CN1903923A - 一种高介电常数低介电损耗绝缘树脂的制造方法 - Google Patents

一种高介电常数低介电损耗绝缘树脂的制造方法 Download PDF

Info

Publication number
CN1903923A
CN1903923A CN 200610021494 CN200610021494A CN1903923A CN 1903923 A CN1903923 A CN 1903923A CN 200610021494 CN200610021494 CN 200610021494 CN 200610021494 A CN200610021494 A CN 200610021494A CN 1903923 A CN1903923 A CN 1903923A
Authority
CN
China
Prior art keywords
dielectric constant
resin
nano
low dielectric
insulating resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610021494
Other languages
English (en)
Other versions
CN100424124C (zh
Inventor
马寒冰
杨波
唐安斌
马庆柯
唐超
徐康林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SICHUN DONGCAI GROUP Inc
Original Assignee
SICHUN DONGCAI GROUP Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SICHUN DONGCAI GROUP Inc filed Critical SICHUN DONGCAI GROUP Inc
Priority to CNB2006100214947A priority Critical patent/CN100424124C/zh
Publication of CN1903923A publication Critical patent/CN1903923A/zh
Application granted granted Critical
Publication of CN100424124C publication Critical patent/CN100424124C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Organic Insulating Materials (AREA)

Abstract

一种高介电常数低介电损耗绝缘树脂的制造方法,其特征是包括制备纳米核/壳结构复合颗粒:取0.1~10重量份有机物,加入100~300重量份丙酮中加热到20~60℃,搅拌溶解后,加入100重量份纳米级铁电体材料,搅拌分散,保温10~15小时,真空抽滤,滤饼在80~120℃干燥,即制得具有核/壳结构的纳米复合颗粒;制备绝缘树脂:将制得的具有核/壳结构的纳米复合颗粒用高速分散机在6000~8000rpm的转速下分散于酚醛树脂或环氧树脂中即制得具有高介电常数低介电损耗性能的绝缘树脂。采用本发明,原料来源广泛、成本低、工艺简单、易于工业扩大生产、实用性强。

