细胞的旺盛繁殖(Dieckmann等人,2001)。
激活和扩增方案的治疗效果。本发明的一个重要贡献是本模型可以在相关动物模型中评价CD4+CD25+细胞活化及增殖方案的体内治疗效果。由于经活化培养的细胞在体内寻靶、转移、存活和发挥功能过程中的潜在缺陷,考虑体外活化并扩增的调节细胞的调节功能的体内应用是重要的。
CD4+CD25+细胞在对外源或异体抗原的免疫反应中的调节作用、CD25清除导致的GVHD致死率增加、以及体内清除资料-其中抗CD25mAb被注入自身免疫受体-表明了临床相关性的治疗。为了避免宿主反应性供体T细胞(它将上调CD25,称为GVHD过程中的活化标志)的清除作用,给移植前的宿主注入抗CD25mAb,导致了加速的GVHD。这一结果是令人惊讶,因为根据现有技术,这种情况将缓解GVHD(Anasetti等人,Bone Marrow Transplant 7:375-381(1991);Harris等人,Bone Marrow Transplant 23:137-144(1999);Cahn等人,Transplantation 60:939-942(1995);Blaise等人,Bone MarrowTransplant 8:105-111(1991))。由于通过抗CD25mAb的注入而使GVHD恶化,似乎抵抗的宿主CD25+细胞也可以通过供体T细胞的宿主抗供体耐受机制来抑制GVHD的形成。
如后面的实施例所示,体外扩增并激活的免疫调节性CD4+CD25+细胞显著抑制了体内快速致命的GVHD。如上面提到的,很多细胞类型能够被使用。当使用来自淋巴结的细胞时,考虑了所有类型的淋巴结(例如,腹股沟的、肠系膜的、表面末稍辅助的等等),可以来自健康个体或者住院患者。例如,可以使用本文提供的方法分离、纯化并培养增殖肿瘤引流淋巴结细胞。足量的这类细胞(即,当再次注入自体宿主或注入异体受体中时足够显示出所要的抑制或预防反应的数量)经高度严格的纯化并在合成培养基(例如,RPMI 1640加一些典型添加物)中稀释,在未公开的条件下持续适当的时间。多种标准培养技术可以被采用(例如,培养箱中的多孔板在37℃,5%CO2下)。为了体外刺激,在无菌条件下将细胞从宿主和单细胞悬液中分离。如果需要,细胞制备物可以经过过滤(如通过一层尼龙网)、离心和温和的裂解过程。
体外培养增殖的细胞可以通过多种方法被重新导入宿主或导入其他患者。优选的是静脉注射。任选的,宿主可以经因子(如IL-2或IL-15)处理来提高体内功能和活化细胞的存活。当然,经培养增殖的细胞也可以各种药物制剂的形式被重新导入。这些制剂可以包含正常使用的添加剂,如粘合剂、填充剂、载体、保护剂、稳定剂、乳化剂和缓冲液。适当的稀释剂和辅料,例如下述方法中使用的水、盐水和葡萄糖。
因此,供体(异体的)或宿主类型的CD25+(自体的)细胞对抑制GVHD反应都是有效的,进一步表明宿主CD25+细胞的保持将是临床上所希望的。因为人CD4+CD25+调节细胞已经显示出抑制原始和记忆CD4 T细胞的体外异体反应,并且能够在体外扩增的同时保持抑制功能(Dieckmann等人,2001;Levings等人.,2001;Jonuleit等人,2001),这些原理可应用于本发明。Levings的报道是人CD4+CD25+多克隆扩增的唯一公开文献,使用了可溶性的抗CD3和淋巴样干细胞和PBMC作为滋养细胞+IL-2。但是,Levings等人记录的抑制功能在抑制细胞/相应细胞的比例为1∶1时只有65%的繁殖减少,比使用鼠Treg细胞观察的一般结果要少。因此,不能认为Levings等人的报道对本文使用的长期体外培养增殖方法有暗示意义。
治疗方法。本发明方法对人类特别有用,但也可以用于禽兽受体。“个体”、“受体”、“患者”或“宿主”在这里指脊椎动物,优选的是哺乳动物。更优选的,这类个体是人,经培养增殖的细胞是人类的,尽管动物(包括人类疾病状态的动物模型)也包括在本发明中,并且本文也考虑了这类动物的治疗方法。如果想要,这类动物模型能够用于测验和调整本发明的组合物和方法。某些模型涉及为纯系动物注射已构建同系基因型细胞系。美国专利嵌合动物模型也是有用的,记载于美国专利5,663,481,5,602,305和5,476,993,欧洲申请379,554,以及国际申请WO 91/01760。非人类哺乳动物包括(但不限于):畜牧或农业动物、体育竞技动物和宠物。因此,相对动物模型,这类动物可以接受所选的治疗性处理。
受体或宿主的免疫状态可以是下述任何一种。个体对组合物中的某些抗原呈递细胞(APC)或肿瘤相关抗原(TAA)可以是首次免疫性。个体可以目前没有表达抗肿瘤免疫,但可以有免疫记忆,特别是有关特定抗原的T细胞记忆。含有本发明修饰和/或激活并增殖的细胞群的组合物,或其鸡尾酒,能够被注入用于预防性和/或治疗性处理。在治疗应用中,组合物以足以预防、抑制、阻断或限制、或至少是特别妨碍免疫源反应的量为患者注入,例如在GVHD发作之前或在GVHD反应及其并发症期间注入。足以实现上述目的的量被称为“治疗有效量”。这一使用的有效量将依赖疾病的严重程度和患者自身免疫系统的综合状况,但一般范围在大约0.05mg/kg体重-大约5mg/kg体重,优选的在大约0.2mg/kg体重-大约1.5mg/kg体重。
在预防性应用中,含有本发明修饰和/或激活并增殖的细胞群的组合物,或其鸡尾酒,被注入尚未进入疾病状态的患者,来提高患者抵抗力。这样的量被定义为“预防有效量”。在这种使用中,准确的量还是依赖宿主的健康状况和综合免疫水平,但一般的范围如上所述。
主治医师可以选择单次或多次注入组合物,以及剂量水平和方式。在任何情况下,药物制剂应该提供数量足以有效治疗患者的本发明修饰的CD25细胞。
术语“免疫原”或“致免疫的组合物”或“疫苗”在本文用来指一种化合物或组合物,能够:a)在首次个体中产生抵抗抗原的免疫反应,或b)重建、提高或保持个体中的免疫反应。免疫反应包括抗体、免疫反应细胞(如辅助/诱导或细胞毒性细胞)或它们的任何组合。
细胞的“灭活”在本文指使细胞失去细胞分化生成子代的能力。但是,所述细胞能够相应刺激物或生物合成和/或细胞产物(如细胞因子)的分泌。灭活方法是现有技术已知的。优选的失活方法是毒素(如丝裂霉素C)处理或辐射。被固定或透化处理并不能分化的细胞也是灭活细胞。
除非另有说明,本发明的具体方法的实施一般是采用现有技术范畴之内的分子生物学、微生物学、细胞生物学、生物化学和免疫学的常规技术。这些技术和必要的定义在文献著作中有完整的说明,例如:Molecular Cloning:A Laboratory Manual,第2版(Sambrook等人,1989); Oligonucleotide Synthesis(Gait,1984); Animal Cell Culture(Freshney,1987); Methods in Enzymology(Academic Press,Inc.);Handbook of Experimental Immunology(Weir & Blackwell); Gene Transfer Vectors for Mammalian Cells(Miller & Calos,1987); Current Protocols in Molecular Biology(Ausubel等人,1987); PCR:The Polymerase Chain Reaction(Mullis等人,1994); Current Protocols in Immunology(Coligan等人,1991)。 Remington′s Pharmaceutical Sciences,第18版(Martin,Mack Publishing Co.,Pa.,1990)中概括了药物组合物制备和给药的一般程序。
受治个体可以表现出有效的自身免疫反应(体液或细胞免疫,或两者同时)或GVHD。然而,患者应该至少具有部分免疫能力,为了减小病理范围的GVHD反应。但是,已知癌症患者或那些受自身免疫或其他免疫原性疾病影响的患者通常表现出一定程度的免疫抑制,这并不必然阻碍本发明组合物的应用,只要该组合物可以安全有效的给药。
能够依照本发明治疗的癌症包括(但不限于):位于那些通常被认为是免疫赦免的部位的癌症,如脑;和非免疫赦免部位的癌症,如肺、结肠、胸腺、肝、子宫或卵巢、胰腺、前列腺、皮肤和血液;以及人体或动物体中许多其他特异性或非特异性部位的癌症。这些癌症的例子对于现有技术人员来说是已知的,并包括小细胞肺癌。
绐药方式和剂量。本发明的组合物可以通过任何公知方法进行给药,全身或局部都可以。为防止GVHD而给移植患者或癌症患者注入异体活化细胞的最适给药时间是在手术期间。为了在手术过程结束之前将细胞保持在特定部位,方便的细胞注入方式是以药物可接受的人工胶或凝结血浆形式,或者通过使用任何其他已知的缓释机制。
如果希望有较少的介入性操作,组合物可以通过针头注射在目标部位。对于深层部位,针头的定位可以使用超声内镜技术、放射性闪烁显像技术或其他成像技术,单独使用或者与适当的显示仪或套管结合使用。为了这类应用,细胞群悬浮于大约10ml的等渗盐水或中性缓冲液后被适当的注入。
类似的,在异体移植之前或同时,有效量的分离的CD4+CD25+细胞(优选的经修饰来提高或培养提高其抑制作用)作为细胞移植物以足以防止或阻断GVHD发生的量被注入抑制受体(宿主)。在另外的实施方式中,细胞移植物是在异体移植后被注入来阻断、限制或逆转可能已经发生的GVHD。所给剂量是有效引发所要治疗反应的量,所述反应是本文其他地方所述的免疫反应的刺激或癌症的治疗。对于本发明的药物组合物,有效剂量范围一般在106-1012个细胞,更优选的是108-1011个细胞,包括异体刺激细胞和反应细胞。优选的,使用1×109-5×1010;更优选的是2×109-2×1010。平均需要109培养增殖的Treg细胞用于人体临床实验。当多重剂量结合使用来获得想要结果时,每个剂量都落入有效剂量的范围。
经移植或注射入的组合物的各种组分以“有效组合”存在,意味着有足量的每种组分来使组合物有效。优选的,存在的响应细胞至少为大约1×108,更优选的大约为5×107-2×109,更优选的大约为2×109-2×1010。存在的抑制细胞至少为大约1×107,更优选的大约为5×107-5×109,更优选的大约为1×108-2×109。异体淋巴细胞与抑制粒细胞的比例一般为1∶1-100∶1,通常大约为5∶1-25∶1,典型的为大约10∶1,如本文具体实施例中进一步描述的。然而,任何数目的组成细胞或其他成分可以被使用,只要组合物作为整体是有效的。这还取决于培养条件和制备过程中的其他因子。
对于在患者中产生免疫反应或治疗癌症或减轻GVHD作用的其他疗法,本发明的药物组合物可以在上述疗法之后或之前给入,或者替代该疗法或与之结合使用。例如,患者可以在之前已经或正在接受化疗、放疗和其他形式的免疫治疗和继承性转移。
当使用这类药征时,它们优选的运用方式或时间是不干扰本发明组合物的免疫原性。患者也可以已经被注入了另外一种组合物(如疫苗),目的是刺激免疫反应。这类替代组合物可以包括肿瘤抗原疫苗、编码肿瘤抗原的核酸疫苗、抗个体基因型疫苗和其他类型的细胞疫苗,包括表达细胞因子的肿瘤细胞系。当培养增殖的Treg细胞来源于特异源(如癌或癌细胞)时,该术语将包括,例如,不仅是原发肿瘤细胞,还包括来源于肿瘤祖细胞、转移癌细胞和体内培养物的任何细胞,来源于癌细胞的细胞系。
本发明的某些具体实施方式涉及联合治疗。在一个联合疗法中,在组织移植之前、之中或之后为患者注入体外培养增殖的自体或异体CD4+CD25+T细胞,来提高移植物移入并抑制或防止GVDH反应。尽管只公开了单次注入,但这类注入可以在细胞植入后每周进行并持续一段时间(如4-6周),来提高宿主体内的抑制反应或治疗效果。所述注入也可以在间隔几个月后进行,来补充反应。相应的,本发明的某些实施方式涉及注入细胞移植物并随后通过为患者注入含有异体活化的人类CD4+CD25+T细胞的组合物来增强治疗作用或免疫反应,所述T细胞对患者来说是自体或异体的,但是在体外处理的。当患者是癌症患者或后代时,某些实施方式可以进一步包含肿瘤细胞或其后代的灭活细胞群。
优选实施方式中,异体细胞移植物也会提供想要的结果,尽管它可能与使用自体细胞而言需要更多的细胞。另外,如果细胞经高度严格的纯化和CD25清除来减小为获得治疗效果所需的细胞体积并提高细胞移植物的效力,那么该方法具有较高的成功可能。
本发明组合物的给药时间由主治医师判断,并取决于患者的临床情况、治疗目标和目前正在接受的疗法。免疫监测的适宜方法包括一种单向MLR,使用患者PBL作为响应细胞以及原发肿瘤细胞作为刺激细胞。免疫反应也可以通过延迟的炎症反应表现在注射部位。监测Treg细胞治疗效果的适宜方法包括体外实验,如MLR;或者体内追踪,如CT扫描、磁共振成像MRI)、用适宜成像试剂的放射性闪烁显像、监测肿瘤标志物抗原和患者临床反应。可以给入附加剂量,如按周或按月,直到达到想要的效果。此后,特别是当免疫或临床受益出现消退时,可以按需要给入附加的加强或保持剂量。
