CN1909256B - 全向反射器和采用其的发光二极管 - Google Patents

全向反射器和采用其的发光二极管 Download PDF

Info

Publication number
CN1909256B
CN1909256B CN2005101204219A CN200510120421A CN1909256B CN 1909256 B CN1909256 B CN 1909256B CN 2005101204219 A CN2005101204219 A CN 2005101204219A CN 200510120421 A CN200510120421 A CN 200510120421A CN 1909256 B CN1909256 B CN 1909256B
Authority
CN
China
Prior art keywords
light
emitting diode
omni
reflector
electrically conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005101204219A
Other languages
English (en)
Other versions
CN1909256A (zh
Inventor
赵济熙
奚静群
金钟奎
朴容助
孙哲守
E·弗雷德·舒伯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Rensselaer Polytechnic Institute
Original Assignee
Samsung LED Co Ltd
Rensselaer Polytechnic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020050089473A external-priority patent/KR20070016897A/ko
Application filed by Samsung LED Co Ltd, Rensselaer Polytechnic Institute filed Critical Samsung LED Co Ltd
Publication of CN1909256A publication Critical patent/CN1909256A/zh
Application granted granted Critical
Publication of CN1909256B publication Critical patent/CN1909256B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Led Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种具有由导电纳米棒形成的透明导电低折射系数层的全向反射器和采用该全向反射器的发光二极管。该全向反射器包括:由金属形成的反射层;和透明导电低折射系数层,包括相对于所述反射层以斜角设置的透明导电纳米棒和位于所述纳米棒之间的空气间隙。