Description

一种高介电常数低介电损耗绝缘树脂的制造方法
技术领域
本发明属于高分子化合物的组合物,涉及一种以纳米核/壳结构复合材料为添加物的高介电常数低介电损耗绝缘树脂的制造方法。
技术背景
随着电子产品小型化和高功能化的发展趋势,原本安装在印刷线路板表面的大量电容器组件越来越趋向于薄膜化并内嵌于线路板中。这种内嵌式电容器中要求绝缘材料在具有低温可加工性的同时,具有较高介电常数和较低介电损耗,一般而言,电容器绝缘材料的介电损耗(tgδ)应在2%以下。
美国专利5,796,587、5,162,977、5,800,575提出用环氧树脂溶液混合强诱电性陶瓷粉末制备内嵌式电容器用高介电常数绝缘材料;欧洲专利EP0902048A1提出用钛酸钡等陶瓷粉体直接混合于聚酰亚胺或先用聚酰亚胺包覆陶瓷粉体后经热压,并制备成单层或多层高介电常数薄膜;中国专利03136112.9提出在环氧树脂中添加改性剂制成高极性基改质树脂,再与陶瓷粉末混合制备而成高介电常数绝缘材料;中国专利02131239.7提出用金属镍、钛酸钡和聚偏氟乙烯混合热压而制成高介电常数材料;中国专利03119260.2提出在100份基体材料M10中填充300份以上的钛酸钡,制成高介电橡胶组合物;中国专利90102967.X提出将丁腈橡胶与聚丙稀混炼、压制而成高介电常数低介电损耗膜。
以上专利中仅有少数使用丁腈橡胶单独作为填充物,由于丁腈橡胶的介电常数相对上述陶瓷粉末低,因而无法达到较高的介电常数;以上专利中大多数使用高介电常数陶瓷作为添加物,但陶瓷粉末粒径大多为微米或亚微米,粉末密度较大,容易在有机树脂及其溶液中沉降、分层,造成复合材料的填充密度和均匀性不够,无法达到较高的介电常数;尽管少数专利使用纳米粒径陶瓷,增加颗粒填充密度、提高了材料的介电常数,但由于未对纳米粉末进行表面改性,纳米颗粒巨大的比表面能造成制备的材料的粘度增加、填料填充量大幅度降低,制备过程困难。更为重要的是,上述专利中高介电常数陶瓷直接加入到低介电常数有机绝缘基体树脂中,由于陶瓷粉体表面会吸附有机树脂而形成界面层,此界面层的存在严重影响到陶瓷粉末本体极化性能,因而陶瓷粉末填充时所表现出的表观介电常数与其本体介电常数存在较大差异,与材料的种类、粉体的分散情况等有很大关系,且表观介电常数往往低于本体介电常数。
发明内容
本发明的目的旨在克服上述现有技术中存在的缺陷,提供一种高介电常数低介电损耗绝缘树脂及其制造方法。
本发明方法是以一种具有核/壳结构的纳米复合颗粒为添加物,该纳米复合颗粒是以纳米级无机铁电体颗粒为“核”材料、在其表面包覆一种具有高介电常数的有机物为“壳”材料、形成一种纳米核/壳结构复合颗粒,将该具有核/壳结构的纳米复合颗粒均匀分散于酚醛树脂或环氧树脂中而制成具有高介电常数低介电损耗性能的绝缘树脂。
本发明的内容是:一种高介电常数低介电损耗绝缘树脂的制造方法,其特征是包括下列步骤:
(1)制备纳米核/壳结构复合颗粒:取0.1~10重量份有机物,加入100~300重量份丙酮中,加热到20~60℃,搅拌溶解后,加入100重量份纳米级铁电体材料,搅拌分散,保温10~15小时,真空抽滤,滤饼在80~120℃干燥,即制得具有核/壳结构的纳米复合颗粒;
所述有机物为丁腈橡胶、氯丁橡胶或聚氨脂橡胶;
(2)制备绝缘树脂:将制得的具有核/壳结构的纳米复合颗粒用高速分散机在6000~8000rpm的转速下分散于酚醛树脂或环氧树脂中、并使纳米复合颗粒在树脂中的体积百分含量为10%~40%,即制备成具有高介电常数低介电损耗性能的绝缘树脂。
本发明的内容中:所述纳米级铁电体材料为纳米级钛酸钡(BaTiO3)、纳米级钛酸锶(SrTiO3)或纳米级钛酸铅(PbTiO3)。
本发明的内容中:所述酚醛树脂为苯酚甲醛树脂或苯并噁嗪树脂。
本发明的内容中:所述环氧树脂为双酚A型环氧树脂。
本发明的内容中:所述纳米级铁电体材料的平均晶粒尺寸较好的为30~100nm。
本发明的内容中:所述有机物较好的为固态的丁腈橡胶、氯丁橡胶或聚氨脂橡胶。
所述纳米级铁电体材料表面有机包裹层的有机物的包裹量较好的为所述纳米复合颗粒添加物的0.1~10wt%。
与现有技术相比,本发明具有下列特点和有益效果:
(1)在纳米铁电体粉体表面包覆一层具有高介电常数的树脂而形成核/壳结构,一方面可以降低纳米粉体的表面能,减少颗粒团聚;而且无机粉体表面有机过渡壳层的存在提高了无机粉体与有机高分子树脂中的作用力,提高了无机粉体的分散性;另一方面,无机粉体颗粒表面吸附高介电常数树脂形成高介电常数界面层,提高无机粉体的在低介电常数有机树脂中的所表现出的表观介电常数,更好地发挥高介电铁电体的填充作用;
