CN1934294A - 固相熔剂外延生长法 - Google Patents

固相熔剂外延生长法 Download PDF

Info

Publication number
CN1934294A
CN1934294A CNA2005800092252A CN200580009225A CN1934294A CN 1934294 A CN1934294 A CN 1934294A CN A2005800092252 A CNA2005800092252 A CN A2005800092252A CN 200580009225 A CN200580009225 A CN 200580009225A CN 1934294 A CN1934294 A CN 1934294A
Authority
CN
China
Prior art keywords
flux
target substance
solid
film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800092252A
Other languages
English (en)
Other versions
CN100497752C (zh
Inventor
鲤沼秀臣
松本祐司
高桥龙太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Publication of CN1934294A publication Critical patent/CN1934294A/zh
Application granted granted Critical
Publication of CN100497752C publication Critical patent/CN100497752C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B3/00Unidirectional demixing of eutectoid materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3147Epitaxial deposition of insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明提供一种能够制造具有与块晶同等的晶体完整性的薄膜、且制造成本低的固相熔剂外延生长法,其中,在基板上将外延生长的物质即目标物质和溶剂相混合的非晶形薄膜在低于共晶点温度的低温下进行堆积,在目标物质和熔剂的共晶点温度以上的温度下对该基板进行热处理,其中所述熔剂由与所述目标物质之间形成共晶但不形成化合物的物质构成。通过固相反应即固相扩散,目标物质和熔剂相混合而形成共晶状态的液相,目标物质从该液相析出并在基板上进行外延生长。

