CN1930079A - 伸长的纳米结构及其相关装置 - Google Patents

伸长的纳米结构及其相关装置 Download PDF

Info

Publication number
CN1930079A
CN1930079A CNA2004800348705A CN200480034870A CN1930079A CN 1930079 A CN1930079 A CN 1930079A CN A2004800348705 A CNA2004800348705 A CN A2004800348705A CN 200480034870 A CN200480034870 A CN 200480034870A CN 1930079 A CN1930079 A CN 1930079A
Authority
CN
China
Prior art keywords
substrate
field emission
emission apparatus
catalyst
catalyst granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800348705A
Other languages
English (en)
Other versions
CN1930079B (zh
Inventor
L·查卡拉科斯
J·-U·李
W·H·胡伯
R·R·科尔德曼
V·马尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1930079A publication Critical patent/CN1930079A/zh
Application granted granted Critical
Publication of CN1930079B publication Critical patent/CN1930079B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • C30B11/08Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt every component of the crystal composition being added during the crystallisation
    • C30B11/12Vaporous components, e.g. vapour-liquid-solid-growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

在制备伸长的碳化物纳米结构的方法中,施加多个空间上分离的催化剂颗粒到底物上;在预先选择的温度下将空间上分离的催化剂颗粒和至少一部分底物暴露于含金属的蒸气并且维持足够长的时间,使得无机纳米结构在底物和至少一部分催化剂颗粒之间形成;以及在预先选择的温度下将无机纳米结构暴露于含碳的蒸气源并且维持足够长的时间,使得无机纳米结构渗碳。