当多重细胞移植物或者移植物和细胞疫苗的联合使用给入同一患者时,需要注意疫苗中的异体淋巴细胞可能产生抗异型反应。使用来自多个供体的异体细胞混合物以及在每次剂量中使用不同的异体细胞群,都是能帮助减小抗异型反应发生的策略。
在治疗过程中,定期评价患者的一般副反应,例发热反应。副反应通过适当的支持性临床护理来处理。
可选实施方式:肿瘤淋巴细胞在体内肿瘤生长过程中可以变成无反应性和抗激活或表达。多种细胞因子可以部分逆转T记忆细胞的无反应性,即IL-2、IL-4、IL-15或IL-I+IL-6。这些细胞因子可以促进T细胞繁殖并可以代表由抗原呈递细胞典型提供的基本的“二次信号”。因此,肿瘤致敏淋巴细胞的反应性能可以通过与多种细胞因子和分裂素(如抗CD3抗体或刀豆球蛋白A)的共培养而得到恢复。
通过实施例进一步描述本发明。这些实施例的提供仅以说明为目的,而不是限制目的,除非另有说明。多个方案用于许多实际情况,目的只是为现有技术人员示范。这些例子不能被解释为对权利要求的范围的限制,更正确的说,权利要求应该被解释为包括任何所有根据本文公开说明的结果而显而易见的变化形式。
实施例
实施例1中描述的材料和方法通常应用于实施例2-5,而实施例6中描述的材料和方法通常应用于实施例7。
实施例1-患有NSCLC的患者体内增加的CD4+CD25+细胞比例。
在机构审查委员会批准的协议下获得适当的通告许可后,在给患有I期或II期非小细胞肺癌的患者手术时收集外周血液和肿瘤。来自NSCLC患者的新鲜肿瘤样本经过无菌机械切割处理后进行酶解,如Woo等人(2001)所描述。细胞经硅石胶态悬浮液Percoll(PharmaciaBiotech AB,Sweden)密度梯度分离。外周血液在收集肿瘤时获得,并经Woo等人(2001)所述方法处理并冷冻。
细胞因子生成的检测是通过将70000个CD3+CD4+CD25-细胞或CD3+(-CD4+CD25+)细胞置于96孔板(Falcon,Franklin Lakes,NJ)中培养2天,总体积为200μl。收集上清液并使用Quantikine人类TGF-β、IL-2和IL-10 ELISA试剂盒(R&D Systems,Minneapolis,MN)来检测细胞因子的生成。
各自的CD25细胞群被消化,用流式细胞仪分析肿瘤浸润淋巴细胞(图1)。对于繁殖实验,96孔板包被了1μg/mL的抗CD3(Kung等人.,Science 206:347-349(1979))或1μg/mL的抗CD3和抗CD28(Hansen等人,Immunogenetics 10:247-260(1980))抗体,37℃过夜。来自患者或正常供体的外周血液淋巴细胞经解冻后培养于RPMI10%FCS(Hyclone,Logan,UT),每孔5×104细胞(200μl),三份,37℃,5%CO2。经纯化的CD3+CD4+CD25-或CD3+(-CD4+CD25+)T细胞以可变数目(0-20,000,取决于样品)被添加。阻断实验使用10μg/mL抗TGF-β抗体(R&D Systems)进行。通过测定[3H]胸腺嘧啶的掺入检测繁殖。CD3+CD4+CD25+、CD3+CD4+CD25-或CD3+(-CD4+CD25+)细胞的浓缩在Cytomation(Fort Collins,CO)MoFIo细胞分类器(通过控制淋巴细胞、CD3+CD4+T细胞)上进行。
因此,当通过流式细胞仪测定CD3+CD4+淋巴细胞在分离于肺癌肿瘤样本的总CD4+细胞群中出现的频率(%)与肺癌患者的外周血液淋巴细胞(PBL)比较时,测得33%的肿瘤浸润淋巴细胞(TIL)是CD4+CD25+。这与活化的调节T细胞表型相一致。图1中,分布和平均值显示为正常供体的PBL,n=7;来自NSCLC患者的未刺激的肿瘤浸润淋巴细胞(TIL),n=8;或NSCLC患者的未刺激的PBL,n=9。注意,NSCLC患者的外周血液的CD4+CD25+细胞百分比有类似的增加。
相反,不足15%的正常供体PBL具有这种CD4+CD25+细胞表型,这与之前的报道(Shimizu等人,J.Immunol.163:5211-5218(1999);Jonuleit等人,2001);Levings等人,2001;Dieckmann等人,2001)相一致。
实施例2- CD152(CTLA-4)在肿瘤浸润淋巴细胞表面的明亮的组成性 表达。
最近的研究表明,CTLA-4在鼠和人调节细胞上被上调(Jonuleit等人,2001;Dieckmann等人,2001;Read等人,2000)。因此,用流式细胞仪分析正常供体和NSCLC患者淋巴细胞的CD4、CD25和CTLA-4的表达。
在肿瘤细胞样本衍生的其他淋巴细胞上检测到了明亮的相当于CD4和CD8表达水平的CTLA4表面表达,而非通常观察到的(通常需要透过细胞来检测CTLA-4表达)预期暗淡或检测不到的CTLA4表达(图2),而在正常供体的其他T细胞中,不足1%的T细胞是CTLA4表达阳性(数据未显示)。因此,根据对2种代表性患者(证明了CD4+CD25-和CD4+CD25+TIL,和外周血液单核细胞(PBMC)中的CTLA4表达的患者)的评估,图2A显示了流量直方图,而图2B显示了5个连续NSCLC患者的CD4+CD25-肿瘤浸润淋巴细胞(左)、CD4+CD25+TIL(中)和CD4+CD25+PBMC(右)中表达CTLA-4的细胞的平均(±S.E.)百分数。来自肿瘤样本的CD4+CD25+细胞中,80%是CTLA-4表达并显示了增加的CTLA-4表达。相反,肿瘤样本中不足10%的CD4+CD25-淋巴细胞是CTLA-4阳性。
为了排除脱落的CTLA与活化的人T细胞表达的B7分子相结合(Greenfield等人,J.Immunol.158:2025-2034(1997)),通过定量PCR检测CTLA-4 mRNA。在CD4+CD25+细胞中观察到比CD4+CD25+细胞中更高水平的CTLA-4 mRNA(2-7倍;n=3例患者)(数据未显示)。不同于CTLA-4在肿瘤样本中的CD4+CD25+细胞上的一致表达,只有30%的来自肺癌患者的外周CD4+CD25+细胞的染色呈CTLA-4阳性(图2)。
实施例3-肿瘤浸润CD4+CD25+细胞抑制自体外周血液T细胞的繁殖。
为评价肺癌患者中CD4+CD25+CTLA-4+细胞的功能,通过高速细胞分类将CD4+CD25+细胞从保留肿瘤浸润淋巴细胞中分离,并测定它们的繁殖能力和对T细胞繁殖的作用。调节性T细胞在对有丝分裂刺激的反应中一般不能繁殖(Shevach等人,J.Exp.Med.193:F41-F46(2001))。为证实这一点,50,000个CD4+CD25+或CD3+肿瘤浸润淋巴细胞(TIL)清除的CD4+CD25+细胞被固定化抗CD3和抗CD28刺激。CD3+细胞清除的CD4+CD25+细胞繁殖了,而CD4+CD25+细胞没有繁殖(数据未显示)。
接着,自体外周血液淋巴细胞在有数目增加的推定调节细胞存在的次佳或最佳条件下接受刺激。自体PBL被单独培养或与数目增加的经分类纯化的来自肺癌样本的CD4+CD25+或CD4+CD25-肿瘤浸润淋巴细胞(TIL)一起培养。对照培养物中加入CD4+CD25+TIL。可溶的抗CD3或固定化的抗CD3诱导了次佳的繁殖,固定化的抗CD3和抗CD28诱导了最佳的繁殖。4天培养的最后18个小时期间检测[3H]胸腺嘧啶掺入。结果表达为单独培养的PBL的响应百分数。对于CD25-曲线,100%繁殖在37081±4094cpm,对于CD25+曲线,100%繁殖在29465±1007cpm。
正如预期的,可溶的抗CD3刺激的低水平繁殖,以及加入肿瘤浸润CD4+CD25+T细胞后观察到的可溶性抗CD3刺激的繁殖的直接抑制(图3A)。但是,固定化的(平板固定)抗CD3诱导了更旺盛的繁殖,随着CD4+CD25+细胞的加入而出现剂量依赖性的T细胞繁殖下降。
但是,不同于之前报道的鼠T细胞(Thornton等人,1998),抗CD3和抗CD28(塑料固定化的抗CD3/CD28)刺激的最佳繁殖也因加入10-20%的来自肺癌样本的CD4+CD25+淋巴细胞而被抑制(图3B)。该抑制是有效的。在5个连续患者中,向50000个自体PBL加入10000个CD4+CD25+T细胞,产生了对抗CD3/CD28刺激的自体PBL繁殖60%的平均抑制。相反,CD3+肿瘤浸润淋巴细胞清除的CD4+CD25+细胞细胞(图3B)或受辐射的与响应细胞一起培养的PBL(数据未显示)都抑制了自体PBL的繁殖,说明了该作用不归因于空间或营养缺陷。
实施例4-CD4+CD25+肿瘤浸润淋巴细胞未能抑制自体PBL细胞。
为测定新分离的肿瘤浸润CD4+CD25+T细胞抑制外周血液T细胞繁殖的能力,将正常供体的异体外周T细胞或不相关肺癌(NSCLC)患者的自体PBL与癌症患者的肿瘤浸润CD4+CD25+细胞一起培养(使用的细胞量分别显示在图4A和4B)。本实施例中所有的细胞培养物经平板固定的抗CD3/CD28刺激。在4天培养期的最后18小时中测定[3H]胸腺嘧啶的掺入。
CD4+CD25+T细胞不能抑制抗CD3/抗CD28刺激的正常供体的PBL的繁殖(图4A),而CD4+CD25+T细胞数目增加实际产生了提高的增殖作用。在对照培养中,肿瘤衍生的CD4+CD25+T细胞有效抑制了抗CD3/28诱导的自体PBL繁殖(图4B),证实了这类肿瘤衍生CD4+CD25+T细胞群的抑制功能。结果表示为:三次独立实验中一次实验(图4A)或两次独立实验中一次实验(图4B)的三份培养物的平均值(±S.E.),每次实验具有相似的结果。
然后,将正常供体的外周血液细胞与自体分类纯化的外周血液CD4+CD25+供体T细胞一起培养,如图4C所示。由于是使用肿瘤衍生的CD4+CD25+T细胞的情况,通过与分离于外周血液的增加数目的自体CD4+CD25+T细胞一起培养,正常供体响应PBL的繁殖受到了抑制(图4C)。结果表示为两次独立实验中一次实验的三份培养物的平均值(图4C),每次实验具有相同的结果。
然后,将肿瘤浸润CD4+CD25+或CD4+CD25-细胞与NSCLC患者的自体PBL一起培养。然而,来自患者A的肿瘤衍生CD4+CD25+细胞没能抑制来自无关NSCLC患者B的PBL的繁殖,如图4D所示。结果表示为4次独立实验中一次实验的三份培养物的平均值(图4D),每次实验具有相同的结果。
这些实验一起说明,浸润肿瘤的调节性T细胞有效抑制分裂素诱导的自体T细胞的繁殖,但是它们没能抑制异体PBL的繁殖。
实施例5- TGF-β对抑制繁殖不是必需的
为确定从肿瘤分离的调节性T细胞的TGF-β分泌是否有助于它们的抑制功能,CD4+CD25+和CD3+细胞清除的来自肺癌样本的CD4+CD25+细胞于培养液中培养2天。ELISA检测上清液中的TGF-β。6例患者中的有代表性的一例结果(三个板孔的平均值±S.E)中,未经刺激的、分类纯化的CD4+CD25+T细胞组成性地生成了大量TGF-β(图5A),但ELISA没有检测到IL-2和IL-10的生成(数据未显示)。
自体PBL被单独培养或用可变数目的CD4+CD25+细胞培养,并经平板固定的抗CD3/CD28刺激。加入0μg/mL和10μg/ml的抗TGF-β中和抗体。在4天培养期的最后18个小时期间内检测[3H]胸腺嘧啶的掺入。结果表示为两次独立实验中的一次实验的三份培养物的平均值(±S.E.),每次实验的结果相似。10μg/mL抗TGF-β抗体(已知足以中和50ng/mL TGF-β的作用)的加入没有消除CD4+CD25+T细胞对抗CD3/28诱导的自体PBL繁殖的抑制作用(图5B)。因此,图5A和5B一起表明,肿瘤浸润CD4+CD25+细胞的组成性TGF-β分泌不是抑制自体PBL繁殖所必需的。
实施例6-免疫调节性CD4+CD25+细胞的清除导致体内GVHD致死率的加速。
现有研究已经证明CD4+CD25+免疫调节细胞是通过共刺激阻断而体外诱导异体抗原耐受所必需的(Taylor等人,2001)。而且,分级数目的新纯化的B6CD4+CD25+细胞的加入导致了组成为B6CD4+CD25-响应细胞和受辐射bm12刺激细胞的MLR中剂量依赖性的异体反应抑制,而CD25清除的CD4+T细胞导致了升高的反应(Taylor等人,2001)。因此,考察了这些专职抑制细胞在调节异体抗原的T细胞反应和移植物抗宿主疾病(GVHD)中的潜在作用。
为纯化整体或CD4+T细胞,在本实施例和下述实施例7和8中,使用鼠衍生的T细胞,液前线、肠系膜、腹股沟的淋巴结经捣碎,单细胞悬液通过网孔并收集于含有2%胎儿牛血清(FBS)的PBS中(HyClone,Logan,UT)。细胞制备物被清除了NK细胞(杂交瘤PK1 36,鼠IgG2a)和CD8+T细胞(为了CD+细胞纯化)(杂交瘤2.43,鼠IgG2b),通过与单克隆抗体(mAb)培养后经过山羊抗鼠(mouse)和山羊抗鼠(rat)Ig包被柱(Cellect Cell Enrichment Immunocolumns,Cedarlane,Homby,Ontario,Canada)。通过流式细胞分析测定纯化后T细胞的最终组成为≥94%完整或CD+T细胞。