Description

固相熔剂外延生长法
技术领域
本发明涉及能够生长成不但是薄膜而且是具有比得上块晶的晶体完整性的薄膜的固相熔剂外延生长法。
背景技术
近年来,构成元素中含有Bi(铋)的多元系氧化物单晶薄膜作为下一代的易失性强电介质存储器材料而受到关注。其理由之一,是因为构成元素中含有Bi的多元系氧化物具有大的自发电介质极化,即使极化方向反复反转,其电介质特性的劣化也很小。另一个理由,是因为构成元素中含有Bi的多元系氧化物通常具有钙钛矿型晶体结构,因此容易在大多物质上进行外延生长,且外延生长的薄膜的缺陷较少,所以最适合作为具有VLSI(超大规模的集成电路)水平的集成度的强电介质易失性存储器薄膜材料。
即使在构成元素中含有Bi的多元系氧化物的内部特别是Bi4Ti3O12,其自发极化的程度也非常大,并且容易单晶薄膜化,因此正竭力于研究其极化机理、以及缺陷较少的单晶薄膜的制造方法(参照Takeshi Kijima,et al.,Jpn.J.Appl.Phys.Vol.38(1999)pp.127-130、以及X.Q.Pan,et al.,APPLIED PHYSICS LETTERS VOL.83,No.12,22 September 2003 pp.2315-2317)。
但是,为了能够将薄膜作为上述那样的超高集成设备用的材料使用,需要一种位错(dislocation)和晶界(grain boundary)这样的缺陷密度小、且具有原子水平的平坦表面、即晶体完整性高的薄膜。为此,过去以来研究了使用CVD(化学气相沉积)法、激光器烧蚀法或者溅射法这样的气相生长法的高晶体完整性薄膜的制造技术。
但是,气相生长法由于本来是非热平衡状态下的生长法,所以完全消除晶界和位错等缺陷是困难的,而且由于这些缺陷,难以得到原子水平的平坦表面。
为此,本发明者等开发了在固相、液相以及气相共存的状态下进行晶体生长的三相外延(Tri-Phase Epitaxy)法(参照日本金属学会誌,第66卷,第4号(2002)284-288)。在该方法中,在基板表面层叠籽晶(seed)层、在该籽晶层上层叠与目标物质之间形成共晶(eutectic)且与目标物质之间不形成化合物的物质层(以下称“熔剂层”),在温度被加热到共晶点温度以上的熔剂层上借助于气相生长法一边供给目标物质,一边使其外延生长。在该方法中,目标物质在熔剂层中成为液相,目标物质从该液相中析出到籽晶层上而进行外延生长。该方法与液相外延法相同,因此接近于从热平衡条件进行的晶体生长,能够在基板上生长成不但是薄膜而且是具有比得上块晶的晶体完整性的薄膜。此外,本发明者等使用该方法,成功地制造了不但是薄膜而且是具有比得上块晶的晶体完整性的、构成元素中含有Bi的多元系氧化物(参照特开2005-1987号公报)。
然而,在三相外延法中,由目标物质构成的气相、熔剂与目标物质构成的液相、以及从该液相析出而在基板上生长的固相这三相必须处于共存状态,在成膜装置内必须将基板保持在高温的一定温度,即保持在共晶点温度以上的一定温度以维持液相状态,同时进行气相生长。例如,象特开2005-1987号公报的实施例1所示那样,为了生长约500nm的Bi4Ti3O12强电介质薄膜,必须将基板温度保持在700℃约1小时。能够一边将基板温度保持为高温的一定温度一边进行成膜的成膜装置,通常制造的生产率小,或者生产率高的装置的成本就高。因此,三相外延法尽管可以得到晶体完整性极高的薄膜,但作为要求极低成本的制造方法的强电介质易失性存储器等通用电子设备的制造方法,存在制造成本高这一课题。
发明内容
鉴于上述课题,本发明的目的在于:提供一种能够制造具有与块晶同等的晶体完整性的薄膜、且制造成本低的固相熔剂外延法。
本发明者等发现,在成膜中不必维持气相、液相以及固相的三相共存状态,即在成膜中不必保持基板为高温的一定温度,通过成膜后的固相反应就能够在基板上外延生长成不但是薄膜而且是具有比得上块晶的晶体完整性的薄膜,从而完成了本发明。
为了实现上述目的,本发明的固相熔剂外延生长法的特征在于:在基板上将外延生长的物质、即目标物质和熔剂相混合的薄膜在低于该混合物质的共晶点温度的基板温度下进行堆积,在共晶点温度以上,而且是在低于目标物质的熔点温度或熔剂的熔点温度中较低一方的熔点温度的温度下对该基板进行热处理。
根据这一方法,有以下作用。目标物质和熔剂物质混合的薄膜由于是在低于共晶点温度的基板温度下进行堆积,因此会成为目标物质与熔剂物质无规混合的非晶形薄膜。如果将该非晶形薄膜以共晶点温度以上的温度进行加热,则目标物质和熔剂物质由于固相扩散而重排列以使自由能变为最小,从而形成目标物质和熔剂物质构成的共晶。由于形成共晶,所以在目标物质和熔剂物质相混合的液相被形成的同时,目标物质会从液相析出到基板上并进行外延生长。外延生长结束后,通过去除外延薄膜上偏析的熔剂物质,可以得到不但是薄膜而且是具有比得上块晶的晶体完整性的外延薄膜。
根据该方法,以前的方法所要求的成膜中维持共晶状态则没有必要,通过成膜后的固相扩散形成共晶状态即可。因此,在成膜时不必控制基板温度,使用低成本的装置就能够统一地大量成膜,可以使用例如能够进行大量生产的CVD(化学气相沉积)装置。并且,能够利用大型的热处理装置对成膜后的基板统一地进行热处理。因此制造成本低。此外,由于是从利用了共晶状态的液相进行外延生长,所以可以得到不但是薄膜而且是具有比得上块晶的晶体完整性的外延薄膜。
另外,本发明的固相熔剂外延生长法的特征在于:在基板上层叠由目标物质构成的薄膜和由熔剂构成的薄膜,在共晶点温度以上的温度下、而且是在低于目标物质的熔点温度或熔剂的熔点温度中较低一方的熔点温度的温度下,对该基板进行热处理。