Description

伸长的纳米结构及其相关装置
关于政府权利的说明
本发明是利用根据商业部的国家标准和技术研究所(the NationalInstitute of Standards and Technology,Department of Commerce)授予的合同号70NANB2H3030的政府支持而做出的,因此美国政府享有本发明的某些权利。
背景
本发明的领域
本发明涉及纳米尺寸的结构,特别是伸长的纳米结构。
现有技术的描述
场致发射装置(门控或非门控的)可用于X-射线成像、医疗成像系统、显示器、电子器件、微波放大器、荧光灯阴极、气体放电管以及许多其它的电学系统,场致发射装置的其它应用包括传感器、光子带隙装置和宽带隙半导体装置。
碳纳米管目前作为电子发射源例如用在平板场致发射显示器(″FED″)的应用、微波功能放大器应用、晶体管应用和电子束石印术应用中被研究。碳纳米管一般通过电弧放电方法、化学蒸气沉积(CVD)方法或激光消融方法被合成,碳纳米管具有高长宽比的优点,这提高了场致增强因子,因此能够在相对低的电场中输出电子,但是碳纳米管显示了相当高的功函,并且在一般的操作条件下易被损坏,限制了装置的寿命和效率,因此需要一种更耐用的、具有比碳更低的功函,但是具有圆柱形的几何形状和在10-100nm范围的直径的材料。
碳化物材料由于其化学稳定性、机械硬度和强度、高的导电性以及相对低的功能而可能是优选的,这些特征使它们特别适于存在于CT系统中的环境,这种材料在超导纳米装置、光学参量振荡器电子(opoelectronic)纳米装置和其它类似的系统中也是很重要的。
目前对于合成碳化物纳米棒(nanorods)的大量研究是使用碳纳米管(CNT)作为样板,在样板上以蒸气形式进行CNT和金属、金属氧化物或金属碘化物之间的反应,产生金属碳化物纳米棒,但是推测由于与这种方法有关的许多危险,包括大的体积变化(对于转化为Mo2C的CNTs,为约60%)、转化后粘结于底物以及维持对准的能力,至今还没有证明在装置结构中这种CNT的转化。
因此需要一种不需要碳纳米管作为碳化物纳米棒转化的样板的系统。
也需要一种在门控控结构(gated structure)中就地直接生长伸长的碳化物纳米结构的系统。
还需要一种制造方法,这种方法允许与门控装置结构的无缝整合,并且能够控制纳米棒的横向密度,以便不发生电场屏蔽。
发明的概述
本发明克服了现有技术的缺点,一方面提供了制备伸长的碳化物纳米结构的方法,即将大量空间上分离的催化剂颗粒用于底物,并且在预先选择的温度下使空间上分离的催化剂颗粒和至少一部分底物暴露于含金属的蒸气并且维持足够长的时间,使得无机纳米结构在底物和至少一个催化剂颗粒之间形成;以及在预先选择的温度下将无机纳米结构暴露于含碳蒸气源并且维持足够长的时间,使得无机纳米结构渗碳。
另一方面,本发明提供制备场致发射装置的方法,该方法将介质层施加于底物,将导电层施加于底物对面的介质层上,在导电层和介质层中至少形成一个空腔,由此暴露底物,在空腔中生长至少一个纳米棒。
另一方面,本发明提供场致发射装置,该装置包括具有顶面和反面的底面的底物,介质层被布置在顶面上,导电层被布置在介质层底物对面的顶面上,该导电层和介质层限定了向下延伸到底物的空腔,至少一个纳米棒被固定在底物上,并且基本上被布置在空腔内。
另一方面,本发明提供了包括具有顶面和底面的无机底物的纳米结构,导电的缓冲层被布置成与顶面相邻,许多伸长的渗碳金属纳米结构从导电的缓冲层向外延伸。
另一方面,本发明提供了包括底物的场致发射装置,该底物具有顶面和反面的底面,介质层被布置在顶面上,导电层被布置在与底物相对的介质层的顶面上,该导电层和介质层限定了向下延伸到底物的空腔,具有顶表面的导电平台被布置在空腔内的底物的顶面上,至少一个纳米棒从导电平台的顶表面向上延伸,并且基本上被布置在空腔内。
另一方面,本发明提供了包括多晶纳米棒的结构,该多晶纳米棒由选自以下的材料制成:碳化钼、硅化钼、氧碳化钼和碳化铌。
本发明的上述方面和其它方面将从优选的实施方案的说明中结合以下附图而变为显而易见的,对于本领域的技术人员来说显而易见的是,在不脱离公开的新的概念的精神和范围内,可以对本发明进行许多变化和改进。
附图的简要说明
图1A是侧视图,表示在本发明的一个实施方案中使用的结构生长步骤。
图1B是侧视图,表示图1A所示步骤之后的渗碳步骤。
图1C是侧视图,表示图1B所示步骤之后的蚀刻步骤。
图1D是侧视图,表示图1C所示步骤之后形成的渗碳纳米结构。
图2A是侧视图,表示本发明第二个实施方案中采用的结构生长步骤。
图2B是侧视图,表示图2A所示步骤之后的渗碳步骤。
图2C是侧视图,表示图2B所示步骤之后的蚀刻步骤。
图2D是侧视图,表示图2C所示步骤之后的渗碳纳米结构。
图3A是侧视图,表示制备场致发射体的步骤。
图3B是侧视图,表示图3A所示步骤之后按照本发明的一个实施方案制备场致发射体的步骤。
图3C是侧视图,表示图3B所示步骤之后按照本发明的一个实施方案制备场致发射体的步骤。
图3D是侧视图,表示图3C所示步骤之后按照本发明的一个实施方案制备场致发射体的步骤。
图3E是侧视图,表示图3D所示步骤之后按照本发明的一个实施方案制备场致发射体的步骤。