已经表明,CD25免疫调节细胞通过与抗CD25mAb培养而被清除(杂交瘤3C7,鼠IgG2b,BD PharMingen(San Diego,CA)和绵羊抗鼠Dynabeads(Dynal,Lake Success,NY),并经测定为>95%清除。为富集CD4+CD25+细胞,用抗CD25生物素培养经纯化的CD+细胞(杂交瘤7D4,鼠IgM),然后用抗生物素蛋白链霉素-PE培养(两者均为BDPharMingen产品)。与MACS抗PE微珠培养后,细胞在MS或VSMACS分离柱(均为Miltenyi Biotec,Auburn,CA)上被阳性选择。细胞被确定为90%CD4+CD25+(也被简单称为“CD25+细胞”)。
辐射强度和供体细胞的CD25+细胞清除的作用。为确定T细胞供体接种物中CD25+细胞的清除是否会导致加速或增加的体内GVHD致死率,或者是否GVHD致死率只有在不致死的全身照射(TBI)条件下才是可有效的。获自Jackson实验室(Bar Harbor,ME)的B6.C-H2bm12/KhEg(bm12)(H2b)小鼠在8-12周大时被使用。所有的小鼠都被养在一个特殊的没有病原菌的实验室中,置于隔离的笼子中。bm12受体经不致死的辐射(在这一特定实验和整个实施例过程中),在细胞注入之前的4个小时,将小鼠暴露于来自137铯辐射源的6.0Gy TBI,剂量率为85cGy/分钟。经不致死的辐射后的bm12小鼠在第一次实验中被给入1×105II类不同的细胞,完整的B6 CD4+T细胞或CD25清除的B6 CD4+T细胞(图6A),而第二次实验中,给入0.5×105I同样的细胞,即完整的B6 CD4+T细胞或CD25清除的B6CD4+T细胞(图6B)。细胞是通过静脉注射给入。
每天监测小鼠的存活,每周测两次体重并检查GVHD的临床表现。存活数据通过生命表方法来分析,显示了精确计算的存活率。通过记录分类测试数据统计进行成组比较。P<0.05被认为是显著的。在较高剂量下,所有的小鼠死于GVHD(图6A),而在降低的剂量下,存活率是20%长期(图6B,P=0.0068)。
CD25清除的CD4+T细胞受体死于GVHD的时间比完整CD4+细胞的受体早1周-10天(p=0.024)。因为105个细胞导致了快速、高度致死的GVHD,所以采用较低细胞剂量(0.5×105)来重复实验,来试图放大存活率的差别(图6B)。0.5×105个CD25清除的CD4+T细胞的所有受体在细胞注入后19天死于GVHD。因此,供体T细胞接种物中的CD25+细胞下调了GVHD反应,而供体T细胞接种物中CD25+细胞的清除加速了GVHD。尽管GVHD在完整CD4+T细胞受体中的发生较慢,但体内移植前受体的CD25+细胞清除加速了GVHD。
使用来自不同种属的、清除了T细胞的骨髓或脾细胞对GVHD的影响。在另外一系列实验中,BALB/c受体在移植前接受x射线的致死性辐射,所述移植是用异体T细胞清除的骨髓和(i)2×106个完整脾或纯化的完整淋巴结CD4+T细胞或(ii)2×106个CD25清除的CD4+细胞(见图7)。所有的CD25清除的CD4+T细胞的受体在移植后63天之内死亡(平均存活=35天)。相反,接受了2×106个完整CD4+T细胞的小鼠中有25%存活到100天(8只小鼠/组;平均存活=91天)(图7,P=0.016)。
CD25清除对GVHD生成的影响在3个不同种属组合中被检测,所述种属组合中的GVHD由CD4+和CD8+T细胞介导。BALB/c重度联合免疫缺陷(SCID)小鼠(购买自National Institutes of Health,Bethesda,MD)没有经过辐射,但是在异体T细胞移植前2天和4天,通过腹腔注射25μl的anti-asialo GM1(Wako Chemicals USA,Inc.Richmond,VA)来清除NK(NK清除的BALB/c SCID小鼠)。已经指明,供体类型的CD25+细胞通过单独的静脉注射被注入。
在首次GVHD模型中,未经辐射的、NK清除的BALB/c SCID小鼠受到了完整的T细胞或CD25清除的T细胞(图8)。T细胞的CD25清除导致了GVHD致死的加速(图8,P=0.021),表明CD4+CD25+细胞在缺少TBI的条件下在CD4+和CD8+T细胞介导的GVHD中起作用。
在第二个种属联合中,经致死性辐射的B10.BR小鼠(B1O.BR(H2k),来自Jackson实验室,Bar Harbor,ME)被给入B6 BM和15×106个完整的或CD25清除的B6脾细胞(图9)。(注意B6和bm12(均为H2b)由于II类IA区域突变而有三个氨基酸不同)。CD25清除的脾细胞的受体死于GVHD的时间比完整脾细胞的受体早10天(P=0.055)。
在第三个种属联合中,B6受体小鼠在移植前被切除了胸腺,来防止移植后供体BM衍生的CD4+CD25+免疫调节细胞的出现。另外,抗CD25mAb(杂交瘤7D4)以0.5mg/每次注射的剂量在移植后第10、7、4天被静脉注入(0.5mg抗体/每次注射)那些切除了胸腺的成年受体中,来清除宿主体内的CD4+CD25+调节细胞。裸鼠中产生的腹水经硫酸铵沉淀,抗CD25mAb被部分纯化。抗CD25mAb处理的或对照mAb处理的胸腺切除的B6小鼠经致死性辐射后植入BALB/cBM和15×106个完整的脾细胞,并监测存活(图10)。只有在移植前经抗CD25mAb体内处理的小鼠与对照相比具有明显低的平均存活率(22对44天)。所有抗CD25mAb处理的受体在移植后28天内死于GVHD,比对照抗体的受体早58天(图10,P=0.0063)。
总结,这些数据表明CD4+CD25+免疫调节细胞在GVHD生成中起了关键的抑制作用,不论种属联合,也不论GVHD是由CD4+T细胞介导还是由CD4+和CD8+T细胞介导。
实施例7-体外活化并扩增的CD4+CD25+免疫调节细胞减轻GVHD。
尽管前面的数据表明了新纯化的CD4+CD25+细胞与CD4+细胞以1∶1比例注入时只具有非常温和的防治GVHD作用(Taylor等人,2001),但是假设CD4+CD25+细胞的GVHD防治作用能临床开发用于抑制GVHD致死。由于CD4+CD25+细胞在鼠和人中只占总CD4+细胞群的5-10%,具有显著治疗益处的足量新纯化的免疫调节性T细胞的给入可能在临床上是不能实现的。但是,因为数据表明CD4+CD25+细胞能够成为更有效的活化抑制细胞,假设CD4+CD25+细胞的体外活化和扩增将使免疫调节细胞治疗在临床上能够实现。因此,为了初步确定最佳的培养条件,试验了4种不同的用于活化CD25+细胞的条件(即条件1-4),评价了每种条件的效果并将结果应用于其余的实验。
Treg细胞的培养和体外活化条件
条件1:最初的尝试利用了Thornton等人(2000)报道的方法,用可溶性抗CD3mAb、同系基因型的抗原呈递细胞(APC)和高剂量IL-2(100U/ml)体外培养经纯化的CD4+CD25+细胞。浓缩的CD25+细胞以0.5×106细胞/ml的终浓度悬浮于24孔板(Costar,Acton,MA)并培养一周。培养介质是DMEM(BioWhittaker,Walkersville,MD),添加了10%FBS(HyClone)、50mM 2-ME(Sigma,St.Louis,MO)、10mM HEPES缓冲液、1mM丙酮酸钠(Life Technologies,Grand Island,NY),以及氨基酸添加物(1.5mM L-谷氨酰胺和L-天冬酰胺)(Sigma)和抗生素(青霉素100U/ml,链霉素100mg/ml)(Sigma)。最初,可溶性CD3(0.5μg/ml)(杂交瘤145-2C11,仓鼠IgG)(BD PharMingen)和重组人IL-2(5.0ng/ml)(Amgen,Thousand Oaks,CA)被用于激活细胞(“条件1”)。
但是,尽管采用该方案将活化的细胞扩增了10-15倍,但是它们的抑制功能受到显著损伤。增殖活化的CD4+CD25+细胞与等量的新鲜GVHD诱导CD4+T细胞结合时没有抑制GVHD(数据未显示)。另外,不同于新分离的CD4+T细胞,以同样的体外活化方案扩增的对照CD4+CD25-细胞被注入异体受体后没能介导死亡,表明这一扩增及活化方案导致了体内功能的普遍丧失(数据未显示)。
条件2:接下来,利用如上同样的培养条件对CD25+体外活化方案进行了调整;但是,不同于可溶性抗CD3mAb,调整后的方案利用了固定化的抗CD3(5.0μg/ml和IL-2(100U/ml))(″条件2)。3天后,细胞从抗体包被平板上移走并转入新平板,加入含有IL-2的培养基来使T细胞受体(TCR)重新表达。然后在含有IL-2的培养基中扩增4天。这一方案产生了15-20倍的CD4+CD25+细胞扩增。
在C57BL/6(B6)、BALB/c(H2d)和BALB/c重度联合免疫缺陷(SCID)小鼠(NIH)的体内评价扩增的CD25+细胞抑制GVHD生成的能力。200万新纯化的B6 CD4+T细胞被注入未辐射的、NK清除的BALB/c SCID受体中。小鼠队列接受了2×106个活化CD4+CD25+细胞或CD4+CD25-细胞的单独注射。细胞经固定化抗CD3mAb和高剂量IL-2被活化并培养一周,监测存活和体重(图11,数据未显示)。体外扩增的CD25+细胞的注入显著提高了平均存活时间,从10天到72天(图11,p=0.022)。接受了附加的扩增的CD25-细胞的小鼠的存活明显不同于只接受新CD4+T细胞的对照小鼠(图11,p=0.285),表明防治作用是对CD25+细胞群特异性的。
尽管注入活化并增殖的CD25+细胞显著延长了存活时间,但是小鼠具有实质的GVHD临床表征(20%体重下降、腹泻、弓背、粗糙的皮毛和全身性红斑)并最终死于GVHD。这些数据表明尽管CD25+细胞能够在体外显著扩增而获得显著抑制GVHD的足够数量的细胞,但是需要对活化和扩增方案进行额外的改良来提高抗GVHD作用。
比较实验:为优化活化并培养B6 CD25+细胞的方法,比较了三种不同的方法。用于比较的标准是条件2活化方案,意味着通过上述的(i)固定化抗CD3和(ii)高剂量IL-2(100U/ml)进行活化。所有的培养物>95%生命力。
条件3:因为固定化抗体能够导致强的TCR信号传导和活化诱导的细胞死亡(Lenardo,Nature 353:858-861(1991);Wesselborg等人,J.Immunol.150:4338-4345(1993);Lissy等人,Immunity 8:57-65(1998);Carpenter等人,J.Immunol.165:6205-6213(2000)),需要实验一种活性较小而通用的活化方法。因此,在“条件3”中,经辐射的BALB/c脾刺激细胞被加入到经纯化的B6 CD25+细胞(比例为2∶1),来诱导更多生理水平的TCR信号传导和活化,细胞在高剂量IL-2(100U/ml)存在下培养。
评价培养条件的一个重要部分是回复数据,因为该方法的临床可行性取决于能够注入足够数目的活化CD25+调节细胞。条件3培养方案利用了固定化抗CD3和高剂量IL-2,在一周内产生了12倍的细胞扩增,而异体宿主类型的脾刺激细胞经辐射后启动用于活化的T细胞受体,高剂量的IL-2只产生了1.5倍的细胞扩增。
条件4:虽然最佳扩增可能需要相对高剂量的IL-2,但是从高剂量减少到相对高剂量会影响体内移植的细胞存活,因此有可能导致不如最佳GVHD防治作用,这是测试“条件4”的另外一个原因((Lenardo,1991)。条件4利用了受辐射的BALB/c脾刺激细胞和低剂量的IL-2(降至10U/ml),重组人转化生长因子β2(TGF-β2;1.0ng/ml)(R&DSystems)作为CD4+CD25+的一种附加生长因子而被加入。
条件4的方法利用了异体脾刺激细胞、低剂量IL-2和TGF-β,导致了低回复率,一周内只有31%的注入细胞回复。
评价了经培养的所有3个类型CD25+细胞(CD4+;CD4++活化的CD25-;CD4++活化的CD25+)抑制GVHD的能力,所述抑制由CD4+和CD8+T细胞介导(图12)。6只BALB/c SCID小鼠接受106 CD25清除的完整T细胞来诱导GVHD。两个分开的小鼠队列(每组6只小鼠)还接受了106 CD25+细胞,该细胞是在前两种条件下培养的(抗CD3/IL-2(条件2,如图12中一系列空心矩形所示)或者异体APCs/IL-2(条件3,如图12中一系列空心三角形所示))。第三队列(每组6只小鼠)接受106 CD25-清除的完整T细胞和0.5×106个用受辐射的BALB/c脾细胞培养的CD25+细胞,低剂量IL-2和TGF-β(条件4,如图12中星形所示);但是,因这组中不足的回复率而未能使106CD25+细胞的完全注入。
所有的CD25-T细胞受体在细胞移植后8天内死亡(图12)。相反,培养的CD25+细胞的注入显著抑制了GVHD致死,不论培养方案如何。新鲜CD25-T细胞和CD25+细胞(经固定化抗CD3mAb和高剂量IL-2扩增)的受体有50%(3/6)在细胞移植后2个月依然存活。CD25-T细胞和CD25+细胞(经BALB/c脾细胞和高剂量IL-2培养)的受体存活时间更长,但是所有小鼠在54天(平均存活时间是31天)内死于GVHD(图12)。与对照组比较,所有P值≤0.016(图12中一系列圆圈所示)。