根据该方法,有以下作用。将层叠有由目标物质构成的层和由熔剂物质构成的层的基板在共晶点温度以上的温度下进行加热时,目标物质和熔剂物质由于固相扩散而重排以使自由能变为最小,从而形成目标物质和熔剂物质构成的共晶。由于形成共晶,所以在目标物质和熔剂物质相混合的液相被形成的同时,目标物质会从液相析出到基板上并进行外延生长。外延生长结束后,通过去除外延薄膜上偏析的熔剂物质,可以得到不但是薄膜而且是具有比得上块晶的晶体完整性的外延薄膜。
根据该方法,以前的方法所要求的成膜中维持共晶状态则没有必要,通过成膜后的固相扩散形成共晶状态即可。因此,在成膜时不必控制基板温度,使用低成本的装置就能够统一地大量成膜,可以使用例如能够进行大量生产的CVD(化学气相沉积)装置。并且,能够利用大型的热处理装置对成膜后的基板统一地进行热处理。因此制造成本低。此外,由于是从利用了共晶状态的液相进行外延生长,所以可以得到不但是薄膜而且是具有比得上块晶的晶体完整性的外延薄膜。
上述熔剂的量优选根据外延生长的薄膜的厚度进行选择,以使目标物质与熔剂的组成比为共晶点组成比。如果这样选择组成比,则热处理温度为共晶点温度即可,因此能够以更低的温度进行外延生长。
上述目标物质只要是构成元素中含有Bi的多元系氧化物即可,其熔剂只要是由与构成元素中含有Bi的多元系氧化物之间形成共晶、且与构成元素中含有Bi的多元系氧化物不形成化合物的物质构成即可。
构成元素中含有Bi的多元系氧化物可以是Bi4Ti3O12、Bi4BaTi4O15、SrBi2Ta2O3或Bi2Sr2CaCu2O8,熔剂可以是Bi2O3-CuO-TiO系的3元组成的熔剂。构成元素中含有Bi的多元系氧化物是Bi4Ti3O12的场合,Bi2O3-CuO-TiO系的3元组成的熔剂也可以是Bi2O3。上述基板优选单晶基板或由单晶薄膜包覆的基板。上述单晶基板或单晶薄膜可以为SrTiO3、Al2O3、Si、LaAlO3、MgO或NdGaO3
附图说明
图1是表示由第1实施方案的固相熔剂外延法制作的Bi4Ti3O12薄膜的表面形状的扫描电子显微镜照片。
图2是表示由第1实施方案的固相熔剂外延法制作的Bi4Ti3O12薄膜的表面形状的AFM(原子力测微器)照片。
图3是表示由第2实施方案的固相熔剂外延法制作的Bi4Ti3O12薄膜的表面形状的扫描电子显微镜照片。
图4是表示由第2实施方案的固相熔剂外延法制作的Bi4Ti3O12薄膜的X射线衍射花样的图谱。
图5是表示由第2实施形态的固相熔剂外延法制作的Bi4Ti3O12薄膜的X射线摇摆曲线花样的图谱。
具体实施方式
通过以下详细说明以及表示本发明的实施例的附图,将会更好地理解本发明。而且附图所示的实施例并不是特定或限定本发明的,而是为了便于说明和理解。
首先说明本发明的第1实施方案。
首先,选择外延生长物质,即选择最适合目标物质的熔剂。作为熔剂物质,是与目标物质形成共晶、且不与目标物质形成化合物的物质。
其次,在成膜装置上配置由单晶基板或由单晶薄膜包覆的基板,将目标物质和熔剂相混合的薄膜进行堆积。成膜时的温度不必特别地控制,例如在无温度控制的室温下成膜即可。该薄膜是目标物质和熔剂无规混合的非晶形薄膜。此时,目标物质的量和熔剂的量优选为目标物质和熔剂物质的共晶点组成比。根据目标物质所要求的薄膜厚度,适宜选择熔剂的量。
成膜方法当使用例如MOCVD(有机金属化学气相沉积)法的场合,构成上述非晶形薄膜的金属元素的有机金属气体以及其它原料气体的流量,根据上述非晶形薄膜的组成比进行控制即可。另外,在使用溅射法的场合,使用具有上述非晶形薄膜的组成比的靶(target)即可。在使用激光烧蚀法的场合,可以对具有上述非晶形薄膜的组成的靶、或者具有目标物质的组成的靶和具有熔剂的组成的靶交替地进行烧蚀。
其次,将堆积有目标物质和熔剂物质相混合的非晶形薄膜的基板配置于热处理装置中,在共晶点以上的温度下、而且是在低于目标物质的熔点温度或熔剂的熔点温度中较低一方的熔点温度的温度下进行热处理。根据该工序,非晶形薄膜的目标物质和熔剂物质通过固相扩散而相互扩散,变成自由能为最小时的混合状态。自由能为最小时的混合状态是目标物质和熔剂物质形成了共晶的状态,因为形成共晶,所以在目标物质和熔剂物质相混合的液相被形成的同时,目标物质会从液相析出到基板上,并进行外延生长。由于目标物质是在液相状态下进行外延生长的,所以该外延生长条件是接近于与液相外延生长同样的热平衡条件的生长条件。因此,可以生长成不但是薄膜而且是具有比得上块晶的晶体完整性的薄膜。
接着,从热处理装置中取出基板,将偏析在目标物质的薄膜上的熔剂例如用化学物质溶解去除。化学物质尽管取决于熔剂的种类,但由于熔剂是不与目标物质形成化合物的物质,因此用化学物质能够容易去除。
其次,说明本发明的第2实施方案。
本发明的第2实施方案与第1实施方案所不同的点仅在于,在基板上层叠由目标物质构成的薄膜和由熔剂物质构成的薄膜,以代替目标物质和熔剂物质相混合的非晶形薄膜。在这种场合,也是通过在共晶点以上的温度下、而且是在低于目标物质的熔点温度或熔剂的熔点温度中较低一方的熔点温度的温度下进行热处理,从而目标物质和熔剂物质通过固相扩散而相互扩散,变成自由能为最小时的混合状态。自由能为最小时的混合状态是目标物质和熔剂物质形成了共晶的状态,因为形成共晶,所以在目标物质和熔剂物质相混合的液相被形成的同时,目标物质会从液相析出到基板上,并进行外延生长。由于目标物质是在液相状态下进行外延生长的,所以该外延生长条件是接近于与液相外延生长同样的热平衡条件的生长条件。因此,可以生长成不但是薄膜而且是具有比得上块晶的晶体完整性的薄膜。
接着,从热处理装置中取出基板,将偏析在目标物质的薄膜上的熔剂例如用化学物质溶解去除。化学物质尽管取决于熔剂的种类,但由于熔剂是不与目标物质形成化合物的物质,因此用化学物质能够容易去除。
根据实施例进一步详细说明本发明。