图4A是侧视图,表示制备场致发射体的另一实施方案。
图4B是侧视图,表示图4A所示步骤之后的步骤。
图4C是侧视图,表示图4B所示步骤之后的步骤。
图4D是侧视图,表示图4C所示步骤之后的步骤。
图4E是侧视图,表示图4D所示步骤之后的步骤。
图5A是按照本发明一个实施方案的纳米棒的显微影像。
图5B是按照本发明一个实施方案的纳米带状物的显微照片。
图5C是按照本发明一个实施方案的多晶纳米棒的显微照片。
发明的详细说明
以下对本发明的优选实施方案进行详细说明,参照附图,在图中同样的数字是指同样的部件,如在本说明书和权利要求书中所使用的那样,除了本文清楚指出另外的含意以外,以下术语明确地指出相关的含意:″一″、″一个″和″该″包括复数的含意,″在…之内″的含意包括″在…之内″和″在…之上″,除了另有说明,附图没有必要按照尺寸画出。
另外,如本文使用的″纳米棒″是指伸长的棒状结构,具有最窄的尺寸小于800纳米(nm)的直径。
按照本发明的一个实施方案,在制备伸长的纳米结构方法的一个实施方案中(如图lA-1D),多个催化剂颗粒112被沉积在无机底物110上,底物110可以由以下几种材料之一制备,例如:氧化物、金属或元素半导体。在某些实施方案中,无机单晶物质是优选的,而在其它实施方案中,多晶材料或无定形玻璃是优选的,合适的底物材料的某些特定的实例包括硅、蓝宝石和碳化硅物。
催化剂颗粒112可以包括金、镍或钴,并且可以采用几种方法之一沉积,在将催化剂颗粒112施加到底物110上的一个方法中,将催化剂的薄膜施加在底物110上,然后加热到足够使催化剂进入液相的温度,由此使催化剂聚集以便形成空间上分离的颗粒112,薄膜的厚度一般在3nm和10nm之间,并且能够通过如电子束蒸发或溅射的方法被施加在底物110上。在另一其中催化剂颗粒112可以被施加在底物110上的方法的实例中,催化剂颗粒112被沉积在多孔样板(如阳极化的氧化铝或二氧化硅)上而引发生长,可以将催化剂的图形薄膜沉积在底物110上,以便控制催化剂颗粒112的形状和分布。
在另一其中催化剂颗粒112可以被施加在底物110上的方法的实例中,许多催化剂纳米颗粒112被悬浮在有机溶剂如乙醇或丙酮和表面活性剂中,以便防止纳米颗粒112的聚集,纳米颗粒112和溶剂被施加到底物110上,然后用旋转涂覆机将纳米颗粒112分散。
催化剂颗粒112和底物110被暴露于含金属的蒸气114,由此在底物110和催化剂颗粒112之间形成伸长的无机纳米结构116(如纳米棒、纳米带状物和纳米带),可以用于含金属蒸气114的金属实例包括钼、铌、铪、硅、钨、钛、锆或钽。
然后将无机纳米结构116暴露于含碳蒸气源118,如甲烷、乙烯、乙烷、丙烷或异丙烯中,也可以加入还原气体如氢,这样对无机纳米结构116渗碳,因此能够制备许多伸长的碳化物纳米结构120,纳米结构120或者可以充分渗碳或部分渗碳。然后用蚀刻剂122将伸长的碳化物纳米结构120和催化剂颗粒112蚀刻,以除去催化剂颗粒112。
在将多个空间上分离的催化剂颗粒112施加到底物110上的步骤之前,导电的缓冲层211(如图2A-2D所示)可以被施加到底物110上,缓冲层211作为扩散阻挡层起作用,并且防止由于试剂和底物110之间的相互反应形成不希望的结构如硅化物,缓冲层211可以包括例如在外延方法中使用的碳化锗或碳化硅,或多晶扩散阻挡层如W或Ti-W。在某些情况下缓冲层211应当适于支持感兴趣的纳米结构材料的外延生长,在另一些情况下,外延可能不是必要的。
按照本发明的一个实施方案,场致发射装置300表示在图3A-3E中,该装置可以和很多装置包括例如成像系统和照明系统之一一起使用。这种场致发射装置300是通过将介质层314施加到底物310上然后将导电层316施加到介质层314上而制备的,介质层314一般包括如二氧化硅、氮化硅、氧氮化硅(oxynitride)或氧化铝那样的材料。空腔317在导电层316和介质层314中形成,催化剂颗粒312被置于空腔317中的底物310上,按照上述方法并参照图lA-1D,纳米棒318在空腔317内被生长和渗碳,纳米棒318一般从例如碳化物、氧化物、氮化物或氧碳化物或硅化物那样的材料制备。如上所公开的,图形化的催化剂薄膜可以被施加在装置空腔内,图像化是通过平板照像术、压印平板印刷术、电子束平板印刷术、化学平板印刷术或使薄膜图形化的其它方法而完成的。
来自场源322的电场可以被施加到催化剂颗粒112和底物110上,同时将它们暴露于含金属的蒸气114以便影响无机纳米结构116生长的方向。
在另一实施方案中导电平台420(如图4所示)可以被布置在在介质层314中形成的空腔内的底物310上,至少一个通道402在导电平台420上形成,催化剂颗粒404被置于通道402内,然后生长纳米棒418以便从导电平台420的顶部表面延伸展出来。导电平台420可以由例如硅或钼的材料制成。在一个实施方案中,导电平台420是具有相对大的与顶部表面相对的底部表面的圆锥形元件。在一个举例说明性的实施方案中,当底物310以一定角度被保持并且被旋转时,导电平台420的材料是通过蒸发方法被施加的,因此形成了圆锥的形状。如果电压源(没有表示出来)被施加到底物310上和导电层316上,则纳米棒418就会发射电子。可替代地,不是在导电平台420内形成通道402,纳米棒418可以从导电平台420的顶部表面生长。在一个实施方案中,导电平台420的材料如上所述是氧化铝(钒土),但也可以是能够被阳极化而形成纳米通道的绝缘金属氧化物。
在另一实施方案中,铝金属载体被沉积,随后铝金属载体被阳极化而变成纳米多孔氧化铝。催化剂被置于通道底部内,然后纳米棒生长。纳米多孔的阳极化的氧化铝(AAO)作为样板而起作用从而形成垂直校准的纳米结构。可以先储备催化剂薄膜然后沉积铝。另外还有几种方法来保证催化剂不被镀在围绕AAO载体的空腔内的表面上,所述方法包括:(a)将光致抗蚀剂回流以便覆盖邻近铝载体的Si表面,然后阳极化;(b)先将氮化硅层沉积于SiO2层,然后将孔干燥蚀刻到氮化物中使Si被暴露,然后沉积铝,再电镀Au。它不会沉积在氮化硅上,这是因为不存在电接触;(c)在氮化物上方放置氧化物牺牲层,以使在纳米线生长过程中沉积的任何材料可以通过湿法蚀刻而被牺牲除去。在这种情况下沟渠将会通过干燥蚀刻方法而被蚀刻,所以它是定向的,并且正好在氧化物层中的氮化物上方停止;(d)使用方法(b)但是首先沉积金膜,这样不必进行电镀。
按照本发明的一个实施方案制备的纳米棒510的显微照片如图5A中所示,按照本发明的一个实施方案制备的纳米带512的显微照片如图5B中所示,按照本发明的一个实施方案制备的多晶纳米棒514的显微照片如图5C中所示。多晶纳米棒514可以从材料如碳化钼、硅化钼或碳化铌制备。正如可以从图5A-5C中所示的显微照片看到的,按照上述方法制备的纳米结构通常有小于800nm的较小的直径。
概念试验的一个初步证明是使用Mo2C系统进行的,将MoO3粉末放在管式炉中,将用10nm Au膜涂覆的硅晶片放在(111)-导向的硅晶片上的下游(约1-5cm)。
系统被加热到900℃,以300标准立方厘米/分钟(sccm)H2/1000sccm Ar的流速施加氢气和氩气5min并且以300/1000sccm的浓度施加CH410min,还在850℃和950℃下尝试了类似的配方,使用类似的催化剂在蓝宝石上进行了一轮试验,其结果是在底物上发现了混合物纳米棒和纳米带,通过透射电子显微术(TEM)确定它们在本质上是纳米结晶。在一个同样的试验中,测定了使用低接通电场(-1.25V/um)和高电流(最高到300μA)的场致发射。
本发明的一个实施方案包括合成碳化物纳米棒和相关的纳米结构的方法,该方法是通过经由蒸气-液体-固体(VLS)机理或固态纳米线生长机理合成金属氧化物纳米棒,随后就地还原和然后进行渗碳来进行的。发现这些纳米结构可以用于门控场致发射装置中。在一个实施方案中,在低于发生VLS的共熔温度(例如对于Mo-Au系统为约1053℃)下发生生长,所以生长在固态中发生。
在本发明的一个实施方案中使用蒸气-液体-固体(VLS)机理或用于纳米结构生长的相关机理(例如固态生长机理)来合成氧化物纳米棒和纳米带。在VLS技术中,将作为碳化物材料组成的一部分的金属蒸气加入到底物表面上的合适的纳米催化剂颗粒上,使得金属溶解,并且使催化剂变为超饱和的,然后金属沉淀为纳米棒,并且假设与CO或残留的氧反应形成氧化物纳米棒,氧化物纳米棒在生长以后就地立即被还原和/或渗碳。假如我们能够通过第二种手段,例如嵌段共聚物样板或电子束平板印刷术,来控制催化剂岛的位置,则纳米棒的横向密度就能够被控制。另外假如形成混合相,就有可能优选地蚀刻出一种位相,以致棒的密度又可以受控地降低。当纳米棒太紧密地集合在一起的时候,希望低的纳米棒密度来使电场屏蔽最小化,这种方法能够在门控或非门控场致发射或其它装置结构中实施。
选择底物是重要的,可能的底物例如包括硅、蓝宝石和碳化硅。硅和催化剂颗粒及金属蒸气反应形成硅化物,在某些情况下硅化物可能不是理想的,这个问题可以通过使用合适的缓冲层来克服。缓冲层的理想特征是它应该与底物及碳化物纳米棒具有适当的外延关系(具有较低张力的中间晶格错配),以及对于硅或其它元素来说是足够的扩散阻挡层,并且具有中等的热扩散系数以及能够导电。假如缓冲层被用于半导体或绝缘底物,则上述最后的特征是很重要的,所述缓冲层材料的实例是GeC或SiC。但是在某些情况下不必须使用外延缓冲层,在该情况下一种简单的扩散阻挡层如钨薄膜或Ti-W薄膜或许就足够了。还必须在适当的温度下生长棒,然后在较高(或较低)的温度下渗碳。加工以后,可以优选使用适当的蚀刻剂从纳米棒和纳米带的尖端蚀刻金属纳米催化剂。也可以经由氧化物-辅助的生长机理来生长金属/氧化物纳米棒,该生长机理不需要催化剂或者是自动催化过程,然后对纳米棒渗碳,也可以生长其它结构,例如纳米-小片。
在另一实施方案中,纳米棒可以被包括在二极管结构中,这种二极管结构包括其中带有纳米棒的底物,在底物的反面有阳极。电势被直接施加于底物(作为阴极)和在空间上分开的阳极板之间,没有中间门控结构。该实施方案的加工可能比其它方法花费少,并且产生的电场对于例如荧光照明的应用是足够的。
上述实施方案仅仅是以举例说明性的实例提出的,很容易理解很多变化可以从本说明书公开的上述具体的实施方案中被导出,而并不需要脱离本发明,因此本发明的范围被以下的权利要求确定,而不受上述具体描述的实施方案的限制。

Claims (53)

1.制备伸长的碳化物纳米结构的方法,包括以下步骤:
a.施加多个空间上分离的催化剂颗粒到底物上;
b.在预先选择的温度下将空间上分离的催化剂颗粒和至少一部分底物暴露于含金属的蒸气中并且维持足够长的时间,使得包括金属的无机纳米结构在底物和至少一部分催化剂颗粒之间形成;和
c.在预先选择的温度下将无机纳米结构暴露于含碳的蒸气源并且维持足够长的时间,使得无机纳米结构渗碳,由此产生伸长的碳化物纳米结构。
2.权利要求1的方法,还包括从伸长的碳化物纳米结构中除去多个催化剂颗粒的步骤。
3.权利要求2的方法,其中所述的除去步骤使用蚀刻方法。
4.权利要求1的方法,其中无机底物包括选自以下的材料:氧化物、金属或元素半导体以及它们的组合。
5.权利要求1的方法,其中所述的含碳蒸气源选自以下的气体:甲烷、乙烯、乙烷、丙烷和异丙烯以及它们的组合。
6.权利要求1的方法,其中无机纳米结构在暴露于含碳蒸气源的同时也暴露于氢气。
7.权利要求1的方法,其中施加多个空间上分离的催化剂颗粒的步骤包括以下步骤:
a.将催化剂的薄膜施加到底物上;和
b.加热薄膜到足够使催化剂进入到液相的温度,从而使催化剂聚集形成空间上分离的颗粒。
8.权利要求7的方法,其中薄膜的厚度在3nm和10nm之间。
9.权利要求7的方法,其中所述的薄膜是通过电子束蒸发被施加到底物上的。
10.权利要求7的方法,其中所述的薄膜是通过溅射被施加到底物上的。
11.权利要求1的方法,还包括在渗碳过程中通入还原气体的步骤。
12.权利要求11的方法,其中还原气体包括氢气。
13.权利要求1的方法,其中施加多个空间上分离的催化剂颗粒的步骤包括在多孔样板上沉积催化剂颗粒的步骤。
14.权利要求13的方法,其中多孔样板包括阳极化的氧化铝。
15.权利要求13的方法,其中多孔样板包括二氧化硅。
16.权利要求1的方法,其中施加多个空间上分离的催化剂颗粒的步骤包括:
a.在有机溶剂中悬浮多个催化剂的纳米颗粒;
b.将该纳米颗粒和溶剂施加到底物上;和
c.使用旋转涂覆机分散纳米颗粒。
17.权利要求16的方法,还包括将表面活性剂加到有机溶剂和纳米颗粒中,以便抑制纳米颗粒的聚集。
18.权利要求16的方法,其中所述的溶剂包括乙醇。
19.权利要求16的方法,其中所述的溶剂包括丙酮。
20.权利要求1的方法,其中催化剂选自:金、镍、铁、钴或镓或它们的组合。
21.权利要求1的方法,还包括在将多个空间上分离的催化剂颗粒施加到底物之前,将导电缓冲层施加到底物上的步骤,其中缓冲层作为扩散阻挡层。
22.权利要求21的方法,其中所述的缓冲层选自以下材料:碳化锗钨、碳化硅或钛钨以及它们的组合。
23.权利要求21的方法,其中施加导电缓冲层的步骤使用外延方法。
24.权利要求1的方法,还包括当暴露于含金属的蒸气时将电场施加到空间上分离的催化剂颗粒和至少一部分底物上的步骤,由此影响无机纳米结构生长的方向。
25.制备场致发射装置的方法,包括以下步骤:
a.将介质层施加到底物上;
b.将导电层施加到底物对面的介质层上;
c.在导电层和介质层中形成至少一个空腔,由此暴露底物;和
d.在空腔内生长至少一个纳米棒。
26.权利要求25的方法,其中生长至少一个纳米棒的步骤包括:
a.在空腔内施加至少一个催化剂颗粒;
b.在预先选择的温度下将催化剂颗粒和至少一部分底物暴露于金属蒸气和氧化气体并且维持足够长的时间,使得氧化物包括金属氧化物的纳米棒在底物和催化剂颗粒之间形成;
c.在预先选择的温度下将纳米棒暴露于含碳蒸气源并且维持足够长的时间,使得氧化物纳米棒渗碳;和
d.除去催化剂颗粒。
27.权利要求26的方法,其中施加至少一个催化剂颗粒的步骤包括在装置的空腔内施加图形化的催化剂薄膜。
28.权利要求26的方法,其中除去步骤是通过蚀刻方法进行的。
29.权利要求25的方法,还包括在底物上和空腔内形成导电平台的步骤,其中在空腔内生长至少一个纳米棒的步骤包括从导电平台生长纳米棒。
30.场致发射装置,包括:
a.具有顶面和反面的底面的底物;
b.布置在顶面上的介质层;
c.布置在底物对面的介质层的顶面上的导电层,所述的导电层和介质层限定了一个向下延伸到底物的空腔;和
d.至少一个固定在底物上并且基本上布置在空腔内的纳米棒。
31.权利要求30的场致发射装置,还包括固定在所述底物顶面上的缓冲层。
32.权利要求30的场致发射装置,用于成像系统。
33.权利要求30的场致发射装置,用于照明系统。
34.权利要求30的场致发射装置,其中纳米棒是X-纳米棒,其中所述的X是一种选自以下的材料:碳化物、氧化物、氮化物、氧氮化物、氧碳化物或硅化物以及它们的组合。
35.权利要求30的场致发射装置,其中底物包括无机单晶物质。
36.权利要求35的场致发射装置,其中所述的无机单晶物质包括选自以下的材料:硅、氧化铝、碳化硅以及它们的组合。
37.权利要求30的场致发射装置,其中介质层包括选自以下的材料:二氧化硅、氮化硅、氧氮化硅和氧化铝以及它们的组合。
38.一种纳米结构,包括:
a.具有顶面和底面的无机底物;
b.与顶面相邻布置的导电缓冲层;和
c.从导电缓冲层向外延伸的多个伸长的渗碳的金属纳米结构。
39.权利要求38的纳米结构,其中所包括的无机底物是结晶物质,选自硅、氧化铝和碳化硅以及它们的组合。
40.权利要求38的纳米结构,其中多个伸长的渗碳金属纳米结构包括至少一个纳米棒。
41.权利要求38的纳米结构,其中多个伸长的渗碳金属纳米结构包括至少一个纳米带。
42.权利要求38的纳米结构,其中多个伸长的渗碳金属纳米结构每个具有小于800nm的较小直径。
43.权利要求38的纳米结构,其中渗碳的金属是从选自以下的金属氧化物渗碳的:钼、铌、铪、硅、钨、钛或锆或它们的组合。
44.场致发射装置,包括
a.具有顶面和反面的底面的底物;
b.布置在该顶面上的介质层;
c.布置在底物对面的介质层顶面上的导电层,该导电层和介质层限定了向下延伸到底物的空腔;
d.具有顶表面的布置在空腔内的底物顶面上的导电平台;和
e.至少一个固定在导电平台的顶表面上并且基本上布置在空腔内的纳米棒。
45.权利要求44的场致发射装置,其中导电平台包括具有相对较大的与顶表面相对的底表面的圆锥形元件,该底表面被固定在底物上。
46.权利要求44的场致发射装置,其中导电平台包括选自以下的材料:硅、钼、铂、钯、钽或铌以及它们的组合。
47.权利要求44的场致发射装置,其中所述的纳米棒是碳化物纳米棒。
48.权利要求44的场致发射装置,其中所述的底物包括无机单晶物质。
49.权利要求48的场致发射装置,其中所述的无机单晶物质选自:硅、氧化铝和碳化硅以及它们的组合。
50.权利要求44的场致发射装置,其中底物包括多晶材料。
51.权利要求44的场致发射装置,其中底物包括无定形玻璃。
52.权利要求44的场致发射装置,其中介质层包括二氧化硅。
53.一种包括多晶纳米棒的结构,包括选自以下的材料:碳化钼、硅化钼、氧碳化钼或碳化铌。
CN2004800348705A 2003-11-25 2004-11-16 伸长的纳米结构及其相关装置 Expired - Fee Related CN1930079B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/722,700 US20050112048A1 (en) 2003-11-25 2003-11-25 Elongated nano-structures and related devices
US10/722,700 2003-11-25
PCT/US2004/038271 WO2005051842A2 (en) 2003-11-25 2004-11-16 Elongated nano-structures and related devices

Publications (2)

Publication Number Publication Date
CN1930079A true CN1930079A (zh) 2007-03-14
CN1930079B CN1930079B (zh) 2010-06-02

Family

ID=34592043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800348705A Expired - Fee Related CN1930079B (zh) 2003-11-25 2004-11-16 伸长的纳米结构及其相关装置

Country Status (6)

Country Link
US (1) US20050112048A1 (zh)
JP (1) JP4773364B2 (zh)
CN (1) CN1930079B (zh)
DE (1) DE112004002299T5 (zh)
GB (1) GB2425540B (zh)
WO (1) WO2005051842A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569025A (zh) * 2011-01-02 2012-07-11 昆山中辰矽晶有限公司 磊晶基板、使用该磊晶基板之半导体发光元件及其制程
CN102781815A (zh) * 2009-12-23 2012-11-14 马克思-普朗克科学促进协会 在衬底表面特别是光学元件上的锥形纳米结构、其制造方法及其用途
CN103779148A (zh) * 2012-10-23 2014-05-07 海洋王照明科技股份有限公司 一种场发射阴极及其制备方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830976B2 (en) * 2001-03-02 2004-12-14 Amberwave Systems Corproation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6982474B2 (en) 2002-06-25 2006-01-03 Amberwave Systems Corporation Reacted conductive gate electrodes
US7078276B1 (en) * 2003-01-08 2006-07-18 Kovio, Inc. Nanoparticles and method for making the same
US7351607B2 (en) * 2003-12-11 2008-04-01 Georgia Tech Research Corporation Large scale patterned growth of aligned one-dimensional nanostructures
US7485600B2 (en) * 2004-11-17 2009-02-03 Honda Motor Co., Ltd. Catalyst for synthesis of carbon single-walled nanotubes
US7288490B1 (en) * 2004-12-07 2007-10-30 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Increased alignment in carbon nanotube growth
WO2006086074A2 (en) * 2004-12-16 2006-08-17 William Marsh Rice University Carbon nanotube substrates and catalyzed hot stamp for polishing and patterning the substrates
US7422966B2 (en) 2005-05-05 2008-09-09 Micron Technology, Inc. Technique for passivation of germanium
CA2613203C (en) 2005-06-28 2013-08-13 The Board Of Regents Of The University Of Oklahoma Methods for growing and harvesting carbon nanotubes
US7326328B2 (en) 2005-07-19 2008-02-05 General Electric Company Gated nanorod field emitter structures and associated methods of fabrication
US7279085B2 (en) 2005-07-19 2007-10-09 General Electric Company Gated nanorod field emitter structures and associated methods of fabrication
EP1750310A3 (en) * 2005-08-03 2009-07-15 Samsung Electro-Mechanics Co., Ltd. Omni-directional reflector and light emitting diode adopting the same
US20090045720A1 (en) * 2005-11-10 2009-02-19 Eun Kyung Lee Method for producing nanowires using porous glass template, and multi-probe, field emission tip and devices employing the nanowires
CN1988100B (zh) * 2005-12-20 2010-09-29 鸿富锦精密工业(深圳)有限公司 一种场发射阴极的制备方法
CA2657423A1 (en) * 2006-03-03 2008-02-07 Illuminex Corporation Heat pipe with nano-structured wicking material
WO2007130869A2 (en) * 2006-05-01 2007-11-15 Yazaki Corporation Organized carbon and non-carbon assembly and methods of making
KR100803194B1 (ko) * 2006-06-30 2008-02-14 삼성에스디아이 주식회사 탄소나노튜브 구조체 형성방법
KR100785347B1 (ko) 2006-07-27 2007-12-18 한국과학기술연구원 금속전극 위에서의 반도체 나노선의 정렬방법
KR100874202B1 (ko) * 2006-11-29 2008-12-15 한양대학교 산학협력단 실리사이드 촉매를 이용한 나노 와이어 제조 방법
KR100825765B1 (ko) * 2006-12-05 2008-04-29 한국전자통신연구원 산화물계 나노 구조물의 제조 방법
US9315385B2 (en) * 2006-12-22 2016-04-19 Los Alamos National Security, Llc Increasing the specific strength of spun carbon nanotube fibers
JP4751841B2 (ja) * 2007-02-05 2011-08-17 財団法人高知県産業振興センター 電界放出型電極及び電子機器
FR2915743A1 (fr) * 2007-05-02 2008-11-07 Sicat Sarl Composite de nanotubes ou nanofibres sur mousse de beta-sic
US7858506B2 (en) * 2008-06-18 2010-12-28 Micron Technology, Inc. Diodes, and methods of forming diodes
US20100047662A1 (en) * 2008-08-22 2010-02-25 Ford Global Technologies, Llc Catalyst Layers Having Thin Film Mesh Catalyst (TFMC) Supported on a Mesh Substrate and Methods of Making the Same
US8029851B2 (en) 2008-08-29 2011-10-04 Korea University Research And Business Foundation Nanowire fabrication
US8715981B2 (en) * 2009-01-27 2014-05-06 Purdue Research Foundation Electrochemical biosensor
FR2941688B1 (fr) * 2009-01-30 2011-04-01 Commissariat Energie Atomique Procede de formation de nano-fils
US9570760B2 (en) * 2010-04-29 2017-02-14 Ford Global Technologies, Llc Fuel cell electrode assembly and method of making the same
US20110143263A1 (en) * 2010-04-29 2011-06-16 Ford Global Technologies, Llc Catalyst Layer Having Thin Film Nanowire Catalyst and Electrode Assembly Employing the Same
TWI414005B (zh) * 2010-11-05 2013-11-01 Sino American Silicon Prod Inc 磊晶基板、使用該磊晶基板之半導體發光元件及其製程
US8623779B2 (en) 2011-02-04 2014-01-07 Ford Global Technologies, Llc Catalyst layer supported on substrate hairs of metal oxides
US8889226B2 (en) * 2011-05-23 2014-11-18 GM Global Technology Operations LLC Method of bonding a metal to a substrate
CN102358610A (zh) * 2011-07-09 2012-02-22 电子科技大学 一种导电聚合物一维纳米结构阵列的制备方法
US9053890B2 (en) * 2013-08-02 2015-06-09 University Health Network Nanostructure field emission cathode structure and method for making
US10782014B2 (en) 2016-11-11 2020-09-22 Habib Technologies LLC Plasmonic energy conversion device for vapor generation
EP3933881A1 (en) 2020-06-30 2022-01-05 VEC Imaging GmbH & Co. KG X-ray source with multiple grids

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2658839B1 (fr) * 1990-02-23 1997-06-20 Thomson Csf Procede de croissance controlee de cristaux aciculaires et application a la realisation de microcathodes a pointes.
US5157304A (en) * 1990-12-17 1992-10-20 Motorola, Inc. Field emission device display with vacuum seal
JPH0578977A (ja) * 1991-09-12 1993-03-30 Nippon Cement Co Ltd 表面被覆炭素繊維の製造方法
US5406123A (en) * 1992-06-11 1995-04-11 Engineering Research Ctr., North Carolina State Univ. Single crystal titanium nitride epitaxial on silicon
US5872422A (en) * 1995-12-20 1999-02-16 Advanced Technology Materials, Inc. Carbon fiber-based field emission devices
CN1043256C (zh) * 1996-11-05 1999-05-05 中国科学院物理研究所 一种有序排列的碳纳米管及其制备方法和专用装置
US5997832A (en) * 1997-03-07 1999-12-07 President And Fellows Of Harvard College Preparation of carbide nanorods
US6054801A (en) * 1998-02-27 2000-04-25 Regents, University Of California Field emission cathode fabricated from porous carbon foam material
US6255198B1 (en) * 1998-11-24 2001-07-03 North Carolina State University Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby
CA2359336A1 (en) * 1999-01-12 2000-07-20 Hyperion Catalysis International, Inc. Carbide and oxycarbide based compositions and nanorods
US6465132B1 (en) * 1999-07-22 2002-10-15 Agere Systems Guardian Corp. Article comprising small diameter nanowires and method for making the same
KR20010011136A (ko) * 1999-07-26 2001-02-15 정선종 나노구조를 에미터로 사용한 삼극형 전계 방출 에미터의 구조및 그 제조방법
US7196464B2 (en) * 1999-08-10 2007-03-27 Delta Optoelectronics, Inc. Light emitting cell and method for emitting light
FR2800365B1 (fr) * 1999-10-28 2003-09-26 Centre Nat Rech Scient Procede d'obtention de nanostructures a partir de composes ayant une forme cristalline hexagonale
US6376007B1 (en) * 2000-06-01 2002-04-23 Motorola, Inc. Method of marking glass
US6876724B2 (en) * 2000-10-06 2005-04-05 The University Of North Carolina - Chapel Hill Large-area individually addressable multi-beam x-ray system and method of forming same
US6440763B1 (en) * 2001-03-22 2002-08-27 The United States Of America As Represented By The Secretary Of The Navy Methods for manufacture of self-aligned integrally gated nanofilament field emitter cell and array
WO2002103737A2 (en) * 2001-06-14 2002-12-27 Hyperion Catalysis International, Inc. Field emission devices using ion bombarded carbon nanotubes
US6617283B2 (en) * 2001-06-22 2003-09-09 Ut-Battelle, Llc Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom
TW511108B (en) * 2001-08-13 2002-11-21 Delta Optoelectronics Inc Carbon nanotube field emission display technology
WO2003018466A2 (en) * 2001-08-24 2003-03-06 Nano-Proprietary, Inc. Catalyst for carbon nanotube growth
FR2829873B1 (fr) * 2001-09-20 2006-09-01 Thales Sa Procede de croissance localisee de nanotubes et procede de fabrication de cathode autoalignee utilisant le procede de croissance de nanotubes
JP3654236B2 (ja) * 2001-11-07 2005-06-02 株式会社日立製作所 電極デバイスの製造方法
US7252749B2 (en) * 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
FR2832995B1 (fr) * 2001-12-04 2004-02-27 Thales Sa Procede de croissance catalytique de nanotubes ou nanofibres comprenant une barriere de diffusion de type alliage nisi
FR2848204B1 (fr) * 2002-12-09 2007-01-26 Commissariat Energie Atomique Procedes de synthese et de croissance de nanotiges d'un carbure metallique sur un substrat, substrats ainsi obtenus et leurs applications

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102781815A (zh) * 2009-12-23 2012-11-14 马克思-普朗克科学促进协会 在衬底表面特别是光学元件上的锥形纳米结构、其制造方法及其用途
CN102781815B (zh) * 2009-12-23 2015-04-22 马克思-普朗克科学促进协会 在衬底表面特别是光学元件上的锥形纳米结构、其制造方法及其用途
US9469526B2 (en) 2009-12-23 2016-10-18 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Method for the production of conical nanostructures on substrate surfaces
CN102569025A (zh) * 2011-01-02 2012-07-11 昆山中辰矽晶有限公司 磊晶基板、使用该磊晶基板之半导体发光元件及其制程
CN102569025B (zh) * 2011-01-02 2014-12-24 昆山中辰矽晶有限公司 磊晶基板、使用该磊晶基板之半导体发光元件及其制程
CN103779148A (zh) * 2012-10-23 2014-05-07 海洋王照明科技股份有限公司 一种场发射阴极及其制备方法

Also Published As

Publication number Publication date
DE112004002299T5 (de) 2006-09-28
CN1930079B (zh) 2010-06-02
WO2005051842A2 (en) 2005-06-09
JP4773364B2 (ja) 2011-09-14
GB0609495D0 (en) 2006-06-21
US20050112048A1 (en) 2005-05-26
JP2007516919A (ja) 2007-06-28
WO2005051842A3 (en) 2006-10-26
GB2425540B (en) 2007-08-15
GB2425540A (en) 2006-11-01

Similar Documents

Publication Publication Date Title
CN1930079B (zh) 伸长的纳米结构及其相关装置
Ryu et al. Direct growth of core–shell SiC–SiO2 nanowires and field emission characteristics
JP3804594B2 (ja) 触媒担持基板およびそれを用いたカーボンナノチューブの成長方法ならびにカーボンナノチューブを用いたトランジスタ
Zhang et al. Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation
Min et al. Ruthenium oxide nanotube arrays fabricated by atomic layer deposition using a carbon nanotube template
EP2412670B1 (en) Method for producing graphene film, method for manufacturing electronic element, and method for transferring graphene film to substrate
US7956345B2 (en) CNT devices, low-temperature fabrication of CNT and CNT photo-resists
US9177745B2 (en) Organic/inorganic composite comprising three-dimensional carbon nanotube networks, method for preparing the organic/inorganic composite and electronic device using the organic/inorganic composite
KR101071906B1 (ko) 단결정 게르마늄코발트 나노와이어, 게르마늄코발트 나노와이어 구조체, 및 이들의 제조방법
US20040144970A1 (en) Nanowires
Chen et al. Field emission performance of SiC nanowires directly grown on graphite substrate
Baik et al. High-yield TiO2 nanowire synthesis and single nanowire field-effect transistor fabrication
KR101954381B1 (ko) SiNW 어레이 상에 수직 정렬된 CNTs의 무촉매 합성방법
Govindaraj et al. Organometallic precursor route to carbon nanotubes
Tian et al. High-aspect-ratio HfC nanobelts accompanied by HfC nanowires: synthesis, characterization and field emission properties
Lu et al. Silicon quantum-wires arrays synthesized by chemical vapor deposition and its micro-structural properties
Lee et al. Device fabrication with solid–liquid–solid grown silicon nanowires
Liu et al. Graphene-based in-plane heterostructures for atomically thin electronics
Van Quy et al. A high-performance triode-type carbon nanotube field emitter for mass production
WO2006085993A9 (en) Device and method for achieving enhanced field emission utilizing nanostructures grown on a conductive substrate
Lu et al. Synthesis and characterization of well-aligned quantum silicon nanowires arrays
Cao et al. Field emission properties of molybdenum nanoparticles decorated ZnO nanorod arrays
Joshi et al. Nonlinear Fowler-Nordheim behavior of a single SnO2 nanowire
Tak et al. Selective growth of ZnO nanoneedles on Si substrates by metalorganic chemical vapor deposition
Jung et al. Single-crystal Al-catalyzed Si nanowires grown via hedgehog-shaped Al–Si aggregates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100602

Termination date: 20141116

EXPY Termination of patent right or utility model