尽管注入较低的细胞数目,该方案培养的CD25+细胞在至少两个月内保护了6个受体中的5个免于GVHD致死。这些数据一起说明CD4+CD25+细胞能够容易的在体外扩增足够数目,来提供对快速致死的GVHD的明显防治。
GVHD症状发生后的GVHD治疗:为确定注入活化增殖的CD25+Treg细胞能否用于治疗GVHD,经致死性辐射的B10.BR受体在第0天被给入单独的C57BL/6BM或BM+脾细胞。在BM移植后第6天,此时有明显的GVHD症状出现,包括在接受脾细胞的组中GVHD诱导的体重下降,表征有效的和正在进行的GVHD,单次静脉注入经活化并增殖的(抗CD3/IL-2/TGF-β)C57BL/6 CD4+CD25+细胞。每组10只小鼠中有9只接受移植和分析。经活化增殖的CD4+CD25+细胞的注入能够使40%的小鼠长期(152天)存活,对照组普遍在51天死亡(P=0.002,脾+CD4/25对脾)(见图13)。
因此,目前实验过的抗GVHD疗法,利用注入体外活化并扩增的CD25+Treg细胞的方法表现出最大的前途,如本模型系统中所评价的。
为防治GVHD的多次细胞注入:除了通过将活化并增殖的CD4+CD25+细胞注入未受辐射的异体供体T细胞的SCID受体中所表现出的抗GVHD作用之外,在受致死性辐射的B10.BR受体中也观察到了有效的抗GVHD致死作用,所述B10.BR受体接受了主要组织相容性完全不同的C57BL/6脾细胞(15×106)和C57BL/6 T细胞清除的骨髓(BM)。在该模型系统(脾+CD4/25细胞)中,BM移植后第0天和第4天(107/天),将经活化培养的(抗CD3/IL-2/TGF-β)CD4+CD25+细胞注入一列小鼠中。对照由单独的BM或BM+附加的脾细胞组成,没有注入CD4/25细胞。每组有8只小鼠接受移植。对照动物中观察到普遍的GVHD死亡,而接受两次CD4+CD25+细胞注入的受体具有低的致死率,88%长期存活(见图14)。因此,这些数据表明多次细胞注入是无毒的,没有引发GVHD,而事实上是高效防止了经致死性辐射的、接受MHC完全不同的供体移植物的受体中的GVHD致死。
因此,由于CD4+CD25+细胞可以被扩增并多次注入,这些数据为急性和慢性GVHD治疗试验提供了原理求证,其中多次细胞注入物可以给入患者,从单个供体CD4+CD25+细胞分离程序到人类中出现频率相对较低的细胞群的体外活化和培养所观察到的显著扩增。
移植物移入效果:为了试验促进了扩增的C57BL/6 CD4+CD25+细胞能力的移植物,抗CD3/IL-2/TGF□被单独使用或与存活因子(IL-4,IL-7)共同使用。BALB/c受体被给入4.25Gy TBI和C57BL/6 T细胞清除的BM(107细胞/受体),没有CD4+CD25+细胞或者含有经活化并扩增的CD4+CD25+细胞(5×106)。平均供体细胞为:对照(41%)与CD4+CD25+细胞相比:两种扩增培养物分别为89%(P=0.0003)或83%(P=0.009)。移植物移入是多重谱系的并稳定存在(第82天和第139天重复测试,结果相似)。受体没有副反应(包括GVHD)证据,所有组中存活良好(~75%长期)。因此,扩增的培养物能促进移植物移入。
使用活化并扩增的CD4+CD25+细胞富集L选择蛋白:Thorton等人(2000)报道了L选择蛋白高位细胞没有L选择蛋白低位细胞更有效,最近,Fu等人报道了新分离的CD4/25L选择蛋白高位和低位细胞在抑制体内基于继承性转移的自身免疫性胃炎中的体内生物学活性上没有差别(Amer.J.Transplant 4:65-78,2004)。
然而,为确定归巢受体表达是否影响了活化并增殖的CD4+CD25+细胞的抗GVHD作用,使用抗CD3+抗CD28mAb包被磁珠(2天)+IL-2(100U/ml)培养C57BL/6 CD4+CD25+细胞。7天后,通过柱分离纯化,活化并增殖的细胞因L选择蛋白(CD62L)高(hi)或低(lo)水平表达而被富集。致死性辐射的bm12小鼠(C.H2bm12(B10.BR(H2k))被给入单独的II类MHC不同的、C57BL/6 T细胞清除的BM或与附加的C57BL/6 CD4+CD25-T细胞一起给入(106个细胞/受体)。一些接受供体T细胞的受体队列被给入体外活化增殖的CD4+CD25+CD62L-hi或CD4+CD25+CD62L-lo细胞(3×106细胞/受体)。对照由单独BM(BM)或BM加C57BL/6 CD4+CD25-细胞(BM+CD4+CD25-)构成。每组有8只鼠接受移植。在BM移植后35天,接受供体CD4+CD25-T细胞而没有接受CD4+CD25+细胞的对照只有25%的存活率。接受了CD4+CD25+CD62L-lo细胞的受体具有38%的存活率,与那些没有接受这种额外细胞群的受体没有显著差别(P=0.35)。
明显相反,接受体外活化并分离的CD4+CD25+CD62L-hi细胞的受体具有明显较高的存活率(100%),与那些没有接受额外CD4+CD25+细胞的受体相比(P=0.0016)或与那些接受CD4+CD25+CD62L-lo细胞的受体相比(P=0.005)。因此,体内注入经CD3/28磁珠+IL-2增殖的CD4/25L选择蛋白高位细胞与低位细胞相比,在抑制GVHD致死方面具有较多益处。这些数据进一步证实了体外活化培养的细胞可以细分为在啮齿类动物中具有有效抗GVHD作用的细胞亚型,并且这个程序在体外活化并扩增后进行,能够进一步提高这一细胞群在BM移植模型中的生物学活性。CD62L表达水平提供了这样一种完成该目标的方法,但是其他方法是已知的或将在现有技术中被定义。
本数据证明,在使用多种模型将体外活化并扩增的CD4+CD25+细胞注入异体受体中时,提供了有效的GVHD抑制和/或限制以及移植物移入促进作用。人类细胞研究已经说明了一个体外现象,CD4+CD25+细胞能够被活化扩增并同时保留对异体抗原的抑制能力。
实施例8- 严格分离的Treg细胞的体外培养-增殖方法以及由此得到的 细胞在人类免疫抑制治疗中的应用。
基于上述鼠研究和以前的研究(如Taylor等人报道,2002,同上),采用抗CD3加IL-2体外多克隆扩增的Treg细胞(10天)在本文表现出有效的防治GVHD作用。其他人的研究已经表明采用受辐射的异体APC加外源性IL-2体外扩增的Treg细胞能够抑制GVHD(Cohen等人,2002,同上;Trenado等人,2002,同上),而后续研究表明Treg细胞能够防止GVHD,但是在动物模型中,它们依然具有抗肿瘤或移植物抗白血病(GVL)作用(Trenado等人,2002;Jones等人,2003;Edinger等人,2003,同上)。但是,人类Treg细胞在临床的人类移植免疫抑制治疗中的潜在作用被限制了,除非能够开发出分离和长期培养增殖人类Treg细胞的方法,来提供足够数量的细胞用于体内注入。
为满足这一需求,利用下调免疫反应的天然生理学机制,发明人开发出了独特的纯化方法和体外培养增殖技术,提供了活化的人CD25+抑制T细胞,用于免疫抑制治疗,特别是用于防止移植相关的免疫反应。人类抑制细胞系在随后的实验中生成,保持功能的时间至少为3-6周。在一些情况下,培养中的细胞系保持功能性达3个月,依然具有有效抑制性。但是,为更好表现CD4+CD25+Treg细胞的功能,开发了一种经改良提高的MACS纯化方法,用来分离并培养增殖这些重要细胞。以下组分和方法在下述实验中使用,形成了有效的培养物增殖的Treg细胞,能够提供用于治疗目的的显著的抑制作用。
CD4+T细胞亚型的MACS纯化。从正常健康自愿者供体的全血衍生的血沉棕黄层分离T细胞(Memorial Blood Centers,Minneapolis,MN)(在一些早期实验中还使用了leukophoresis产物)。白细胞富集的血沉棕黄层细胞在聚蔗糖-泛影葡胺(ficoll-hypaque)层上离心收集PBMC。通过阳性选择将CD25+明亮细胞从直接结合于抗CD25磁性微珠(2μl/107细胞)(Miltenyi Biotec,Auburn,CA)的PBMC中分离,并在LS+柱上纯化(LS+分离柱和MidiMACS分离装置的使用可以从Miltenyi Biotec获得)。然后将细胞上第二个磁性柱,洗涤后再次洗脱。经过双柱程序,经FACS分析,细胞纯度大约>93%(对CD25)(其余为少量B细胞(4-8%)和CD8+T细胞(-1%))。
或者,细胞被间接染色,用抗CD25-FITC,克隆2A3(BectonDickinson Immunocytometry Systems,San Jose,CA),经洗涤后结合于抗FITC多孔微珠(3微升/107细胞,Miltenyi Biotec)并被阳性选择。由于使用直接微珠系统,细胞再上一个第二柱。经过柱纯化,多孔珠被分离,使用mAb包被的微珠鸡尾酒将CD25+细胞清除掉CD8、CD14、CD19、CD20和CD56表达细胞,为谱系清除。
使用更多的抗CD25微珠(10微升/107细胞)清除PBMC非CD25馏分中的CD25+细胞。然后通过抗CD4 mAb包被的磁性微珠(10微升/107细胞)(Miltenyi Biotec)的阳性选择将CD4+T细胞从CD25馏分中分离出来。经FACS分析,细胞一般为96-98%的纯CD4+CD25-
T细胞培养。分离的CD4+CD25+细胞或对照CD4+CD25-细胞用抗CD3/CD28mAb包被的Dynabeads培养(U.Pennsylvania)(Levine等人,J.Immunol.159(12):5921-5930(1997),Lapor等人,Blood102(6):2004-2013(2003)),磁珠与总细胞的比例为2∶1。CD4+CD25-滋养细胞在30Gy下辐射后以1∶1的比例加入CD4+CD25+细胞。细胞以100万细胞(未经辐射的)/ml的浓度下培养于24孔板中。在第3天加入50IU/ml的IL-2(Chiron,Emeryville,CA)。细胞按需要而被分裂,在快速生长期间大约每三天分裂1∶3。细胞培养液为RPMI-1640(Gibco),并添加了10%FCS(Gibco)、L谷氨酰胺、青霉素和链霉素。
用于MLR培养物的刺激细胞。未成熟的人类树突细胞(DC)产生于CD14+单细胞(Sallusto等人,J.Exp.Med.179(4):1109-1118(1994),Banchereau等人,Annu.Rev.Immunol.18:767-811(2000)),通过基于磁性微珠的纯化(Miltenyi-Biotec)而从PBMC中被分离,并以106个细胞/ml培养于X-Vivo-15培养基,添加了GMCSF(终浓度为50ng/ml)和IL4(终浓度为20ng/ml)细胞因子(R&D Systems,Minneapolis,MN)。细胞在作为MLR刺激细胞使用之前被培养5-10天。
对于某些实验,DC经TNF-α(终浓度20ng/ml)和Poly I:C(一种Toll样受体(TLR)-3因子激动剂配基(终浓度为20μg/ml)(Sigma,St.Louis,MO)培养成熟2天(Cella等人,J.Exp.Med.189(5):821-829(1999),Spisek等人,Cancer Immunol. Immunother.50(8):417-427(2001),Godfrey等人,Blood 103:1158-1165(2004))。在其他实验中,TNF和PolyIC(以相同的浓度)或LPS(Sigma-Aldrich)(10-100-1000ng/ml)被直接加入MLR。DC刺激细胞经30Gy辐射。
MLR实验培养。响应性CD4+CD25-T细胞和DC刺激性APC分别以5×104/孔和5×103/孔的浓度被培养于96孔U底板中。加入2.5×104/孔的测试培养的抑制性或常规T细胞系来进行标准测定,或者以梯度数目用来滴定实验。对于抗体阻断实验,使用了1×104抑制性细胞。培养基为RPMI-1640(Gibco-Life Technologies,Grand Island,NY),并添加了10%FCS(Gibco)、L谷氨酰胺、青霉素和链霉素。孔板在第3、5、6和7天经3H胸腺嘧啶脉冲,为最后16小时的培养。所有时间点具有6次重复。结果表示为次数/分钟。然而,数据是用直接的β-粒子计数器而收集,因此,报告的cpm要低于用液体闪烁计数的典型报告值。所以,尽管计数的绝对量较低,但是实验样品间的相对差异保持一致。
细胞因子分析。培养上清液经旋转去除细胞,-80℃冷却。通过Luminex测定系统评价上清液,使用基于橡胶珠的多重分析系统(R&D Systems,Minneapolis,MN)。
细胞毒性。在4小时的51Cr释放实验中检测经培养的抑制细胞系抗异种DC或NK敏感细胞系K562的细胞毒性。效应细胞与靶细胞的比例为20∶1-0.6∶1。靶细胞经200μCi铬酸钠-51Cr(DuPont,Wilmington,DE)标记60分钟。所有检测进行三份,测定了裂解百分比。阳性对照裂解的NK92细胞来自ATCC(American Type CultureCollection,Rockville,MD)并保存于含有500U/ml重组人IL-2(Chiron)的溶液中。