首先,说明第1实施方案的实施例。
以目标物质为Bi4Ti3O12、熔剂为Bi2O3的情况为例进行说明。
根据第1实施方案的方法,使用SrTiO3(001)面基板,用激光烧蚀法进行成膜。将由Bi4Ti3O12烧结体构成的靶和由Bi2O3烧结体构成的靶交替地进行烧蚀,堆积以Bi4Ti3O12薄膜换算计约为300nm、以及以Bi2O3薄膜换算计约为300nm,得到非晶形薄膜。成膜时的基板温度为室温,而且为了补充成膜中的氧缺损,在67Pa的氧气氛中进行激光烧蚀。热处理是使用热处理专用的热处理炉,在空气中于1000℃下进行12小时。从热处理炉中的取出,是从1000℃的热处理炉中骤冷地取出到室温的空气中。另外,为了与从前的方法相比较,制作了只是在不使用Bi2O3熔剂这一点上不同的Bi4Ti3O12薄膜。
图1是表示由第1实施方案的固相熔剂外延法制作的Bi4Ti3O12薄膜的表面形状的扫描电子显微镜照片。图1(a)是表示采用第1实施方案的固相熔剂外延法制作的Bi4Ti3O12薄膜的表面形状的扫描电子显微镜照片,图1(b)是表示为了比较而用已有方法制作的Bi4Ti3O12薄膜的表面形状的扫描电子显微镜照片。
在图1(a)中,圆形的粒子是偏析的Bi2O3粒子,该粒子的基底是Bi4Ti3O12薄膜。从该图可以知道,Bi4Ti3O12薄膜的表面是极为平坦的,这表明不存在晶粒,整个薄膜是单晶。在图1(b)中,椭圆形的小粒子是Bi4Ti3O12的晶粒,这表明采用现有方法会形成多晶,不能得到晶体完整性高的薄膜。
图2是表示由第1实施方案的固相熔剂外延法制作的Bi4Ti3O12薄膜的表面形状的AFM(原子力测微器Atomic Force Micrometer)照片。在该图中,阶梯形的平面是Bi4Ti3O12的原子面。并且根据AFM的高度测定结果可以知道,阶梯间隔相当于Bi4Ti3O12的一半原子层的间隔。从该图还可以知道,各原子面在原子水平上是平坦的,原子面以一半原子层的间隔相连接,因此由本发明的方法制作的Bi4Ti3O12薄膜的表面在原子水平上是平坦的。
从以上的结果知道,根据第1实施方案的固相熔剂外延法,可以得到晶体完整性极高的单晶薄膜。
其次,关于第2实施方案的实施例,以目标物质为Bi4Ti3O12、熔剂为Bi2O3的情况为例进行说明。
根据第2实施方案的方法,使用SrTiO3(001)面基板,用激光烧蚀法进行成膜。在基板温度为700℃、氧压为67Pa的气氛中,在基板上烧蚀由Bi4Ti3O12烧结体构成的靶并堆积约300nm的Bi4Ti3O12薄膜。接着,在基板温度为500℃、氧压为67Pa的气氛中,在Bi4Ti3O12薄膜上烧蚀由Bi2O3烧结体构成的靶,堆积约300nm的Bi2O3薄膜。热处理是使用热处理专用的热处理炉,在1300Pa的氧气氛中于800℃进行12小时。另外,热处理后的试样的取出,是从800℃的热处理炉中骤冷地取出到室温的空气中。此外,为了与现有方法相比较,制作只是在不使用Bi2O3熔剂这一点上不同的Bi4Ti3O12薄膜。
图3是表示由第2实施方案的固相熔剂外延法制作的Bi4Ti3O12薄膜的表面形状的扫描电子显微镜照片。图3(a)是表示由第2实施方案的固相熔剂外延法制作的Bi4Ti3O12薄膜的表面形状的扫描电子显微镜照片,图3(b)是表示为了比较而用现有方法制作的Bi4Ti3O12薄膜的表面形状的扫描电子显微镜照片。
从图3(a)可以知道,Bi4Ti3O12薄膜的表面极为平坦,这表明不存在晶粒,整个薄膜是单晶。在图3(b)中,黑色部分是薄膜上的开孔,表明用现有方法不能得到晶体完整性高的薄膜。而且,与图2的情况一样,用AFM图像测定表面形状,得到了与图2同样的照片。由此知道,由第2实施方案的方法也可以得到原子水平上平坦的表面。
图4是表示由第2实施方案的固相熔剂外延法制作的Bi4Ti3O12薄膜的X射线衍射(XRD)花样的图谱。图4(a)是表示由第2实施方案的固相熔剂外延法制作的Bi4Ti3O12薄膜的XRD花样。图4(b)是表示为了进行比较而用现有方法制作的Bi4Ti3O12薄膜的XRD花样●表示钙钛矿型Bi4Ti3O12的衍射峰、○表示SrTiO3基板的衍射峰、×表示Bi4Ti3O12的钙钛矿型以外的相的衍射峰。
在图4(a)中,只观察到钙钛矿型Bi4Ti3O12的衍射峰以及SrTiO3基板的衍射峰,由此可知,采用固相熔剂外延法可以只形成钙钛矿型Bi4Ti3O12相。另一方面,在图4(b)中,可以观察到Bi4Ti3O12的钙钛矿型以外的相的衍射峰,由此可知,采用现有方法难以形成由单一层构成的Bi4Ti3O12薄膜。
图5是表示由第2实施方案的固相熔剂外延法制作的Bi4Ti3O12薄膜的X射线摇摆曲线花样的图谱。图5(a)是表示由第2实施方案的固相熔剂外延法制作的Bi4Ti3O12薄膜的X射线摇摆曲线花样,图5(b)是为了进行比较而测定的用已有方法制作的Bi4Ti3O12薄膜的X射线摇摆曲线花样。测定使用的衍射峰是钙钛矿型Bi4Ti3O12(0014)面衍射峰。
图5(a)的结果表明,由第2实施形态的固相熔剂外延法制作的Bi4Ti3O12薄膜的半值宽度极窄,约为0.186°,是单晶。另一方面,从图5(b)的结果可知,现有方法制作的Bi4Ti3O12薄膜的半值宽度较大,约为0.286°,是多晶。
从以上的结果知道,根据本发明的固相熔剂外延法,可以得到晶体完整性极高的单晶薄膜。
此外,需要理解的是,本发明只是就列举的实施例进行了说明,但并不限于实施例,还包括由权利要求书所记载的要素规定的范围及其等同范围。
根据本发明的固相熔剂外延生长法,可以得到不但是薄膜而且是具有与块晶同等的晶体完整性的薄膜,而且制造成本低,作为例如具有VLSI水平的集成度的强电介质易失性存储器的薄膜的制造方法使用,是极有用的。