(2)纳米铁电体表面包覆的具有高介电常数的有机物能有效提高无机颗粒在有机树脂中的表观介电常数,充分发挥其提高有机树脂介电常数的作用;
(3)纳米核/壳结构复合颗粒能均匀分散在有机绝缘树脂溶液中,抗沉降性提高。纳米复合颗粒体积含量为10%~40%时,纳米复合颗粒在树脂溶液中的抗沉降性为单一微米颗粒的410%~475%,为单一纳米颗粒的103%~119%;
(4)纳米核/壳结构复合颗粒能均匀分散在有机绝缘树脂中,可有效提高复合材料均匀性和介电常数。纳米复合颗粒体积含量10%~40%时,用该纳米复合颗粒制备的复合树脂的介电常数为单一微米颗粒的105%~216%,为单一纳米颗粒的100%~205%,且介电损耗≤2%;
(5)纳米核/壳结构复合颗粒通过液相法制备,易于扩大到工业化生产规模。
(6)本发明提供的具有核/壳结构的纳米复合颗粒均匀分散于绝缘树脂漆中,能制备具有高介电常数低介电损耗的绝缘材料;该纳米复合颗粒可广泛应用于要求具有高介电常数低介电损耗性能的绝缘材料,如高介电常数低介电损耗绝缘树脂、高介电常数低介电损耗绝缘层压板、高介电常数低介电损耗绝缘塑料或高介电常数低介电损耗绝缘橡胶。原料来源广泛、成本低、工艺简单、易于工业扩大生产、实用性强。
本发明中粉体颗粒的抗沉降性的测试和计算方法为:
量取25ml分散好的绝缘树脂溶液于25ml具塞量筒中,1h后观察液体分层处读数,并按下式计算:
Figure A20061002149400051
本发明中树脂的介电常数和介电损耗的测试方法为:
称取150g分散好的树脂溶液,真空抽去溶剂得到无溶剂产物并冷却至室温。称取50g无溶剂产物,加入10g,放入直径10cm的模具中,热压成型(压制温度:180℃;压制压力:10Mpa)。压片在180℃下固化4h,再放置在干燥器中冷却24h。最后测试压片的相对介电常数和介电损耗(测试频率:50Hz;测试电压:1Kv)。
本专利的实施效果如下表:
填料类型   抗沉降性(%)   介电常数   介电损耗(%) 备注
  无   100   4   0.6  纯E51环氧树脂
  纳米SrTiO3纳米PbTiO3纳米BaTiO3 76~85 14~20 1.0~1.2 无机填料颗粒表面未包裹有机物;无机填料与绝缘树脂的体积比为1∶1.5
  微米BaTiO3 20 19 1.2  微米级BaTiO3,表面未包裹有机物;无机填料与绝缘树脂的体积比为1∶1.5
  纳米BaTiO3 80 20 1.2  纳米级BaTiO3,表面未包裹有机物;无机填料与绝缘树脂的体积比为1∶1.5
本专利方法生产的纳米复合颗粒 88~95 21~41 1.2~2.0  无机填料与绝缘树脂的体积比为1∶1.5;抗沉降性为微米级BaTiO3的410%~475%,为纳米级BaTiO3的103%~119%;复合树脂介电常数为微米级BaTiO3的105%~216%,为纳米级BaTiO3的100%~205%
具体实施方式
下面通过实施例对本发明的技术特点加以进一步阐明。这些实施例仅用于帮助对本发明技术的理解的目的,不得以此作为对本发明保护范围的进一步限制。
实施例1
将1g丁腈橡胶加入到100g丙酮中,加热到40℃,搅拌溶解后,加入100g平均晶粒尺寸为40nm的SrTiO3粉体(粉体密度4.8g/cm3),搅拌分散,保温10小时,真空抽滤,滤饼在100℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该纳米复合颗粒用高速分散机分散于115g E51环氧树脂丙酮溶液中(E51环氧树脂含量30%,纯环氧树脂E51固化后密度1.2g/cm3),最终制备成具有高介电常数低介电损耗性能的绝缘树脂。
实施例2
将1g丁腈橡胶加入到100g丙酮中,加热到45℃,搅拌溶解后,加入100g平均晶粒尺寸为50nm的PbTiO3粉体(粉体密度4.8g/cm3),搅拌分散,保温12小时,真空抽滤,滤饼在80℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该纳米复合颗粒用高速分散机在6000rpm的转速下分散于115g E51环氧树脂丙酮溶液中(E51环氧树脂含量30%,纯环氧树脂E51固化后密度1.2g/cm3),最终制备成具有高介电常数低介电损耗性能的绝缘树脂。
实施例3
将1g丁腈橡胶加入到100g丙酮中,加热到50℃,搅拌溶解后,加入100g平均晶粒尺寸为100nm的BaTiO3粉体(粉体密度5.2g/cm3),搅拌分散,保温15小时,真空抽滤,滤饼在110℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该纳米复合颗粒用高速分散机在6000rpm的转速下分散于125g E51环氧树脂丙酮溶液中(E51环氧树脂含量30%,纯环氧树脂E51固化后密度1.2g/cm3),最终制备成具有高介电常数低介电损耗性能的绝缘树脂。