单克隆抗体(Mabs)。为继续纯化,细胞经抗CD25-PE染色,由抗CD25-微珠,克隆M-A251(BD Pharmingen),阻断。其他用于流式细胞计数的抗体包括抗CD4-PerCP(克隆SK3)、抗CD8-PerCP(SK1)、抗CD 19-APC(4G7),来自(Becton Dickinson ImmunocytometrySystems);抗CD 27-FITC(MT271)、anti-CD62L-PE(Dreg56)、抗CD69-FITC(FN50)、抗CD152-PE(BNB)、抗CD122-PE(Mik-b2)、抗CD132-PE(AG184)和抗CD134(ACT35),来自(BD Pharmingen);以及抗CCR7-PE(#150503)和抗GITR-PE(#110416),来自(R&D Systems)。针对阻断抑制的功能性实验中,使用的中和抗体的滴定量达20μg/ml。抗体包括抗IL-10(23738)、抗L-10-受体-α(37607)和抗TNFβ-1,2,3(1D11),来自(R&D Systems)。
流式细胞计量术。对于免疫荧光染色,细胞在40℃下用滴定量的每种抗体染色30分钟。细胞经再次洗涤后于FACS Calibur细胞计数器(BD Immunocytometry Systems)上进行分析。细胞系亚型在FACSVantage上被分选。用FIoJo软件4.4版(Treestar,Ashland,OR)分析数据。使用多聚甲醛固定细胞完成细胞内染色,2%、室温30分钟,随后进行透化并染色1小时,在含有0.1%皂素的缓冲液(PBS加5%FCS-5%人类AB血清)中洗涤。
数据统计。图15-21上的所有误差条图表示一个高于或低于平均值的标准偏差。成对、双尾的Studentst检验被用来测定繁殖反应之间的差异显著性。P值<0.05被认为是显著的。
实验结果。本文改良的MACS纯化过程中使用了较低滴定度的抗CD25mAb包被微珠,导致细胞分离具有较高的CD25表达平均通道荧光强度。另外,磁性分离的细胞再经过第二柱进行附加纯化,进一步增加了CD25+细胞的富集。可分离微珠的使用实现了CD25纯化后的磁珠去除,进而允许了后续的谱系清除(清除CD8、CD14、CD19和CD56细胞)。这一策略实现了高度纯化的CD4+CD25+细胞群的生成(图15C)。细胞的CD25阴性馏分被进一步清除CD25+细胞,并作为CD4+CD25-细胞纯化的起源,用于常规T细胞对照的分离(图15D)。
抗CD3/CD28珠和IL-2促进Treg细胞扩增。入CD4+CD25+Treg细胞对抗CD3mAb或DC刺激是低反应性的。但是,当给入这些刺激物加IL-2或IL-15时,它们能够繁殖,尽管繁殖的程度远低于CD4+CD25-Treg细胞(Jonuleit等人.,2001,同上,Dieckmann等人,2001,同上))。因此,在初期实验中,经纯化的CD4+CD25+细胞用固定化的抗CD3加IL-2扩增,在2周内实现了5-10倍扩增。
为进一步放大扩增潜力,考察了基于附刺激因子的刺激。为此,使用了与抗CD3和抗CD28mAb共价结合的(3/28微珠)、细胞大小的Dynabeads。这一试剂已经成功用于常规T细胞的临床规模扩增,用于免疫治疗实验(Levine等人.,1997,Laport等人,2003),并实现了超过1百万倍的T细胞扩增。但出乎意料的是,严格纯化的CD25+Treg细胞在3/28 beads单独刺激下繁殖不充分。这与CD4+CD25-Treg细胞产生的积极反应相反(图16A)。但是,CD4+CD25+细胞的弱反应被IL-2的添加所显著放大,这一联合足以用于来自大多数供体的Treg细胞的适度扩增(图16B)。然而,CD4+CD25+细胞的纯化越严格,其在培养液中的生长越差,甚至在3/28 beads和IL-2刺激下。
因为CD4+CD25+T细胞表现出细胞因子生成缺陷,得出结论:常规T细胞能够弥补这一缺陷,并提供增强的扩增。所以,经辐射的CD4+CD25-滋养细胞在一开始被加入3/28微珠刺激的Treg培养物(1∶1),发现它能提供持久增加的增殖反应(图16B)。这种放大显著高于单独使用100IU/ml的IL-2产生的放大作用。有趣的是,Treg培养物中补加条件培养基(20%v/v)(来源于经活化的常规CD4+CD25-细胞,在3/28微珠刺激后第5天),能够大量(不是完全)产生滋养细胞的效果。这表明经活化的常规T细胞生成了用于CD4+CD25+细胞扩增的可溶性生长因子(主要是IL-2,但也可以有其他因子)。重要的是,这些补入了滋养细胞的细胞系保持了有效的抑制功能。因此,由于3/28微珠、IL-2和CD4+CD25-滋养细胞的使用,CD4+CD25+衍生的细胞系表现出显著的生长,很容易获得超过100倍的扩增。
扩增表现为经典的S型生长曲线,开始缓慢,快速扩增1-2周,然后到达稳定期(图16C)。在到达生长稳定期后,细胞系保持在IL-2中,抑制功能维持3-6周。在某些情况下,培养达3个月的细胞系还具有抑制活性,但是,典型抑制功能随时间下降(未显示)。
MLR实验中CD4+CD25+抑制细胞系的功能性评价。所有的细胞系在培养2-3周后初步筛查MLR中的抑制活性,接下来3-4周进一步进行分析。为评价抑制功能,使用了HLA不匹配的异体MLR实验作为功能性分析。经纯化的、新分离的CD4+CD25-响应T细胞与来自无关供体的、经辐射的未成熟DC反应。测试细胞(经培养的CD4+CD25+和CD4+CD25-衍生细胞系)在第0天被加入MLR,调节性/响应性细胞的比例为1∶2。减少的繁殖反映了抑制作用,在第6-7天最明显,对照MLR峰。这些测定在供体中是非常有效和一致的,并因此成为本文标准的抑制量度。
CD4+CD25+衍生的细胞系大部分(19/25,76%)具有明显的抑制功能(>65%的增殖抑制),抑制细胞/响应细胞比例为1∶2(图17A)。相反,发现CD4+CD25-衍生细胞系对放大MLR没有变化(图17A)。其余的CD4+CD25+衍生的细胞系(6/25,24%)具有弱抑制功能(20-65%的增殖抑制),但是没有放大MLR(图17B)。与现有研究(Jonuleit等人,2001,同上)相一致,新分离的、MACS纯化的CD4+CD25+细胞系在这些MLR实验中只有中等的抑制活性,相当于弱抑制细胞系(20-65%的增殖抑制)(图17B)。重要的是,(9/19,47%)的抑制细胞系具有有效的抑制活性,这些细胞系几乎完全抑制MLR培养物(>90%的增殖抑制)(图3C)。抑制活性水平是每种细胞系的内在特征,因为在分析的几周时间内进行的多次单独MLR实验中,被检测的弱或强的抑制细胞系具有一贯相似的活性(见下)。
CD4+CD25+和CD4+CD25-细胞系的特征。有效的抑制细胞系与来自同一个体的CD4+CD25-衍生细胞系(作为常规T细胞对照)平行培养。弱抑制细胞系还被鉴定和比较,来确定相对有效抑制细胞系的区别特征。有趣的是,只根据培养中的生长特征经常可以预测抑制功能,其中最快速生长的CD4+CD25+细胞系通常具有最低的抑制功能(未显示)。
所有细胞系在经3/28微珠刺激后初期表达一定程度典型的活化T细胞表型。细胞系短暂表达相对等量的活化抗原,并在活化后2-3周内快速减少。这些包括CD122、CD132、GITR(糖皮质激素诱导的TNF受体)、OX40(CD134)和细胞表面CTLA4(CD152)。但是,在培养几周后,当细胞相对静止时(保持在IL-2中),表型变得明显差异化。与来自CD25-细胞的T细胞系相比,强抑制性的Treg细胞系表达了高水平的CD25并维持了这种提高的表达。图18A和18B显示了培养3周后的水平(MFI22vs.210)。MFI指平均荧光强度。另外,对CTLA4的细胞内染色说明了抑制细胞系中提高的表达(MFI8vs.64)(图18D,18E)。CD25和细胞内CTLA4表达的差别是在我们研究中所确定的最不同的表型特征,来区别常规的和CD25+衍生的细胞系。弱抑制性细胞系表达了中等水平的这些关键抗原(图18C、18F)。
为确定弱细胞系和强细胞系之间的进一步差别,进行了额外的细胞表面抗原分析。记录了3种抗原(CD62L、CCR7和CD27)的比较,强抑制细胞系中表达这些抗原的细胞百分比高于弱细胞系(图18G、18H、18I)。为进一步评价功能相关性,使用磁性珠来分离CD62L+或CD27+细胞(最亮的两种抗原),并因在两种阳性亚型中的抑制活性而富集(数据未显示)。为更确切的确定这些细胞系亚型的功能,细胞系被分类为CD62L+/CD27+、CD62L+/CD27-和CD62L-/CD27+细胞(图18J),并检测每种细胞群在MLR中的抑制活性。
抑制性功能只单独存在于CD62L+/CD27+亚型中。相反,发现其他亚基放大了MLR(图18K)。因此,CD4+CD25+细胞系能包含抑制性和非抑制性细胞的混合物,而抑制作用可以是支配性的超过非抑制细胞的放大作用。CD62L和CD27共表达能够用来区分这些亚型并促进具有强抑制潜力的细胞系(或细胞系亚型)的筛选。
MLR实验中抑制细胞功能的鉴定。为确定MLR实验中抑制的细胞机制,选出有效细胞系(>90%第6天MLR抑制)来进一步分析。它们首先表现出一贯的抑制性,然后经滴定来测定有效抑制所需的最少细胞数目。为确定培养的Treg细胞有多广泛的反应性,测试了几种独立细胞系在8个单独的HLA错配MLR培养物中的抑制作用。在所有情况下,培养的Treg细胞显著抑制了所有接受分析的MLR培养物(图19A)。尽管抑制强度存在一些变化(平均92%,范围81-98%,n=16),但有效Treg细胞系在能有效抑制几乎所有MLR培养物。
为定量有效抑制所需的最少数目,将滴定数目的抑制细胞加入指示MLR培养物。滴定曲线(图19B)显示了一个转折点,抑制细胞与响应细胞的比例低于1∶10(5000抑制细胞对50000响应细胞)。该滴定曲线是非线性的,可以说明低Treg细胞剂量在抑制重叠中的协同作用。受抑制的MLR中,所有时间点上的繁殖都几乎完全受损,表明抑制作用发生在前3天内,即在MLR中出现增殖之前。为评价免疫反应质量的早期效果并寻找潜在的调节细胞偏离,评估了MLR上清液中的细胞因子含量。存在细胞因子富集的显著抑制作用。受抑制的MLR形成了最低限度可检测的IL-2的小型早期波形(在实验的敏感度阈值),没有可检测到的后期产物(图19C)。对照MLR证明了上清液中IL-2的富集,甚至在培养开始后一天;早在受抑制MLR的第一天,就已经检测到显著的抑制作用。另外,后期细胞因子的富集(峰一般在第5-7天),如TNF-α、IFN-γ、GM-CSF5和IL-6,在整个培养过程中几乎完全被阻碍(图19D)。细胞因子上清液在Luminex装置上被分析,其中小体积(50-100μl)能满足同时测试多个细胞因子,没有用来指示偏离TH2或T调节1型(Tr1:IL-10生成)分化的IL-4或IL-10诱导。事实上,IL-10富集被有效防止。
为检测MLR早期的响应T细胞活性,通过流式细胞仪来检测细胞活化标志物的表达。使用来源于HLAA2阳性供体的响应细胞和来源于HLA-A2阴性供体的抑制细胞,响应细胞能够在共培养中被区分。在诱导CD69、CD25和OX40(CD134)的培养开始后24或28小时,评价对照和受抑制的MLR细胞。在对照MLR中,2-4%的响应T细胞显示了这些活化抗原的表达(图20A-C),与预期的用于HLA错配MLR的异体反应性T细胞频率相一致。值得注意的是,在受抑制的MLR中,很少有响应T细胞显示出这些活化抗原的表达(图20D-F)。这些数据还证明了非常早期的T细胞活化阻断作为Treg细胞作用的机制。
如果DC刺激的MLR被活化或成熟,抑制活性被明显保留。DC的成熟/活化,使用脂多糖(一种TLR4配基)或联合肿瘤坏死因子/多聚IC(一种双链RNA类似物-TLR3配基)(Spisek等人,2001,同上;Godfrey等人,2004,同上),没有导致抑制的绕过(图20G)。将LPS或TNF/PolyIC包括入MLR培养物中也没有绕过抑制。因此,经培养的人Treg细胞是非常有效的,并且表达大量共刺激分子和细胞因子的经活化的DC没能绕过它们的抑制作用。
MLR有效的早期抑制表明APC失活或消除是一种可能的抑制机制。但是,通过显微评估,DC表现为持续整个培养过程。另外,在铬释放实验中,抑制细胞系对异体DC(图21A)或NK/LAK敏感靶细胞(K562)没有细胞毒性(图21B)
为确定已知免疫抑制因子是否介导了培养的Treg细胞的作用,能够中和IL-10或TGF-β抗体的抗体被加入对照和受抑制的MLR培养物中。因为抑制作用的效力,加入较低数量的抑制细胞来使实验对抑制的逆转更敏感。尽管数量减少了,与IL-10、IL-10R-或TGF-β123反应的抗体没能逆转抑制,所有三个抗体一起具有非常适度的作用(图21C)。