Description

全向反射器和采用其的发光二极管
技术领域
本发明涉及一种导电全向反射器和采用其的发光二极管,更具体而言,涉及一种具有高电-光特性的反射器和采用其的发光二极管。 
背景技术
用在LED中的反射器必须具有高导电性和反射率。由Ag或Al形成的高反射金属电极已经被用作单向金属反射器。这种金属反射器由于作为金属本身性质的反射系数和消光系数而不能获得超过预定限度的反射率。如图1所示,提出了如图1的全向反射器(ODR)以突破例如金属反射率(Ag:约86%,Al:约92%)的限制。ODR具有其中低折射系数层(index layer)和由Ag或Al形成的金属层依次堆叠在半导体层上的结构。低折射系数层的厚度th必须与波长λ的1/4n(n:折射率)成比例,使得ODR获得高反射率。低折射系数层由具有低反射率的材料例如SiO2或Si3N4形成。金属层由具有高消光系数的材料例如Ag或Al金属形成。然而,在ODR结构中,形成低折射系数层的材料通常是非导体。这样,低折射系数层不能由注入电流的有效元件(active element)形成。 
美国专利No.6,784,462公开了具有高的光引出效率的发光二极管。反射器设置在基底和光发射体之间,并包括由低指数材料例如SiO2、Si3N4、MgO等形成的透明层和由Ag、Al等形成的反射层。该发光二极管特征在于多个微欧姆接触排列在反射器的透明层上以注入电流。该透明层由低指数材料例如SiO2、Si3N4、MgO等形成,且该反射器由Ag或Al形成。然而,公开的发光二极管使用具有有限面积的微欧姆接触。因此,接触电阻大,且因此操作电压高。而且,将透明层穿孔到微小尺寸的工艺不适合大量生产并要求精细的构图和蚀刻工艺。 
要求低折射系数层的折射率最小化以获得高质量ODR,因为反射率随着折射率的降低而增加。图2A和2B是示出Ag ODR的反射率和Al ODR关于低折射系数层的折射率的变化的曲线图。Ag ODR包括具有2000 
Figure G200510120421901D00011
厚度的Ag反射器,且Al ODR包括具有2000 厚度的Al反射器。
如图2A和2B所示,反射率随着折射率的降低而增加。在400nm波长处,Al ODR的反射率远高于Ag ODR的。因此,在ODR中可用的1.1和1.5之间的折射率范围内可以获得92%或以上的高反射率。换句话说,要求低折射系数层的折射率最小化以获得高质量的ODR。此外,要求透明度和导电率高。 
发明内容
本发明提供了采用具有高电导率和很低折射率的低折射系数层以保证高电特性和高光初始效率的ODR以及采用该ODR的发光二极管。 
根据本发明的一方面,提供了一种全向反射器,所述全向反射器包括:由金属形成的反射层;和透明导电低折射系数层,包括相对于所述反射层以斜角设置的透明导电纳米棒和位于所述纳米棒之间的空气间隙。 
根据本发明的另一方面,提供了一种发光二极管,所述发光二极管包括:包括有源层和上及下半导体层的发光区;包括多个形成在发光区的上和下半导体层之一上的导电纳米棒的透明导电低折射系数层;和形成在透明导电低折射系数层上的金属反射层。 
多个导电纳米棒可以由透明导电氧化物或者透明导电氮化物形成。 
透明导电氧化物可以由In、Sn、或Zn氧化物并可选地包括掺杂剂。掺杂剂可以是Ga、Cd、Mg、Be、Ag、Mo、V、Cu、Ir、Rh、Ru、W、Co、Ni、Mn、Pd、Pt或La。 
透明导电氮化物可以包括Ti和N并由TiN、TiON或InSnON形成。 
透明导电低折射系数层的厚度可以与发光区峰值波长的1/4n(n:折射率)成比例。金属反射层可以由Ag、Ag2O、Al、Zn、Ti、Rh、Mg、Pd、Ru、Pt或Ir形成。 
导电纳米棒可以采用溅射或电子束斜角淀积形成。 
附图说明
通过参照附图详细描述本发明的示范性实施例,本发明的上述和其他特定和优点将变得更为明显,在附图中: 
图1是示出通常ODR堆叠结构的视图; 
图2A和2B是示出ODR反射率相对于ODR的低折射系数层的折射率变化的变化的曲线图; 
图3A是示出根据本发明实施例的发光二极管的堆叠结构的示意性截面图; 
图3B是相应于图3A所示的部分A的实际样品的扫描电子显微图像(SEM); 
图4是示出采用简单金属反射器的常规发光二极管的堆叠结构的截面图; 
图5A是示出图3A所示的本发明的发光二极管和图4所示的常规发光二极管的电流(I)-电压(V)特性的曲线图; 
图5B是示出关于图3A所示的本发明的发光二极管和图4所示的常规发光二极管的电流变化的光输出的曲线图; 
图6是根据本发明的实施例的ODR中实际制造的纳米棒低折射系数层的SEM; 
图7是示出根据本发明实施例使用电子束斜角淀积而形成纳米棒低折射系数层的方法的图; 
图8是示出束流入射角和采用电子束斜角淀积所形成的纳米棒的斜角的实际制造的样品的SEM; 
图9是示出在硅化物基底上由SiO2纳米棒形成为150.8nm厚度的低折射系数层的折射率关于波长变化的图; 
图10A是ITO纳米棒低折射系数层的SEM; 
图10B是ITO纳米棒低折射系数层的AFM; 
图11A是CIO(CuInO)纳米棒低折射系数层的SEM; 
图11B是CIO纳米棒低折射系数层的表面的AFM。 
具体实施方式
此后,将参照附图详细描述根据本发明的有限实施例的ODR和采用ODR的发光二极管。 
图3A是具有根据本发明实施例的ODR的发光二极管的示意性截面图,且图3B是相应于图1的部分A的实际制造的ODR的SEM。如图3A所示,包括下半导体层21、有源区22和上半导体层23的发光区形成在透明蓝宝石基底10上。包括下半导体21和上半导体23之一作为一个元件的ODR 30 即本实施例中的上半导体层23形成在发光区20上。如图3A和3B所示,ODR 30包括上半导体层23、在上半导体层23上由导电纳米棒形成的低折射系数层31、形成在低折射系数层31上的金属反射层32。 
导电纳米棒可以由透明导电氧化物(TCO)或透明导电氮化物(TCN)形成。 
TCO可以是可选择地包括掺杂剂的In、Sn或Zn氧化物。此处,可用的掺杂剂可以是Ga、Cd、Mg、Be、Ag、Mo、V、Cu、Ir、Rh、Ru、W、Co、Ni、Mn、Pd、Pt或La。 
TCN包括Ti或/和N,即Ti和N中至少一个,具体地,可以由TiN、TiON或InSnON形成。 
低折射系数层31的厚度与发光区20的峰值波长的1/4n成比例。金属反射层32由Ag、Ag2O、Al、Zn、Ti、Rh、Mg、Pd、Ru、Pt、Ir等形成。 
图4是与本发明的发光器件相比较的参考样品的截面图,即其中Ag反射器没有低折射系数层而直接形成在上半导体层上的发光器件。 
图5A是示出图3A所示的本发明的发光器件和图4所示的发光器件的I-V特性的曲线图。参照图5A,发光二极管在相对低于参考样品的电压下显示出很高的电流。具体地,在3V和4V之间的电压范围内出现显著的电流提高。然而,参考样品要求相当高的驱动电压。具体地,参考样品要求更高的驱动电压以获得高电流。如图5A所示,本发明的发光器件在低电压下显示出很高的电流。而且,在与电流比较时,电压显示出很小变化。 
图5B是示出光强随图3A所示的本发明的发光器件和图4所示的参考样品的电流的变化,即光探测器的输出电压变化的曲线图。图5B的结果可以通过图5A的结果而评价。换句话说,本发明的发光二极管在与参考样品相同的电流下显示出很高的光强。 
图6是实际制造的导电低折射系数层的SEM。SEM的下部显示了导电低折射系数层的剖面,且SEM的上部显示了低折射系数层的表面。 
图6所示的导电低折射系数层是采用电子束斜角淀积形成在硅基底上的SiO2纳米棒。如图7所示,SiO2束流以关于硅基底85°的倾斜角入射,以形成SiO2纳米棒。SiO2纳米棒通过这种斜角淀积而形成为关于基底45°倾斜角。在这种情况下,形成自遮挡区(self shadowing)。自遮挡区指的是其中随后淀积的材料由于初始的随机淀积材料而不能到达预定位置的现象。 
图8是示出SiO2束流的入射角和SiO2纳米棒的倾斜角θt的图。如图8所示,当SiO2束流的入射角约为85°时,SiO2纳米棒的倾斜角约为45°。 
是图9是示出在硅化物基底上由SiO2纳米棒形成为150.8nm厚度的低折射系数层的折射率关于波长变化的曲线图。折射率采用椭圆对称模型测量。参照图9,在400nm波长处折射率约为1.090。就SiO2的原始折射率而言,这是划时代的结果。 
图10A是由采用电子束斜角淀积的ITO纳米棒形成的低折射系数层的SEM,且图10B是图10A所示的低折射系数层表面的AFM。图11A是由CIO(CuInO)纳米棒形成的低折射系数层的SEM,且图11B是图11A所示的低折射系数层的表面的AFM。 
由ITO纳米棒形成的低折射系数层的表面粗糙度是6.1nm/rms(均方根),由CIO纳米棒形成的低折射系数层的表面粗糙度是6.4nm/rms。 
由ITO纳米棒形成的低折射系数层的折射率在461nm波长处是1.34,且由CIO纳米棒形成的低折射系数层的折射率在461nm波长处是1.52。就ITO和CIO薄膜分别为“2.05”和“1.88”的折射率而言,低折射系数层的低折射率是划时代的结果。由采用电子束斜角淀积形成的ITO或CIO纳米棒形成的低折射系数层具有很低的折射率和很高的电导率。因此,由ITO或CIO纳米棒形成的低折射系数层可以有效地用作ODR的低折射系数层而没有额外的导体例如微接触层。 
如上所述,根据本发明的ODR具有高电导率和反射率。结果,可以获得具有比常规发光二极管更高亮度和光引出效率的发光二极管。本发明的发光二极管不要求额外的元件例如用于额外导电通路的微接触。这样,发光二极管可以容易地被制造而且是经济的。 
虽然参照其示范性实施例具体示出并描述了本发明,但本领域的技术人员应该理解,可以在不脱离所附权利要求限定的精神和范畴内进行各种形式和细节的变化。 

Claims (22)

1.一种全向反射器,包括:
反射层,由金属形成;和
透明导电低折射系数层,包括相对于所述反射层以斜角设置的透明导电纳米棒和位于所述纳米棒之间的空气间隙,
其中所述透明导电低折射系数层的厚度与光的峰值波长的1/4n成比例。
2.如权利要求1所述的全向反射器,其中所述导电纳米棒由透明导电氧化物和透明导电氮化物之一形成。
3.如权利要求2所述的全向反射器,其中所述透明导电氮化物包括Ti和N的至少一种。
4.如权利要求3所述的全向反射器,其中所述透明导电氮化物由TiN、TiON或InSnON之一形成。
5.如权利要求2所述的全向反射器,其中所述透明导电氧化物由In、Sn或Zn氧化物之一形成。
6.如权利要求5所述的全向反射器,其中所述透明导电氧化物包括掺杂剂。
7.如权利要求6所述的全向反射器,其中所述掺杂剂是Ga、Cd、Mg、Be、Ag、Mo、V、Cu、Ir、Rh、Ru、W、Co、Ni、Mn、Pd、Pt或La之一。
8.如权利要求2所述的全向反射器,其中所述透明导电氧化物由In、Sn或Zn氧化物之一形成,且包括Ga、Cd、Mg、Be、Ag、Mo、V、Cu、Ir、Rh、Ru、W、Co、Ni、Mn、Pd、Pt或La之一作为掺杂剂。
9.如权利要求1所述的全向反射器,其中所述反射层由Ag、Ag2O、Al、Zn、Ti、Rh、Mg、Pd、Ru、Pt或Ir之一形成。
10.如权利要求1所述的全向反射器,其中所述导电纳米棒采用溅射和电子束斜角淀积之一形成。
11.如权利要求1到8任何一个所述的全向反射器,其中所述导电纳米棒采用溅射和电子束斜角淀积之一形成。
12.一种发光二极管,包括:
发光区,包括有源层和上及下电荷限制半导体层;
透明导电低折射系数层,包括相对于所述上电荷限制半导体层、下电荷限制半导体层或两者以斜角设置的多个导电纳米棒,且形成在所述发光区的上和下电荷限制半导体层之一上的导电纳米棒之间具有空气间隙;和
金属反射层,形成在所述透明导电低折射系数层上,
其中所述透明导电低折射系数层的厚度与光的峰值波长的1/4n成比例。
13.如权利要求12所述的发光二极管,其中所述多个导电纳米棒由透明导电氧化物和透明导电氮化物之一形成。
14.如权利要求13所述的发光二极管,其中所述透明导电氮化物包括Ti和N至少之一。
15.如权利要求13所述的发光二极管,其中所述透明导电氮化物由TiN、TiON或InSnON之一形成。
16.如权利要求13所述的发光二极管,其中所述透明导电氧化物由In、Sn或Zn氧化物之一形成。
17.如权利要求16所述的发光二极管,其中所述透明导电氧化物包括掺杂剂。
18.如权利要求17所述的发光二极管,其中所述掺杂剂是Ga、Cd、Mg、Be、Ag、Mo、V、Cu、Ir、Rh、Ru、W、Co、Ni、Mn、Pd、Pt或La之一。
19.如权利要求13所述的发光二极管,其中所述透明导电氧化物由In、Sn、或Zn氧化物之一形成,并包括Ga、Cd、Mg、Be、Ag、Mo、V、Cu、Ir、Rh、Ru、W、Co、Ni、Mn、Pd、Pt或La之一作为掺杂剂。
20.如权利要求12所述的发光二极管,其中所述金属反射层由Ag、Ag2O、Al、Zn、Ti、Rh、Mg、Pd、Ru、Pt或Ir之一形成。
21.如权利要求12所述的发光二极管,其中所述导电纳米棒采用溅射和电子束斜角淀积之一而形成。
22.如权利要求12到19任意一个所述的发光二极管,其中所述导电纳米棒采用溅射和电子束斜角淀积而形成。
CN2005101204219A 2005-08-03 2005-11-10 全向反射器和采用其的发光二极管 Expired - Fee Related CN1909256B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US70488405P 2005-08-03 2005-08-03
US60/704,884 2005-08-03
KR89473/05 2005-09-26
KR1020050089473A KR20070016897A (ko) 2005-08-03 2005-09-26 단일지향성 반사기 및 이를 적용한 발광소자

Publications (2)

Publication Number Publication Date
CN1909256A CN1909256A (zh) 2007-02-07
CN1909256B true CN1909256B (zh) 2012-10-03

Family

ID=37324888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005101204219A Expired - Fee Related CN1909256B (zh) 2005-08-03 2005-11-10 全向反射器和采用其的发光二极管

Country Status (4)

Country Link
US (2) US20070029561A1 (zh)
EP (1) EP1750310A3 (zh)
JP (1) JP4912663B2 (zh)
CN (1) CN1909256B (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8022432B2 (en) * 2005-08-19 2011-09-20 Lg Display Co., Ltd. Light-emitting device comprising conductive nanorods as transparent electrodes
WO2008048232A2 (en) 2005-08-22 2008-04-24 Q1 Nanosystems, Inc. Nanostructure and photovoltaic cell implementing same
US7483212B2 (en) * 2006-10-11 2009-01-27 Rensselaer Polytechnic Institute Optical thin film, semiconductor light emitting device having the same and methods of fabricating the same
TWI344709B (en) * 2007-06-14 2011-07-01 Epistar Corp Light emitting device
US7915629B2 (en) 2008-12-08 2011-03-29 Cree, Inc. Composite high reflectivity layer
US9461201B2 (en) 2007-11-14 2016-10-04 Cree, Inc. Light emitting diode dielectric mirror
DE102008005332A1 (de) * 2007-11-30 2009-06-04 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip mit einer dielektrischen Schichtstruktur
WO2009092041A2 (en) * 2008-01-16 2009-07-23 Abu-Ageel Nayef M Illumination systems utilizing wavelength conversion materials
DE102008027045A1 (de) * 2008-02-29 2009-09-03 Osram Opto Semiconductors Gmbh Halbleiterleuchtdiode und Verfahren zur Herstellung einer Halbleiterleuchtdiode
WO2009140470A1 (en) * 2008-05-15 2009-11-19 Basf Corporation Method of making thin film structure and compositions thereof
TWI372418B (en) * 2008-08-14 2012-09-11 Univ Nat Chiao Tung Nanostructured thin-film formed by utilizing oblique-angle deposition and method of the same
US20100051932A1 (en) * 2008-08-28 2010-03-04 Seo-Yong Cho Nanostructure and uses thereof
KR20100028412A (ko) 2008-09-04 2010-03-12 삼성전자주식회사 나노 막대를 이용한 발광 다이오드 및 그 제조 방법
US20100259823A1 (en) * 2009-04-09 2010-10-14 General Electric Company Nanostructured anti-reflection coatings and associated methods and devices
US9362459B2 (en) 2009-09-02 2016-06-07 United States Department Of Energy High reflectivity mirrors and method for making same
US9435493B2 (en) 2009-10-27 2016-09-06 Cree, Inc. Hybrid reflector system for lighting device
US9202954B2 (en) * 2010-03-03 2015-12-01 Q1 Nanosystems Corporation Nanostructure and photovoltaic cell implementing same
US9012938B2 (en) 2010-04-09 2015-04-21 Cree, Inc. High reflective substrate of light emitting devices with improved light output
US9105824B2 (en) 2010-04-09 2015-08-11 Cree, Inc. High reflective board or substrate for LEDs
US8764224B2 (en) 2010-08-12 2014-07-01 Cree, Inc. Luminaire with distributed LED sources
US8680556B2 (en) 2011-03-24 2014-03-25 Cree, Inc. Composite high reflectivity layer
EP2693982B1 (en) 2011-04-07 2017-08-23 Novartis AG Optical structures with nanostructre features and methods of manufacture
KR101806550B1 (ko) * 2011-06-14 2017-12-07 엘지이노텍 주식회사 발광소자 패키지
US8686429B2 (en) 2011-06-24 2014-04-01 Cree, Inc. LED structure with enhanced mirror reflectivity
US10243121B2 (en) 2011-06-24 2019-03-26 Cree, Inc. High voltage monolithic LED chip with improved reliability
US9728676B2 (en) 2011-06-24 2017-08-08 Cree, Inc. High voltage monolithic LED chip
US20130082274A1 (en) 2011-09-29 2013-04-04 Bridgelux, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US8853668B2 (en) 2011-09-29 2014-10-07 Kabushiki Kaisha Toshiba Light emitting regions for use with light emitting devices
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
KR20130049568A (ko) * 2011-11-04 2013-05-14 삼성전자주식회사 반도체 발광소자 및 그 제조방법
GB201202222D0 (en) 2012-02-09 2012-03-28 Mled Ltd Enhanced light extraction
CN103474519B (zh) * 2012-06-07 2016-12-07 清华大学 发光二极管的制备方法
KR101946917B1 (ko) 2012-06-08 2019-02-12 엘지이노텍 주식회사 발광소자 제조방법
US9651721B2 (en) * 2012-08-27 2017-05-16 Avery Dennison Corporation Retroreflector with low refractive index backing
US9082911B2 (en) 2013-01-28 2015-07-14 Q1 Nanosystems Corporation Three-dimensional metamaterial device with photovoltaic bristles
US20140264998A1 (en) 2013-03-14 2014-09-18 Q1 Nanosystems Corporation Methods for manufacturing three-dimensional metamaterial devices with photovoltaic bristles
US9954126B2 (en) 2013-03-14 2018-04-24 Q1 Nanosystems Corporation Three-dimensional photovoltaic devices including cavity-containing cores and methods of manufacture
FR3004006B1 (fr) * 2013-03-28 2016-10-07 Aledia Dispositif electroluminescent a nanofils actifs et nanofils de contact et procede de fabrication
CN104465934A (zh) * 2014-12-17 2015-03-25 聚灿光电科技(苏州)有限公司 Led芯片及其制作方法
US10658546B2 (en) 2015-01-21 2020-05-19 Cree, Inc. High efficiency LEDs and methods of manufacturing
CN105633236B (zh) * 2016-01-06 2019-04-05 厦门市三安光电科技有限公司 发光二极管及其制作方法
KR102543183B1 (ko) 2018-01-26 2023-06-14 삼성전자주식회사 반도체 발광소자
CN109545936A (zh) * 2018-11-30 2019-03-29 武汉华星光电技术有限公司 一种面光源芯片及其发光二极管

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784462B2 (en) * 2001-12-13 2004-08-31 Rensselaer Polytechnic Institute Light-emitting diode with planar omni-directional reflector
CN1527100A (zh) * 2003-09-24 2004-09-08 南京大学 连续渐变周期全介质宽带全向反射器的设置方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7294417B2 (en) * 2002-09-12 2007-11-13 The Trustees Of Boston College Metal oxide nanostructures with hierarchical morphology
JP4669784B2 (ja) * 2002-09-30 2011-04-13 ナノシス・インコーポレイテッド ナノワイヤトランジスタを用いる集積ディスプレイ
JP2004179347A (ja) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd 半導体発光素子
AU2003241652A1 (en) * 2003-06-13 2005-01-04 Fuji Electric Holdings Co., Ltd. Organic el device and organic el panel
US6847057B1 (en) * 2003-08-01 2005-01-25 Lumileds Lighting U.S., Llc Semiconductor light emitting devices
US20050112048A1 (en) * 2003-11-25 2005-05-26 Loucas Tsakalakos Elongated nano-structures and related devices
KR100590532B1 (ko) * 2003-12-22 2006-06-15 삼성전자주식회사 플립칩형 질화물계 발광소자 및 그 제조방법
JP5005164B2 (ja) * 2004-03-03 2012-08-22 株式会社ジャパンディスプレイイースト 発光素子,発光型表示装置及び照明装置
KR100646696B1 (ko) * 2004-03-10 2006-11-23 주식회사 실트론 질화물 반도체 소자 및 그 제조방법
US7658991B2 (en) * 2004-10-21 2010-02-09 University Of Georgia Research Foundation, Inc. Structures having aligned nanorods and methods of making

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784462B2 (en) * 2001-12-13 2004-08-31 Rensselaer Polytechnic Institute Light-emitting diode with planar omni-directional reflector
CN1527100A (zh) * 2003-09-24 2004-09-08 南京大学 连续渐变周期全介质宽带全向反射器的设置方法及装置

Also Published As

Publication number Publication date
CN1909256A (zh) 2007-02-07
US20100166983A1 (en) 2010-07-01
US20070029561A1 (en) 2007-02-08
JP4912663B2 (ja) 2012-04-11
EP1750310A2 (en) 2007-02-07
JP2007043045A (ja) 2007-02-15
EP1750310A3 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
CN1909256B (zh) 全向反射器和采用其的发光二极管
KR101240011B1 (ko) 반도체 발광 소자 및 이것을 이용하는 조명 장치
TWI438920B (zh) 以氮化物為主之白色發光裝置及其製造方法
KR100720101B1 (ko) 나노구조의 다기능성 오믹층을 사용한 탑에미트형 질화물계발광소자 및 그 제조방법
CN101395728B (zh) 发光元件及其制造方法
US8395176B2 (en) Top-emitting nitride-based light-emitting device with ohmic characteristics and luminous efficiency
CN101276863B (zh) 发光二极管及其制造方法
US8519430B2 (en) Optoelectronic device and method for manufacturing the same
US20090146142A1 (en) Light-emitting device including nanorod and method of manufacturing the same
JP4875361B2 (ja) 3族窒化物発光素子
US20050093002A1 (en) Light emitting diode device and manufacturing method
CN101783382A (zh) 发光器件
JP2011187658A (ja) 半導体発光素子
KR20050123028A (ko) 질화갈륨계 수직구조 발광다이오드 및 그 제조방법
TWI589041B (zh) 無機發光記憶體及其製造方法
CN101017868A (zh) 倒装发光器件
CN102623605A (zh) 半导体发光器件及其制造方法
TW201110419A (en) Light emitting semiconductor device and method for manufacturing
KR20070016897A (ko) 단일지향성 반사기 및 이를 적용한 발광소자
TW201526331A (zh) 具有光提取電極之有機發光二極體
TW201013992A (en) Optoelectronic semiconductor chip
KR100946035B1 (ko) 단일지향성 반사기의 제조방법
KR101289602B1 (ko) 발광 다이오드
KR102000271B1 (ko) 질화갈륨 계열 발광 다이오드의 제조방법 및 이로부터 제조된 질화갈륨 계열 발광 다이오드
CN101226980A (zh) 一种利用光子晶体结构抑制侧向出光的发光二极管器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SAMSUNG LED CO., LTD.

Free format text: FORMER OWNER: SAMSUNG ELECTRO-MECHANICS CO., LTD.

Effective date: 20110520

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: GYEONGGI-DO, SOUTH KOREA TO: SUWON-SI, GYEONGGI-DO, SOUTH KOREA

TA01 Transfer of patent application right

Effective date of registration: 20110520

Address after: Gyeonggi Do Korea Suwon

Applicant after: Samsung LED Co., Ltd.

Co-applicant after: Rensselaer Polytechnic Institute

Address before: Gyeonggi Do, South Korea

Applicant before: Samsung Electro-Mechanics Co., Ltd.

Co-applicant before: Rensselaer Polytechnic Institute

C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SAMSUNG ELECTRONICS CO., LTD.

Free format text: FORMER OWNER: SAMSUNG LED CO., LTD.

Effective date: 20121015

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20121015

Address after: Gyeonggi Do, South Korea

Patentee after: Samsung Electronics Co., Ltd.

Patentee after: Rensselaer Polytechnic Institute

Address before: Gyeonggi Do Korea Suwon

Patentee before: Samsung LED Co., Ltd.

Patentee before: Rensselaer Polytechnic Institute

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121003

Termination date: 20141110

EXPY Termination of patent right or utility model