CN1954408B - 曝光装置、曝光方法及元件制造方法 - Google Patents
曝光装置、曝光方法及元件制造方法 Download PDFInfo
- Publication number
- CN1954408B CN1954408B CN2005800159214A CN200580015921A CN1954408B CN 1954408 B CN1954408 B CN 1954408B CN 2005800159214 A CN2005800159214 A CN 2005800159214A CN 200580015921 A CN200580015921 A CN 200580015921A CN 1954408 B CN1954408 B CN 1954408B
- Authority
- CN
- China
- Prior art keywords
- liquid
- space
- exposure
- substrate
- supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70341—Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2041—Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70908—Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
- G03F7/70916—Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
一种曝光装置具备,具有多数个光学元件的投影光学系统。最靠近投影光学系统像面的光学元件(2G)的下面(2S)侧的第1空间(K1)被液体(LQ1)所填满,光学元件(2G)的上面(2T)侧的独立于第1空间(K1)的第2空间(K2)被液体(LQ2)所填满。透过第1空间(K1)的液体LQ1及第2空间(K2)的液体(LQ2)对基板(P)上照射曝光用光而将基板(P)曝光。据此,防止次于光学元件(2G)靠近像面的光学元件(2F)受到液体(LQ2)的污染。
Description
技术领域
本发明有关用来对基板曝光的曝光装置、曝光方法及元件制造方法。
背景技术
半导体元件及液晶表示元件,以将形成于掩膜版上的图案转印至感光性基板上的所谓光刻法来制造。在光刻步骤所使用的曝光装置,具有用来支撑掩膜版的掩膜版载台及用来支撑基板的基板载台,用以边逐次移动掩膜版载台及基板载台,边透过投影光学系统将掩膜版的图案转印至基板。近年来,希望投影光学系统的更高分辨率化,以适应元件图案的更高集积化。投影光学系统的分辨率,是使用的曝光波长越短、且投影光学系统的数值孔径越大而越高。因此,在曝光装置使用的曝光波长,逐年短波长化,投影光学系统的数值孔径也增大。又,现在,主流的曝光波长为KrF准分子激光的248nm,更短波长的ArF的193nm也正实用化。又,曝光进行时,焦点深度(DOF)也与分辨率同样地重要。分辨率R及焦点深度δ,分别用以下的式子来表示。
R=k1×λ/NA ...(1)
δ=±k2×λ/NA2 ...(2)
在此,λ为曝光波长,NA为投影光学系统的数值孔径,k1、k2为处理系数。依据式(1)、式(2)得知,为了提高分辨率R,而缩短曝光波长λ,增加数值孔径NA,焦点深度δ就变小。
若焦点深度δ太小,便难以使基板表面与投影光学系统的像面完全一致,会有曝光动作时聚焦裕度不足的顾虑。因此,有关实质上缩短曝光波长且加大焦点深度的方法,例如有在国际公开第99/49504号公报揭示的液浸
法。该液浸法,是使投影光学系统的像面侧端面(下面)与基板表面之间填满水或有机溶剂等液体而形成液浸区域,利用液体中的曝光用光的波长为空气中的1/n(n为液体的折射率,通常约为1.2~1.6程度)的这个性质来提高分辨率,并且将焦点深度放大为约n倍。
然而,当于基板上形成液体的液浸区域时,有可能例如自基板上产生的杂质等混入该液浸区域的液体,而使液浸区域的液体受污染。于是,该受污染的液浸区域的液体,可能导致构成投影光学系统的多数个元件(光学元件)中与该受污染的液浸区域的液体接触的光学元件受污染。若光学元件受污染,便产生不利的事情,例如,该光学元件的光透过率降低,或光透过率随着位置而不同,使得曝光精度及测量精度因投影光学系统而降低。
发明内容
有鉴于上述问题,本发明的目的在于提供能防止曝光精度及测量精度降低的曝光装置、曝光方法以及使用该曝光装置及曝光方法的元件制造方法。
为了解决上述的问题,本发明,采用实施形态所示、与图1~图8对应的以下构成。不过,附在各元件、有括号的符号仅为该元件的例示,并不限定各元件。
依本发明的第1形态,本发明提供一种曝光装置(EX),对基板(P)上照射曝光用光(EL)而将基板(P)曝光,其特征在于具备:具有最靠近像面的第1元件(2G)与次于该第1元件(2G)靠近该像面的第2元件(2F)的投影光学系统(PL);支撑构件(PK、70),用来将所述第1元件(2G)以相对投影光学系统(PL)的光轴(AX)静止的状态支撑;第1空间(K1),形成于第1元件(2G)的一面侧,被液体(LQ1)所填满;及第2空间(K2),以独立于该第1空间(K1)的方式形成于该第1元件(2G)的另一面侧,被液体(LQ2)所填满;且以该第1空间(K1)的液体(LQ1)来形成用来覆盖基板(P)表面一部分的液浸区域(AR2),并且透过第1空间(K1)的液体(LQ1)及第2空间(K2)的液体(LQ2)来
对基板(P)上照射曝光用光(EL)而将基板(P)曝光。
依本发明,由于对第1元件的一面侧及另一面侧各自的第1、第2空间填满液体,故能以大的像侧数值孔径确保的状态将基板良好地曝光。又,例如在填满第1空间的液体与基板接触的情况下,第1元件的一面侧受污染的可能性增加,但是,因使第1元件变得能容易更换,故只要仅将该受污染的第1元件更换为洁净的元件即可,而能透过具备该洁净的第1元件的投影光学系统及液体良好地进行曝光及测量。
又,本发明中的第1元件可以为无折射力的透明构件(例如平行平面板),例如在配置于最靠像面侧的透明构件完全无助于投影光学系统的成像性能的情况下,也将该透明构件视为第1元件。
又,本发明中的第1元件,是以相对投影光学系统的光轴呈大致静止的状态受支撑着,但是,在为了调整其位置或姿势而支撑成能作微小移动的情况下,仍视为「支撑成大致静止的状态」。
依本发明的第2形态,本发明提供一种曝光装置(EX),是对基板(P)上照射曝光用光(EL)而将基板(P)曝光,其特征在于具备:具有最靠近像面的第1元件(2G)与次于该第1元件(2G)靠近该像面的第2元件(2F)的投影光学系统(PL);第1空间(K1),形成于该第1元件(2G)的一面(2S)侧;第2空间(K2),形成于该第1元件(2G)的另一面(2T)侧;连结孔(74),用来连结第1空间(K1)与第2空间(K2);及液体供应机构(30),用来对第1空间(K1)及第2空间(K2)两者之一供应液体(LQ),并透过连结孔(74)以液体(LQ)填满第1空间(K1)及第2空间(K2);且透过该第1空间(K1)及第2空间(K2)的液体(LQ)来对基板(P)上照射曝光用光(EL)而将基板(P)曝光。
依本发明,由于液体供应机构对第1元件的一面侧的第1空间及另一面侧的第2空间两者之一供应液体,故能透过连结孔以液体容易分别填满第1、第2空间。又,由于第1元件的一面侧及另一面侧各自的第1、第2空间填满液体,故能以大的像侧数值孔径确保的状态将基板良好地曝光。又,例如,
在填满第1空间的液体与基板接触的情况下,第1元件的一面侧受污染的可能性增加,但是,因使第1元件变得能容易更换,故只要仅将该受污染的第1元件更换为洁净的元件即可,而能良好地进行透过具备该洁净的第1元件的投影光学系统及液体的曝光及测量。
又,本发明中的第1元件可以为无折射力的透明构件(例如平行平面板),例如在配置于最靠像面侧的透明构件完全无助于投影光学系统的成像性能的情况下,仍将该透明构件视为第1元件。
依本发明,本发明提供一种元件制造方法,其特征在于:该元件是使用第1及第2形态的曝光装置来制造。
依本发明,因能维持良好的曝光精度及测量精度,故能制造具有所要性能的元件。
依本发明的第3形态,提供一种曝光方法,是透过具有最靠近像面的第1元件(2G)与次于该第1元件(2G)靠近该像面的第2元件(2F)的投影光学系统(PL)来对基板(P)照射曝光用光(EL)而将基板曝光,其特征在于包含下列步骤:将液体(LQ1)导至该第1元件(2G)的光射出侧的第1空间(K1);对位于第1元件光入射侧且与第1空间(K1)隔开的第2空间(K2)供应液体(LQ2);透过第1空间的液体(LQ1)及第2空间的液体(LQ2)来对基板照射曝光用光而将基板曝光;及在对基板照射曝光用光期间,在第2空间(K2)填满液体的状态下停止对第2空间供应液体(LQ2)。
依本发明的第3形态的曝光方法,将液体导至第1元件光射出侧的第1空间及光入射侧的第2空间,透过所述空间的液体照射曝光用光而将基板曝光,因此,能以大的像侧数值孔径确保的状态来将基板曝光。又,由于使第1元件成为能拆装的元件,故即使在第1元件受到第1空间的液体污染的情况下仍能容易洗净或更换。又,在基板的曝光期间,停止对第2空间供应液体,故防止对第2空间的液体供应所导致的振动,而能以所要的精度将基板曝光。
依本发明的第4形态,提供一种曝光方法,透过具有最靠近像面的第1元件(2G)与次于该第1元件(2G)靠近该像面的第2元件(2F)的投影光学系统(PL)来对基板(P)照射曝光用光(EL)而将基板曝光,其特征在于包含下列步骤:对该第1元件(2G)的一面侧所形成的第1空间(K1)及与第1空间流通且形成于另一面侧的第2空间(K2)中的一空间供应液体,据此来以液体(LQ)填满第1空间及第2空间,并且以第1空间(K1)的液体(LQ1)来形成用来覆盖基板(P)表面一部分的液浸区域(AR2),透过第1空间及第2空间的液体(LQ)对基板照射曝光用光而将基板曝光。
依本发明的第4形态的曝光方法,因第1空间及第2空间流通,故只要对任一空间供应液体,自任一空间回收液体即可。因此,能简化液体供应及液体回收所必要的设备,并且能防止可能影响曝光动作的振动。
附图说明
图1为表示本发明的曝光装置第1实施形态的概略构成图。
图2为图1的要部放大图。
图3为喷嘴构件的仰视图。
图4为表示本发明的曝光装置第2实施形态的要部放大图。
图5为表示本发明的曝光装置第3实施形态的要部放大图。
图6为喷嘴构件的概略立体图。
图7为表示本发明的曝光装置第4实施形态的要部放大图。
图8为表示半导体元件制造工艺的一例的流程图。
图9用来说明本发明第5实施形态的曝光装置中第1液体回收机构的液体回收动作图。
主要元件符号说明
2(2A~2G) 光学元件(元件)
2S 下面
2T 上面
10 第1液体供应机构
20 第1液体回收机构
30 第2液体供应机构
60 第2液体回收机构
70 喷嘴构件(流路形成构件)
74 连结孔
EL 曝光用光
EX 曝光装置
K1 第1空间
K2 第2空间
LQ(LQ1,LQ2) 液体
P 基板
PL 投影光学系统
具体实施方式
以下,参照图式说明本发明的曝光装置及曝光方法。但本发明不受限于以下的实施形态。
第1实施形态
图1,是表示本发明的曝光装置第1实施形态的概略构成图。图1中,曝光装置EX具有:用来支撑掩膜版M的掩膜版载台MST、用来支撑基板P的基板载台PST、用来以曝光用光EL照射掩膜版载台MST所支撑的掩膜版M的照明光学系统IL、用来将被曝光用光EL照射的掩膜版M的图案像投影曝光于基板载台PST所支撑的基板P的投影光学系统PL以及用来整合控制曝光装置EX全体动作的控制装置CONT。
本实施形态的曝光装置EX,为一种应用液浸法的液浸曝光装置,以将曝
光波长实质上缩短提高分辨率并且将焦点深度实质上增加。此外,该曝光装置EX具备:用来将液体LQ1供应给投影光学系统PL的像面侧的第1液体供应机构10及用来回收投影光学系统PL像面侧的液体LQ1的第1液体回收机构20。第1液体供应机构10,用来对构成投影光学系统PL的多数个光学元件2(2A~2G)中离投影光学系统PL的像面最近的最终光学元件2G的下面2S与基板P之间所形成的第1空间K1供应液体LQ1。第1液体回收机构20,用来回收供应给第1空间K1的液体LQ1。
又,曝光装置EX具备第2液体供应机构30及第2液体回收机构60,前者用来对最终光学元件2G的上面2T与最终光学元件2G上方所设的光学元件2F之间所形成的第2空间K2供应液体LQ2,后者用来回收供应给第2空间K2的液体LQ2。第1空间K1及第2空间K2为独立的空间,第2液体供应机构30能不依靠第1液体供应机构10而单独对第2空间K2供应液体。又,第2液体回收机构60能不依靠第1液体回收机构20而单独回收第2空间K2内的液体。
曝光装置EX,至少在将掩膜版M的图案像转印于基板P上期间(在将曝光用光EL照射于基板P上期间),在用自第2液体供应机构30供应的液体LQ2填满第2空间K2的状态下,用自第1液体供应机构10供应的液体LQ1,于包含投影光学系统PL投影区域AR1的基板P上的一部分,局部形成比投影区域AR1大且比基板P小的液浸区域AR2。具体而言,曝光装置EX,采用将液体LQ1填满投影光学系统PL的离像面最近的最终光学元件2G与配置于像面侧的基板P表面之间的第1空间K1,并用液浸区域AR2来覆盖基板P表面的一部分的局部液浸方式,此外,曝光装置EX,是透过投影光学系统PL、最终光学元件2G上面2T侧的第2空间K2的液体LQ2及最终光学元件2G下面2S侧的第1空间K1的液体LQ1,将通过掩膜版M的曝光用光EL照射于基板P,据此来将掩膜版M的图案投影曝光于基板P。
又,于投影光学系统PL的像面附近配置有第1、第2液体供应机构10、
30及构成第1、第2液体回收机构20、60一部分的喷嘴构件(流路形成构件)70。喷嘴构件70,为设置于基板P(基板载台PST)上方、包围镜筒PK下部的环状构件。
本实施形态是以使用扫描型曝光装置(所谓扫描式步进机)的情况为例来说明曝光装置EX,该扫描型曝光装置,是边使掩膜版M及基板P往扫描方向的互异方向(反方向)同步移动,边将形成于掩膜版M的图案曝光于基板P。以下说明中,将与投影光学系统PL的光轴AX一致的方向设为Z轴方向,掩膜版M及基板P在Z轴方向的垂直平面内的同步移动方向(扫描方向)设为X轴方向,Z轴方向及X轴方向的垂直方向(非扫描方向)设为Y轴方向。又,将绕X轴、Y轴及Z轴的旋转(倾斜)方向分别设为θX、θY及θZ方向。
照明光学系统IL用来以曝光用光EL照射掩膜版载台MST所支撑的掩膜版M,照明光学系统IL具有:曝光用光源、用来将自曝光用光源射出的光束的照度均一化的光学积分器、用来聚集来自光学积分器的曝光用光EL的聚光透镜、中继透镜系统、用来将曝光用光EL在掩膜版M上产生的照明区域设定成狭缝状的可变视野光圈等。掩膜版M上既定的照明区域由于照明光学系统IL而被有均一照度分布的曝光用光EL照射。自照明光学系统IL射出的曝光用光EL,例如使用自水银灯射出的光线(g线、h线、i线)及KrF准分子激光(波长248nm)等远紫外光(DUV光)、ArF准分子激光(波长193nm)及F2激光(波长157nm)等真空紫外光(VUV光)等。本实施形态是使用ArF准分子激光。
本实施形态中,用来填满第1空间K1的液体LQ1及用来填满第2空间K2的液体LQ2使用相同的纯水。纯水不仅可使ArF准分子激光透过,还可使例如自水银灯射出的光线(g线、h线、i线)及KrF准分子激光(波长248nm)等远紫外光(DUV光)透过。
掩膜版载台MST,可保持着掩膜版M移动,例如以真空吸附(或静电吸附)来固定掩膜版M。掩膜版载台MST能由包含线性马达等的掩膜版载台驱动装
置MSTD在投影光学系统PL的光轴AX的垂直平面内,也即XY平面内2维移动,并在θZ方向旋转微小量。又,掩膜版载台MST,能在X轴方向以指定的扫描速度移动,具有能使掩膜版M的全面至少横切投影光学系统PL光轴AX的X轴方向的移动行程。
于掩膜版载台MST上设有用来与掩膜版载台MST一起移动的移动镜41。又,于移动镜41的对向位置设有激光干涉计42。掩膜版载台MST上的掩膜版M的2维方向的位置及θZ方向的旋转角(有时也包含θX、θY方向的旋转角)由激光干涉计42实时测量,测量结果输出至控制装置CONT。控制装置CONT,是根据激光干涉计42的测量结果来驱动掩膜版载台驱动装置MSTD,而控制掩膜版载台MST所支撑的掩膜版M的位置。
投影光学系统PL用来以既定投影倍率β将掩膜版M的图案投影曝光于基板P。投影光学系统PL由多数个光学元件2(2A~2G)所构成,该多数个光学元件2包含设于基板P侧先端部的最终光学元件2G、及次于最终光学元件2G靠近像面的光学元件2F。多数个光学元件2A~2G,是以相对光轴AX呈大致静止的状态被支撑于镜筒PK。本实施形态中,投影光学系统PL,为投影倍率β例如为1/4、1/5或1/8的缩小系统。又,投影光学系统PL可为等倍系统或放大系统。又,投影光学系统PL可为包含折射元件及反射元件的反射折射系统、不含反射元件的折射系统或不含折射元件的反射系统。
基板载台PST可透过基板保持具PH保持着基板P移动在XY平面内做2维移动,并朝θZ方向旋转微小量。再者,基板载台PST也能朝Z轴方向、θX方向及θY方向移动。基板P例如以真空吸附等被保持于基板保持具PH。基板载台PST能被受控制装置CONT控制的线性马达等基板载台驱动装置PSTD所驱动。
于基板载台PST上,设有用来与基板载台PST一起相对投影光学系统PL移动的移动镜43。又,于移动镜43的对向位置设有激光干涉计44。基板载台PST上的基板P的2维方向的位置及旋转角由激光干涉计44实时测量。
又,曝光装置EX具备例如日本特开平8-37149号公报所揭示的对焦调平检测系统(未图示),该对焦调平检测系统用来检测基板载台PST所支撑的基板P的表面的位置信息。对焦调平检测系统,透过或不透过第1空间K1的液体LQ1检测基板P表面的Z轴方向的位置信息以及基板P的θX及θY方向的斜率信息。在不透过液体LQ1检测基板P表面的面信息的对焦调平检测系统的情况下,该检测系统也可在远离投影光学系统PL的位置检测基板P表面的面信息。用来在远离投影光学系统PL的位置检测基板P表面的面信息的曝光装置揭示于例如美国专利第6,647,510号,在本国际申请案的指定或选择的国家法令所容许的范围内,援用该文献的记载内容作为本文记载的一部分。
激光干涉计44的测量结果输出至控制装置CONT。对焦调平检测系统的受光结果也输出至控制装置CONT。控制装置CONT,根据对焦调平检测系统的检测结果,驱动基板载台驱动装置PSTD,控制基板P的对焦位置及倾斜角,将基板P的表面调整至与投影光学系统PL的像面一致,又根据激光干涉计44的测量结果,进行基板P在X轴方向及Y轴方向上的定位。
于基板载台PST上设有凹部50,用来保持基板P的基板保持具PH配置于凹部50。又,基板载台PST中凹部50以外的上面51为与基板保持具PH所保持的基板P的表面有大致相同高度(同高)的平坦面(平坦部)。又,本实施形态中,移动镜43上面也设置成与基板载台PST的上面51大致同高。因为于基板P的周围设有与基板P表面大致同高的上面51,所以,即使对基板P的边缘区域进行液浸曝光时,仍在基板P的边缘部的外侧无段差,将液体LQ保持于投影光学系统PL的像面侧,而能形成良好的液浸区域AR2。又,若能将液体LQ1保持于第1空间K1,则也可于基板P表面与基板载台PST的上面51之间有小的段差。又,虽然于基板P的边缘部与设于该基板P周围的平坦面(上面)51之间有约0.1~2mm的间隙,但由于有液体LQ的表面张力,故液体LQ很少流进该间隙内,又,即使在对基板P周缘附近进行曝光
的情况下,也能通过上面51来将液体LQ保持于投影光学系统PL下。
又,由于使上面51呈现拨液性,故防止液体LQ在液浸曝光中流到基板P外侧(上面51外侧),又,在液浸曝光后也能将液体LQ顺利回收,而能防止液体LQ残留于上面51。例如用聚四氟乙烯(铁氟龙(注册商标))等具有拨液性的材料来形成基板载台PST的上面51,便能使上面51呈现拨液性。或者是对上面51进行拨液化处理,该拨液化处理,是例如涂布聚四氟乙烯等氟系树脂材料、压克力树脂材料、硅系树脂材料等拨液性材料,或是贴上该拨液性材料所构成的薄膜。又,拨液性材料的区域(拨液化处理区域)可以是整个上面51,也可仅是需要拨液性的局部区域。
曝光装置EX具备用来支撑投影光学系统PL的镜筒平板5以及用来支撑镜筒平板5及掩膜版载台MST的杆柱1。杆柱1,设置于地面上所设的底座9上。基板载台PST被支撑于底座9上。于杆柱1形成有往内侧突出的上侧段部7及下侧段部8。
照明光学系统IL被固定于杆柱1上部的支撑架3所支撑。杆柱1的上侧段部7透过防振装置46支撑着掩膜版平板4。于掩膜版载台MST及掩膜版平板4的中央部分别形成有用来使掩膜版M的图案像通过的开口部MK1、MK2。于掩膜版载台MST下面设有多数个作为非接触轴承的气体轴承(空气轴承)45。掩膜版载台MST,通过空气轴承45而以非接触被支撑于掩膜版平板4上面(导面),又能通过掩膜版载台驱动装置MSTD而在XY平面内做2维移动,并在θZ方向旋转微小量。
于用来保持投影光学系统PL的镜筒PK的外周设有凸缘PF,投影光学系统PL透过该凸缘PF被支撑于镜筒平板5。于镜筒平板5与杆柱1下侧段部8之间配置有包含空气吊架等的防振装置47,用来支撑投影光学系统PL的镜筒平板5透过防振装置47被支撑于杆柱1的下侧段部8。通过该防振装置47,将镜筒平板5及杆柱1在振动上分开,而使杆柱1的振动不会传递至用来支撑投影光学系统PL的镜筒平板5。
于基板载台PST下面设有多数个作为非接触轴承的气体轴承(空气轴承)48。又,底座9上透过包含空气吊架等的防振装置49支撑着基板平板6。基板载台PST,通过空气轴承48而以非接触被支撑于基板平板6上面(导面),又能通过基板载台驱动装置PSTD而在XY平面内做2维移动并在θZ方向旋转微小量。通过该防振装置49,将基板平板6与杆柱1及底座9(地面)在振动上分开,而使底座9(地面)或杆柱1的振动不会传递至用来以非接触支撑基板载台PST的基板平板6。
喷嘴构件70透过连结构件52被支撑于杆柱1的下侧段部8。连结构件52固定于杆柱1的下侧段部8,于该连结构件52固定有喷嘴构件70。杆柱1的下侧段部8透过防振装置47及镜筒平板5支撑投影光学系统PL,喷嘴构件70则被支撑于用来支撑投影光学系统PL的下侧段部8。
此外,透过连结构件52支撑着喷嘴构件70的杆柱1及透过凸缘PF支撑着投影光学系统PL的镜筒PK的镜筒平板5,是透过防振装置47在振动上分开。因此,防止在喷嘴构件70产生的振动传递至投影光学系统PL。又,透过连结构件52支撑着喷嘴构件70的杆柱1及支撑着基板载台PST的基板平板6,透过防振装置49在振动上分开。因此,防止在喷嘴构件70产生的振动透过杆柱1及底座9传递至基板载台PST。又,透过连结构件52支撑着喷嘴构件70的杆柱1及支撑着掩膜版载台MST的掩膜版平板4,是透过防振装置46在振动上分开。因此,防止在喷嘴构件70产生的振动透过杆柱1传递至掩膜版载台MST。
第1液体供应机构10,用来将液体LQ1供应给形成于投影光学系统PL最终光学元件2G下面2S侧(光射出侧)的第1空间K1。第1液体供应机构10,具备能送出液体LQ1的第1液体供应部11及一端部连接于第1液体供应部11的供应管13。第1液体供应部11,具备用来容纳液体LQ1的液体槽、用来调整待供应液体LQ1的温度的温调装置、用来除去液体LQ1中异物的过滤装置及加压泵等。若要于基板P上形成液浸区域AR2,液体供应机构10
便将液体LQ1供应至基板P上。
第1液体回收机构20,用来将供应给最终光学元件2G下面2S侧所形成的第1空间K1的液体LQ1加以回收。第1液体回收机构20具备能回收液体LQ1的第1液体回收部21及一端部连接于第1液体回收部21的回收管23。第1液体回收部21,例如具备真空泵等真空系统(吸引装置)、用来将已回收的液体LQ1与气体加以分离的气液分离器及用来容纳已回收的液体LQ1的液体槽。又,也可不将真空系统、气液分离器、液体槽等的至少一部分设置于曝光装置EX,而使用配置曝光装置EX的工厂内的设备。为了于基板P上形成液浸区域AR2,第1液体回收机构20将第1液体供应机构10所供应的基板P上的液体LQ1回收既定量。
第2液体供应机构30,用来将液体LQ2供应给投影光学系统PL最终光学元件2G上面2T侧所形成的第2空间K2。第2液体供应机构30具备能送出液体LQ2的第2液体供应部31、一端部连接于第2液体供应部31的供应管33。第2液体供应部31,具备用来容纳液体LQ2的液体槽、用来调整待供应的液体LQ2的温度的温调装置、用来除去液体LQ2中异物的过滤装置及加压泵等。又,未必要使曝光装置EX具备第1液体供应部11及第2液体供应部31的液体槽、加压泵的至少一部分,也可使用设置曝光装置EX的工厂内的设备来代替。
第2液体回收机构60,用来将供应给最终光学元件2G上面2S侧所形成的第2空间K2的液体LQ2加以回收。第2液体回收机构60具备能回收液体LQ2的第2液体回收部61及一端部连接于第2液体回收部61的回收管63。第2液体回收部61例如具备真空泵等真空系统(吸引装置)、用来将已回收的液体LQ2与气体加以分离的气液分离器及用来容纳已回收的液体LQ2的液体槽等。又,也可使用用来配置曝光装置EX的工厂等的设备,而不将真空系统、气液分离器、液体槽等的至少一部分设置于曝光装置EX。
图2是表示投影光学系统PL的像面侧及喷嘴构件70附近的截面图、图
3为喷嘴构件70的仰视图。
图2及图3中,最终光学元件2G及配置于其上方的光学元件2F支撑于镜筒PK。最终光学元件2G为平行平面板,镜筒PK的下面PKA、与保持于镜筒PK的最终光学元件2G的下面2S大致同高。支撑于镜筒PK的最终光学元件2G的上面2T及下面2S与XY平面大致平行。又,最终光学元件(平行平面板)2G,被支撑成大致水平,无折射力。又,镜筒PK与最终光学元件2G的连接部等被密封着。也即,最终光学元件2G的下面2S侧的第1空间K1及上面2T侧的第2空间K2互为独立的空间,阻止第1空间K1与第2空间K2之间的液体流通。如上所述,第1空间K1为最终光学元件2G与基板P之间的空间,该第1空间K1用来形成液体LQ1的液浸区域AR2。第1空间在与基板平行的方向,也即,其周围处于开放状态。因此,保持于喷嘴构件70与基板P之间的液体LQ1的界面是与周围的气体接触着。另一方面,第2空间K2为镜筒PK的内部空间的一部分,且为最终光学元件2G的上面2T与配置于其上方的光学元件2F的下面2U之间的空间。第2空间K2在与基板平行的方向,也即,其周围被封闭于镜筒PK的壁面,但第2空间K2的液体LQ2上面的一部分接触于镜筒PK与光学元件2F之间的间隙内的气体。
又,最终光学元件2G的上面2T的面积,与面向上面2T的光学元件2F的下面2U的面积大致相同,或是比下面2U的面积更小,在用液体LQ填满第2空间K2的情况下,最终光学元件2G的上面2T的大致整面被液体LQ覆盖。
又,最终光学元件2G能相对镜筒PK容易拆装。也即,最终光学元件2G设置成能更换。尤其,当安装及拆卸最终光学元件2G时,能将最终光学元件2G以不脱离镜筒PK内其它光学元件的方式、且不影响其它光学元件或投影光学系统的光学特性的方式安装于镜筒PK。例如,将镜筒PK分开为用来保持光学元件2F的第1保持构件及用来保持最终光学元件2G的第2保持构件,用螺丝等来固定第2保持构件,便能拆卸第2保持构件,容易更换最终光学元件2G。
喷嘴构件70为环状构件,该环状构件配置于投影光学系统PL下端部的附近,且设置成在基板P(基板载台PST)的上方包围镜筒PK。喷嘴构件70,是构成第1液体供应机构10及第1液体回收机构20各自的一部分。喷嘴构件70在中央部具有能配置投影光学系统PL(镜筒PK)的孔部70H。本实施形态中,投影光学系统PL的投影区域AR1设定成以Y轴方向(非扫描方向)为长度方向的矩形。
于面向基板P的喷嘴构件70的下面70A形成有以Y轴方向为长度方向的凹部78。能配置投影光学系统PL(镜筒PK)的孔部70H形成于凹部78的内侧。于凹部78的内侧,设有与XY平面大致平行、且面向支撑于基板载台PST的基板P的面78A(以下,称为空心面78A)。又,凹部78具有内侧面79。内侧面79,设置成与支撑于基板载台PST的基板P表面大致正交。在此,基板载台PST将基板P支撑成基板P表面与XY平面大致平行。
于喷嘴构件70的下面70A中凹部78的内侧面79,设有构成第1液体供应机构10一部分的第1供应口12(12A、12B)。
本实施形态中,第1供应口12(12A、12B),设有2个,隔着投影光学系统PL的光学元件2(投影区域AR1)分别设于X轴方向两侧。第1供应口12A、12B分别将自第1液体供应部11送出的液体LQ1往与配置于投影光学系统PL像面侧的基板P表面大致平行,也即XY平面大致平行(横方向)的方向喷出。
又,本实施形态的第1供应口12A、12B呈大致圆形,不过,也可呈椭圆形、矩形、狭缝状等任意形状。又,本实施形态中,第1供应口12A、12B具有互为大致相同的大小,不过,也可具有互异的大小。又,第1供应口也可为1处。又,也可将第1供应口12A、12B分别设置于相对投影光学系统PL光学元件2(投影区域AR1)的Y轴方向两侧。
在喷嘴构件70的下面70A,于凹部78的外侧以投影光学系统PL的投影区域AR1为基准设有构成第1液体回收机构20一部分的第1回收口22。第1回收口22,设于面向基板P的喷嘴构件70的下面70A中相对投影光学系
统PL的投影区域AR1在第1液体供应机构10的第1供应口12A、12B的外侧,也即设于相对投影区域AR1在比第1供应口12A、12B更远之处。又,第1回收口22呈包围投影区域AR1及第1供应口12A、12B的环状。又,于第1回收口22设有多孔体22P。有关该多孔体22P,将在后述的实施形态用与图9的关系来说明。
又,第1回收口22也可不设成包围投影区域AR1及第1供应口12A、12B的环状,例如可设置成不连续的样子。也即,第1回收口22的数量、配置及形状等,不限于上述的内容,只要是能以液体LQ1不漏出的方式回收液体LQ1的构造即可。
透过连结构件52支撑于杆柱1下侧段部8的喷嘴构件70,与投影光学系统PL(镜筒PK)分开。也即,于喷嘴构件70的孔部70H的内侧面70K与镜筒PK的侧面PKS之间设有间隙。该间隙,用来将投影光学系统PL与喷嘴构件70在振动上分开。因此,防止在喷嘴构件70产生的振动传递至投影光学系统PL侧。又,如上所述,杆柱1(下侧段部8)与镜筒平板5透过防振装置47在振动上分开。因此,防止在喷嘴构件70产生的振动透过杆柱1及镜筒平板5传递至投影光学系统PL。
如图2所示,供应管13的他端部,连接于喷嘴构件70内部所形成第1供应流路14的一端部。另一方面,喷嘴构件70的第1供应流路14的他端部,则连接于喷嘴构件70的凹部78的内侧面79所形成的第1供应口12。在此,喷嘴构件70的内部所形成的第1供应流路14,在中途分歧,以便能将他端部分别连接于多数(2个)个供应口12(12A、12B)。又,如图2所示,连接于第1供应口12的第1供应流路14中第1供应口12附近,是往第1供应口12逐渐扩大的倾斜面,供应口12,呈喇叭状。
第1液体供应部11的液体供应动作受控制装置CONT所控制。为了形成液浸区域AR2,控制装置CONT,自第1液体供应机构10的第1液体供应部11送出液体LQ1。自第1液体供应部11送出的液体LQ1,在流过供应管13
后,流入喷嘴构件70内部所形成第1供应流路14的一端部。此外,流入第1供应流路14一端部的液体LQ1在中途分歧后,自喷嘴构件70内侧面79所形成的多数(2个)个第1供应口12A、12B供应给最终光学元件2G与基板P之间的第1空间K1。在此,本实施形态中,自第1供应口12供应的液体LQ1往与基板P表面大致平行的方向喷出,所以,相较于例如对基板P表面自该基板P表面的上方往下供应液体LQ1这样的构成,能降低供应的液体LQ1作用于基板P的力量。因此,能防止液体LQ1的供应导致基板P或基板载台PST变形等问题的发生。当然,也可在考虑对基板P或基板载台PST作用的压力之下,将第1供应口做成能往下供应液体LQ1的样子。
如图2所示,回收管23的他端部连接于构成喷嘴构件70内部所形成第1回收流路24一部分的歧管流路24M的一端部。另一方面,歧管流路24M的他端部,是以与第1回收口22对应的方式呈俯视环状,连接于构成第1回收流路24一部分的环状流路24K的一部分,该第1回收流路24用来连接于该第1回收口22。
第1液体回收部21的液体回收动作受控制装置CONT的控制。控制装置CONT,为了回收液体LQ1,驱动第1液体回收机构20的第1液体回收部21。具有真空系统的第1液体回收部21的驱动,使基板P上的液体LQ1透过设于该基板P上方的第1回收口22垂直向上(+Z方向)流入环状流路24K。往+Z方向流入环状流路24K的液体LQ1,在歧管流路24M集合后,流过歧管流路24M。之后,透过回收管23被吸引回收至第1液体回收部21。
于镜筒PK的内侧面PKL设有构成第2液体供应机构30一部分的第2供应口32。第2供应口32,形成于镜筒PK的内侧面PKL中第2空间K2的附近,且设于投影光学系统PL的光轴AX的+X侧。第2供应口32用来将自第2液体供应部31送出的液体LQ2以与最终光学元件2G上面2T大致平行,也即XY平面大致平行(横方向)的方向喷出。第2供应口32往与最终光学元件2G的上面2T大致平行的方向喷出液体LQ2,故能降低所供应的液体LQ2作
用于光学元件2G、2F等的力量。因此,能防止液体LQ2的供应导致光学元件2G、2F等变形或移位等问题的发生。
又,于镜筒PK的内侧面PKL中相对第2供应口32的既定位置,设有构成第2液体回收机构60一部分的第2回收口62。第2回收口62,形成于镜筒PK的内侧面PKL中第2空间K2的附近,且设于投影光学系统PL的光轴AX的-X侧。也即,第2供应口32及第2回收口62是对向着。本实施形态中,第2供应口32及第2回收口62分别呈狭缝状。又,第2供应口32及第2回收口62也可呈大致圆形、椭圆形、矩形等任意形状。又,本实施形态中,第2供应口32、第2回收口62各自具有互为大致相同的大小,但也可具有互异的大小。又,也可将第2供应口32与上述第1供应口12同样地形成喇叭状。
如图2所示,供应管33的他端部,连接于镜筒PK内部所形成的第2供应流路34的一端部。另一方面,镜筒PK的第2供应流路34的他端部,连接于镜筒PK的内侧面PKL所形成的第2供应口32。
第2液体供应部31的液体供应动作受到控制装置CONT的控制。当控制装置CONT自第2液体供应机构30的第2液体供应部31送出液体LQ2时,自该第2液体供应部31送出的液体LQ2在流经供应管33后,流入镜筒PK内部所形成的第2供应流路34的一端部。此外,流入第2供应流路34一端部的液体LQ2,自镜筒PK的内侧面PKL所形成的第2供应口32供应至光学元件2F与最终光学元件2G之间的第2空间K2。
如图2所示,回收管63的他端部,连接于镜筒PK内部所形成的第2回收流路64的一端部。另一方面,第2回收流路64的他端部,连接于镜筒PK的内侧面PKL所形成的第2回收口62。
第2液体回收部61的液体回收动作受到控制装置CONT的控制。控制装置CONT,为了回收液体LQ2,驱动第2液体回收机构60的第2液体回收部61。由于具有真空系统的第2液体回收部61的驱动,第2空间K2的液体LQ2
透过第2回收口62流入第2回收流路64,然后,透过回收管63吸引回收至第2液体回收部61。
又,第2供应口32及第2回收口的数量、配置等,不限于上述内容,只要是光学元件2F与光学元件2G之间的曝光用光EL的光路填满第2液体LQ2这样的构造即可。
又,本实施形态中,虽然于镜筒PK的内部形成有流路34、64,但也可事先于镜筒PK的一部分设置贯通孔,并于该贯通孔装上作为流路的配管。又,本实施形态中,供应管33及回收管63是与喷嘴构件70分别设置,不过,也可不设置供应管33及回收管63,而是于喷嘴构件70的内部设置供应路及回收路,并将供应路及回收路分别与镜筒PK内部所形成的流路34、64连接。
保持于镜筒PK的光学元件2F的下面2U,呈平面状,与最终光学元件2G的上面2T大致平行。另一方面,光学元件2F的上面2W,为呈往物体面侧(掩膜版M侧)的凸状,具有正折射率。因此,降低入射上面2W的光(曝光用光EL)的反射损失,进而确保投影光学系统PL的大的像侧数值孔径。又,具有折射率(透镜作用)的光学元件2F,是以良好定位的状态牢牢地固定于镜筒PK。
填满第2空间K2的液体LQ2接触于光学元件2F的下面2U及最终光学元件2G的上面2T,第1空间K1的液体LQ1接触于最终光学元件2G的下面2S。本实施形态中,至少光学元件2F、2G是由石英形成。石英,因与身为水的液体LQ1、LQ2的亲和性高,故可使液体LQ1、LQ2密接于作为液体接触面的光学元件2F的下面2U、最终光学元件2G的上面2T及下面2S的几乎整面。因此,能使液体LQ1、LQ2密接于光学元件2F、2G的液体接触面2S、2T、2U,用液体LQ1、LQ2确实填满光学元件2F与最终光学元件2G之间的光路及最终光学元件2G与基板P之间的光路。
又,石英为折射率大的材料,故能缩小光学元件2F等的大小,能将投
影光学系统PL全体及曝光装置EX整体小型化。又,石英具耐水性,故例如具有即使在如本实施形态般使用纯水当作液体LQ1、LQ2的情况下,也不必于液体接触面2S、2T、2U等设置保护膜这样的优点。
又,光学元件2F、2G的至少一方也可为与水亲和性高的氟石。在此情况下,较佳是事先于氟石的液体接触面形成用来防止溶解于水的保护膜。又,也可例如用氟石形成光学元件2A~2E,用石英形成光学元件2F、2G,也可用石英(或氟石)来形成所有的光学元件2A~2G。
又,也可对光学元件2F、2G的液体接触面2S、2T、2U施以使MgF2、A12O3、SiO2等附着等亲水化(亲液化)处理,使与液体LQ1、LQ2的亲和性更高。或者是,因本实施形态的液体LQ1、LQ2是极性大的水,故亲液化处理(亲水化处理),也能用具有例如乙醇等极性大的分子构造的物质来形成薄膜,据此来对该光学元件2F、2G的液体接触面2S、2T、2U赋予亲水性。也即,若使用水作为液体LQ1、LQ2,则希望将具有OH基等极性大的分子构造的物质设于该液体接触面2S、2T、2U。
又,本实施形态中,镜筒PK的内侧面PKL及光学元件2F的侧面2FK分别经拨液化处理而具有拨液性。由于使镜筒PK的内侧面PKL及光学元件2F的侧面2FK分别呈现拨液性,故防止第2空间K2的液体LQ2流入内侧面PKL与侧面2FK所形成的间隙,并且防止该间隙的气体成为气泡混杂在第2空间K2的液体LQ2中。
有关上述的拨液化处理,例如涂布聚四氟乙烯等氟系树脂材料、压克力树脂材料、硅系树脂材料等拨液性材料,或是贴上前述的拨液性材料所构成的薄膜。
又,由于对镜筒PK的侧面PKS及喷嘴构件70的内面70K分别施以拨液处理,使这些侧面PKS及内侧面70K呈现拨液性,故防止第1空间K1的液体LQ1流入内侧面70K及侧面PKS所形成的间隙,并且防止前述间隙的气体成为气泡混杂在第1空间K1的液体LQ1中。
又,也可于光学元件2F的侧面2FK与镜筒PK的内侧面PKL之间配置O型环或V型环等密封构件。又,也可于镜筒PK的侧面PKS与喷嘴构件70的内侧面70K之间配置O型环或V型环等密封构件。
其次,就使用具上述构成的曝光装置EX来将掩膜版M的图案像曝光于基板P的方法加以说明。
当对基板P进行曝光时,控制装置CONT便自第2液体供应机构30将液体LQ2供应给第2空间K2。控制装置CONT,是以最佳的方式控制第2液体供应机构30所送出液体LQ2的单位时间供应量及第2液体回收机构60所回收液体LQ2的单位时间回收量,并且,以第2液体供应机构30及第2液体回收机构60来进行液体LQ2的供应及回收,用液体LQ2来填满第2空间K2中至少曝光用光EL的光路上。
又,开始对第2空间K2供应液体LQ2时,为了防止液体LQ2流入镜筒PK的内侧面PKL与光学元件2F的侧面2FK的间隙,也可慢慢增加第2液体供应机构30所送出液体LQ2的单位时间供应量。
又,基板P在装载位置装载于基板载台PST后,控制装置CONT将保持着基板P的基板载台PST往投影光学系统PL之下,也即曝光位置移动。接着,在基板载台PST与投影光学系统PL的最终光学元件2G对向的状态下,控制装置CONT,以最佳的方式控制第1液体供应机构10所送出液体LQ1的单位时间供应量及第1液体回收机构20所回收液体LQ1的单位时间回收量,并且,以第1液体供应机构10及第1液体回收机构20来进行液体LQ1的供应及回收,于第1空间K1中至少曝光用光EL的光路上形成液体LQ1的液浸区域AR2,用液体LQ1填满该曝光用光EL的光路。
在此,于基板载台PST上的既定位置设有例如日本特开平4-65603号公报所揭示的基板对准系统及具有基准标记的基准构件(测量构件),该基准标记用来被日本特开平7-176468号公报所揭示的掩膜版对准系统所测量。再者,于基板载台PST上的既定位置设有光测量部,该光测量部例如有日本
特开昭57-117238号公报所揭示的照度不均匀度传感器、日本特开2002-14005号公报所揭示的空间像测量传感器及日本特开平11-16816号公报所揭示的照射量传感器(照度传感器)。控制装置CONT,是在进行基板P的曝光处理前,进行基准构件上的标记测量、使用光测量部的各种测量动作、使用基板对准系统的基板P上标记检测动作等,并根据测量结果来进行基板P的对准处理、投影光学系统PL的成像特性调整(校正)处理等。例如,在进行使用光测量部的测量动作的情况下,控制装置CONT,是使基板载台PST往XY方向移动,据此来使基板载台PST相对液体LQ1的液浸区域AR2作相对移动,将液体LQ1的液浸区域AR2配置于光测量部上,在此状态下,透过液体LQ1及液体LQ2来进行测量动作。
又,使用基准构件、光测量部的各种测量动作也可在将身为曝光对象的基板P装载于基板载台PST上前进行。又,利用基板对准系统来对基板P上的对准标记所进行的检测也可在将液体LQ1的液浸区域AR2形成于投影光学系统PL的像面侧前进行。
在进行上述的对准处理及校正处理之后,控制装置CONT,是在以第1液体供应机构10对基板P上供应液体LQ1的同时,以第1液体回收机构20来回收基板P上的液体LQ1,并且边将用来支撑基板P的基板载台PST往X轴方向(扫描方向)移动,边将掩膜版M的图案像透过投影光学系统PL、第2空间K2的液体LQ2及第1空间K1的液体LQ1(也即,液浸区域AR2的液体)投影曝光于基板P上。
本实施形态的曝光装置EX,用来边使掩膜版M及基板P往X轴方向(扫描方向)移动,边将掩膜版M的图案像投影曝光于基板P;且在扫描曝光时,掩膜版M的一部分的图案像透过投影光学系统PL及第1、第2空间K1、K2的液体LQ1、LQ2透影于投影区域AR1内,又,掩膜版M以速度V往-X方向(或+X方向)移动,基板P与该掩膜版M的动作同步地以速度β·V(β为投影倍率)相对投影区域AR1往+X方向(或-X方向)移动。于基板P上设定有多
数个曝光照射区域,在对1个曝光照射区域的曝光结束后,下次的曝光照射区域通过基板P的步进移动而移动至扫描开始位置,以下,边以步进扫描方式移动基板P边依序进行对各曝光照射区域的扫描曝光处理。
本实施形态中,于具有透镜作用的光学元件2F之下,配置有平行平面板所构成的最终光学元件2G,由于使液体LQ1、LQ2分别填满最终光学元件2G的下面2S侧及上面2T侧的第1、第2空间K1、K2,故能降低在光学元件2F的下面2U及最终光学元件2G的上面2T的反射损失,以确保投影光学系统PL的大的像侧数值孔径的状态下对基板P良好地曝光。
在基板P的曝光中,利用第2液体供应机构30及第2液体回收机构60的液体LQ2的供应及回收仍持续进行。再者,在基板P的曝光前后,利用第2液体供应机构30及第2液体回收机构60的液体LQ2的供应及回收仍持续进行。借着以第2液体供应机构30及第2液体回收机构60持续进行液体LQ2的供应及回收,来持续将第2空间K2的液体LQ2与新鲜的(洁净的)液体LQ2交换。虽然也可以不进行第2空间K2的液体LQ2的供应及回收,在第2空间K2积存有液体LQ2的状态下进行曝光,但液体LQ2的温度因曝光用光EL的照射而改变,可能改变原有投影光学系统PL的液体介入的成像特性。因此,自第2液体供应机构30持续供应经温度调整的液体LQ2,并且以第2液体回收机构60来回收该液体LQ2,便能防止第2空间K2的液体LQ2的温度变化。同样地,在曝光用光EL的照射中,由于持续以第1液体供应机构10及第1液体回收机构20来进行液体LQ1的供应及回收,故第1空间K1的液体LQ1持续与新鲜的(洁净的)液体LQ1交换。能防止第1空间K1的液体LQ1(也即,基板P上的液浸区域AR2的液体LQ1)的温度变化。又,由于持续进行液体LQ1、LQ2的供应及回收,持续使洁净的液体LQ1、LQ2流动,故也能防止第1、第2空间K1、K2滋生细菌(bacteria等)、洁净度变差这样的问题发生。
又,若第2空间K2的液体LQ2的温度变化等不足以影响曝光精度,则
也可在第2空间K2积存液体LQ2的状态下进行曝光,每隔既定时间或既定处理基板片数更换第2空间K2的液体LQ2。在此情况下,在曝光用光EL的照射中(例如,基板P的曝光中),停止以第2液体供应机构30及第2液体回收机构60来进行液体LQ2供应及回收,故防止液体LQ2的供应(液体LQ2的流动)所导致的光学元件2F的振动或移位,而能精度良好地执行基板P的曝光及使用上述光测量部的各种测量动作。
当基板P的曝光结束时,控制装置CONT,停止以第1液体供应机构10来进行液体LQ1的供应,而使用第1液体回收机构20等来回收液浸区域AR2的所有液体LQ1(第1空间K1的液体LQ1)。再者,控制装置CONT,使用第1液体回收机构20的第1回收口22等,来回收基板P上及基板载台PST上所残留的液体LQ1的液滴等。另一方面,控制装置CONT,在基板P的曝光结束后,仍持续以第2液体供应机构30及第2液体回收机构60来进行液体LQ2的供应及回收,持续使液体LQ2于第2空间K2流动。如此一来,与上述内容同样地能防止第2空间K2的洁净度变差、液体LQ2的气化(干燥)导致光学元件2F、2G的液体接触面2U、2T等形成附着水痕(water mark)等问题发生。此外,基板P上的液体LQ1回收后,控制装置CONT,使支撑有该基板P的基板载台PST移动至卸载位置,进行卸载。
又,若基板载台PST正在往远离投影光学系统PL的位置(例如,装载位置、卸载位置)移动,则也可于投影光学系统PL的像面侧配置具有平坦面的既定构件,用液体LQ持续填满该既定构件与投影光学系统PL之间的空间(第1空间)。
另外,在液浸区域AR2(第1空间K1)的液体LQ1中可能有例如起因于感光剂(光致抗蚀剂)的异物等自基板P上产生的杂质等混入,而污染该液体LQ1。液浸区域AR2的液体LQ1也接触于最终光学元件2G的下面2S,故最终光学元件2的下面2S有可能被受污染的液体LQ1所污染。又,悬浮于空中的杂质也有可能附着于露出投影光学系统PL像面侧的最终光学元件2G下面
2S。
本实施形态中,最终光学元件2G相对镜筒PK可以容易安装及拆卸(可更换),故仅将受污染的最终光学元件2G更换为洁净的最终光学元件2G,便能防止光学元件污染所导致的曝光精度的劣化及有投影光学系统PL介入的测量精度的劣化。另一方面,洁净的液体LQ2持续在第2空间K2持续流动,且第2空间K2的液体LQ2不接触于基板P。又,第2空间K2是光学元件2F、2G及镜筒PK所包围的大致封闭空间,故悬浮于空中的杂质难以混入第2空间K2的液体LQ2,杂质难以附着于光学元件2F。因此,维持着光学元件2F的下面2U及最终光学元件2G的上面2T的洁净度。因此,仅更换最终光学元件2G,便能防止投影光学系统PL的透过率的降低等,而维持曝光精度及测量精度。
如以上说明般,使最终光学元件2G下面2T侧的第1空间K1及上面2S侧的第2空间K2成为独立的空间,将液体LQ1、LQ2分别填满第1空间K1及第2空间K2而进行曝光,故能使通过掩膜版M的曝光用光EL透过光学元件2F下面2U的一部分、最终光学元件2G上面2T的一部分及最终光学元件2G下面2S的一部分良好地到达基板P。
此外,使受污染可能性高的最终光学元件2G能容易更换,便能使用具备有洁净最终光学元件2G的投影光学系统PL来进行良好的曝光。也可考虑不设置平行平面板所构成的最终光学元件2G,而使液浸区域AR2的液体接触于光学元件2F,不过,当增加投影光学系统PL的像侧数值孔径时,必须加大光学元件的有效直径,不得不将光学元件2F大型化。因为于光学元件2F的周围配置上述般的喷嘴构件70、未图示的对准系统等各种测量装置,故该大型光学元件2F的更换的作业性低而困难。再者,因光学元件2F具有折射率(透镜作用),故为了维持投影光学系统PL全体的光学特性(成像特性),必须将该光学元件2F以高定位精度安装于镜筒PK。本实施形态,是设置较小型的平行平面板以作为最终光学元件2G,更换该最终光学元件2G,
故作业性佳,能容易进行更换作业,也能维持投影光学系统PL的光学特性。此外,由于将第1、第2液体供应机构10、30及第1、第2液体回收机构20、60设置成,能将液体LQ1、LQ2分别对独立于最终光学元件2G下面2S侧的第1空间K1及上面2T侧的第2空间K2分别进行供应及回收,故能维持液体LQ1、LQ2的洁净度,并且使自照明光学系统IL射出的曝光用光EL良好地到达投影光学系统PL的像面侧所配置的基板P。
又,本实施形态中,使液体LQ2以弄湿光学元件2F的下面2U及最终光学元件2G的上面2T两者大致全域的方式填满第2空间K2,不过,只要使液体LQ2以配置于曝光用光EL的光路上的方式填满第2空间K2的一部分即可。换言之,第2空间K2只要有必要的一部分被液体LQ2充分填满即可。同样地,第1空间K1只要有必要的一部分被液体LQ1充分填满即可。
又,以图1~图3说明过的实施形态中,用于在基板P上局部形成液浸区域AR2的机构,不限于第1液体供应机构10及第1液体回收机构20(喷嘴构件70),可使用各种形态的机构。例如,也可使用欧洲专利申请公开EP1420298(A2)公报及美国专利公开第2004/0207824号公报所揭示的机构,在该国际申请所指定或选择的国家的法令所容许的范围内,将该公开公报的记载内容援用来当作本文记载的一部分。
第2实施形态
其次,参照图4说明本发明的第2实施形态。以下的说明中,有关与上述的实施形态相同或同等的构成部分,附上同一符号,简化或省略其说明。
本实施形态特征的部分在于:设有用来连结第1空间K1与第2空间K2的连结孔74。连结孔74,是于镜筒PK下面沿周方向以既定间隔设有多数个。又,每个连结孔74均设有多孔体74P。
又,本实施形态中,并未设有用来对第1空间K1直接供应液体且含第1供应口的第1液体供应机构(10)。又,也未设有用来直接回收第2空间K2的液体且含第2回收口的第2液体回收机构(60)。本实施形态的曝光装置EX,
具备有用来对第2空间K2供应液体LQ的第2液体供应机构30及用来回收第1空间K1(液浸区域AR2)的液体LQ的第1液体回收机构20。
又,本实施形态中,设有用来阻止第1空间K1的液体流进镜筒PK侧面与喷嘴构件70的间隙的密封构件100。为了防止喷嘴构件70的振动传递给镜筒PK,较佳是密封构件100由柔软的橡胶或硅等的构件来形成。又,也可没有密封构件100,如第1实施形态所述,例如使镜筒PK的侧面及喷嘴构件70的内侧面70T呈现拨液性,便能阻止第1空间K1的液体LQ1流进该间隙,并能阻止气体混入第1空间K1的液体LQ。
控制装置CONT,当将液体LQ填满第1空间K1及第2空间K2时,使用第2液体供应机构30来对第2空间K2供应液体LQ。供应给第2空间K2的液体LQ也透过连结孔74供应给第1空间K1。第2液体供应机构30,是自第2空间K2供应液体LQ,使液体LQ也透过连结孔74流入第1空间K1,据此来用液体LQ填满第1空间K1及第2空间K2。透过连结孔74供应给第1空间K1的液体LQ,于基板P上形成液浸区域AR2,该液浸区域AR2的液体LQ,是由第1液体供应机构20的第1回收口22回收。此外,第1空间K1及第2空间K2被液体LQ填满后,控制装置CONT,透过第1空间K1及第2空间K2的液体LQ对基板P上照射曝光用光EL来对基板P曝光。又,本实施形态中,也可并用第1液体供应机构10来对第1空间K1供应液体LQ。
如此,透过连结孔74连结第1空间K1与第2空间K2能简化装置构成。
又,也可在液体LQ填满第1空间K1后,使填满第1空间K1的液体LQ透过连结孔74流入第2空间K2,据此来用液体LQ填满第1空间K1及第2空间K2。在此情况下,接触于基板P的液体LQ被第2空间K2填满,故例如事先于连结孔74配置化学过滤器(chemical filter)等,第2空间K2便不会填满混有自基板P上等产生的杂质的液体LQ。
第3实施形态
其次,参照图5说明本发明的第3实施形态。
本实施形态特征的部分在于:最终光学元件2G被支撑于喷嘴构件70。也即,最终光学元件2G与构成投影光学系统PL的其它光学元件2A~2F,是分开支撑。
图5中,光学元件2F露出镜筒PK。构成投影光学系统PL的多数个光学元件2A~2G中光学元件2A~2F被镜筒PK所支撑。另一方面,最终光学元件2G,透过连结构件72支撑于喷嘴构件70。身为环状构件的喷嘴构件70,配置于投影光学系统PL先端部的光学元件2F、2G附近,设置成在基板P(基板载台PST)的上方包围光学元件2F、2G。也即,光学元件2F、2G,配置于喷嘴构件70的孔部70H内侧。孔部70H,形成于凹部78的内侧。
最终光学元件2G,透过连结构件72保持于喷嘴构件70的空心面78A。连结构件72,固定于喷嘴构件70的空心面78A,于该连结构件72固定有最终光学元件2G。透过连结构件72保持于喷嘴构件70的最终光学元件2G、与保持于镜筒PK的光学元件2A~2F是分开的,于最终光学元件2G的上面2T与光学元件2F的下面2U之间形成有第2空间2K。最终光学元件2G,是以与保持于镜筒PK的其它光学元件2A~2F分开的状态,透过连结构件72支撑于喷嘴构件70。
连结构件72下面72A、与保持于该连结构件72的平行平面板所构成的最终光学元件2G的下面2S大致同高。支撑于连结构件72的最终光学元件2G的上面2T及下面2S则与XY平面大致平行。又,连结构件72与空心面78A的连接部、及最终光学元件2G与连结构件72的连接部等被密封着。又,连结构件72为近似板状构件,未设有孔等。也即,最终光学元件2G的下面2S侧的第1空间K1与上面2T侧的第2空间K2,为互为独立的空间,故阻止液体在第1空间K1与第2空间2K之间流通。
又,最终光学元件2G,能相对连结构件72容易安装、拆卸。也即,最终光学元件2G,设置成能更换。又,为了更换最终光学元件2G,可将连结构件72设置成能相对喷嘴构件70(空心面78A)安装拆卸(能更换),也能将
喷嘴构件70作成能更换。
于喷嘴构件70的下面70A中的凹部78内侧的内侧面79,与第1实施形态同样地设有构成第1液体供应机构10一部分的第1供应口12(12A、12B)。又,于喷嘴构件70的下面70A中凹部78的外侧,与第1实施形态同样地以投影光学系统PL的投影区域AR1为基准设有构成第1液体回收机构20一部分的第1回收口22。
透过连结构件52支撑于杆柱1下侧段部8的喷嘴构件70与投影光学系统PL(光学元件2F)是分开的。也即,于喷嘴构件70的孔部70H的内侧面70K与光学元件2F的侧面2FK之间设有间隙,用来保持光学元件2F的镜筒PK与喷嘴构件70之间也设有间隙。这些间隙是用来使投影光学系统PL(光学元件2A~2F)与喷嘴构件70在振动上分开所设的间隙。因此,防止在喷嘴构件70产生的振动传递至投影光学系统PL侧。又,如上所述,杆柱1(下侧段部8)与镜筒平板5,是透过防振装置47在振动上分开的。因此,防止在喷嘴构件70产生的振动透过杆柱1及镜筒平板5传递至投影光学系统PL。
于喷嘴构件70的内侧面70K设有构成第2液体供应机构30一部分的第2供应口32。第2供应口32,用来将自第2液体供应部31送出的液体LQ2往与最终光学元件2G上面2T大致平行,也即与XY平面大致平行的方向(横方向)喷出。因第2供应口32将液体LQ2往与最终光学元件2G的上面2T大致平行的方向喷出,故能降低所供应的液体LQ2作用于光学元件2G等的力量。因此,能防止液体LQ2的供应所导致光学元件2G、连结构件72或光学元件2F变形或移位等问题的发生。
又,于喷嘴构件70的内侧面70K中相对第2供应口32的既定位置,设有构成第2液体回收机构60一部分的第2回收口62。本实施形态中,第2回收口62设于第2供应口32的上方。
图6,为表示喷嘴构件70的概略立体图。如图6所示,第2供应口32,为有多数个设于喷嘴构件70的内侧面70K。本实施形态中,第2供应口32,
沿周方向以大致等间隔设于内侧面70K。同样地,第2回收口62,是有多数个设于喷嘴构件70的内侧面70K,本实施形态中,第2回收口62,是沿周方向以大致等间隔设于第2供应口32的上方。
又,图6中,第2供应口32及第2回收口62呈近似圆形,不过,也可呈椭圆形、矩形、狭缝形状等任意的形状。又,本实施形态中,每个第2供应口32、第2回收口62具有彼此大致相同的大小,不过,也可具有互异的大小。又,也可将第2供应口32配置于第2回收口62的上方。又,除了将每个第2供应口32及第2回收口62沿周方向排列设于内侧面70K之外,也可任意设定成其它配置,例如于内侧面70K隔着投影光学系统PL的光轴AX在+X侧设置第2供应口32,在-X侧设置第2回收口62。
也即,本实施形态的第2供应口32及第2回收口62的数量、配置、形状等,同样地不限于图5、6所示的构造,只要是光学元件2F与光学元件2G之间的曝光用光EL的光路被第2液体LQ填满的构造即可。
又,已参照图2说明的实施形态中,也可于镜筒PK的内侧面PKL,用图6所示的配置来形成第2供应口32及第2回收口62。
如图5所示,供应管33的他端部,连接于喷嘴构件70内部所形成的第2供应流路34的一端部。另一方面,喷嘴构件70的第2供应流路34的他端部,连接于喷嘴构件70内侧面70K所形成的第2供应口32。在此,喷嘴构件70内部所形成的第2供应流路34,在中途分歧成他端部可连接于多数个第2供应口32中的每一个口。又,也可将第2供应口32,与上述第1供应口12同样地形成喇叭状。
第2液体供应部31的液体供应动作,受到控制装置CONT的控制。当控制装置CONT自第2液体供应机构30的第2液体供应部31送出液体LQ2时,自该第2液体供应部31送出的液体LQ2在流经供应管33后,流入喷嘴构件70内部所形成的第2供应流路34的一端部。接着,流入第2供应流路34一端部的液体LQ2在中途分歧后,自喷嘴构件70内侧面70K所形成的多数
个第2供应口32供应给光学元件2F与最终光学元件2G之间的第2空间K2。
如图5所示,回收管63的他端部,连接于喷嘴构件70内部所形成的第2回收流路44的一部分。另一方面,第2回收流路44的他端部,连接于喷嘴构件70内侧面70K所形成的第2回收口62。在此,喷嘴构件70内部所形成的第2回收流路64,在中途分歧成他端部能连接于多数个第2回收口62中的每一个。
第2液体回收部61的液体回收动作受到控制装置CONT的控制。控制装置CONT为了回收液体LQ2,驱动第2液体回收机构60的第2液体回收部61。由于具有真空系统的第2液体回收部61的驱动,第2空间K2的液体LQ2透过第2回收口62流入第2回收流路64,然后,透过回收管63吸引回收至第2液体回收部61。
又,本实施形态中,喷嘴构件70的内侧面70K及光学元件2F的侧面2FK分别经拨液化处理而具有拨液性。由于使喷嘴构件70的内侧面70K及光学元件2F的侧面2FK分别呈拨液性,故防止第2空间K2的液体LQ2流进内侧面70K及侧面2FK所形成的间隙,并且防止该间隙的气体成为气泡混入第2空间K2的液体LQ2中。
如上所述,将最终光学元件2G与其它的光学元件2A~2F分别支撑,使最终光学元件2G下面2T侧的第1空间K1及上面2S侧的第2空间K2成为独立的空间,使第1空间K1及第2空间K2分别填满液体LQ1、LQ2,在这样的构成下进行曝光,故能使通过掩膜版M的曝光用光EL良好地到达基板P。
又,由于用喷嘴构件70来支撑最终光学元件2G,故能实现不于光学元件2F、2G与喷嘴构件70之间配置镜筒PK的构成。因此,能提高装置设计的自由度,例如能使喷嘴构件70接近光学元件2F、2G,能谋求装置的小型化等。又,能使喷嘴构件70所形成的第1供应口12及第1回收口22接近投影区域AR1。因此,能缩小液浸区域AR2的大小。因此,不必因液浸区域AR2的大小增加而将基板载台PST大型化,或增加基板载台PST的移动行程,
故能将装置小型化。
又,喷嘴构件70,为具有用来进行液浸区域AR2(第1空间K1)液体供应及回收的供应口12及回收口22的构件,又,随着基板P(基板载台PST)的移动而受到液浸区域AR2液体的剪力,故于喷嘴构件70容易产生振动。然而,本实施形态中,保持于喷嘴构件70的光学元件2G为平行平板,故能降低喷嘴构件70的振动对曝光或测量的精度造成的影响。另一方面,如上所述,因通过防振装置47等而使镜筒PK难以产生振动,故如已参照图2、图5说明的第1、第2实施形态般用镜筒PK支撑最终光学元件2G,便能降低对投影光学系统PL成像特性造成的影响。
又,在用喷嘴构件70支撑最终光学元件2G的情况下,由于在喷嘴构件70与最终光学元件2G之间设置防振机构,故能防止在喷嘴构件70产生的振动传递给最终光学元件2G。
又,本实施形态中,也与第1实施形态同样地,在曝光用光EL照射期间,持续以第2液体供应机构30及第2液体回收机构60来进行液体LQ2的供应及回收,持续用液体LQ2填满第2空间K2。因此,与上述同样地,能防止第2空间K2的液体LQ2的洁净度的劣化及温度变化。另一方面,在曝光用光EL照射期间,也可在第2空间K2填满液体LQ2的状态下停止以第2液体供应机构30及第2液体回收机构60来进行液体LQ2的供应及回收。因此,防止液体LQ2的供应(液体LQ2的流动)导致光学元件2F振动或移位,而能精度良好地执行基板P的曝光及使用上述光测量部的各种测量动作。
第4实施形态
其次,参照图7说明本发明的第4实施形态。本实施形态的特征部分在于:于连结构件72设有用来连结第1空间K1与第2空间K2的连结孔74。连结孔74,是有多数个沿周方向以既定间隔设于连结构件72。每个连结孔74均设有多孔体74P。
又,本实施形态中,并未设有:含用来对第1空间K1直接供应液体的
第1供应口的第1液体供应机构(10)。又,也未设有:含用来将第2空间K2的液体直接回收的第2回收口的第2液体回收机构(60)。另一方面,本实施形态的曝光装置EX具备有:用来对第2空间K2供应液体LQ的第2液体供应机构30及用来回收第1空间K1(液浸区域AR2)的液体LQ的第1液体回收机构20。
控制装置CONT,是将液体LQ填满第1空间K1及第2空间K2时,使用第2液体供应机构20,对第2空间K2供应液体LQ。供应给第2空间K2的液体LQ也透过连结孔74供应给第1空间K1。如此,第2液体供应机构30自第2空间K2供应液体LQ,透过连结孔74也使液体LQ流入第1空间K1,据此来用液体LQ填满第1空间K1及第2空间K2。透过连结孔74供应给第1空间K1的液体LQ在基板P上形成液浸区域AR2,该液浸区域AR2的液体LQ则自第1液体供应机构20的第1回收口22回收。又,第1空间K1及第2空间K2填满液体LQ后,控制装置CONT透过第1空间K1及第2空间K2的液体LQ对基板P上照射曝光用光EL,将基板P曝光。
如此,透过连结孔74连结第1空间K1及第2空间K2,便能简化装置的构成。又,本实施形态中,也可在第1空间K1填满液体LQ后,使填满第1空间K1的液体LQ透过连结孔74流入第2空间K2,据此来用液体LQ填满第1空间K1及第2空间K2。
又,上述的第3及第4的实施形态中,虽然用具有第1空间K1、及第2空间K2用液体流路的喷嘴构件70来支撑最终光学元件2G,但也可用具有第1空间K1及第2空间K2中任一空间的液体流路的喷嘴构件70来支撑最终光学元件2G。
又,可用仅具有对第1空间K1及第2空间中至少一空间供应液体的供应口的喷嘴构件来支撑最终光学元件2G,也可用仅具有将第1空间K1及第2空间中至少一空间的液体加以回收的回收口的喷嘴构件来支撑最终光学元件2G。
又,上述的第3及第4的实施形态中,虽然用喷嘴构件70来支撑最终光学元件2G,但不限于此,也可用与镜筒PK及喷嘴构件70不同的构件来支撑最终光学元件2G。
又,上述的第3及第4的实施形态所采用的将最终光学元件2G用喷嘴构件70来支撑的构成也可用于以液体仅填满第1空间K1的液浸曝光方式。
又,上述的第1~第4实施形态中,对于投影光学系统PL,在考虑身为无折射力的平行平面板的最终光学元件2G之下进行调整而成为既定的成像特性,在最终光学元件2G完全不影响成像特性的情况下,也可在不考虑最终光学元件2G之下将投影光学系统PL的成像特性调整为既定成像特性。
又,上述的第1~第4实施形态中,虽然最终光学元件2G为无折射力的平行平面板,但最终光学元件2G也可为具有折射力的光学元件。也即,最终光学元件2G的上面2T也可具有曲率。在此情况下,为了使最终光学元件2G容易更换,希望最终光学元件2G上面2T的曲率尽量小。
又,上述的第1~第4实施形态中,在投影光学系统PL的光轴AX上,第1空间K1的液体LQ1比第2空间K2的液体LQ2更厚,但也可使第2空间K2的液体LQ2比第1空间K1的液体LQ1更厚,也可为相同厚度。再者,上述的第1~第4实施形态中,在Z轴方向上,最终光学元件2G的厚度比第1空间K1的液体LQ1及第2空间K2的液体LQ2更薄,但也可使最终光学元件2G为最厚。也即,第1空间K1的液体LQ1、第2空间K2的液体LQ2及最终光学元件2G的Z轴方向的厚度,只要以透过液体LQ1、LQ2及最终光学元件2G投影于基板P上的图案的成像状态成为最佳化的方式适当决定即可。又,例如,可以使光轴AX上的液体LQ1及液体LQ2的厚度在5mm以下,使最终光学元件2G的厚度在3~12mm的范围内。
又,上述的第1~第4实施形态中,虽然最终光学元件2G在相对投影光学系统PL的光轴AX处于大致静止的状态下被支撑,但为了调整其位置、斜率,也可支撑成能作微小移动。例如,于最终光学元件2G的支撑部配置致
动器,来自动调整最终光学元件2G的位置(X轴方向、Y轴方向、Z轴方向)或斜率(θX方向、θY方向)。在此情况下,在如第3、第4实施形态般,用喷嘴构件70保持最终光学元件2G的情况下,也可调整喷嘴构件的位置及斜率,来调整最终光学元件2G的位置及/或斜率。
又,上述的第1~第4实施形态中,也可进一步设置用来测量最终光学元件2G的位置(X轴方向、Y轴方向、Z轴方向)或斜率(θX方向、θY方向)的干涉计等测量器。较佳是该测量器能测量相对光学元件2A~2F的位置或斜率。由于装载有这样的测量器,故容易得知最终光学元件2G的位置或斜率的偏差,若并用上述的致动器,则能以高精度调整最终光学元件2G的位置或斜率。
又,如第3及第4实施形态所记载,在将最终光学元件2G与光学元件2F分开支撑的情况下,最终光学元件2G自液体LQ1受到的压力或振动不直接传导给光学元件2A~2F,故能防止投影光学系统PL的成像特性的劣化。在此情况下,若柔软地保持最终光学元件2G,或按照基板P的斜率(基板载台PST的斜率)调整最终光学元件2G的位置或斜率,则能更有效地防止对光学元件2A~2F的压力或振动。
如上所述,本实施形态的液体LQ1、LQ2使用纯水。纯水,其优点在于:能在半导体制造工厂等容易大量取得,并且对基板P上的光致抗蚀剂或光学元件(透镜)等没有不良影响。又,因纯水对环境没有不良影响,并且杂质含有量极低,故能洗净基板P的表面及设于投影光学系统PL先端面的光学元件的表面。又,在自工厂等供应的纯水的纯度低的情况下,也可使曝光装置具有超纯水制造器。
又,对波长约为193nm的曝光用光EL而言,纯水(水)的折射率n约为1.44,若使用ArF准分子激光(波长193nm)来作为曝光用光EL的光源,则在基板P上波长变为原来的1/n,也即波长变短而成为约134nm,故能获得高分辨率。再者,焦点深度放大为空气中的约n倍,也即约1.44倍,所以,
在能确保与在空气中使用的情形相同程度的焦点深度就好这样的情况下,能进一步增加投影光学系统PL的数值孔径,分辨率因而提高。
又,上述的图2及图5的实施形态中,将相同的纯水当作液体LQ1、LQ2来供应,但也可使用来供应给第1空间的纯水(液体LQ1)与用来供应给第2空间的纯水(液体LQ2)的品质不同。有关纯水的品质,例如有设定温度、温度均匀性、温度稳定性、电阻率、或TOC(total organic carbon)值、溶气浓度(溶氧、溶氮)等。例如,使用来供应给靠近投影光学系统PL像面的第1空间K1的纯水的品质比用来供应给第2空间K2的纯水更高。又,也可对第1空间及第2空间供应种类互异的液体,使填满第1空间K1的液体LQ1与填满第2空间K2的液体LQ2为互异的种类。例如,可使用相对曝光用光EL的折射率及/或透过率互异的液体。又,例如,可对第2空间K2填满如氟系油般纯水以外的既定液体。油是细菌繁殖可能性低的液体,故能维持第2空间K2或液体LQ2(氟系油)流经的流路的洁净度。
又,也可使液体LQ1、LQ2两者为水以外的液体。例如,在曝光用光EL的光源为F2激光的情况下,该F2激光不透过水,故液体LQ1、Q2也可为F2激光能透过的例如全氟聚醚(PFPE)或氟系油等氟系流体。在此情况下,于与液体LQ1、LQ2接触的部分,例如以具有含氟、极性小的分子构造的物质来形成薄膜,据此来进行亲液化处理。又,有关液体LQ1、LQ2,也可使用对于曝光用光EL有透过性、折射率尽量高、对于涂布于投影光学系统PL及基板P表面的光致抗蚀剂呈稳定的物质(例如柏木油)。在此情况下,表面处理也可按照所用的液体LQ1、LQ2的极性来进行。又,也可使用具有所要折射率的各种流体,例如超临界流体或具高折射率的气体,来代替液体LQ的纯水。
又,上述的液浸法中,投影光学系统的数值孔径NA有时为0.9~1.3。如此,在投影光学系统的数值孔径NA大的情况下,若使用现有用于曝光用光的不规则偏振光,则有时候成像性能会因偏振效应而恶化,故较佳使用偏振光照明。在此情况下,进行与掩膜版(标线片)的线与间隙图案的线图案的
长度方向对准的线偏振光照明,只要是自掩膜版(标线片)的图案,有许多S偏振光分量(TE偏振光分量)的绕射光射出即可,也即,有许多沿线图案长度方向的偏振光方向分量的绕射光射出即可。投影光学系统PL与涂布于基板P表面的光致抗蚀剂之间填满液体的情况,相较于投影光学系统PL与涂布于基板P表面的光致抗蚀剂之间填满空气(气体)的情况,有助于对比提高的S偏振光分量(TE偏振光分量)的绕射光的在光致抗蚀剂表面的透过率较高,所以,即使是投影光学系统的数值孔径NA大于1.0的情况,也能获得高成像性能。又,适当组合移相遮掩膜版、日本特开平6-188169号公报所揭示的与线图案长度方向对准的斜入射照明法(尤其是双极照明法)等,则更有效。尤其,若组合线偏振光照明法及双极照明法,则在线与间隙图案的周期方向限于既定一方向的情况或孔图案沿既定一方向集中的情况下有效。例如,在对透过率6%的半色调型移相掩膜版(半间距(half pitch)约45nm的图案)并用线偏振光照明法及双极照明法来进行照明的情况下,若令于照明系统的光瞳面形成双极的两光束的外接圆所界定的照明σ为0.95,该瞳面上的各光束的半径为0.125σ,投影光学系统PL的数值孔径为NA=1.2,则相较于使用不规则偏振光的情况,焦点深度(DOF)能增加约150nm。
又,例如在将ArF准分子激光作为曝光用光,使用约1/4的缩小倍率的投影光学系统PL,来将微细的线与间隙图案(例如约25~50nm的线与间隙)曝光于基板P上这样的情况下,根据掩膜版M构造(例如图案的微细度、铬的厚度)的不同,掩膜版M可能因导波(wave guide)效应而有偏振板的作用,故相较于降低对比的P偏振光分量(TM偏振光分量)的绕射光,有更多的S偏振光分量(TE偏振光分量)的绕射光自掩膜版M射出。在此情况下,虽然希望使用上述的线偏振光照明,但即使以不规则偏振光照射掩膜版M,在投影光学系统PL的数值孔径NA如0.9~1.3般大的情况下,也能获得高解像性能。
又,在将掩膜版M上的极微细的线与间隙图案曝光于基板P上的情况下,
有可能P偏振光分量(TM偏振光分量)因线栅(wire grid)效应而比S偏振光分量(TE偏振光分量)更大,但例如在将ArF准分子激光作为曝光用光,使用约1/4的缩小倍率的投影光学系统PL,将比25nm大的线与间隙图案曝光于基板P上这样的情况下,相较于P偏振光分量(TM偏振光分量)的绕射光,有更多的S偏振光分量(TE偏振光分量)的绕射光自掩膜版M射出,故即使在投影光学系统PL的数值孔径NA如0.9~1.3般大的情况下,也能获得高解像性能。
再者,不仅与掩膜版(标线片)的线图案的长度方向对准的线偏振光照明(S偏光照明)有效,如日本特开平6-53120号公报所揭示,在以光轴为中心的圆的切线(周)方向上线偏振的偏光照明法、与斜入射照明法的组合也有效。尤其,不仅在掩膜版(标线片)的图案为既定一方向上延伸的线图案的情况下有效,而且在多数个不同方向上延伸的线图案混在一起(周期方向不同的线与间隙图案混在一起)的情况下,同样地,如日本特开平6-53120号公报所揭示,将在以光轴为中心的圆的切线方向上线偏振的偏光照明法及轮带照明法加以并用,如此,即使在投影光学系统的数值孔径NA大的情况下,也能获得高成像性能。例如,在将以光轴为中心的圆的切线方向上线偏振的偏光照明法及轮带照明法(轮带比3/4)并用照射透过率6%的半色调型移相遮掩膜版(半间距为约63nm的图案)的情况下,若令照明σ为0.95,投影光学系统PL的数值孔径为NA=1.00,则相较于使用不规则偏振光的情况,焦点深度(DOF)能增加约250nm,在半间距为约55nm的图案且投影光学系统的数值孔径NA=1.2的情况下,焦点深度能增加约100nm。
又,上述各实施形态的基板P,不仅半导体元件制造用的半导体晶片适用,而且显示装置用的玻璃基板、薄膜磁头用的陶瓷晶片、或者是曝光装置用的掩膜版或标线片的原版(合成石英、硅晶片)等也适用。
曝光装置EX,除可适用于用来使掩膜版M及基板P同步移动并对掩膜版M的图案进行扫描曝光的步进扫描式扫描型曝光装置(扫描步进机)之外,也
可适用于用来在掩膜版M及基板P静止的状态下将掩膜版M的图案整批曝光,并使基板P依序步进移动的步进重复式投影曝光装置(步进机)。
又,曝光装置EX,也可适用于用来在第1图案及基板P大致静止的状态下将第1图案的缩小像以投影光学系统(例如1/8缩小倍率、不含反射元件的折射型投影光学系统)整批曝光于基板P上的曝光装置。在此情况下,也可适用于缝合式整批曝光装置,这种装置,是进行前一种曝光装置的动作之后,再于第2图案及基板P大致静止的状态下将第2图案的缩小像用该投影光学系统以与第1图案局部重叠的方式一次曝光于基板P上。又,缝合式曝光装置,也可适用于用来在基板P上将至少2个图案局部重叠并转印,依序移动基板P的步进接合式曝光装置。又,可将本发明适用于具备有与用来保持基板P的载台不同的测定载台的曝光装置,该测定载台装载有测定用构件、传感器等。又,具备有测定载台的曝光装置,记载于例如欧洲专利公开第1,041,357号公报,在本国际申请案的指定或选择的国家法令所容许的范围内,援用该文献的记载内容作为本文记载的一部分。
又,本发明也可适用于双载台型曝光装置。双载台型曝光装置的构造及曝光动作,例如揭示于日本特开平10-163099号及日本特开平10-214783号(对应美国专利6,341,007、6,400,441、6,549,269及6,590,634)、日本特表2000-505958号(对应美国专利5,969,441)或美国专利6,208,407,在本国际申请案的指定或选择的国家法令所容许的范围内,援用上述文献的揭示作为本文记载的一部分。
有关曝光装置EX的种类,不限于用来将半导体元件图案曝光于基板P的半导体元件制造用曝光装置,也可广泛适用于液晶显示元件制造用或显示器制造用曝光装置、用来制造薄膜磁头、摄影元件(CCD)或标线片或掩膜版等的曝光装置。
上述的实施形态中,虽然使用于具有光透过性的基板上形成有既定遮光图案(相位图案及减光图案)的光透过型掩膜版(标线片),但也可如美国专利
第6,778,257号公报所揭示使用电子掩膜版来代替该标线片,该电子罩,是根据待曝光图案的电子资料,来形成透过图案、反射图案或发光图案。
又,如国际公开第2001/035168号小册子所揭示,本发明也可适用于将干涉条纹形成于晶片W上据此于晶片W上形成线与间隙图案的曝光装置(光刻系统)。
上述的实施形态中,虽然采用将投影光学系统PL与基板P之间局部以液体填满的曝光装置,但也可将本发明适用于身为曝光对象的基板的表面全体被液体覆盖的液浸曝光装置。身为曝光对象的基板的表面全体被液体覆盖的液浸曝光装置的构造及曝光动作,详细记载于例如日本特开平6-124873号公报、日本特开平10-303114号公报、美国专利第5,825,043号等,在本国际申请案的指定或选择的国家法令所容许的范围内,援用该文献的记载内容作为本文记载的一部分。
在将线性马达使用于基板载台PST、掩膜版载台MST的情况下,也可使用利用空气轴承的气浮型及利用洛伦兹(Lorentz)力或电抗力的磁浮型中任一型线性马达。又,各载台PST、MST,可为沿导轨移动的型式,也可为未设导轨的无导轨型式。载台使用有线性马达的例子揭示于美国专利5,623,853及5,528,118,分别在本国际申请案的指定或选择的国家法令所容许的范围内,援用此等文献的记载内容作为本文记载的一部分。
有关各载台PST、MST的驱动机构,可使用以电磁力来驱动各载台PST、MST的平面马达,该平面马达,是使二维方向配置有磁铁的磁铁单元及二维方向配置有线圈的电枢单元对向而构成。在此情况下,只要将磁铁单元及电枢单元中任一单元连接于载台PST、MST,并将磁铁单元及电枢单元中另一单元设于载台PST、MST的移动面侧即可。
也可用支架构件来将起因于基板载台PST移动而产生的反作用力机械性地释放到地面(大地),以免反作用力传递至投影光学系统PL。该反作用力的处理方法详细揭示于例如美国专利5,528,118(日本特开平8-166475号公
报),在本国际申请案的指定或选择的国家法令所容许的范围内,援用该文献的记载内容作为本文记载的一部分。
也可用支架构件来将起因于掩膜版载台MST移动而产生支反作用力机械性地释放到地面(大地),以免反作用力传递至投影光学系统PL。该反作用力的处理方法详细揭示于例如美国专利第5,874,820(日本特开平8-330224号公报),在本国际申请案的指定或选择的国家法令所容许的范围内,援用该文献的揭示作为本文记载的一部分。
如上所述,本案的实施形态的曝光装置EX,是以维持既定的机械上的精度、电气上的精度、光学上的精度的方式,将包含权利要求书所列举各构成要素的各种次系统组装制成。为了确保此各种精度,在组装前后,就各种光学系统进行用以达成光学上精度的调整,就各种机械系统进行用以达成机械上精度的调整,就各种电气系统进行用以达成电气上精度的调整。自各种次系统至曝光装置的组装工程,包含在各种次系统相互间机械上的连接、电路的配线连接、气压回路的配管连接等。在自该各种次系统至曝光装置的组装步骤前,当然有各次系统个别的组装步骤。各种子系统到曝光装置的组装步骤结束后,进行综合调整,确保曝光装置全体的各种精度。又,希望曝光装置的制造是在温度及洁净度等受管理的洁净室中进行。
半导体元件等微小元件,如图8所示,经用来进行微小元件的机能、性能设计的步骤201、根据该设计步骤来制作掩膜版(标线片)的步骤202、用来制造作为元件基材的基板的步骤203、利用前述实施形态的曝光装置EX来将掩膜版的图案曝光于基板的曝光处理步骤204、元件组装步骤(包含切割步骤、接合步骤、封装步骤) 05、检查步骤206等制造而成。
第5实施形态
其次,说明上述第1~第4实施形态中第1液体回收机构20回收方法的另一实施形态。又,本实施形态中,仅将液体LQ自第1回收口22回收,据此来防止液体回收所导致的振动的发生。
以下,边参照图9的示意图,边就本实施形态中第1液体回收机构20的液体回收动作的原理加以说明。可以将例如形成有多数孔的薄板状多孔构件(网状构件)作为多孔构件25来使用于曾用与图1~5及7的关系说明过的第1液体回收机构20的第1回收口22。本实施形态中,多孔构件是用钛来形成。又,本实施形态中,在多孔构件25沾湿的状态下,对多孔构件25上面与下面的压力差以满足后述既定条件的方式控制,据此来自多孔构件25的孔仅回收液体LQ。上述的既定条件的相关参数,例如有多孔构件25的孔径、多孔构件25与液体LQ的接触角(亲和性)及第1液体回收部21的吸引力(对多孔构件25上面所施加的压力)等。
图9,是多孔构件25局部截面的放大图,表示透过多孔构件25进行的液体回收的一具体例子。于多孔构件25下配置有基板P,于多孔构件25与基板P之间形成有气体空间及液体空间。更具体而言,于多孔构件25的第1孔25Ha与基板P之间形成有气体空间,于多孔构件25的第2孔25Hb与基板P之间形成有液体空间。有关这样的状况,发生于例如图2所示的液浸区域AR2的端部,或者是气体因某原因而发生于液浸区域AR2。又,于多孔构件25上形成有用来形成第1回收流路24一部分的流路空间。
图9中,令多孔构件25的第1孔25Ha与基板P间的空间的压力(多孔构件25H下面的压力)为Pa,多孔构件25上的流路空间的压力(在多孔构件25上面的压力)为Pb,第1及第2孔25Ha、25Hb的孔径(直径)为d,多孔构件25(孔25H的内侧)与液体LQ的接触角为θ,液体LQ的表面张力为γ,
当(4×γ×cosθ)/d≥(Pa-Pb) ...(3)
这样的条件成立时,即如图9所示,于多孔构件25的第1孔25Ha的下侧(基板P侧)形成气体空间,仍能防止多孔构件25下侧的空间的气体透过孔25Ha移动(渗入)多孔构件25上侧的空间。也即,将接触角θ、孔径d、液体LQ的表面张力γ、压力Pa、Pb最佳化成满足上述的式(3)的条件,便能将液体LQ与气体的界面保持于多孔构件25的孔25Ha内,防止气体自第1
孔25Ha渗入。另一方面,因于多孔构件25的第2孔25Hb的下侧(基板P侧)形成有液体空间,故能透过第2孔25Hb仅回收液体LQ。
又,有关上述的式(3)的条件,为使说明变得简单,并未考虑多孔构件25上的液体LQ的静水压。
又,本实施形态中,第1液体回收机构20,是在多孔构件25下空间的压力Pa、孔25H的直径d、多孔构件25(孔25H的内侧面)与液体LQ的接触角θ、液体(纯水)LQ的表面张力γ一定的情况下,控制第1液体回收部21的吸引力,将多孔构件25上流路空间的压力调整成满足上述的式(3)。但是,因上述的式(3)中,(Pa-Pb)越大,也即,((4×γ×cosθ)/d)越大,满足上述式(3)的压力Pb的控制越容易,故希望孔25Ha、25Hb的直径d及多孔构件25与液体LQ的接触角θ(0°<θ<90°)尽可能小。
又,使用上述图1、2、4、5、7及9等所作的说明中,虽然在最终光学元件2G的下面2S与基板P对向的状态下,用液体LQ1填满最终光学元件2G的下面2S与基板P之间的第1空间K1,但是在投影光学系统PL与其他构件(例如,基板载台PST的上面51等)对向的情况下,当然也能用液体填满投影光学系统PL与其他构件之间。
依本发明,可容易且迅速地更换可能受液浸曝光污染的光学元件。因此,能维持良好的曝光精度及测量精度。又,能防止曝光装置的维护成本的上升及生产量降低。
Claims (48)
1.一种曝光装置,是对基板上照射曝光用光而将该基板曝光,其特征在于具备:
具有最靠近像面的第1元件与次于该第1元件靠近该像面的第2元件的投影光学系统;
支撑构件,用来将所述第1元件以相对投影光学系统的光轴静止的状态支撑;
第1空间,形成于该第1元件的一面侧,被液体所填满;及
第2空间,以独立于该第1空间的方式形成于该第1元件的另一面侧,被液体所填满;
以该第1空间的液体来形成用来覆盖基板表面一部分的液浸区域,并且透过该第1空间的液体及第2空间的液体来对该基板上照射曝光用光而将该基板曝光。
2.如权利要求1所述的曝光装置,其特征在于,该第1空间的液体及第2空间的液体不同。
3.如权利要求1所述的曝光装置,其特征在于,该支撑构件支撑该第1元件及第2元件。
4.如权利要求1所述的曝光装置,其特征在于,该第1元件与该第2元件各别受支撑。
5.如权利要求1所述的曝光装置,其特征在于,其具备用来对该第1空间供应液体的第1液体供应机构及用来将供应给该第1空间的液体加以回收的第1液体回收机构。
6.如权利要求5所述的曝光装置,其特征在于,其进一步具备流路形成构件,以与基板对向的方式配置于第1元件周围,能在本身与基板之间保持液体,且形成有通过第1液体回收机构回收的液体流路;
于该流路形成构件下面的至少一部分,形成有用来回收液体的回收口。
7.如权利要求6所述的曝光装置,其特征在于,该流路形成构件形成有通过第1液体供应机构供应的液体流路。
8.如权利要求7所述的曝光装置,其特征在于,该流路形成构件在第1元件两侧形成有第1液体供应机构的液体供应口。
9.如权利要求6所述的曝光装置,其特征在于,该第1元件与该基板的距离,比该流路形成构件下面与基板的距离更长。
10.如权利要求9所述的曝光装置,其特征在于,该第1元件与第2元件的距离比该第1元件与基板的距离更短。
11.如权利要求5所述的曝光装置,其特征在于,该第1元件保持于流路形成构件,该流路形成构件,形成有通过第1液体供应机构供应的液体流路及通过第1液体回收机构回收的液体流路中至少一流路。
12.如权利要求11所述的曝光装置,其特征在于,该流路形成构件形成有独立于对第1空间的液体供应而对第2空间进行液体供应的流路。
13.如权利要求1所述的曝光装置,其特征在于,其具备用来对该第2空间供应液体的第2液体供应机构。
14.如权利要求13所述的曝光装置,其特征在于,其具备用来对该第2空间所供应的液体进行回收的第2液体回收机构。
15.如权利要求14所述的曝光装置,其特征在于,该第2空间的液体可更换。
16.如权利要求13所述的曝光装置,其特征在于,在该基板的曝光中,停止第2液体供应机构所进行的液体供应。
17.一种曝光装置,是对基板上照射曝光用光而将该基板曝光,其特征在于具备:
具有最靠近像面的第1元件与次于该第1元件靠近该像面的第2元件的投影光学系统;
第1空间,形成于所述第1元件的一面侧;
第2空间,形成于该第1元件的另一面侧;
连结孔,用来连结该第1空间与第2空间;及
液体供应机构,用来对该第1空间及第2空间两者之一供应液体,并透过连结孔以液体填满第1空间及第2空间;且
透过该第1空间及第2空间的液体来对该基板上照射曝光用光而将该基板曝光。
18.如权利要求1或17所述的曝光装置,其特征在于,该第1元件为平行平面板。
19.如权利要求1或17所述的曝光装置,其特征在于,该第1空间的液体为纯水。
20.如权利要求19所述的曝光装置,其特征在于,该第2空间的液体为纯水。
21.如权利要求1或17所述的曝光装置,其特征在于,该第1元件,具有配置成与该基板表面对向且供曝光用光通过的第1面及配置成与第2元件对向且供曝光用光通过的第2面;
该第2元件,具有配置成与第1元件的第2面对向且供曝光用光通过的第3面;
该第2面的面积与该第3面的面积相同或更小。
22.如权利要求1或17所述的曝光装置,其特征在于,该第1元件无折射力。
23.如权利要求1或17所述的曝光装置,其特征在于,该第1元件是在不影响投影光学系统的光学特性下能自投影光学系统拆装。
24.如权利要求1或17所述的曝光装置,其特征在于,该第1空间为周围开放的空间,该第2空间为周围封闭的空间。
25.如权利要求3或21所述的曝光装置,其特征在于,该第2空间设于该第1元件与第2元件之间。
26.如权利要求12所述的曝光装置,其特征在于,使该液体以与基板平行的方式自形成于流路形成构件的流路流到第1及第2空间。
27.如权利要求17所述的曝光装置,其特征在于,进一步具备用来自该第1空间及第2空间两者的另一方回收液体的液体回收机构。
28.如权利要求17所述的曝光装置,其特征在于,进一步具备喷嘴板,其形成有供该液体供应机构对该第1空间及第2空间两者之一喷出液体的喷嘴,且该喷嘴板供支撑该第1元件。
29.如权利要求28所述的曝光装置,其特征在于,该喷嘴是以与基板面平行的方式喷出液体。
30.如权利要求28所述的曝光装置,其特征在于,该投影光学系统为具有用来容纳该第2元件的镜筒,在该曝光装置内,该镜筒独立于该喷嘴板而被支撑。
31.如权利要求30所述的曝光装置,其特征在于,于该镜筒与喷嘴板之间设有用来防止液体流入的密封构件。
32.如权利要求17所述的曝光装置,其特征在于,于该连结孔设有多孔体。
33.如权利要求5所述的曝光装置,其特征在于,该第1液体回收机构具有用来自第1空间回收液体的回收口,于该回收口配置有多孔构件。
34.如权利要求27所述的曝光装置,其特征在于,该液体回收机构具有用来自第1空间回收液体的回收口,于该回收口配置有多孔构件。
35.如权利要求33或34所述的曝光装置,其特征在于,当将该多孔构件与基板间的空间的压力设为Pa,多孔构件上的流路空间的压力设为Pb,多孔构件的孔径设为d,多孔构件与液体的接触角设为θ,液体的表面张力设为γ,则(4×γ×cosθ)/d≥(Pa-Pb)的条件成立。
36.一种元件制造方法,其特征在于:该元件是使用权利要求1或17所述的曝光装置来制造。
37.一种曝光方法,是透过具有最靠近像面的第1元件与次于该第1元件靠近该像面的第2元件的投影光学系统来对基板照射曝光用光而将该基板曝光,其特征在于,包含以下步骤:
将液体导至该第1元件的光射出侧的第1空间;
对位于第1元件光入射侧且与第1空间隔开的第2空间供应液体;
透过第1空间的液体及第2空间的液体来对该基板照射曝光用光而将该基板曝光;及
在对基板照射曝光用光期间,在第2空间填满液体的状态下停止对第2空间供应液体。
38.如权利要求37所述的曝光方法,其特征在于,在将该液体分别导至该第1空间及第2空间时,将该液体分别独立供应至该第1空间及第2空间。
39.如权利要求38所述的曝光方法,其特征在于,进一步包含以下步骤:
自该第1空间及第2空间分别独立回收液体。
40.如权利要求37所述的曝光方法,其特征在于,在将该液体导至该第1空间时,将该液体以与该基板平行的方式喷到第1空间。
41.如权利要求37所述的曝光方法,其特征在于,是以该第1空间的液体于基板上的一部分形成液浸区域。
42.如权利要求41所述的曝光方法,其特征在于,将液体保持于该第1元件附近所配置的流路形成构件、该第1元件各别与基板之间,于该基板上的一部分形成液浸区域。
43.如权利要求42所述的曝光方法,其特征在于,自该流路形成构件下面的至少一部分所形成的回收口回收第1空间的液体。
44.如权利要求43所述的曝光方法,其特征在于,该第1元件与该基板的距离,比该流路形成构件下面与基板的距离更长。
45.如权利要求44所述的曝光方法,其特征在于,该第1元件与该第2元件的距离比第1元件与基板的距离更短。
46.一种曝光方法,是透过具有最靠近像面的第1元件与次于该第1元件靠近该像面的第2元件的投影光学系统来对基板照射曝光用光而将该基板曝光,其特征在于,包含以下步骤:
对该第1元件的一面侧所形成的第1空间及与第1空间流通且形成于另一面侧的第2空间两者之一空间供应液体,据此,以液体填满第1空间及第2空间;
以该第1空间的液体来形成用来覆盖基板表面一部分的液浸区域,透过该第1空间及第2空间的液体对该基板照射曝光用光而将该基板曝光。
47.如权利要求46所述的曝光方法,其特征在于,该第1空间形成于第1元件光射出侧的面与基板之间。
48.如权利要求46所述的曝光方法,其特征在于,其对该第2空间供应液体,自第1空间回收液体。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP167115/2004 | 2004-06-04 | ||
JP2004167115 | 2004-06-04 | ||
PCT/JP2005/010217 WO2005119742A1 (ja) | 2004-06-04 | 2005-06-03 | 露光装置、露光方法及びデバイス製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1954408A CN1954408A (zh) | 2007-04-25 |
CN1954408B true CN1954408B (zh) | 2012-07-04 |
Family
ID=35463117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005800159214A Expired - Fee Related CN1954408B (zh) | 2004-06-04 | 2005-06-03 | 曝光装置、曝光方法及元件制造方法 |
Country Status (8)
Country | Link |
---|---|
US (2) | US20070216889A1 (zh) |
EP (1) | EP1768169B9 (zh) |
JP (1) | JP2010118714A (zh) |
KR (1) | KR101264936B1 (zh) |
CN (1) | CN1954408B (zh) |
IL (1) | IL179826A0 (zh) |
TW (1) | TW200604758A (zh) |
WO (1) | WO2005119742A1 (zh) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101330370B1 (ko) * | 2004-04-19 | 2013-11-15 | 가부시키가이샤 니콘 | 노광 장치 및 디바이스 제조 방법 |
US8717533B2 (en) | 2004-06-10 | 2014-05-06 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
KR101699965B1 (ko) | 2004-06-10 | 2017-01-25 | 가부시키가이샤 니콘 | 노광 장치, 노광 방법 및 디바이스 제조 방법 |
US8508713B2 (en) | 2004-06-10 | 2013-08-13 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US8373843B2 (en) | 2004-06-10 | 2013-02-12 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US20070222959A1 (en) * | 2004-06-10 | 2007-09-27 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
EP3067749B1 (en) * | 2004-06-10 | 2017-10-18 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
KR101354801B1 (ko) | 2004-08-03 | 2014-01-22 | 가부시키가이샤 니콘 | 노광 장치, 노광 방법 및 디바이스 제조 방법 |
WO2006121008A1 (ja) | 2005-05-12 | 2006-11-16 | Nikon Corporation | 投影光学系、露光装置、および露光方法 |
US7385673B2 (en) * | 2005-06-10 | 2008-06-10 | International Business Machines Corporation | Immersion lithography with equalized pressure on at least projection optics component and wafer |
US7474379B2 (en) * | 2005-06-28 | 2009-01-06 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7812926B2 (en) * | 2005-08-31 | 2010-10-12 | Nikon Corporation | Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice |
JP4735186B2 (ja) * | 2005-10-21 | 2011-07-27 | 株式会社ニコン | 液浸顕微鏡装置 |
EP1986220A4 (en) * | 2006-02-16 | 2010-08-18 | Nikon Corp | OPTICAL PROJECTION SYSTEM, EXPOSURE DEVICE AND METHOD, DISPLAY MANUFACTURING METHOD, MASK, AND MASK MANUFACTURING METHOD |
EP1995768A4 (en) * | 2006-03-13 | 2013-02-06 | Nikon Corp | EXPOSURE DEVICE, MAINTENANCE METHOD, EXPOSURE METHOD AND DEVICE MANUFACTURING METHOD |
EP2023378B1 (en) | 2006-05-10 | 2013-03-13 | Nikon Corporation | Exposure apparatus and device manufacturing method |
JP5217239B2 (ja) * | 2006-05-18 | 2013-06-19 | 株式会社ニコン | 露光方法及び装置、メンテナンス方法、並びにデバイス製造方法 |
US9632425B2 (en) * | 2006-12-07 | 2017-04-25 | Asml Holding N.V. | Lithographic apparatus, a dryer and a method of removing liquid from a surface |
US8004651B2 (en) | 2007-01-23 | 2011-08-23 | Nikon Corporation | Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method |
US8068209B2 (en) | 2007-03-23 | 2011-11-29 | Nikon Corporation | Nozzle to help reduce the escape of immersion liquid from an immersion lithography tool |
US8134685B2 (en) | 2007-03-23 | 2012-03-13 | Nikon Corporation | Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method |
US7900641B2 (en) | 2007-05-04 | 2011-03-08 | Asml Netherlands B.V. | Cleaning device and a lithographic apparatus cleaning method |
US8947629B2 (en) | 2007-05-04 | 2015-02-03 | Asml Netherlands B.V. | Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method |
US8300207B2 (en) * | 2007-05-17 | 2012-10-30 | Nikon Corporation | Exposure apparatus, immersion system, exposing method, and device fabricating method |
NL1035757A1 (nl) * | 2007-08-02 | 2009-02-03 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method. |
JP5498385B2 (ja) | 2007-10-02 | 2014-05-21 | カール・ツァイス・エスエムティー・ゲーエムベーハー | マイクロリソグラフィ用の投影対物系 |
JP5326259B2 (ja) * | 2007-11-08 | 2013-10-30 | 株式会社ニコン | 照明光学装置、露光装置、およびデバイス製造方法 |
NL1036579A1 (nl) * | 2008-02-19 | 2009-08-20 | Asml Netherlands Bv | Lithographic apparatus and methods. |
US8289497B2 (en) * | 2008-03-18 | 2012-10-16 | Nikon Corporation | Apparatus and methods for recovering fluid in immersion lithography |
US8233139B2 (en) | 2008-03-27 | 2012-07-31 | Nikon Corporation | Immersion system, exposure apparatus, exposing method, and device fabricating method |
US8654306B2 (en) * | 2008-04-14 | 2014-02-18 | Nikon Corporation | Exposure apparatus, cleaning method, and device fabricating method |
WO2009143879A1 (en) * | 2008-05-28 | 2009-12-03 | Carl Zeiss Smt Ag | An element, in particular an optical element, for immersion lithography |
NL2003392A (en) * | 2008-09-17 | 2010-03-18 | Asml Netherlands Bv | Lithographic apparatus and a method of operating the apparatus. |
US8896806B2 (en) * | 2008-12-29 | 2014-11-25 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
NL2004497A (en) | 2009-05-01 | 2010-11-02 | Asml Netherlands Bv | Lithographic apparatus and a method of operating the apparatus. |
US9256137B2 (en) * | 2011-08-25 | 2016-02-09 | Nikon Corporation | Exposure apparatus, liquid holding method, and device manufacturing method |
US9323160B2 (en) * | 2012-04-10 | 2016-04-26 | Nikon Corporation | Liquid immersion member, exposure apparatus, exposure method, device fabricating method, program, and recording medium |
EP3057122B1 (en) * | 2013-10-08 | 2018-11-21 | Nikon Corporation | Immersion member, exposure apparatus, exposure method, and device manufacturing method |
US11156921B2 (en) * | 2017-12-15 | 2021-10-26 | Asml Netherlands B.V. | Fluid handling structure, lithographic apparatus, and method of using a fluid handling structure |
JP6610726B2 (ja) * | 2018-07-11 | 2019-11-27 | 株式会社ニコン | 液浸部材、露光装置及び露光方法、並びにデバイス製造方法 |
CN112684665B (zh) * | 2020-12-25 | 2024-06-25 | 浙江启尔机电技术有限公司 | 一种浸液供给回收装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5486896A (en) * | 1993-02-19 | 1996-01-23 | Nikon Corporation | Exposure apparatus |
US5617181A (en) * | 1994-04-28 | 1997-04-01 | Nikon Corporation | Exposure apparatus and exposure method |
CN1379286A (zh) * | 2001-04-03 | 2002-11-13 | 尼康株式会社 | 曝光装置 |
CN1452017A (zh) * | 2002-04-12 | 2003-10-29 | 尼康株式会社 | 曝光装置及曝光方法 |
Family Cites Families (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3314219A (en) * | 1965-03-10 | 1967-04-18 | Bass Brothers Entpr Inc | Drilling mud degassers for oil wells |
GB1242527A (en) * | 1967-10-20 | 1971-08-11 | Kodak Ltd | Optical instruments |
US3675395A (en) * | 1970-10-09 | 1972-07-11 | Keene Corp | Apparatus for the purification of oils and the like |
US4315760A (en) * | 1980-01-17 | 1982-02-16 | Bij De Leij Jan D | Method and apparatus for degasing, during transportation, a confined volume of liquid to be measured |
US4346164A (en) * | 1980-10-06 | 1982-08-24 | Werner Tabarelli | Photolithographic method for the manufacture of integrated circuits |
US4509852A (en) * | 1980-10-06 | 1985-04-09 | Werner Tabarelli | Apparatus for the photolithographic manufacture of integrated circuit elements |
JPS57153433A (en) * | 1981-03-18 | 1982-09-22 | Hitachi Ltd | Manufacturing device for semiconductor |
US4466253A (en) * | 1982-12-23 | 1984-08-21 | General Electric Company | Flow control at flash tank of open cycle vapor compression heat pumps |
DD224448A1 (de) | 1984-03-01 | 1985-07-03 | Zeiss Jena Veb Carl | Einrichtung zur fotolithografischen strukturuebertragung |
FI73950C (fi) * | 1985-02-15 | 1987-12-10 | Hackman Ab Oy | Foerfarande och anordning vid pumpning och volymmaetning av livsmedelsvaetskor. |
CN85104763B (zh) * | 1985-06-13 | 1988-08-24 | 沈汉石 | 液压系统中消除气穴的方法和装置 |
US4730634A (en) * | 1986-06-19 | 1988-03-15 | Amoco Corporation | Method and apparatus for controlling production of fluids from a well |
JP2753930B2 (ja) * | 1992-11-27 | 1998-05-20 | キヤノン株式会社 | 液浸式投影露光装置 |
US5425265A (en) * | 1993-12-20 | 1995-06-20 | Jaisinghani; Rajan A. | Apparatus and method for measuring the capillary pressure distribution of porous materials |
US5874820A (en) * | 1995-04-04 | 1999-02-23 | Nikon Corporation | Window frame-guided stage mechanism |
US5528118A (en) * | 1994-04-01 | 1996-06-18 | Nikon Precision, Inc. | Guideless stage with isolated reaction stage |
US5623853A (en) * | 1994-10-19 | 1997-04-29 | Nikon Precision Inc. | Precision motion stage with single guide beam and follower stage |
JPH08316124A (ja) * | 1995-05-19 | 1996-11-29 | Hitachi Ltd | 投影露光方法及び露光装置 |
US5825043A (en) * | 1996-10-07 | 1998-10-20 | Nikon Precision Inc. | Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus |
CN1244018C (zh) * | 1996-11-28 | 2006-03-01 | 株式会社尼康 | 曝光方法和曝光装置 |
DE69735016T2 (de) * | 1996-12-24 | 2006-08-17 | Asml Netherlands B.V. | Lithographisches Gerät mit zwei Objekthaltern |
JP3747566B2 (ja) * | 1997-04-23 | 2006-02-22 | 株式会社ニコン | 液浸型露光装置 |
US6208407B1 (en) * | 1997-12-22 | 2001-03-27 | Asm Lithography B.V. | Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement |
AU2747999A (en) | 1998-03-26 | 1999-10-18 | Nikon Corporation | Projection exposure method and system |
TW490596B (en) * | 1999-03-08 | 2002-06-11 | Asm Lithography Bv | Lithographic projection apparatus, method of manufacturing a device using the lithographic projection apparatus, device manufactured according to the method and method of calibrating the lithographic projection apparatus |
US6716268B2 (en) * | 2000-01-17 | 2004-04-06 | Lattice Intellectual Property Ltd. | Slugging control |
SE517821C2 (sv) * | 2000-09-29 | 2002-07-16 | Tetra Laval Holdings & Finance | Metod och anordning för att kontinuerligt avlufta en vätska |
WO2002091078A1 (en) * | 2001-05-07 | 2002-11-14 | Massachusetts Institute Of Technology | Methods and apparatus employing an index matching medium |
JP2004519524A (ja) * | 2001-05-25 | 2004-07-02 | ウエラ アクチェンゲゼルシャフト | 1,3‐ジヒドロキシベンゼン‐誘導体及びこれら化合物を含有する染色剤 |
TW529172B (en) * | 2001-07-24 | 2003-04-21 | Asml Netherlands Bv | Imaging apparatus |
US6934003B2 (en) * | 2002-01-07 | 2005-08-23 | Canon Kabushiki Kaisha | Exposure apparatus and device manufacturing method |
US6581456B1 (en) * | 2002-01-07 | 2003-06-24 | Xerox Corporation | Substrate bending stiffness measurement method and system |
US20040154641A1 (en) * | 2002-05-17 | 2004-08-12 | P.C.T. Systems, Inc. | Substrate processing apparatus and method |
US6788477B2 (en) * | 2002-10-22 | 2004-09-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | Apparatus for method for immersion lithography |
US7029812B2 (en) | 2002-10-25 | 2006-04-18 | Samsung Electronics Co., Ltd. | Organophotoreceptor with charge transport compound having an epoxy group |
SG2010050110A (en) * | 2002-11-12 | 2014-06-27 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
JP3953460B2 (ja) * | 2002-11-12 | 2007-08-08 | エーエスエムエル ネザーランズ ビー.ブイ. | リソグラフィ投影装置 |
CN101470360B (zh) * | 2002-11-12 | 2013-07-24 | Asml荷兰有限公司 | 光刻装置和器件制造方法 |
SG121822A1 (en) * | 2002-11-12 | 2006-05-26 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
SG131766A1 (en) * | 2002-11-18 | 2007-05-28 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
EP1420302A1 (en) * | 2002-11-18 | 2004-05-19 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
DE10258718A1 (de) * | 2002-12-09 | 2004-06-24 | Carl Zeiss Smt Ag | Projektionsobjektiv, insbesondere für die Mikrolithographie, sowie Verfahren zur Abstimmung eines Projektionsobjektives |
KR101036114B1 (ko) * | 2002-12-10 | 2011-05-23 | 가부시키가이샤 니콘 | 노광장치 및 노광방법, 디바이스 제조방법 |
SG150388A1 (en) * | 2002-12-10 | 2009-03-30 | Nikon Corp | Exposure apparatus and method for producing device |
KR20110086130A (ko) * | 2002-12-10 | 2011-07-27 | 가부시키가이샤 니콘 | 노광 장치 및 디바이스 제조 방법 |
EP1429190B1 (en) * | 2002-12-10 | 2012-05-09 | Canon Kabushiki Kaisha | Exposure apparatus and method |
JP4232449B2 (ja) * | 2002-12-10 | 2009-03-04 | 株式会社ニコン | 露光方法、露光装置、及びデバイス製造方法 |
US6781670B2 (en) * | 2002-12-30 | 2004-08-24 | Intel Corporation | Immersion lithography |
KR101562447B1 (ko) * | 2003-02-26 | 2015-10-21 | 가부시키가이샤 니콘 | 노광 장치, 노광 방법 및 디바이스 제조 방법 |
KR20170064003A (ko) * | 2003-04-10 | 2017-06-08 | 가부시키가이샤 니콘 | 액침 리소그래피 장치용 운반 영역을 포함하는 환경 시스템 |
JP4582089B2 (ja) * | 2003-04-11 | 2010-11-17 | 株式会社ニコン | 液浸リソグラフィ用の液体噴射回収システム |
DE10324477A1 (de) | 2003-05-30 | 2004-12-30 | Carl Zeiss Smt Ag | Mikrolithographische Projektionsbelichtungsanlage |
US7317504B2 (en) * | 2004-04-08 | 2008-01-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US6809794B1 (en) * | 2003-06-27 | 2004-10-26 | Asml Holding N.V. | Immersion photolithography system and method using inverted wafer-projection optics interface |
JP3862678B2 (ja) * | 2003-06-27 | 2006-12-27 | キヤノン株式会社 | 露光装置及びデバイス製造方法 |
DE60308161T2 (de) * | 2003-06-27 | 2007-08-09 | Asml Netherlands B.V. | Lithographischer Apparat und Verfahren zur Herstellung eines Artikels |
EP2264531B1 (en) * | 2003-07-09 | 2013-01-16 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US8149381B2 (en) * | 2003-08-26 | 2012-04-03 | Nikon Corporation | Optical element and exposure apparatus |
KR101171809B1 (ko) * | 2003-08-26 | 2012-08-13 | 가부시키가이샤 니콘 | 광학소자 및 노광장치 |
US6954256B2 (en) * | 2003-08-29 | 2005-10-11 | Asml Netherlands B.V. | Gradient immersion lithography |
JP4378136B2 (ja) * | 2003-09-04 | 2009-12-02 | キヤノン株式会社 | 露光装置及びデバイス製造方法 |
JP4444920B2 (ja) * | 2003-09-19 | 2010-03-31 | 株式会社ニコン | 露光装置及びデバイス製造方法 |
KR20170058458A (ko) * | 2003-09-29 | 2017-05-26 | 가부시키가이샤 니콘 | 노광장치, 노광방법 및 디바이스 제조방법 |
WO2005031823A1 (ja) * | 2003-09-29 | 2005-04-07 | Nikon Corporation | 液浸型レンズ系及び投影露光装置、並びにデバイス製造方法 |
JP4513299B2 (ja) * | 2003-10-02 | 2010-07-28 | 株式会社ニコン | 露光装置、露光方法、及びデバイス製造方法 |
US7545481B2 (en) * | 2003-11-24 | 2009-06-09 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP2005191381A (ja) * | 2003-12-26 | 2005-07-14 | Canon Inc | 露光方法及び装置 |
DE602004027162D1 (de) * | 2004-01-05 | 2010-06-24 | Nippon Kogaku Kk | Belichtungsvorrichtung, belichtungsverfahren und bauelementeherstellungsverfahren |
JP4018647B2 (ja) * | 2004-02-09 | 2007-12-05 | キヤノン株式会社 | 投影露光装置およびデバイス製造方法 |
EP1716454A1 (en) * | 2004-02-09 | 2006-11-02 | Carl Zeiss SMT AG | Projection objective for a microlithographic projection exposure apparatus |
JP4510494B2 (ja) * | 2004-03-29 | 2010-07-21 | キヤノン株式会社 | 露光装置 |
US7271878B2 (en) * | 2004-04-22 | 2007-09-18 | International Business Machines Corporation | Wafer cell for immersion lithography |
US7481867B2 (en) * | 2004-06-16 | 2009-01-27 | Edwards Limited | Vacuum system for immersion photolithography |
US7180572B2 (en) * | 2004-06-23 | 2007-02-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Immersion optical projection system |
US7701550B2 (en) * | 2004-08-19 | 2010-04-20 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7379155B2 (en) * | 2004-10-18 | 2008-05-27 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7251013B2 (en) * | 2004-11-12 | 2007-07-31 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
SG124351A1 (en) * | 2005-01-14 | 2006-08-30 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
JP5001534B2 (ja) * | 2005-06-30 | 2012-08-15 | 京セラ株式会社 | 圧電アクチュエータおよび吐出装置 |
-
2005
- 2005-06-03 EP EP05745697A patent/EP1768169B9/en not_active Not-in-force
- 2005-06-03 US US11/628,482 patent/US20070216889A1/en not_active Abandoned
- 2005-06-03 WO PCT/JP2005/010217 patent/WO2005119742A1/ja active Application Filing
- 2005-06-03 KR KR1020067022069A patent/KR101264936B1/ko active IP Right Grant
- 2005-06-03 CN CN2005800159214A patent/CN1954408B/zh not_active Expired - Fee Related
- 2005-06-06 TW TW094118554A patent/TW200604758A/zh unknown
-
2006
- 2006-12-04 IL IL179826A patent/IL179826A0/en unknown
-
2007
- 2007-05-18 US US11/802,061 patent/US20070222958A1/en not_active Abandoned
-
2010
- 2010-03-05 JP JP2010049655A patent/JP2010118714A/ja not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5486896A (en) * | 1993-02-19 | 1996-01-23 | Nikon Corporation | Exposure apparatus |
US5617181A (en) * | 1994-04-28 | 1997-04-01 | Nikon Corporation | Exposure apparatus and exposure method |
CN1379286A (zh) * | 2001-04-03 | 2002-11-13 | 尼康株式会社 | 曝光装置 |
CN1452017A (zh) * | 2002-04-12 | 2003-10-29 | 尼康株式会社 | 曝光装置及曝光方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20070016134A (ko) | 2007-02-07 |
EP1768169B9 (en) | 2013-03-06 |
EP1768169B1 (en) | 2012-10-24 |
IL179826A0 (en) | 2007-05-15 |
EP1768169A1 (en) | 2007-03-28 |
WO2005119742A1 (ja) | 2005-12-15 |
US20070222958A1 (en) | 2007-09-27 |
EP1768169A4 (en) | 2008-11-05 |
CN1954408A (zh) | 2007-04-25 |
US20070216889A1 (en) | 2007-09-20 |
JP2010118714A (ja) | 2010-05-27 |
KR101264936B1 (ko) | 2013-05-15 |
TW200604758A (en) | 2006-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1954408B (zh) | 曝光装置、曝光方法及元件制造方法 | |
CN102290364B (zh) | 基板保持装置、具备其之曝光装置、元件制造方法 | |
CN100570822C (zh) | 曝光装置、曝光方法、以及元件制造方法 | |
CN102736446B (zh) | 曝光装置及元件制造方法 | |
CN105911821B (zh) | 曝光装置 | |
CN1723541B (zh) | 曝光装置和器件制造方法 | |
TWI619148B (zh) | 曝光裝置、元件製造方法 | |
KR101171808B1 (ko) | 노광 장치 및 디바이스 제조 방법 | |
CN100483625C (zh) | 曝光装置、曝光方法以及器件制造方法 | |
JP4655763B2 (ja) | 露光装置、露光方法及びデバイス製造方法 | |
CN101799636A (zh) | 曝光装置、曝光方法及组件制造方法 | |
CN101639631B (zh) | 曝光装置、曝光方法及元件制造方法 | |
CN100485865C (zh) | 曝光装置及器件制造方法 | |
CN100433253C (zh) | 曝光装置以及器件制造方法 | |
CN101019209A (zh) | 曝光装置、曝光方法以及器件制造方法 | |
CN101002299B (zh) | 曝光装置及组件制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120704 Termination date: 20200603 |