另外,进行了转孔实验来确定Treg细胞释放的可溶性因子能否转移抑制。抑制性MLR细胞培养于静止或活化的Treg细胞或受抑制的MLR培养物之上,经孔径为0.4微米的膜分离。没有发现抑制性细胞通过膜(未显示)。
重要的是,当培养的Treg细胞被加入APC衍生的异体MLR,所述APC来源与抑制细胞供体相同但与响应T细胞是异体的,最小抑制被指明(图21D)。因此,当衍生于供体A的经培养的Treg被加入到来自同一供体A的DC所衍生的异体MLR中时,有最小的抑制。但是,当这些相同的Treg细胞被加入到来自供体B的DC衍生的MLR中时,产生了抑制。这些结果表明,经培养的Treg细胞不是组成性抑制所有MLR。经培养的Treg需要某种形式的特殊的附加刺激,能够由异体DC提供(而不是由自体DC提供)。
总之,本实施例证明,抑制细胞能够从人血液中被分离并培养增殖。重要的是,这些经培养的Treg细胞能够扩增100倍以上,并且纯的细胞能表现出提高的、有效的抑制活性。事实上,MLR实验中这些细胞的抑制功能已经表现出几乎完全阻断HLA错配MLR。而且,这些培养增殖的抑制细胞具有许多新分离的CD4+CD25+Treg细胞的标志性特征。它们高度表达CD25和细胞质的CTLA4,它们的活性是细胞-细胞接触依赖性的,并且抑制作用似乎不依赖细胞溶解活性或免疫抑制性细胞因子IL-10或TGFβ。
另外,这些数据是首次证明了基于抗CD3/28mAb包被磁珠的方法用于细胞活化增殖的可行性。抑制性细胞系与DC直接共培养中没有增殖性反应。当抗CD28与抗CD3mAb结合时,形成了一种更有效的增殖策略。尽管基于抗CD3/28mAb包被磁珠和IL-2补加活性,但是经严格纯化的CD4+CD25+细胞(或FACS分类纯化的CD4+CD25+明亮细胞)没有生长良好。更好的生长是由于CD4+CD25-滋养细胞的加入,提供了IL-2和其他生长因子。CD4+CD25+细胞系生长和抑制功能是可变的并反向相关的,可能因为弱抑制功能的细胞系缘于CD4+CD25+培养物中含有少量常规T细胞。源于更严格纯化的细胞的细胞系也没有良好生长,但是具有更有效的抑制。另外,弱抑制性细胞系的免疫表型(CD25中度,分为CD62L或CD27)与常规和抑制性细胞的混合细胞群相一致。但值得注意的是,在培养后,功能性活性抑制细胞只限于CD62L和CD27表达细胞群,有效的抑制细胞系几乎都表达这些抗原。
重要的是,CD4+CD25+细胞的抑制效应功能是不受MHC限制的,抑制细胞将影响实际上来自任何供体组合的响应。这种HLA限制的缺乏也提供了利用第三方(异体的)供体来产生抑制细胞的可能性。将本文公开的概念和机制应用于人类疾病的发病机理,然后分离Treg细胞用于体外处理并按照本发明方法长期培养增殖该Treg细胞,随后将由此培养的Treg注入患者,从而提供了治疗自身免疫反应或改善骨髓或其他移植效果的方法。大量经培养的Treg细胞的获得将实现这些重要细胞更具体的免疫、生化和分子特征。但是,也许是更重要的,因为本方法能适应GMP条件,可以很快实现临床实验,经培养的Treg细胞可以作为一种新型免疫抑制疗法而获得批准。
本文所引用或描述的每个专利、专利申请和出版物的公开以其完整形式引入本文作为参考。
而上述说明书已经通过确定的优选实施方式被描述,许多细节的提出是为了说明目的,显然,对本领域技术人员来说,在不偏离本发明构思和范围的条件下,本发明可以具有多种调整和其他的实施方式,本文描述的确定的细节可以有大的变化,只要不偏离本发明的基本原理。这样的调整和其他实施方式也落入权利要求书的保护范围。

Claims (22)

1.一种生产抑制活性提高的治疗性人T调节细胞(Treg细胞)的方法,所述方法包括:选择CD4+T细胞样品;从所述样品中分离人类CD4+CD25+抑制T细胞群,并通过符合GMP的方法在体外长期培养增殖所述CD4+CD25+细胞,从而激活所述分离并培养增殖的细胞中有效的长期抑制活性,其中,在增殖前,天然的CD4+CD25+抑制细胞群在全部分离CD4+T细胞群中的百分比低。
2.权利要求1所述的方法,其中CD4+CD25+细胞的分离具有高度严格性。
3.权利要求2所述的方法,其中所述CD4+CD25+细胞的分离还包括:充分增加该细胞群中CD4+CD25明亮细胞,同时充分清除该细胞群中的CD4+CD25暗淡细胞,来纯化所述分离细胞。
4.权利要求1-3中任何一项所述的方法,其中所述纯化方法包括:以预先确定的微珠与细胞的比例将所述分离细胞与结合了抗CD25的磁性微珠接触;将微珠和细胞的混合物流经磁性柱来分离微珠结合细胞,洗涤,再流经第二个磁性柱,再次洗涤,直至经纯化的分离细胞中残留的非抑制细胞<1-2%。
5.权利要求1-4中任何一项所述的方法,其中所述培养增殖CD4+CD25+细胞包括:使用两个步骤和可分离的、细胞大小的、抗体包被的磁性微珠,通过第二代谱系清除方案来激活分离的细胞,进而以充足的时间来扩增培养增殖的Treg抑制细胞,直至细胞培养物中生成有效量的抑制细胞来获得对人体中免疫或自身免疫反应的治疗性抑制。
6.权利要求1-5中任何一项所述的方法,其中微珠由抗CD3和CD28抗体所包被,从而增强了再生障碍性抑制Treg细胞的活化和生长。
7.权利要求1-6中任何一项所述的方法,还包括补充介质,用于用IL-2培养增殖细胞。
8.权利要求1-6中任何一项所述的方法,还包括在培养的14天内获得至少10-20倍的细胞扩增。
9.权利要求1-8中任何一项所述的方法,还包括通过额外培养细胞1-2周来获得至少100倍的细胞扩增。
10.权利要求1-6中任何一项所述的方法,还包括生成保留有长期向下调节抑制功能的抑制细胞系。
11.权利要求1-10中任何一项所述的方法,其中所述样品选自全部或部分纯化的血液或造血细胞,所述全部或部分纯化的血液或造血细胞选自:外周血液单核细胞;外周血液淋巴细胞;脾细胞;肿瘤浸润性淋巴细胞和淋巴结细胞;和骨髓和外周骨髓细胞。
12.经活化及体外培养增殖的抑制Treg细胞群,根据权利要求1-11中任何一项所述的方法生成,其中抑制功能被长期保留并且增殖的细胞数目足够用于人体中的有效治疗。
13.经活化及体外培养增殖的抑制Treg细胞群,根据权利要求1-12中任何一项所述的方法生成,其中抑制细胞首先被高度严格纯化,其中抑制功能被长期保留并且增殖的细胞数目足够用于人体中的有效治疗。
14.一种抑制异体反应性T细胞增殖和细胞因子生成的方法,包括:将所述异体反应性T细胞与根据权利要求1-12中任何一项所述方法生成的、经活化的、长期体外培养增殖的Treg细胞相接触。
15.一种抑制CTL活性的方法,包括:将所述细胞与根据权利要求1-13中任何一项所述方法生成的、经活化的、长期体外培养增殖的Treg细胞相接触。
16.一种获得患者体内免疫抑制作用的方法,包括:为患有异体反应或自身免疫反应的患者注入根据权利要求1-13中任何一项所述方法生成的、有效量的、经活化的、长期体外培养增殖的Treg细胞,来获得对所述反应的治疗性抑制。
17.权利要求14-16中任何一项所述的方法,还包括抑制、阻断或限制患者体内异体反应或自身免疫反应,包括:为患有所述异体反应或自身免疫反应的所述患者注入有效量的、经活化的、长期体外培养增殖的Treg细胞。
18.权利要求14-16中任何一项所述的方法,其中所述患者的反应发生在组织移植之后,其中所述方法还包括抑制、阻断或限制患者体内的移植物抗宿主疾病。
19.一种在患者体内获得预防性治疗作用的方法,包括:在异体反应或自身免疫反应发生之前为所述患者注入根据权利要求1-13中任何一项所述方法生成的、有效量的、经活化的、长期体外培养增殖的Treg细胞来预防所述反应。
20.权利要求19所述的方法,还包括预防患者体内的异体反应或自身免疫反应,通过在所述反应发生之前为所述患者注入有效量的、经活化的、长期体外培养增殖的Treg细胞。
21.权利要求19所述的方法,其中所述患者在组织移植之前、同时或之后立刻接受治疗,其中所述方法还包括预防所述患者体内移植物抗宿主疾病的发生。
22.权利要求19所述的方法,其中所述患者在组织移植之前、同时或之后立刻接受治疗,其中所述方法还包括阻断所述患者体内的植入组织的排斥反应。
CN2005800145368A 2004-03-05 2005-03-04 调节性t细胞及它们在免疫治疗和抑制自身免疫反应中的应用 Active CN1981031B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US55048104P 2004-03-05 2004-03-05
US60/550,481 2004-03-05
US10/827,023 US7651855B2 (en) 2003-04-17 2004-04-19 Regulatory T cells and their use in immunotherapy and suppression of autoimmune responses
US10/827,023 2004-04-19
PCT/US2005/007452 WO2005086781A2 (en) 2004-03-05 2005-03-04 Regulatory t cells and their use in immunotherapy and suppression of autoimmune responses

Publications (2)

Publication Number Publication Date
CN1981031A true CN1981031A (zh) 2007-06-13
CN1981031B CN1981031B (zh) 2011-03-23

Family

ID=34915687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800145368A Active CN1981031B (zh) 2004-03-05 2005-03-04 调节性t细胞及它们在免疫治疗和抑制自身免疫反应中的应用

Country Status (8)

Country Link
US (3) US7651855B2 (zh)
EP (1) EP1730260B1 (zh)
JP (1) JP2007527245A (zh)
CN (1) CN1981031B (zh)
AU (1) AU2005220854B2 (zh)
CA (1) CA2558777C (zh)
ES (1) ES2581241T3 (zh)
WO (1) WO2005086781A2 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010000127A1 (en) * 2008-06-30 2010-01-07 Versitech Limited Method to induce and expand therapeutic alloantigen- specific human regulatory t cells in large-scale
CN102517253A (zh) * 2011-12-19 2012-06-27 上海市血液中心 一种脐带血调节性t细胞体外扩增及低温保存方法
CN102939536A (zh) * 2009-11-14 2013-02-20 匡-宇·邱 用于治疗和/或预防动脉粥样硬化的免疫调节方法和系统
CN103013914A (zh) * 2012-12-13 2013-04-03 吉林省拓华生物科技有限公司 体外培养杀伤性t细胞的方法
CN103235135A (zh) * 2013-04-26 2013-08-07 史其新 一种用于表征外周调节性t细胞抑制活性的特征细胞群的检测方法及其应用
CN103782173A (zh) * 2011-07-01 2014-05-07 贝克曼考尔特公司 调节t细胞和识别、获得、以及用于治疗基于免疫的紊乱的方法
CN107106876A (zh) * 2014-10-09 2017-08-29 丹娜法伯癌症研究院 用于治疗免疫失调的多次‑可变il‑2剂量方案
CN108463547A (zh) * 2015-10-28 2018-08-28 生命技术股份公司 通过改变细胞表面信号和信号比选择性扩增不同的t细胞亚群
CN108588021A (zh) * 2018-05-02 2018-09-28 深圳市因诺转化医学研究院 分离和纯化til、获取cd4+cd25+细胞亚群的方法
CN108699148A (zh) * 2015-12-15 2018-10-23 欧斯易免疫疗法 配制用于向人施用的抗cd28人源化抗体
CN109563483A (zh) * 2016-05-24 2019-04-02 泰莎治疗私人有限公司 T细胞扩增
CN111373260A (zh) * 2017-06-22 2020-07-03 得克萨斯大学体系董事会 产生调节性免疫细胞的方法及其用途