实施例4
将1g丁腈橡胶加入到100g丙酮中,加热到40℃,搅拌溶解后,加入100g平均晶粒尺寸为80nm的BaTiO3粉体(粉体密度5.0g/cm3),搅拌分散,保温10小时,真空抽滤,滤饼在120℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该纳米复合颗粒用高速分散机在6000rpm的转速下分散于120g E51环氧树脂丙酮溶液中(E51环氧树脂含量30%,纯环氧树脂E51固化后密度1.2g/cm3),最终制备成具有高介电常数低介电损耗性能的绝缘树脂。
实施例5
将1g丁腈橡胶加入到100g丙酮中,加热到40℃,搅拌溶解后,加入100g平均晶粒尺寸为50nm的BaTiO3粉体(粉体密度4.8g/cm3),搅拌分散,保温10小时,真空抽滤,滤饼在120℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该纳米复合颗粒用高速分散机在6000rpm的转速下分散于115g E51环氧树脂丙酮溶液中(E51环氧树脂含量30%,纯环氧树脂E51固化后密度1.2g/cm3),最终制备成具有高介电常数低介电损耗性能的绝缘树脂。
实施例6
将1g氯丁橡胶加入到100g丙酮中,加热到40℃,搅拌溶解后,加入100g平均晶粒尺寸为80nm的BaTiO3粉体(粉体密度5.0g/cm3),搅拌分散,保温10小时,真空抽滤,滤饼在120℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该纳米复合颗粒用高速分散机在6000rpm的转速下分散于120g E51环氧树脂丙酮溶液中(E51环氧树脂含量30%,纯环氧树脂E51固化后密度1.2g/cm3),最终制备成具有高介电常数低介电损耗性能的绝缘树脂。
实施例7
将1g聚氨脂橡胶加入到100g丙酮中,加热到40℃,搅拌溶解后,加入100g平均晶粒尺寸80nm的BaTiO3粉体(粉体密度5.0g/cm3),搅拌分散,保温10小时,真空抽滤,滤饼在120℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该纳米复合颗粒用高速分散机在6000rpm的转速下分散于120g E51环氧树脂丙酮溶液中(E51环氧树脂含量30%,纯环氧树脂E51固化后密度1.2g/cm3),最终制备成具有高介电常数低介电损耗性能的绝缘树脂。
实施例8
将2g丁腈橡胶加入到200g丙酮中,加热到40℃,搅拌溶解后,加入100g平均晶粒尺寸80nm的BaTiO3粉体(粉体密度5.0g/cm3),搅拌分散,保温10小时,真空抽滤,滤饼在120℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该纳米复合颗粒用高速分散机在6000rpm的转速下分散于120g E51环氧树脂丙酮溶液中(E51环氧树脂含量30%,纯环氧树脂E51固化后密度1.2g/cm3),最终制备成具有高介电常数低介电损耗性能的绝缘树脂。
实施例9
将3g丁腈橡胶加入到300g丙酮中,加热到40℃,搅拌溶解后,加入100g平均晶粒尺寸80nm的BaTiO3粉体(粉体密度5.0g/cm3),搅拌分散,保温10小时,真空抽滤,滤饼在120℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该纳米复合颗粒用高速分散机在7000rpm的转速下分散于120g E51环氧树脂丙酮溶液中(E51环氧树脂含量30%,纯环氧树脂E51固化后密度1.2g/cm3),最终制备成具有高介电常数低介电损耗性能的绝缘树脂。
实施例10
将4g丁腈橡胶加入到300g丙酮中,加热到40℃,搅拌溶解后,加入100g平均晶粒尺寸80nm的BaTiO3粉体(粉体密度5.0g/cm3),搅拌分散,保温10小时,真空抽滤,滤饼在120℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该纳米复合颗粒用高速分散机在7000rpm的转速下分散于120g E51环氧树脂丙酮溶液中(E51环氧树脂含量30%,纯环氧树脂E51固化后密度1.2g/cm3),最终制备成具有高介电常数低介电损耗性能的绝缘树脂。
实施例11
将5g丁腈橡胶加入到300g丙酮中,加热到40℃,搅拌溶解后,加入100g平均晶粒尺寸80nm的BaTiO3粉体(粉体密度5.0g/cm3),搅拌分散,保温10小时,真空抽滤,滤饼在120℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该纳米复合颗粒用高速分散机在8000rpm的转速下分散于120g E51环氧树脂丙酮溶液中(E51环氧树脂含量30%,纯环氧树脂E51固化后密度1.2g/cm3),最终制备成具有高介电常数低介电损耗性能的绝缘树脂。
实施例12
将6g丁腈橡胶加入到300g丙酮中,加热到40℃,搅拌溶解后,加入100g平均晶粒尺寸80nm的BaTiO3粉体(粉体密度5.0g/cm3),搅拌分散,保温10小时,真空抽滤,滤饼在120℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该纳米复合颗粒用高速分散机在8000rpm的转速下分散于120g E51环氧树脂丙酮溶液中(E51环氧树脂含量30%,纯环氧树脂E51固化后密度1.2g/cm3),最终制备成具有高介电常数低介电损耗性能的绝缘树脂。
实施例13
将7g丁腈橡胶加入到300g丙酮中,加热到40℃,搅拌溶解后,加入100g平均晶粒尺寸80nm的BaTiO3粉体(粉体密度5.0g/cm3),搅拌分散,保温10小时,真空抽滤,滤饼在120℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该纳米复合颗粒用高速分散机在8000rpm的转速下分散于120g E51环氧树脂丙酮溶液中(E51环氧树脂含量30%,纯环氧树脂E51固化后密度1.2g/cm3),最终制备成具有高介电常数低介电损耗性能的绝缘树脂。
实施例14
将8g丁腈橡胶加入到300g丙酮中,加热到40℃,搅拌溶解后,加入100g平均晶粒尺寸80nm的BaTiO3粉体(粉体密度5.0g/cm3),搅拌分散,保温10小时,真空抽滤,滤饼在120℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该纳米复合颗粒用高速分散机在8000rpm的转速下分散于120g E51环氧树脂丙酮溶液中(E51环氧树脂含量30%,纯环氧树脂E51固化后密度1.2g/cm3),最终制备成具有高介电常数低介电损耗性能的绝缘树脂。
实施例15
将9g丁腈橡胶加入到300g丙酮中,加热到40℃,搅拌溶解后,加入100g平均晶粒尺寸80nm的BaTiO3粉体(粉体密度5.0g/cm3),搅拌分散,保温10小时,真空抽滤,滤饼在120℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该纳米复合颗粒用高速分散机在8000rpm的转速下分散于120g E51环氧树脂丙酮溶液中(E51环氧树脂含量30%,纯环氧树脂E51固化后密度1.2g/cm3),最终制备成具有高介电常数低介电损耗性能的绝缘树脂。
实施例16
将10g丁腈橡胶加入到300g丙酮中,加热到40℃,搅拌溶解后,加入100g平均晶粒尺寸80nm的BaTiO3粉体(粉体密度5.0g/cm3),搅拌分散,保温10小时,真空抽滤,滤饼在120℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该纳米复合颗粒用高速分散机在8000rpm的转速下分散于120g E51环氧树脂丙酮溶液中(E51环氧树脂含量30%,纯环氧树脂E51固化后密度1.2g/cm3),最终制备成具有高介电常数低介电损耗性能的绝缘树脂。
实施例17
将1g丁腈橡胶加入到300g丙酮中,加热到40℃,搅拌溶解后,加入100g平均晶粒尺寸80nm的BaTiO3粉体(粉体密度5.0g/cm3),搅拌分散,保温10小时,真空抽滤,滤饼在120℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该纳米复合颗粒用高速分散机在8000rpm的转速下分散于112g苯酚甲醛树脂丙酮溶液中(苯酚甲醛树脂含量30%,纯树脂固化后密度1.12g/cm3),最终制备成具有高介电常数低介电损耗性能的绝缘树脂。
实施例18
将1g丁腈橡胶加入到300g丙酮中,加热到40℃,搅拌溶解后,加入100g平均晶粒尺寸80nm的BaTiO3粉体(粉体密度5.0g/cm3),搅拌分散,保温10小时,真空抽滤,滤饼在120℃下干燥24h,得到具有核/壳结构的纳米复合颗粒;将该复合颗粒用高速分散机在8000rpm的转速下分散于116g苯并噁嗪树脂(树脂含量30%,纯树脂固化后密度1.16g/cm3)丙酮溶液中,最终制备成具有高介电常数低介电损耗性能的绝缘树脂。