Claims (9)

1.一种固相熔剂外延生长法,其特征在于:在基板上将由目标物质和熔剂构成的非晶形薄膜在低于所述目标物质和熔剂的共晶点温度的温度下进行堆积,在所述目标物质和熔剂的共晶点温度以上的温度下、而且是在低于所述目标物质的熔点温度或熔剂的熔点温度中较低一方的熔点温度的温度下,对所述基板进行热处理,其中所述熔剂由与所述目标物质之间形成共晶但不形成化合物的物质构成。
2.根据权利要求1所述的固相熔剂外延生长法,其特征在于:所述熔剂的量根据要生长的所述目标物质的量进行选择,以使所述目标物质和熔剂的组成比为共晶点组成比。
3.一种固相熔剂外延生长法,其特征在于:在低于目标物质和熔剂的共晶点的温度下,在基板上层叠由所述目标物质构成的薄膜和由熔剂构成的薄膜,在所述目标物质和熔剂的共晶点温度以上的温度下、而且是在低于所述目标物质的熔点温度或熔剂的熔点温度中较低一方的熔点温度的温度下,对所述基板进行热处理,其中所述熔剂由与所述目标物质之间形成共晶但不形成化合物的物质构成。
4.根据权利要求3所述的固相熔剂外延生长法,其特征在于:所述熔剂的量根据要生长的所述目标物质的量进行选择,以使所述目标物质和熔剂的组成比为共晶点组成比。
5.根据权利要求1~4中任何一项所述的固相熔剂外延生长法,其特征在于:所述目标物质是构成元素中含有Bi的多元系氧化物,所述熔剂由与构成元素中含有Bi的多元系氧化物之间形成共晶但不形成化合物的物质构成。
6.根据权利要求5所述的固相熔剂外延生长法,其特征在于:所述构成元素中含有Bi的多元系氧化物是Bi4Ti3O12、Bi4BaTi4O15、SrBi2Ta2O3和Bi2Sr2CaCu2O8中的任何一种,所述熔剂是Bi2O3-CuO-TiO系的3元组成的熔剂。
7.根据权利要求6所述的固相熔剂外延生长法,其特征在于:所述构成元素中含有Bi的多元系氧化物是Bi4Ti3O12,所述Bi2O3-CuO-TiO系的3元组成的熔剂是Bi2O3
8.根据权利要求1~4中任何一项所述的固相熔剂外延生长法,其特征在于:所述基板是单晶基板或由单晶薄膜包覆的基板。
9.根据权利要求8所述的固相熔剂外延生长法,其特征在于:所述单晶基板或单晶薄膜为SrTiO3、Al2O3、Si、LaAlO3、MgO、NdGaO3中的任何一种。
CNB2005800092252A 2004-03-23 2005-03-22 固相熔剂外延生长法 Expired - Fee Related CN100497752C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP085232/2004 2004-03-23
JP2004085232A JP4172040B2 (ja) 2004-03-23 2004-03-23 固相フラックスエピタキシー成長法

Publications (2)

Publication Number Publication Date
CN1934294A true CN1934294A (zh) 2007-03-21
CN100497752C CN100497752C (zh) 2009-06-10

Family

ID=34993734

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800092252A Expired - Fee Related CN100497752C (zh) 2004-03-23 2005-03-22 固相熔剂外延生长法

Country Status (6)

Country Link
US (1) US7507290B2 (zh)
EP (1) EP1736570A4 (zh)
JP (1) JP4172040B2 (zh)
KR (1) KR100781202B1 (zh)
CN (1) CN100497752C (zh)
WO (1) WO2005090649A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4172040B2 (ja) * 2004-03-23 2008-10-29 独立行政法人科学技術振興機構 固相フラックスエピタキシー成長法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264098A (ja) 1988-08-29 1990-03-05 Nec Corp Si薄膜の成長方法
JP2664070B2 (ja) * 1988-08-29 1997-10-15 住友電気工業株式会社 複合酸化物超電導薄膜の作製方法
JPH02289496A (ja) 1989-04-27 1990-11-29 Tosoh Corp ガーネット結晶の製造方法
JP3379796B2 (ja) 1993-08-06 2003-02-24 ティーディーケイ株式会社 強誘電体薄膜製造方法
JPH07126834A (ja) 1993-10-28 1995-05-16 Japan Steel Works Ltd:The 結晶性薄膜の製造方法
JP3989167B2 (ja) 2000-09-01 2007-10-10 独立行政法人科学技術振興機構 単結晶酸化物薄膜の製造方法
US6933566B2 (en) * 2001-07-05 2005-08-23 International Business Machines Corporation Method of forming lattice-matched structure on silicon and structure formed thereby
JP4612340B2 (ja) * 2003-05-21 2011-01-12 独立行政法人科学技術振興機構 ビスマスを構成元素に含む多元系酸化物単結晶の製造方法
JP4172040B2 (ja) * 2004-03-23 2008-10-29 独立行政法人科学技術振興機構 固相フラックスエピタキシー成長法

Also Published As

Publication number Publication date
EP1736570A1 (en) 2006-12-27
JP4172040B2 (ja) 2008-10-29
CN100497752C (zh) 2009-06-10
WO2005090649A1 (ja) 2005-09-29
US7507290B2 (en) 2009-03-24
JP2005272179A (ja) 2005-10-06
EP1736570A4 (en) 2009-08-19
KR20060122955A (ko) 2006-11-30
US20070209571A1 (en) 2007-09-13
KR100781202B1 (ko) 2007-11-30

Similar Documents

Publication Publication Date Title
Lettieri et al. Epitaxial growth of non-c-oriented SrBi 2 Nb 2 O 9 on (111) SrTiO 3
Yun et al. Vapor–liquid–solid tri-phase pulsed-laser epitaxy of RBa2Cu3O7− y single-crystal films
Yoshida et al. Surface morphology and growth mechanism of YBa2Cu3O7− y films by metalorganic chemical vapor deposition using liquid sources
Narayan et al. Formation of epitaxial and textured platinum films on ceramics‐(100) MgO single crystals by pulsed laser deposition
Cantoni et al. Reflection high-energy electron diffraction studies of epitaxial oxide seed-layer growth on rolling-assisted biaxially textured substrate Ni (001): The role of surface structure and chemistry
US6605151B1 (en) Oxide thin films and composites and related methods of deposition
Kim et al. Seeded epitaxial growth of PbTiO 3 thin films on (001) LaAlO 3 using the chemical solution deposition method
Koinuma et al. Laser MBE for atomically defined ceramic film growth
Bacaksiz et al. Effects of CdCl2 treatment on properties of CdTe thin films grown by evaporation at low substrate temperatures
Lettieri et al. Optimization of the growth of epitaxial SrBi2Ta2O9 thin films by pulsed laser deposition
CN1934294A (zh) 固相熔剂外延生长法
Hawley et al. CMR films structure as a function of growth and processing
JP4809700B2 (ja) Ybco系高温超電導体成膜用基材およびybco系高温超電導体膜の作製方法
Backen et al. Improved pinning in YBCO based quasi-multilayers prepared by on-and off-axis pulsed laser deposition
Shibata et al. Effects of the initial heat-treatment conditions on microstructures of YbBa2Cu3O7-δ superconducting final films deposited on SrTiO3 (001) substrates by the dipping-pyrolysis process
Yamagiwa et al. Orientation behavior of REBa2Cu3O7-y (RE= Rare earth and Y) films prepared by chemical solution deposition
Zandbergen et al. HREM characterisation of interfaces in YBa2Cu3O7− δ/CeO2/R-Al2O3 structures
JP2002068893A (ja) 単結晶酸化物薄膜の製造方法
Kuppusami et al. Processing and properties of thin films of high critical temperature superconductors
Yoshimoto et al. Atomic scale control of epitaxial growth and interface in oxide thin films for advanced oxide lattice engineering
Sun et al. Topotaxial formation of Mg4Nb2O9 and MgNb2O6 thin films on MgO (001) single crystals by vapor–solid reaction
Moon et al. Epitaxial growth of conductive strontium-vanadate films on Si (100) substrates and their electrical resistivities
Bendersky et al. Microstructure and microstructural evolution in BaTiO3 films fabricated using the precursor method
Torres et al. Growth of thin films of refractory silicides on Si (100) in ultrahigh vacuum
Kaiser et al. Effect of film composition on the orientation of (Ba, Sr) TiO 3 grains in (Ba, Sr) y TiO 2+ y thin films

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090610

Termination date: 20150322

EXPY Termination of patent right or utility model