CN111643525A (zh) * 2020-06-16 2020-09-11 济宁医学院 引发免疫排斥反应在肿瘤治疗中的应用及其方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651855B2 (en) * 2003-04-17 2010-01-26 The Trustees Of The University Of Pennsylvania Regulatory T cells and their use in immunotherapy and suppression of autoimmune responses
US20050186207A1 (en) * 2004-01-08 2005-08-25 The Regents Of The University Of California Regulatory T cells suppress autoimmunity
AU2005284793B2 (en) * 2004-09-15 2011-07-07 The Trustees Of The University Of Pennsylvania Methods for the isolation and expansion of cord blood derived T regulatory cells
CA2585462A1 (en) * 2004-10-29 2006-05-11 Benaroya Research Institute At Virginia Mason Methods of generating antigen-specific cd4+cd25+ regulatory t cells, compositions and methods of use
EP1928479B1 (en) * 2005-08-24 2016-06-08 Yeda Research And Development Co., Ltd. Universal donor-derived tolerogenic cells for inducing non-syngeneic transplantation tolerance
CN101351118B (zh) 2005-11-02 2015-05-27 特拉科斯有限公司 凋亡细胞在离体产生调节t细胞中的应用
US8030005B2 (en) * 2006-03-20 2011-10-04 St. Vincent's Hospital Sydney Limited Method for detecting antigen specific or mitogen-activated T cells
ES2657480T3 (es) * 2006-08-11 2018-03-05 Life Sciences Research Partners Vzw Péptidos inmunogénicos y su uso en trastornos inmunitarios
WO2009067375A1 (en) * 2007-11-21 2009-05-28 Medical College Of Georgia Research Institute, Inc. Selective expansion of regulatory t cells
US9248171B2 (en) * 2008-02-14 2016-02-02 Imcyse Sa Immunogenic peptides and their use in transplantation
ES2650236T3 (es) * 2008-02-14 2018-01-17 Life Sciences Research Partners Vzw Linfocitos T CD4+ con propiedades citolíticas
AU2009214040B2 (en) * 2008-02-14 2013-08-22 Katholieke Universiteit Leuven Strategies to prevent and/or treat immune responses to soluble allofactors
CA2715484C (en) 2008-02-14 2017-04-11 Life Sciences Research Partners Vzw Suppression of immune responses to viral vectors
EP2623115A1 (en) * 2008-02-14 2013-08-07 Life Sciences Research Partners VZW Immunogenic control of tumours and tumour cells
CA2715611C (en) 2008-02-14 2018-03-13 Life Sciences Research Partners Vzw Immunotherapy targeting intracellular pathogens
US8420784B2 (en) * 2008-05-27 2013-04-16 Kyowa Hakko Kirin Co., Ltd. Interleukin 10 receptor, (IL-10R) antibodies
US20140161782A1 (en) 2008-06-09 2014-06-12 Targazyme, Inc. Augmentation of cell therapy efficacy including treatment with alpha 1-3 fucoslytransferase
WO2010017220A1 (en) * 2008-08-04 2010-02-11 The Trustees Of The University Of Pennsylvania Methods for expanding regulatory t-cells
DK2405928T3 (en) 2009-03-11 2017-01-30 Promedior Inc Treatment and diagnosis procedure for hypersensitive diseases
ES2684493T3 (es) 2009-03-11 2018-10-03 Promedior Inc. Un polipéptido SAP para uso en el tratamiento de trastornos autoinmunitarios y enfermedad del injerto contra el huésped
HUE055070T2 (hu) 2010-11-25 2021-10-28 Imnate Sarl Immunogén peptidek fertõzõ betegségek, autoimmun betegségek, allofaktorokra adott immunválaszok, allergiás betegségek, tumorok, graftkilökõdés, és génterápiához vagy génvakcinációhoz alkalmazott vírusvektorokkal szembeni immunválaszok megelõzésében és/vagy kezelésében történõ alkalmazásra
US20140044687A1 (en) * 2011-03-25 2014-02-13 Txcell Method for using regulatory t cells in therapy
GB201201511D0 (en) 2012-01-30 2012-03-14 Univ Leuven Kath Modified epitopes for boosting CD4+ T-cell responses
WO2013131045A1 (en) 2012-03-02 2013-09-06 The Regents Of The University Of California Expansion of alloantigen-reactive regulatory t cells
CA2782942C (en) * 2012-07-12 2019-08-27 Canadian Blood Services Method for inducing immune tolerance using polymer-modified antigenic leukocytes
GB201309469D0 (en) 2013-05-28 2013-07-10 Imcyse Sa Detection of CD4+ T lymphocytes
EP3019176B1 (en) 2013-07-12 2020-05-06 Canadian Blood Services Use of acellular pro-inflammatory compositions and process for making same
US10092597B2 (en) 2014-01-14 2018-10-09 The University Of Hong Kong Human CD8+ regulatory T cells inhibit GVHD and preserve general immunity in humanized mice
CA2954440A1 (en) 2014-07-10 2016-01-14 Canadian Blood Services Combination therapy of acellular pro-tolerogenic and pro-inflammatory preparations for modulating the immune system
WO2016090250A1 (en) 2014-12-04 2016-06-09 The University Of North Carolina At Chapel Hill Compositions and methods for preventing and treating graft versus host disease
US10729791B2 (en) 2015-05-18 2020-08-04 Imcyse Sa Animal models for evaluating pharmaceutical compounds
ES2874077T3 (es) 2015-09-25 2021-11-04 Imcyse Sa Métodos y compuestos mejorados para eliminar respuestas inmunitarias a agentes terapéuticos
WO2017062035A1 (en) * 2015-10-09 2017-04-13 Abt Holding Company Methods for enhancing proliferation of t regulatory cells
KR20240015731A (ko) 2016-04-19 2024-02-05 임시스 에스에이 신규 면역원성 CD1d 결합 펩티드
WO2018106885A1 (en) 2016-12-07 2018-06-14 East Carolina University Compositions and methods for in vitro cultivation and/or expansion of regulatory t cells
EP3595683A1 (en) 2017-03-15 2020-01-22 Orca Biosystems, Inc. Compositions and methods for hematopoietic stem cell transplants
EP4257143A3 (en) * 2018-11-04 2024-01-03 Figene, LLC Methods and compositions for treatment of type 1 diabetes using fibroblasts as facilitators of islet engraftment
US20220184121A1 (en) * 2019-03-18 2022-06-16 The Regents Of The University Of California Augmentation of t-cell activation by oscillatory forces and engineered antigen-presenting cells
MX2022005416A (es) * 2019-11-05 2022-10-18 Yeda Res & Dev Uso de celulas veto en el tratamiento de enfermedades autoinmune mediadas por celulas t.