Claims (6)

1、一种高介电常数低介电损耗绝缘树脂的制造方法,其特征是包括下列步骤:
(1)制备纳米核/壳结构复合颗粒:取0.1~10重量份有机物,加入100~300重量份丙酮中,加热到20~60℃,搅拌溶解后,加入100重量份纳米级铁电体材料,搅拌分散,保温10~15小时,真空抽滤,滤饼在80~120℃干燥,即制得具有核/壳结构的纳米复合颗粒;
所述有机物为丁腈橡胶、氯丁橡胶或聚氨脂橡胶;
(2)制备绝缘树脂:将制得的具有核/壳结构的纳米复合颗粒用高速分散机在6000~8000rpm的转速下分散于酚醛树脂或环氧树脂中、并使纳米复合颗粒在树脂中的体积百分含量为10%~40%,即制备成具有高介电常数低介电损耗性能的绝缘树脂。
2、按权利要求1所述高介电常数低介电损耗绝缘树脂的制造方法,其特征是:所述纳米级铁电体材料为纳米级钛酸钡、纳米级钛酸锶或纳米级钛酸铅。
3、按权利要求1或2所述高介电常数低介电损耗绝缘树脂的制造方法,其特征是:所述酚醛树脂为苯酚甲醛树脂或苯并噁嗪树脂。
4、按权利要求1或2所述高介电常数低介电损耗绝缘树脂的制造方法,其特征是:所述环氧树脂为双酚A型环氧树脂。
5、按权利要求1或2所述高介电常数低介电损耗绝缘树脂的制造方法,其特征是:所述纳米级铁电体材料的平均晶粒尺寸为30~100nm。
6、按权利要求1所述高介电常数低介电损耗绝缘树脂的制造方法,其特征是:所述有机物为固态的丁腈橡胶、氯丁橡胶或聚氨脂橡胶。
CNB2006100214947A 2006-07-28 2006-07-28 一种高介电常数低介电损耗绝缘树脂的制造方法 Active CN100424124C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100214947A CN100424124C (zh) 2006-07-28 2006-07-28 一种高介电常数低介电损耗绝缘树脂的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100214947A CN100424124C (zh) 2006-07-28 2006-07-28 一种高介电常数低介电损耗绝缘树脂的制造方法

Publications (2)

Publication Number Publication Date
CN1903923A true CN1903923A (zh) 2007-01-31
CN100424124C CN100424124C (zh) 2008-10-08

Family

ID=37673297

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100214947A Active CN100424124C (zh) 2006-07-28 2006-07-28 一种高介电常数低介电损耗绝缘树脂的制造方法

Country Status (1)

Country Link
CN (1) CN100424124C (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103059364A (zh) * 2012-11-14 2013-04-24 安徽江威精密制造有限公司 一种耐寒的电容外壳橡胶包裹料
CN103101252A (zh) * 2013-01-23 2013-05-15 陕西生益科技有限公司 一种高介电常数、低损耗cem-3覆铜板的制作方法
CN104403262A (zh) * 2014-11-06 2015-03-11 上海复合材料科技有限公司 一种高介电低损耗酚醛玻璃纤维复合材料及其制备方法
CN110669182A (zh) * 2019-10-10 2020-01-10 深圳市峰泳科技有限公司 聚合物基介电材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162977A (en) * 1991-08-27 1992-11-10 Storage Technology Corporation Printed circuit board having an integrated decoupling capacitive element
US6616794B2 (en) * 1998-05-04 2003-09-09 Tpl, Inc. Integral capacitance for printed circuit board using dielectric nanopowders
US7008981B2 (en) * 2003-12-23 2006-03-07 Industrial Technology Reserarch Institute Organic-inorganic hybrid compositions with high dielectric constant and high thermal stability, and cured compositions thereof
CN1269903C (zh) * 2005-05-27 2006-08-16 东南大学 纳米钛酸钡/聚氨酯弹性体复合材料的合成方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103059364A (zh) * 2012-11-14 2013-04-24 安徽江威精密制造有限公司 一种耐寒的电容外壳橡胶包裹料
CN103101252A (zh) * 2013-01-23 2013-05-15 陕西生益科技有限公司 一种高介电常数、低损耗cem-3覆铜板的制作方法
CN103101252B (zh) * 2013-01-23 2016-04-13 陕西生益科技有限公司 一种高介电常数、低损耗cem-3覆铜板的制作方法
CN104403262A (zh) * 2014-11-06 2015-03-11 上海复合材料科技有限公司 一种高介电低损耗酚醛玻璃纤维复合材料及其制备方法
CN110669182A (zh) * 2019-10-10 2020-01-10 深圳市峰泳科技有限公司 聚合物基介电材料及其制备方法

Also Published As

Publication number Publication date
CN100424124C (zh) 2008-10-08

Similar Documents

Publication Publication Date Title
CN101712784B (zh) 一种核壳结构填料/聚合物基复合材料及其制备方法
CN1841589A (zh) 金属/陶瓷/聚合物复合材料及制造嵌入电容器的方法
CN107573645A (zh) 一种内置式高介电常数柔性树脂复合材料及其制备方法和应用
CN103849008A (zh) 杂化颗粒、聚合物基复合材料及其制备方法与应用
CN1629992A (zh) 通过旋涂法制造层压陶瓷电容器的方法及层压陶瓷电容器
CN101677033A (zh) 一种聚合物基复合电介质材料及平板型电容器
CN1903923A (zh) 一种高介电常数低介电损耗绝缘树脂的制造方法
Sheng et al. Improved energy density in core–shell poly (dopamine) coated barium titanate/poly (fluorovinylidene-co-trifluoroethylene) nanocomposite with interfacial polarization
CN1787119A (zh) 电介质陶瓷的溶胶组合物和电介质陶瓷及多层陶瓷电容器
CN105542476A (zh) 一种高电绝缘强度的导热硅橡胶及其制备方法
CN1621182A (zh) 含碳的镍粒子粉末及其制造方法
CN1227186C (zh) 介电体陶瓷原料粉末的制造方法及介电体陶瓷原料粉末
CN101047049A (zh) 导电性膏组合物和印刷电路板
TWI352663B (en) Paste composition and dielectric composition
CN101007892A (zh) 一种核壳结构的聚合物基复合材料及其制备方法
KR101348950B1 (ko) 무소결 세라믹 하이브리드 기판의 층간 접속을 위한 도전성 비아 페이스트 및 그 제조방법
CN103467986A (zh) 有机小分子修饰的纳米碳化钛/聚酰亚胺复合材料
CN112778744A (zh) 高储能密度聚芳醚腈基复合材料及其制备方法和应用
CN107189286B (zh) 一种抗氧化的杂化颗粒及其聚合物基复合材料
TWI262204B (en) Resin composition having high dielectric constant and uses thereof
CN115073932B (zh) 一种高介电液晶高分子复合材料及其制备方法
CN113999461B (zh) 基于聚四甲基一戊烯-钛酸钡纳米粒子改性复合薄膜的制备方法
KR101890849B1 (ko) 고에너지 밀도를 가지는 고유전 고분자 복합체 및 이의 제조방법
CN1821304A (zh) 一种高介电常数复合物及其制法和用途
CN109401142B (zh) 一种具有海岛结构的pvdf基复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP02 Change in the address of a patent holder

Address after: Samsung road 621000 Mianyang city of Sichuan province Youxian District No. 188

Patentee after: Sichuan Dongcai Technology Group Co., Ltd.

Address before: 621000 Sichuan city of Mianyang province high tech Zone Puming Road No. 95

Patentee before: Sichuan Dongcai Technology Group Co., Ltd.