CA3160296A1 (en) * 2019-11-05 2021-05-14 Yeda Research And Development Co. Ltd. Use of veto cells for the treatment of sickle cell disease
EP3895710A1 (en) 2020-04-15 2021-10-20 DSM IP Assets B.V. Food and/or feed compositions to manage immune homeostasis
US20240150755A1 (en) * 2021-02-26 2024-05-09 Salk Institute For Biological Studies Modulating regulatory t cell function in autoimmune disease and cancer
CN115433713B (zh) * 2022-03-03 2023-10-27 中山大学孙逸仙纪念医院深汕中心医院 一种自体肿瘤引流淋巴结淋巴细胞的制备方法及其应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2981486B2 (ja) 1988-06-14 1999-11-22 メディカル・バイオロジー・インスティチュート 哺乳動物の免疫系研究方法
WO1991001760A1 (en) 1989-08-04 1991-02-21 United States Government As Represented By The Secretary Of The Department Of Health And Human Services Human tumor cells implanted in non-human animals
US5663481A (en) 1993-08-06 1997-09-02 Mount Sinai Hospital Corporation Animal model of the human immune system
US5476993A (en) 1993-11-05 1995-12-19 1002599 Ontario Limited Pre-treatment of hydrocarbons for preventing spills
US5602305A (en) 1994-03-31 1997-02-11 Yale University Immunodeficient animal model for studying T cell-mediated immune
US20030119185A1 (en) * 2000-02-24 2003-06-26 Xcyte Therapies, Inc. Activation and expansion of cells
CN1160116C (zh) * 2001-02-20 2004-08-04 陈钰 特异性免疫抑制剂
US20050101012A1 (en) * 2001-03-12 2005-05-12 Gerold Schuler CD4+CD25+ regulatory T cells from human blood
EP1241249A1 (en) 2001-03-12 2002-09-18 Gerold Schuler CD4+CD25+regulatory T cells from human blood
JP2004527263A (ja) * 2001-05-30 2004-09-09 フォンダツィオーネ テレソン 免疫抑制活性を有するエクスビボ単離cd25+cd4+t細胞とその使用
US20030049696A1 (en) * 2001-06-07 2003-03-13 Norment Anne M. Regulatory T cells and uses thereof
US20030133936A1 (en) * 2001-07-12 2003-07-17 Byrne Michael Chapman CD25markers and uses thereof
US7651855B2 (en) * 2003-04-17 2010-01-26 The Trustees Of The University Of Pennsylvania Regulatory T cells and their use in immunotherapy and suppression of autoimmune responses
US20050118655A1 (en) * 2003-11-17 2005-06-02 University Of Iowa Research Foundation Use of parasitic biological agents for diseases prevention and control

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010000127A1 (en) * 2008-06-30 2010-01-07 Versitech Limited Method to induce and expand therapeutic alloantigen- specific human regulatory t cells in large-scale
CN102939536A (zh) * 2009-11-14 2013-02-20 匡-宇·邱 用于治疗和/或预防动脉粥样硬化的免疫调节方法和系统
CN103782173A (zh) * 2011-07-01 2014-05-07 贝克曼考尔特公司 调节t细胞和识别、获得、以及用于治疗基于免疫的紊乱的方法
CN102517253A (zh) * 2011-12-19 2012-06-27 上海市血液中心 一种脐带血调节性t细胞体外扩增及低温保存方法
CN102517253B (zh) * 2011-12-19 2014-04-02 上海市血液中心 一种脐带血调节性t细胞体外扩增及低温保存方法
CN103013914A (zh) * 2012-12-13 2013-04-03 吉林省拓华生物科技有限公司 体外培养杀伤性t细胞的方法
CN103013914B (zh) * 2012-12-13 2014-12-03 吉林省拓华生物科技有限公司 体外培养杀伤性t细胞的方法
CN103235135A (zh) * 2013-04-26 2013-08-07 史其新 一种用于表征外周调节性t细胞抑制活性的特征细胞群的检测方法及其应用
CN107106876A (zh) * 2014-10-09 2017-08-29 丹娜法伯癌症研究院 用于治疗免疫失调的多次‑可变il‑2剂量方案
CN107106876B (zh) * 2014-10-09 2021-06-11 丹娜法伯癌症研究院 用于治疗免疫失调的多次-可变il-2剂量方案
CN108463547A (zh) * 2015-10-28 2018-08-28 生命技术股份公司 通过改变细胞表面信号和信号比选择性扩增不同的t细胞亚群
CN108699148A (zh) * 2015-12-15 2018-10-23 欧斯易免疫疗法 配制用于向人施用的抗cd28人源化抗体
CN109563483A (zh) * 2016-05-24 2019-04-02 泰莎治疗私人有限公司 T细胞扩增
CN111373260A (zh) * 2017-06-22 2020-07-03 得克萨斯大学体系董事会 产生调节性免疫细胞的方法及其用途
CN108588021A (zh) * 2018-05-02 2018-09-28 深圳市因诺转化医学研究院 分离和纯化til、获取cd4+cd25+细胞亚群的方法
CN111643525A (zh) * 2020-06-16 2020-09-11 济宁医学院 引发免疫排斥反应在肿瘤治疗中的应用及其方法

Also Published As

Publication number Publication date
CN1981031B (zh) 2011-03-23
ES2581241T3 (es) 2016-09-02
AU2005220854B2 (en) 2010-12-09
US20120207727A1 (en) 2012-08-16
AU2005220854A1 (en) 2005-09-22
US9181526B2 (en) 2015-11-10
EP1730260A4 (en) 2008-04-02
CA2558777C (en) 2016-02-02
US8129185B2 (en) 2012-03-06
EP1730260B1 (en) 2016-05-04
EP1730260A2 (en) 2006-12-13
JP2007527245A (ja) 2007-09-27
WO2005086781A2 (en) 2005-09-22
US20050196386A1 (en) 2005-09-08
CA2558777A1 (en) 2005-09-22
US7651855B2 (en) 2010-01-26
WO2005086781A3 (en) 2005-12-01
US20100291678A1 (en) 2010-11-18

Similar Documents

Publication Publication Date Title
CN1981031B (zh) 调节性t细胞及它们在免疫治疗和抑制自身免疫反应中的应用
US11766456B2 (en) Method for culturing natural killer cells using T cells
McMurchy et al. Moving to tolerance: clinical application of T regulatory cells
Tsang et al. Indefinite mouse heart allograft survival in recipient treated with CD4+ CD25+ regulatory T cells with indirect allospecificity and short term immunosuppression
CN104245923B (zh) 同种异型抗原‑反应性调节t细胞的增殖
CA2133075A1 (en) CD28 Pathway Immunoregulation
Horwitz et al. Therapeutic polyclonal human CD8+ CD25+ Fox3+ TNFR2+ PD-L1+ regulatory cells induced ex-vivo
Steiner et al. Tolerance induction by third-party “off-the-shelf” CD4+ CD25+ Treg cells
CN102083966A (zh) 大规模诱导和扩增治疗性同种异体抗原-特异性的人调节性t细胞的方法
US20070178072A1 (en) Method for inducing differentiation of regulatory t cells usinggip-anchored protein agonist and pharmaceutical composition therefor ( as amended
CN102112491A (zh) 抗-cd8抗体阻断细胞毒素效应物的引发并导致调节性cd8+t细胞的产生
Bishop et al. Helper T lymphocyte unresponsiveness to cardiac allografts following transient depletion of CD4-positive cells: implications for cellular and humoral responses
Allez et al. Activation of a unique population of CD8+ T cells by intestinal epithelial cells
Xia et al. Tracking ex vivo-expanded CD4+ CD25+ and CD8+ CD25+ regulatory T cells after infusion to prevent donor lymphocyte infusion-induced lethal acute graft-versus-host disease
US20150110738A1 (en) Methods and compositions for generating and using allogeneic suppressor cells
AU2005287392A1 (en) Anti-lympho- plus anti-monocytes globulin preparation for inhibiting immune responses
CN102321580A (zh) 一种治疗自体自身免疫性疾病的调节t细胞及其制备方法
Hall et al. Studies on naïve CD4+ CD25+ T cells inhibition of naïve CD4+ CD25− T cells in mixed lymphocyte cultures
US8323969B2 (en) Preparation of regulatory T cells using ICAM-1 co-stimulation
KR20150126311A (ko) 자가유래 apc를 이용한 조절 t 세포의 생체외 증식 방법 및 이의 용도
KR101757269B1 (ko) 자가유래 apc를 이용한 조절 t 세포의 생체외 증식 방법 및 이의 용도
KR101746875B1 (ko) 면역조절 t 세포를 포함하는 자가면역 질환 세포치료제
AU2007202534B2 (en) A method to prevent graft rejection using TGF-beta to induce T suppressor cells
Chase MHC class I-dependent acquisition and maintenance of natural killer cell function
WO2005106469A1 (en) Modulation of a human immune response

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant