TWI352663B - Paste composition and dielectric composition - Google Patents
Paste composition and dielectric composition Download PDFInfo
- Publication number
- TWI352663B TWI352663B TW93109156A TW93109156A TWI352663B TW I352663 B TWI352663 B TW I352663B TW 93109156 A TW93109156 A TW 93109156A TW 93109156 A TW93109156 A TW 93109156A TW I352663 B TWI352663 B TW I352663B
- Authority
- TW
- Taiwan
- Prior art keywords
- composition
- dielectric
- average particle
- inorganic
- weight
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims description 257
- 239000002245 particle Substances 0.000 claims description 130
- 229920005989 resin Polymers 0.000 claims description 92
- 239000011347 resin Substances 0.000 claims description 92
- 229910002113 barium titanate Inorganic materials 0.000 claims description 80
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 claims description 78
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 76
- 229910052707 ruthenium Inorganic materials 0.000 claims description 76
- 239000002904 solvent Substances 0.000 claims description 67
- 239000011800 void material Substances 0.000 claims description 40
- 239000011256 inorganic filler Substances 0.000 claims description 33
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 33
- 239000003822 epoxy resin Substances 0.000 claims description 31
- 229920000647 polyepoxide Polymers 0.000 claims description 31
- 238000009835 boiling Methods 0.000 claims description 30
- 229910052684 Cerium Inorganic materials 0.000 claims description 20
- 239000002253 acid Substances 0.000 claims description 19
- 239000002270 dispersing agent Substances 0.000 claims description 17
- 230000003287 optical effect Effects 0.000 claims description 11
- 239000007787 solid Substances 0.000 claims description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims description 8
- 229920001187 thermosetting polymer Polymers 0.000 claims description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 5
- HOQPTLCRWVZIQZ-UHFFFAOYSA-H bis[[2-(5-hydroxy-4,7-dioxo-1,3,2$l^{2}-dioxaplumbepan-5-yl)acetyl]oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HOQPTLCRWVZIQZ-UHFFFAOYSA-H 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 239000011777 magnesium Substances 0.000 claims description 5
- 229940091250 magnesium supplement Drugs 0.000 claims description 5
- KKMOSYLWYLMHAL-UHFFFAOYSA-N 2-bromo-6-nitroaniline Chemical compound NC1=C(Br)C=CC=C1[N+]([O-])=O KKMOSYLWYLMHAL-UHFFFAOYSA-N 0.000 claims description 4
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 claims description 3
- NKTZYSOLHFIEMF-UHFFFAOYSA-N dioxido(dioxo)tungsten;lead(2+) Chemical compound [Pb+2].[O-][W]([O-])(=O)=O NKTZYSOLHFIEMF-UHFFFAOYSA-N 0.000 claims description 3
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 claims description 3
- 239000004408 titanium dioxide Substances 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- GVCNCMWDLSCIJO-UHFFFAOYSA-N [Mg][Sr][Ba] Chemical compound [Mg][Sr][Ba] GVCNCMWDLSCIJO-UHFFFAOYSA-N 0.000 claims description 2
- IJBYNGRZBZDSDK-UHFFFAOYSA-N barium magnesium Chemical compound [Mg].[Ba] IJBYNGRZBZDSDK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229960005336 magnesium citrate Drugs 0.000 claims description 2
- 239000004337 magnesium citrate Substances 0.000 claims description 2
- 235000002538 magnesium citrate Nutrition 0.000 claims description 2
- DJZHPOJZOWHJPP-UHFFFAOYSA-N magnesium;dioxido(dioxo)tungsten Chemical compound [Mg+2].[O-][W]([O-])(=O)=O DJZHPOJZOWHJPP-UHFFFAOYSA-N 0.000 claims description 2
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 claims description 2
- PLSARIKBYIPYPF-UHFFFAOYSA-H trimagnesium dicitrate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O PLSARIKBYIPYPF-UHFFFAOYSA-H 0.000 claims description 2
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 claims description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims 4
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 claims 2
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 claims 2
- 150000002148 esters Chemical group 0.000 claims 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 claims 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 claims 2
- AXVCDCGTJGNMKM-UHFFFAOYSA-L C(C=1C(C(=O)[O-])=CC=CC1)(=O)[O-].[Ag+2] Chemical compound C(C=1C(C(=O)[O-])=CC=CC1)(=O)[O-].[Ag+2] AXVCDCGTJGNMKM-UHFFFAOYSA-L 0.000 claims 1
- CABZCTGIMCSWCV-UHFFFAOYSA-N [Ag][Sr][Pb] Chemical compound [Ag][Sr][Pb] CABZCTGIMCSWCV-UHFFFAOYSA-N 0.000 claims 1
- SKKNACBBJGLYJD-UHFFFAOYSA-N bismuth magnesium Chemical compound [Mg].[Bi] SKKNACBBJGLYJD-UHFFFAOYSA-N 0.000 claims 1
- LGRDPUAPARTXMG-UHFFFAOYSA-N bismuth nickel Chemical compound [Ni].[Bi] LGRDPUAPARTXMG-UHFFFAOYSA-N 0.000 claims 1
- 125000000686 lactone group Chemical group 0.000 claims 1
- UHNWOJJPXCYKCG-UHFFFAOYSA-L magnesium oxalate Chemical compound [Mg+2].[O-]C(=O)C([O-])=O UHNWOJJPXCYKCG-UHFFFAOYSA-L 0.000 claims 1
- 239000013589 supplement Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 67
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 64
- 239000006185 dispersion Substances 0.000 description 61
- 239000000243 solution Substances 0.000 description 31
- 239000010408 film Substances 0.000 description 30
- 239000000758 substrate Substances 0.000 description 29
- 239000003990 capacitor Substances 0.000 description 28
- 239000000463 material Substances 0.000 description 28
- 238000011049 filling Methods 0.000 description 24
- 238000005259 measurement Methods 0.000 description 22
- 238000012360 testing method Methods 0.000 description 22
- 239000011229 interlayer Substances 0.000 description 19
- 239000000126 substance Substances 0.000 description 18
- 239000011810 insulating material Substances 0.000 description 17
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 16
- 206010036790 Productive cough Diseases 0.000 description 15
- 239000010410 layer Substances 0.000 description 15
- 210000003802 sputum Anatomy 0.000 description 15
- 208000024794 sputum Diseases 0.000 description 15
- 238000011156 evaluation Methods 0.000 description 14
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 12
- 239000002131 composite material Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- 239000010949 copper Substances 0.000 description 10
- 239000013078 crystal Substances 0.000 description 10
- 229920001577 copolymer Polymers 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- -1 for example Polymers 0.000 description 9
- 239000005457 ice water Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 238000000498 ball milling Methods 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000000052 vinegar Substances 0.000 description 7
- 235000021419 vinegar Nutrition 0.000 description 7
- 229910019142 PO4 Inorganic materials 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 6
- 239000010452 phosphate Substances 0.000 description 6
- 239000004848 polyfunctional curative Substances 0.000 description 6
- VGVHNLRUAMRIEW-UHFFFAOYSA-N 4-methylcyclohexan-1-one Chemical compound CC1CCC(=O)CC1 VGVHNLRUAMRIEW-UHFFFAOYSA-N 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 239000004721 Polyphenylene oxide Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000004922 lacquer Substances 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229920000570 polyether Polymers 0.000 description 5
- JTXMVXSTHSMVQF-UHFFFAOYSA-N 2-acetyloxyethyl acetate Chemical compound CC(=O)OCCOC(C)=O JTXMVXSTHSMVQF-UHFFFAOYSA-N 0.000 description 4
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- 239000002738 chelating agent Substances 0.000 description 4
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 238000001027 hydrothermal synthesis Methods 0.000 description 4
- 229920003986 novolac Polymers 0.000 description 4
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 3
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 229930188620 butyrolactone Natural products 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 240000007817 Olea europaea Species 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- JTCFNJXQEFODHE-UHFFFAOYSA-N [Ca].[Ti] Chemical compound [Ca].[Ti] JTCFNJXQEFODHE-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- MQWCXKGKQLNYQG-UHFFFAOYSA-N methyl cyclohexan-4-ol Natural products CC1CCC(O)CC1 MQWCXKGKQLNYQG-UHFFFAOYSA-N 0.000 description 2
- RLUCXJBHKHIDSP-UHFFFAOYSA-N propane-1,2-diol;propanoic acid Chemical compound CCC(O)=O.CC(O)CO RLUCXJBHKHIDSP-UHFFFAOYSA-N 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- CKGKXGQVRVAKEA-UHFFFAOYSA-N (2-methylphenyl)-phenylmethanone Chemical compound CC1=CC=CC=C1C(=O)C1=CC=CC=C1 CKGKXGQVRVAKEA-UHFFFAOYSA-N 0.000 description 1
- LNOLJFCCYQZFBQ-BUHFOSPRSA-N (ne)-n-[(4-nitrophenyl)-phenylmethylidene]hydroxylamine Chemical compound C=1C=C([N+]([O-])=O)C=CC=1C(=N/O)/C1=CC=CC=C1 LNOLJFCCYQZFBQ-BUHFOSPRSA-N 0.000 description 1
- YIWGJFPJRAEKMK-UHFFFAOYSA-N 1-(2H-benzotriazol-5-yl)-3-methyl-8-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carbonyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione Chemical compound CN1C(=O)N(c2ccc3n[nH]nc3c2)C2(CCN(CC2)C(=O)c2cnc(NCc3cccc(OC(F)(F)F)c3)nc2)C1=O YIWGJFPJRAEKMK-UHFFFAOYSA-N 0.000 description 1
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical group C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- WOYWLLHHWAMFCB-UHFFFAOYSA-N 2-ethylhexyl acetate Chemical compound CCCCC(CC)COC(C)=O WOYWLLHHWAMFCB-UHFFFAOYSA-N 0.000 description 1
- HXDLWJWIAHWIKI-UHFFFAOYSA-N 2-hydroxyethyl acetate Chemical compound CC(=O)OCCO HXDLWJWIAHWIKI-UHFFFAOYSA-N 0.000 description 1
- MFKRHJVUCZRDTF-UHFFFAOYSA-N 3-methoxy-3-methylbutan-1-ol Chemical compound COC(C)(C)CCO MFKRHJVUCZRDTF-UHFFFAOYSA-N 0.000 description 1
- QMYGFTJCQFEDST-UHFFFAOYSA-N 3-methoxybutyl acetate Chemical compound COC(C)CCOC(C)=O QMYGFTJCQFEDST-UHFFFAOYSA-N 0.000 description 1
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 1
- 241000208140 Acer Species 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 230000005653 Brownian motion process Effects 0.000 description 1
- XMDINGKPAQMLGV-UHFFFAOYSA-N C1(=CC=CC=C1)P(C1=CC=CC=C1)C1=CC=CC=C1.C1(=CC=CC=C1)P(C1=CC=CC=C1)C1=CC=CC=C1.C1(=CC=CC=C1)P(C1=CC=CC=C1)C1=CC=CC=C1 Chemical compound C1(=CC=CC=C1)P(C1=CC=CC=C1)C1=CC=CC=C1.C1(=CC=CC=C1)P(C1=CC=CC=C1)C1=CC=CC=C1.C1(=CC=CC=C1)P(C1=CC=CC=C1)C1=CC=CC=C1 XMDINGKPAQMLGV-UHFFFAOYSA-N 0.000 description 1
- 101100279438 Caenorhabditis elegans egg-3 gene Proteins 0.000 description 1
- 241000270722 Crocodylidae Species 0.000 description 1
- 102100035861 Cytosolic 5'-nucleotidase 1A Human genes 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- 101000802744 Homo sapiens Cytosolic 5'-nucleotidase 1A Proteins 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 244000131316 Panax pseudoginseng Species 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- 240000007643 Phytolacca americana Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- LOUPRKONTZGTKE-WZBLMQSHSA-N Quinine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-WZBLMQSHSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- FHKPLLOSJHHKNU-INIZCTEOSA-N [(3S)-3-[8-(1-ethyl-5-methylpyrazol-4-yl)-9-methylpurin-6-yl]oxypyrrolidin-1-yl]-(oxan-4-yl)methanone Chemical compound C(C)N1N=CC(=C1C)C=1N(C2=NC=NC(=C2N=1)O[C@@H]1CN(CC1)C(=O)C1CCOCC1)C FHKPLLOSJHHKNU-INIZCTEOSA-N 0.000 description 1
- HUVSVEZKLBFKTA-UHFFFAOYSA-N [Ca].[W] Chemical compound [Ca].[W] HUVSVEZKLBFKTA-UHFFFAOYSA-N 0.000 description 1
- FMAUXABAQODLLT-UHFFFAOYSA-N [Sb].[Ba] Chemical compound [Sb].[Ba] FMAUXABAQODLLT-UHFFFAOYSA-N 0.000 description 1
- ITVXALCWBIYZPP-UHFFFAOYSA-N [Sn].[Ba] Chemical compound [Sn].[Ba] ITVXALCWBIYZPP-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 1
- 230000005250 beta ray Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- SZKXDURZBIICCF-UHFFFAOYSA-N cobalt;pentane-2,4-dione Chemical compound [Co].CC(=O)CC(C)=O SZKXDURZBIICCF-UHFFFAOYSA-N 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004807 desolvation Methods 0.000 description 1
- LNNWVNGFPYWNQE-GMIGKAJZSA-N desomorphine Chemical compound C1C2=CC=C(O)C3=C2[C@]24CCN(C)[C@H]1[C@@H]2CCC[C@@H]4O3 LNNWVNGFPYWNQE-GMIGKAJZSA-N 0.000 description 1
- ZYMCGHKVJXMQRR-UHFFFAOYSA-N dimethylarsenic Chemical compound C[As]C ZYMCGHKVJXMQRR-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 210000003195 fascia Anatomy 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 229910052920 inorganic sulfate Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- YJOMWQQKPKLUBO-UHFFFAOYSA-L lead(2+);phthalate Chemical compound [Pb+2].[O-]C(=O)C1=CC=CC=C1C([O-])=O YJOMWQQKPKLUBO-UHFFFAOYSA-L 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- SYJBLFMEUQWNFD-UHFFFAOYSA-N magnesium strontium Chemical compound [Mg].[Sr] SYJBLFMEUQWNFD-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- ZBSCCQXBYNSKPV-UHFFFAOYSA-N oxolead;oxomagnesium;2,4,5-trioxa-1$l^{5},3$l^{5}-diniobabicyclo[1.1.1]pentane 1,3-dioxide Chemical compound [Mg]=O.[Pb]=O.[Pb]=O.[Pb]=O.O1[Nb]2(=O)O[Nb]1(=O)O2 ZBSCCQXBYNSKPV-UHFFFAOYSA-N 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- YGSFNCRAZOCNDJ-UHFFFAOYSA-N propan-2-one Chemical compound CC(C)=O.CC(C)=O YGSFNCRAZOCNDJ-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- MHNHYTDAOYJUEZ-UHFFFAOYSA-N triphenylphosphane Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 MHNHYTDAOYJUEZ-UHFFFAOYSA-N 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/02—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/40—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/002—Inhomogeneous material in general
- H01B3/006—Other inhomogeneous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/10—Metal-oxide dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/20—Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
- H05K1/162—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0206—Materials
- H05K2201/0209—Inorganic, non-metallic particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31511—Of epoxy ether
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Ceramic Engineering (AREA)
- Inorganic Insulating Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
1352663 玖、發明說明: 【發明所屬之技術領域】 本發明係有關一種具有作爲電容器或具作爲電容器功 能之電路材料用層間絕緣材料或光配線材料的適合特性之 介電體組成物。 【先前技術】 近年來,伴隨電子機器小型化、信號高速化或大容量 化之要求,進行實裝電路零件之高密度化。然而,會有電 氣噴嘴增大且產生數據誤差的問題。爲控制產生電氣噴4 、使半導體裝置安定運作時,在接近半導體裝置的位置供 應必要量之電流係極爲重要。因此,在半導體裝置正下方 配置大容量的電容器作爲除偶合電容器極爲有效。 此處,在印刷配線板上配置電容器的方法,有在印刷 配線板上配置晶片電容器等之外部電容器的方法。然而,就 小型化而言在印刷配線板之內層加入無機塡充物,使印刷 配線板本身具有電容器功能的方法極爲有利,使用混合有 無機塡充物與樹脂之複合體作爲層間絕緣材料的方法(日本® 特開平5-57852號公報、特開平6-854丨3號公報)係爲已知 。然而,藉由上述方法,複合體之比介電率爲1〇〜20之低 値。 含有無機塡充物之複合介電體,可藉由增大無機塡充 物之添加量以提高比介電率,惟無機塡充物之含有率大於 50體積%時即使增加無機塡充物之含量,仍會有無法提高 比介電率的問題。而且,由於在樹脂中混合多量高介電率 -Ί- 1352663 無機塡充物時會形成高黏度,通常必須使用多量溶劑。 目前之高介電體組成物係使含有無機塡充物、樹脂及 溶劑之糊膏組成物脫溶劑、硬化予以製作(特開平1 0- 1 584 72 號公報)。然而,使用的溶劑之量過多時,會因殘留溶劑致 使耐熱性降低 '或表層上產生空隙等之缺點。 製得高比介電率的方法,有藉由添加具有2種以上粒 徑之塡充物以提高塡充物之塡充率,使比介電率提高的方 法(特開昭5 3- 88 1 9 8號公報、特開200 1 -23 3669號公報)係 爲已知。然而,此等所使用的塡充物,係具有最大平均fj# 徑之塡充物的平均粒徑爲5μχη以上之大値,使該塡充物與 樹脂混合所得的複合體之膜厚約爲3 0 0μπα,無法得到企求 的厚度。 另外,提高介電率的方法係有使用粒徑大的無機塡充 物之方法。塡充物之介電率與塡充物之結晶構造有關。一 般而言,無機結晶如鈦酸鋇等,在脫離陰離子與陽離子之 重心位置具有大的介電率。使用作爲塡充物時,由於粒徑 變小時,一般而言結晶粒子之尺寸亦變小,粒子表面能量® 變大、系全體之能量降低,故結晶構造之對稱性爲較高者 。結晶構造之對稱性變高時,由於在脫離陰離子與陽離子 之重心位置變少,故介電率變小。因此,藉由使用粒徑大 的塡充物,可使介電率變大。特別是鈦酸鋇之該效果顯著 。例如,在塡充物中使用平均粒徑1 5 μιη之鈦酸鋇,使用乙 基卡必醇(沸點爲202。〇之例(特開平8-293429號公報)。然 而,由於塡充物之粒徑變大、塡充物之比表面積變小,即 -8- 1352663 使使用沸點高的溶劑,加熱時之脫溶劑在較低溫下、短時 間內進行。如此由於伴隨系全體之收縮的樹脂或塡充物以 較快速度移動而引起脫溶劑,產生很多空隙。空隙之產生 係爲介電率降低的原因。使用塡充物之平均粒徑大者時,塡 充物之介電率變大,即使使用高沸點溶劑仍無法抑制上述 之空隙產生,結果無法得到介電率爲52之大値。此外,由 於使用15μιη之大平均粒徑的塡充物(特開平8-293429號公 報),無法得到膜厚爲25μηι之大値,故靜電容量密度爲 1.8nF/cm2 之小値。 另外,爲實現實裝於內部之系統小型、薄型化時,急 速進行開發混載記憶體與端子數多的L S I之高密度S i P (系 統內封裝),惟在該SiP中內藏的電容器強烈要求薄型化, 該電容器用層間絕緣材料之膜厚必須爲1 ομιη以下。因此, 目前之技術無法滿足ΙΟμιη以下之薄型化要求,於攜帶用電 話等之攜帶型機器高性能化中無法對應急速要求的薄型化 需求。 此外,電容器之靜電容量由於與層間絕緣材料之膜^ 成相反比例,就電容器之大靜電容量化而言使層間絕緣材 料之膜厚變薄較佳。 而且,層間絕緣材料所要求的重要基本特性例如低線 膨脹係數。樹脂本身之線膨脹係數爲50ppm/°C以上,與作 爲配線層之金屬、例如銅之線膨脹係數(1 7ppm/°C )相比,係 極大。因此,使用僅由樹脂所成的層間絕緣材料時,由於 與配線層之線膨脹係數不同,因應力而產生層間剝離或配 -9- 1352663 線斷裂等之缺點。¥彳此而g,由於在樹脂中使無機塡充物 複合化時可使線膨脹係數降低,故使用使無機塡充物與樹 脂混合的複合體作爲層間絕緣材料時可與配線層之線膨脹 係數的値類似。然而,習知方法無法使無機塡充物充分高 塡充化,且無法使配線層之線膨脹係數降至類似値。 【發明內容】 有鑑於上述情形,本發明係以製得線膨脹係數低的高 介電體組成物爲目的,以及提供一種可充分達成作爲內藏 於高密度SiP之大靜電容量電容器用層間絕緣材料薄型$ 的介電體組成物與光配線材料。 換言之,本發明係提供一種糊膏組成物,其係於含有 無機塡充物、樹脂、及溶劑(沸點爲1 6 0 t以上之溶劑)所成. 的糊膏組成物中,其特徵爲溶劑爲具有1種以上沸點爲1 60 °C以上之溶劑,且具有塡充物之平均粒徑爲5 μ m以下之無 機塡充物,且全部溶劑量爲糊膏組成物總量之2 5重量%以 下。 而且,本發明之另一形態係爲一種介電體組成物,# 係於具有無機塡充物與樹脂之介電體組成物中,其特徵爲 無機塡充物至少具有2種平均粒徑,且於該平均粒徑中最. 大平均粒徑爲0.1〜5μιη,對最小平均粒徑而言最大平均粒 徑爲3倍以上。 藉由本發明,可容易製得比介電率爲50以上之高介電 體的組成物。另外,本發明之組成物由於具有近似配線金 屬之線膨脹係數的低線膨脹係數,故使用作爲層間絕緣材 -10- 1352663 料時在與配線層之間不易產生剝離或配線斷裂的缺點,可 製得具有高信賴性之電容器。此外,可容易製得具有均勻. 膜厚、均勻物性之薄膜。此係爲適合大靜電容量,對於內 藏於高密度SiP之電容器或具有作爲電容器之功能的電路 基板材料用層間絕緣材料極爲有用。 【實施方式】 爲實施發明之最佳形態 本發明之糊膏組成物,係於由無機塡充物、樹脂、及 溶劑(沸點爲1 60°C以上之溶劑)所成的糊膏組成物中,其β 徵爲具有塡充物之平均粒徑爲5μιη以下之無機塡充物,且 包含溶劑(爲沸點爲160°C以上之溶劑),且全部溶劑量爲糊 膏組成物總量之2 5重量%以下。 而且,本發明之介電體組成物,其係於具有無機塡充 物與樹脂之介電體組成物中,其特徵爲至少含有2種平均 粒徑之無機塡充物,其中具有最大平均粒徑之無機塡充物 的平均粒徑爲〇 . 1〜5 μχη ,對最小平均粒徑而言最大平均粒 徑爲3倍以上。 ® 本發明之糊膏組成物中全溶劑量必須爲糊膏組成物總 量之25重量%以下。較佳者爲20重量%以下、更佳者爲10 重量%以下。而且,以1重量%以上較佳。溶劑量爲25重 量。/〇以下時,可控制因乾燥時之溶劑揮發而產生空隙,使介 電體組成物之比介電率提高。此外,由於吸濕原因之空隙 量減小,可使因水分影響之物性變化減小。另外,保存耐 久性優異。溶劑量大於2 5重量%時,大多會有除去溶劑之 1352663 乾燥工程及熱硬化工程中空隙部增加,且介電體組成物之 比介電率降低的情形。溶劑量小於1重量%時,由於溶劑少 會損及糊膏組成物之黏度或均一性。 而且,有關提高無機塡充物之塡充率,因上述溶劑量 之影響而變大,無機塡充物爲糊膏組成物中所含固成份的 85重量%時,本發明之效果特別大。 本發明所使用的溶劑,至少一種沸點必須爲1 60°C以上 。較佳者爲180°C以上、更佳者爲200°C以上。溶劑之沸點 爲160°C以上時,可抑制空隙產生且可使介電體組成物之I;# 介電率提高。沸點小於160°C時,由於溶劑之揮發速度變快, 無法追上因熱處理時物質移動之緻密化,大多會有空隙部 增加且介電體組成物之比介電率降低情形。此外,本發明 所使用的溶劑以沸點爲300°C以下較佳、更佳者爲280°C以 下。沸點高於2 8 (TC時,爲脫溶劑之處理時爲高溫,因高溫 化致使樹脂分解且引起介電特性惡化。而且,大於30(TC時, 樹脂之分解較爲激烈,引起機械強度降低。本發明之糊膏 組成物所使用的溶劑可以僅爲一種沸點160°C以上者,惟# 有沸點爲1 60°C以上之溶劑時亦可含有除此外之溶劑。 沸點爲160°C以上之溶劑,有茱.、丙酮基丙酮、甲基環 己酮、二異丁酮、甲基苯酮、二甲基亞碾、γ·丁內醋、異 佛爾酮、二乙基甲醯胺、二甲基乙醯胺、Ν-甲基吡咯烷酮 、γ-丁內醯胺、乙二醇乙酸酯、3 -甲氧基-3-甲基丁醇及其 乙酸酯、3-甲氧基丁基乙酸酯、2-乙基己基乙酸酯、草酸 酯、丙二酸二乙酯、馬來酸酯、碳酸丙烯酯、丁基溶纖劑 -12- 1352663 該介電體組成物之比介電率以複合體之比介電率 、即下述記載的對數混合則(1)爲基準(陶瓷材料科學人門( 應用篇)、內田老鶴甫新社、W.D.Kingery著、小松和藏等 人譯、p912)。具有高介電率之無機塡充物的含量愈高時所 得介電體組成物之比介電率愈高。 logs =;乂_1〇8£| (1) ε:複合體之比介電率 εί:複合體之各成份的比介電率BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric composition having suitable characteristics as a capacitor or an interlayer insulating material or an optical wiring material for a circuit material functioning as a capacitor. [Prior Art] In recent years, with the demand for miniaturization of electronic equipment, high-speed signals, and large capacity, the density of mounted circuit components has been increased. However, there is a problem that the electric nozzle is increased and data errors are generated. In order to control the generation of the electrical spray 4 and stabilize the operation of the semiconductor device, it is extremely important to supply a necessary amount of current to a position close to the semiconductor device. Therefore, it is extremely effective to dispose a large-capacity capacitor directly under the semiconductor device as a coupling-capacitor. Here, a method of arranging a capacitor on a printed wiring board is a method of arranging an external capacitor such as a chip capacitor on a printed wiring board. However, in terms of miniaturization, it is extremely advantageous to add an inorganic ruthenium to the inner layer of the printed wiring board, and to make the printed wiring board itself have a capacitor function, and a composite body in which an inorganic ruthenium and a resin are mixed is used as an interlayer insulating material. The method is known as a method (Japanese Laid-Open Patent Publication No. Hei 5-57852, No. Hei 6-854-3). However, by the above method, the specific dielectric ratio of the composite is as low as 1 〇 20 . The composite dielectric containing the inorganic ruthenium can increase the specific dielectric ratio by increasing the addition amount of the inorganic ruthenium, and even if the content of the inorganic ruthenium is more than 50% by volume, even if the inorganic ruthenium is added There is still a problem that the specific dielectric ratio cannot be increased. Moreover, since a high amount of high dielectric constant - Ί - 1352663 inorganic ruthenium is mixed in the resin to form a high viscosity, it is usually necessary to use a large amount of solvent. The high dielectric composition of the present invention is obtained by desolventizing and hardening a paste composition containing an inorganic chelating agent, a resin, and a solvent (Japanese Unexamined Patent Publication No. Hei No. Hei No. Hei. However, when the amount of the solvent to be used is too large, the heat resistance may be lowered by the residual solvent, or the voids may be formed on the surface layer. A method for producing a high specific dielectric ratio is a method of increasing the specific dielectric constant by adding a ruthenium having two or more kinds of particle diameters to increase the charge ratio of the ruthenium (Japanese Patent Laid-Open No. 5 3-88) Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. However, the ruthenium used in these is a large ruthenium having an average particle diameter of the ruthenium having a maximum average fj# diameter of 5 μχη or more, and the film thickness of the composite obtained by mixing the ruthenium and the resin is about 3 0 0μπα, the desired thickness cannot be obtained. Further, a method of increasing the dielectric constant is a method of using an inorganic ruthenium having a large particle diameter. The dielectric constant of the enthalpy is related to the crystalline structure of the entanglement. In general, inorganic crystals such as barium titanate have a large dielectric constant at the center of gravity away from the anions and cations. When the particle size is small, the size of the crystal particles is generally small, and the surface energy of the particle is increased, and the energy of the entire system is lowered. Therefore, the symmetry of the crystal structure is higher. When the symmetry of the crystal structure becomes high, the position of the center of gravity of the detached anion and the cation becomes small, so that the dielectric constant becomes small. Therefore, by using a ruthenium having a large particle diameter, the dielectric constant can be made large. In particular, this effect of barium titanate is remarkable. For example, an antimony barium titanate having an average particle diameter of 15 μm is used in the sputum, and ethyl carbitol (boiling point is 202. 〇 is used as an example (Japanese Laid-Open Patent Publication No. Hei 8-293429). However, due to the filling The particle size becomes larger, and the specific surface area of the ruthenium becomes smaller, that is, -8 - 1352663 enables the use of a solvent having a high boiling point, and the desolvation at the time of heating is carried out at a relatively low temperature and for a short time. Thus, the resin which is accompanied by the shrinkage of the entire system Or the sputum moves at a relatively fast rate to cause solvent removal, resulting in a lot of voids. The generation of voids is the cause of the decrease in dielectric constant. When the average particle size of the ruthenium is larger, the dielectric constant of the ruthenium is changed. In addition, it is not possible to suppress the generation of the above-mentioned voids even if a high-boiling solvent is used, and as a result, it is not possible to obtain a dielectric constant of 52. Further, since a large average particle diameter of 15 μm is used (Japanese Unexamined Patent Publication No. Hei No. 8-293429) When the thickness of the film is 25 μm, the capacitance density is 1.8 nF/cm2. In addition, the number of terminals and the number of terminals is rapidly developed to reduce the size and thickness of the system. LSI Density S i P (in-system package), but the capacitor built in the SiP is strongly required to be thinner, and the thickness of the interlayer insulating material for the capacitor must be 1 μm or less. Therefore, the current technology cannot satisfy the thin type below ΙΟμηη. In the high performance of portable devices such as portable telephones, there is no need to reduce the requirements for the emergency speed. In addition, the capacitance of the capacitor is inversely proportional to the film of the interlayer insulating material, and the capacitance of the capacitor is increased. It is preferable to make the film thickness of the interlayer insulating material thin. Moreover, important basic characteristics required for the interlayer insulating material such as a low coefficient of linear expansion, the linear expansion coefficient of the resin itself is 50 ppm/° C. or more, and a metal as a wiring layer. For example, the linear expansion coefficient of copper (1 7 ppm/°C) is extremely large. Therefore, when an interlayer insulating material made only of a resin is used, interlayer peeling due to stress is caused by a difference in linear expansion coefficient from the wiring layer. Or with the shortcomings of the -9- 1352663 wire breakage, etc., 彳 而, g, due to the composite of inorganic ruthenium in the resin can make the line expansion Since the coefficient is lowered, when the composite in which the inorganic cerium is mixed with the resin is used as the interlayer insulating material, it can be similar to the enthalpy of the linear expansion coefficient of the wiring layer. However, the conventional method cannot sufficiently increase the inorganic enthalpy. Moreover, the linear expansion coefficient of the wiring layer cannot be reduced to similar 値. SUMMARY OF THE INVENTION In view of the above circumstances, the present invention is directed to a high dielectric composition having a low coefficient of linear expansion, and provides a fully achievable A dielectric composition and an optical wiring material for an interlayer insulating material for a large-capacity capacitor having a high-density SiP. In other words, the present invention provides a paste composition containing an inorganic filler, a resin. And a paste composition obtained by using a solvent (a solvent having a boiling point of 160 kt or more), wherein the solvent is one having more than one solvent having a boiling point of 1 60 ° C or higher and having an average of the fillings. The inorganic cerium having a particle diameter of 5 μm or less, and the total amount of the solvent is 25 wt% or less of the total amount of the paste composition. Further, another aspect of the present invention is a dielectric composition, which is a dielectric composition having an inorganic ruthenium and a resin, characterized in that the inorganic ruthenium has at least two kinds of average particle diameters. The largest average particle diameter of the average particle diameter is 0.1 to 5 μm, and the maximum average particle diameter is 3 times or more for the minimum average particle diameter. According to the present invention, a composition of a high dielectric material having a dielectric constant of 50 or more can be easily produced. Further, since the composition of the present invention has a low linear expansion coefficient which approximates the linear expansion coefficient of the wiring metal, it is disadvantageous in that peeling or wiring breakage is unlikely to occur between the wiring layer and the wiring layer when the interlayer insulating material is used as the interlayer insulating material. A capacitor with high reliability is produced. Further, a film having uniform film thickness and uniform physical properties can be easily produced. This is suitable for a large electrostatic capacity and is extremely useful for an interlayer insulating material for a capacitor embedded in a high-density SiP or a circuit substrate material having a function as a capacitor. [Embodiment] In order to carry out the best mode of the invention, the paste composition of the present invention is in a paste composition composed of an inorganic filler, a resin, and a solvent (a solvent having a boiling point of 160 ° C or higher). The β sign is an inorganic ruthenium having an average particle diameter of 5 μmη or less, and contains a solvent (a solvent having a boiling point of 160 ° C or more), and the total amount of the solvent is 2 of the total amount of the paste composition. 5% by weight or less. Further, the dielectric composition of the present invention is in a dielectric composition having an inorganic ruthenium and a resin, and is characterized in that it contains at least two kinds of inorganic ruthenium having an average particle diameter, wherein the largest average granule is contained therein. The average particle diameter of the inorganic filler of the diameter is 〜. 1 to 5 μχη, and the maximum average particle diameter is 3 times or more for the minimum average particle diameter. The total solvent amount in the paste composition of the present invention must be 25% by weight or less based on the total amount of the paste composition. It is preferably 20% by weight or less, and more preferably 10% by weight or less. Further, it is preferably 1% by weight or more. The amount of solvent is 25 weight. When the temperature is below 〇, it is possible to control the voids generated by the evaporation of the solvent during drying, and the dielectric ratio of the dielectric composition is improved. Further, since the amount of voids due to moisture absorption is reduced, the physical property change due to moisture can be reduced. In addition, it has excellent preservation durability. When the amount of the solvent is more than 25 % by weight, there is a case where the solvent is removed, and the void portion is increased in the drying process and the heat hardening process, and the dielectric constant of the dielectric composition is lowered. When the amount of the solvent is less than 1% by weight, the viscosity or uniformity of the paste composition is impaired because the solvent is small. Further, the effect of the present invention is particularly large in that the increase in the charge ratio of the inorganic filler is increased by the influence of the amount of the solvent, and the inorganic filler is 85 wt% of the solid content contained in the paste composition. The solvent used in the present invention must have at least one boiling point of 1 60 ° C or higher. Preferably, it is 180 ° C or more, and more preferably 200 ° C or more. When the boiling point of the solvent is 160 ° C or more, the generation of voids can be suppressed and the dielectric composition of the dielectric composition can be improved. When the boiling point is less than 160 °C, the volatilization rate of the solvent is increased, and the densification due to the movement of the substance during the heat treatment cannot be caught up. In many cases, the void portion is increased and the dielectric constant of the dielectric composition is lowered. Further, the solvent used in the present invention has a boiling point of preferably 300 ° C or less, more preferably 280 ° C or less. When the boiling point is higher than 28 (TC), it is a high temperature during the treatment for solvent removal, and the resin is decomposed and deteriorates in dielectric properties due to high temperature. Moreover, when it is more than 30 (TC, the decomposition of the resin is intense, causing a decrease in mechanical strength. The solvent used in the paste composition of the present invention may be only one having a boiling point of 160 ° C or higher, and # may have a solvent other than a solvent having a boiling point of 1 60 ° C or higher. The boiling point is 160 ° C or higher. Solvents, including hydrazine, acetone acetone, methylcyclohexanone, diisobutyl ketone, methyl benzophenone, dimethyl arsenic, γ · butyl vinegar, isophorone, diethylformamide , dimethylacetamide, Ν-methylpyrrolidone, γ-butyrolactam, ethylene glycol acetate, 3-methoxy-3-methylbutanol and its acetate, 3-methoxy Butyl acetate, 2-ethylhexyl acetate, oxalate, diethyl malonate, maleate, propylene carbonate, butyl cellosolve-12-1352663 The specific dielectric constant is based on the specific dielectric ratio of the composite, that is, the logarithmic mixture described below (1). (Ceramic Material Science (Application), Uchida Heqi Xinshe, WDKingery, Komatsu and Tibetan, p912). The higher the content of inorganic fillers with high dielectric constant, the higher the specific dielectric ratio of the dielectric composition. ;乂_1〇8£| (1) ε: specific dielectric ratio of the composite εί: specific dielectric ratio of each component of the composite
Vi:複合體之各成份的體積分率 ί 爲在樹脂中以高塡充率含有無機塡充物時,以使用混 合具有2種以上不同平均粒徑者較佳。塡充單一粒ρ之塡 充物時,特別是塡充物爲球狀或略球狀時,高密度塡充時 塡充物與塡充物之間會產生稜形狀空隙,在該空隙中無法 侵入其他塡充物。然而,爲該空隙以下之尺寸的塡充物時, 另可侵入該空隙中,可容易地提高塡充率。 本發明所含的無機塡充物中,具有最大平均粒徑之無 機墳充物之平均粒徑與具有最小平均粒徑之無機塡充物2 平均粒徑差比愈大愈佳,最大平均粒徑對最小平均粒徑而 差比小時,小塡充物 差比大時,小塡充物 言爲3倍以上,更佳者爲5倍以上。 不易侵入大塡充物間之空隙。另外, 容易凝聚,分散安定性降低。較佳者爲3〇倍以下,更佳者 爲1 〇倍以下。Vi: Volume fraction of each component of the composite ί When the inorganic ruthenium is contained in the resin at a high enthalpy charge ratio, it is preferred to use two or more different average particle diameters in the mixture. When filling a sputum of a single granule ρ, especially when the sputum is spherical or slightly spheroidal, a ridge-shaped void is formed between the entangled material and the entangled material at the time of high-density charging, and in this gap, Invade other fillings. However, when it is a smear of a size below the void, the void can be invaded, and the charge rate can be easily increased. In the inorganic enthalpy contained in the present invention, the average particle diameter of the inorganic burial material having the largest average particle diameter and the average particle diameter difference of the inorganic cerium filling material 2 having the smallest average particle diameter are preferably as large as possible, and the maximum average granule When the diameter is the smallest average particle diameter and the difference is small, when the small enthalpy difference is large, the small sputum is more than 3 times, and more preferably 5 times or more. It is not easy to invade the gap between the large fillings. In addition, it is easy to aggregate and the dispersion stability is lowered. Preferably, it is 3 times or less, and more preferably 1 time or less.
最大平均粒徑之無機塡充物的總體積Va與具有最小平均粒 使用至少具有 -14- ,63 徑之無機塡充物的總體積Vb以滿足0.05sVb/(Va + vb)< 〇 5 較佳。總之,小塡充物之量以體積比時以塡充物總量之5 % 〜5 0 %較佳。小於5 %時,侵入空隙、幾乎無法得到提高塡 充里之效果,而右大於5 0 %時,小塡充物所佔體積較製作 的大塡充物之空隙爲大,相互侵入、增加塡充量之效果小 〇 除此等之大塡充物、小塡充物外,可另外混合其他粒 > 徑之塡充物,即使爲3種類以上時可藉由選擇適當粒徑與 配合比以混合塡充物,可得提高塡充率之效果。 鲁 本發明使用的無機塡充物包含至少具有2種不同平均 粒徑之無機塡充物,其中具有最大平均粒徑之無機塡充物 的平均粒徑以5 μπι以下較佳。更佳者爲2 μιη以下,最佳者 爲Ιμπι以下》此外,爲〇·1μιη以上、較佳者爲〇 2μπι以上 、更佳者爲0·3μηι以上。此處,使用具有最大平均粒徑之 無機塡充物的平均粒徑大於5μπι者時,於製作膜厚ι〇μιη 以下之電容器時爲使塡充物容易突出於膜表面上,不易製 得安定的介電特性。而且,使用具有最大平均粒徑之無機® 墳充物的平均粒徑爲2μηι以下者時,塡充物分散液之塡充 物不易沉澱。另外,使用具有最大平均粒徑之無機塡充物 的平均粒徑爲ίμιη以下者時,於長期保管中塡充物不易沉 澱,保管條件不受限制。另外,爲得比介電率大的材料時, 最大平均粒徑小於(Μ μιη時,爲使此等塡充物之比表面積 變大,結晶構造之對稱性容易變高,不易製得高介電率相, 形成介電體組成物之比介電率降低之原因。此外,最大平 -15- 1352663 均粒徑爲0.2gm以上時,塡充物表面積變小,塡充物分散 糊膏不易凝聚,黏度變化小,混練、分散或塗覆加工不易 受到影響。而且,由於具有最大平均粒徑之無機塡充物的 平均粒徑爲0.3 μιη以上時,具有最大平均粒徑之無機塡充 物的平均粒徑與具有最小平均粒徑之無機塡充物的平均粒 徑之差比爲充分變大,故塡充率不受影響。 另外,本發明中具有最小平均粒徑之無機塡充物的平 均粒徑以0.01〜0.1 μιη較佳。更佳者爲〇.〇4〜0.06 μιη。而 且,必須形成最大平均粒徑與最小平均粒徑之差比時,^ 有最小平均粒徑之無機塡充物可視最大平均粒徑而定,自 上述範圍適當選擇。具有最小平均粒徑之無機塡充物的平 均粒徑與具有最大平均粒徑之無機塡充物的平均粒徑之差 比變大時,可提高塡充率。基於該理由,具有最小平均粒 徑之無機塡充物的平均粒徑,就可具有最大平均粒徑之無 機塡充物的平均粒徑之較佳範圍而言,以0.1μιη以下較佳 、更佳者爲0.06μιη以下。具有最小平均粒徑之無機塡充物 的平均粒徑爲0.04 μιη以上時,不易引起分散後之再凝聚Ρ 糊膏之分散安定性佳。而且,具有最小平均粒徑之無機塡 充物的平均粒徑爲0 · 0 1 μ .πι以上時,由於此等塡充物間不易 引起二次凝聚,故凝聚物容易分解、分散。 本發明之糊膏組成物及介電體組成物中所含的平均粒 徑之測定,係形成介電體組成物薄膜、且對使該薄膜之膜 厚方向切出膜截面的超薄切片而言測定ΧΜΑ,以及藉由透 過型電子顯微鏡(ΤΕΜ)觀察予以測定。由於無機塡充物與樹 1352663 脂對電子線而言之透過率不同,在TEM觀察像中無機塡充 物與樹脂可藉由不同對比區別。使用數種無機塡充物時,各 無機塡充物之同定以ΧΜΑ測定爲基準,藉由元素分析及電 子線散射像觀察進行結晶構造解析。如此所得的塡充物與 樹脂之面積分布藉由影像解析求取,使無機塡充物之截面 類似圓形,由面積可求取粒徑。粒徑之評估係以倍率5000 倍與400 0 0倍之ΤΕΜ影像進行。求得的粒徑分布於倍率爲 50〇〇倍之ΤΕΜ影像中以Ο.ίμιη之刻度曲線圖表示,倍率爲 4〇000倍之ΤΕΜ影像以Ο.ΟΙμιη刻度曲線圖表示,以度數爲彳· 最大値的級數中心値作爲平均粒徑。本發明之「至少具有2 種平均粒徑」係指存在有2個以上該極大値,且組成物中 所含的無機塡充物之粒徑分布中存.在2個以上的極大値。 而且,粒徑分布之評估法可使用掃描型電子顯微鏡(SEM)取 代上述方法之ΤΕΜ。 此外,其他方法可藉由測定塡充物因布朗運動之散射 光搖動的動態光散射法、藉由測定使塡充物電泳動時散射 光之多普勒效果的電泳動光散射法等測定平均粒徑。雷射Φ 折射、散射式粒度分布測定裝置例如堀場製作所製LA-920 或島津製作所製SALD-1 1 〇〇、日機裝製MICROTRAC-UPA150 等。 無機塡充物之介電特性以使用比介電率爲50〜30000 者較佳。使用比介電率小於5 0之無機塡充物時,無法製得 比介電率充分大的介電體組成物。而且,比介電率大於 3〇000時,由於比介電率之溫度特性有惡化傾向,故不爲企 1352663The total volume Va of the inorganic filler having the largest average particle diameter and the total volume Vb of the inorganic ruthenium having at least -14-, 63 diameter with the smallest average particle satisfying 0.05 sVb / (Va + vb) < 〇 5 Preferably. In short, the amount of the small sputum filling is preferably 5% to 50% of the total amount of ruthenium in a volume ratio. When it is less than 5%, the effect of inflating the void is almost impossible to obtain, and when the right is more than 50%, the volume of the small sputum filling is larger than the gap of the produced large sputum, which invades and increases 塡. The effect of the charge is small. In addition to these large sputum fillings and small sputum fillings, other granules can be mixed, even if it is more than 3 types, the appropriate particle size and mixing ratio can be selected. By mixing the entangled material, the effect of increasing the charge rate can be obtained. The inorganic ruthenium used in the present invention contains an inorganic ruthenium having at least two different average particle diameters, and an inorganic ruthenium having a maximum average particle diameter preferably has an average particle diameter of 5 μm or less. More preferably, it is 2 μηη or less, and the most preferable one is Ιμπι or less. Further, it is 〇·1 μιη or more, preferably 〇 2 μπι or more, and more preferably 0·3 μηι or more. Here, when the average particle diameter of the inorganic ruthenium having the largest average particle diameter is more than 5 μm, when the capacitor having a film thickness of ι 〇 μη or less is formed, it is difficult to make the sputum easily protrude on the surface of the film, and it is difficult to obtain stability. Dielectric properties. Further, when the inorganic particle having the largest average particle diameter has an average particle diameter of 2 μm or less, the ruthenium of the ruthenium dispersion is less likely to precipitate. Further, when the average particle diameter of the inorganic ruthenium having the largest average particle diameter is ίμιη or less, the ruthenium is not easily precipitated during long-term storage, and the storage conditions are not limited. Further, in the case of a material having a larger dielectric constant, when the maximum average particle diameter is smaller than (Μ μηη, in order to increase the specific surface area of such a ruthenium, the symmetry of the crystal structure tends to become high, and it is difficult to obtain a high dielectric layer. The electric phase phase forms a reason for the decrease in the dielectric constant of the dielectric composition. Further, when the average particle size of the -15-1352663 is 0.2 gm or more, the surface area of the ruthenium becomes small, and the ruthenium-dispersed paste is difficult to be formed. Condensation, small change in viscosity, and incorporation, dispersion, or coating processing are not easily affected. Moreover, since the inorganic crucible having the largest average particle diameter has an average particle diameter of 0.3 μm or more, the inorganic crucible having the largest average particle diameter The ratio of the difference between the average particle diameter and the average particle diameter of the inorganic cerium having the smallest average particle diameter is sufficiently increased, so that the enthalpy ratio is not affected. Further, the inorganic enthalpy having the smallest average particle diameter in the present invention The average particle diameter is preferably 0.01 to 0.1 μηη, more preferably 〇.〇4 to 0.06 μιη. Moreover, when the difference ratio between the maximum average particle diameter and the minimum average particle diameter must be formed, the inorganic having the smallest average particle diameter塡 Filling visible most The average particle diameter is appropriately selected from the above range. When the ratio of the difference between the average particle diameter of the inorganic cerium having the smallest average particle diameter and the average particle diameter of the inorganic cerium having the largest average particle diameter is increased, the ratio can be increased. For this reason, the average particle diameter of the inorganic ruthenium having the smallest average particle diameter may be 0.1 μm or less in a preferable range of the average particle diameter of the inorganic ruthenium having the largest average particle diameter. Preferably, it is preferably 0.06 μm or less. When the average particle diameter of the inorganic cerium having the smallest average particle diameter is 0.04 μm or more, it is less likely to cause re-agglomeration after dispersion, and the dispersion stability of the paste is good. When the average particle diameter of the inorganic filler having the smallest average particle diameter is 0 · 0 1 μm or more, since the secondary aggregation is less likely to occur between the ruthenium, the aggregate is easily decomposed and dispersed. The measurement of the average particle diameter contained in the composition and the dielectric composition is performed by forming a thin film of a dielectric composition and measuring the ultrathin section of the film by cutting the film thickness direction of the film, and By The electron micrograph (ΤΕΜ) observation was used for the measurement. Since the inorganic sputum and the tree 1352663 are different in transmittance to the electron beam, the inorganic ruthenium and the resin can be distinguished by contrast in the TEM observation image. In the case of an inorganic ruthenium, the determination of the crystal structure is carried out by elemental analysis and electron beam scattering image observation based on the measurement of ruthenium. The area distribution of the thus obtained ruthenium and resin is analyzed by image analysis. The cross-section of the inorganic ruthenium is similar to a circular shape, and the particle size can be determined from the area. The particle size is evaluated by a magnification of 5000 times and 400 times the image of the 。. The obtained particle size distribution is at a magnification. In the 50〇〇倍ΤΕΜ image, the scale graph of Ο.ίμιη is shown, and the magnification is 4〇000 times. The image is represented by the Ο.ΟΙμιη scale graph, with the degree 彳·maximum 値 of the center of the series as the average Particle size. The "having at least two kinds of average particle diameters" in the present invention means that two or more of the maximum enthalpy are present, and two or more extremely large enthalpies exist in the particle size distribution of the inorganic cerium contained in the composition. Moreover, the evaluation of the particle size distribution can be carried out by using a scanning electron microscope (SEM) instead of the above method. In addition, other methods can be determined by measuring the dynamic light scattering method in which the entangled material is shaken by the scattered light of the Brownian motion, and by measuring the Doppler effect of the scattered light when the sputum is electrophoresed. Particle size. The laser Φ refracting and scattering type particle size distribution measuring apparatus is, for example, LA-920 manufactured by Horiba, or SALD-1 1 manufactured by Shimadzu Corporation, and MICROTRAC-UPA150 equipped with a Japanese machine. The dielectric properties of the inorganic ruthenium are preferably those having a specific dielectric ratio of 50 to 30,000. When an inorganic ruthenium having a specific dielectric constant of less than 50 is used, a dielectric composition having a sufficiently large dielectric constant cannot be obtained. Moreover, when the specific dielectric constant is more than 30,000, the temperature characteristic of the dielectric constant tends to deteriorate, so it is not for the enterprise 1352663
求。此處所指的無機塡充物的比介電率,係指以無機填充 物作爲原料粉末,加熱 '燒成所成的燒結體之比介電率。 燒結體之比介電率例如藉由下述順序測定。使無機塡充物 與如聚乙烯醇之黏合劑樹脂、有機溶劑或水混合,製作糊 膏狀組成物後,塡充於粒料成型器中予以乾燥製得粒料狀 固體物。使該粒料狀固體物藉由在例如900〜l2〇(TC下燒成 以使黏合劑樹脂分解、除去,且使無機塡充物燒結,製得 僅由無機成份所成的燒結體。此時,燒結體之空隙充分 由理論密度與實測密度求得的空隙率必須爲i %以下。在 燒結體粒料上形成上下電極,且由靜電容量及尺寸測定結 果可計算比介電率。 無機塡充物爲鈦酸鋇系、鈦酸锆酸鋇系、鈦酸緦系、 鈦酸鈣系、鈦酸鉍系、鈦酸鎂系、鈦酸鋇铷系、鈦酸鋇錫 系、鎂鈮酸鋇系、鎂鉬酸鋇系、鈦酸鉛系、錆酸鉛系、鈦 酸錆酸鉛系、鈮酸鉛系、鎂鈮酸鉛系、鎳鈮酸鉛系、鎢酸 鉛系、鎢酸鈣系、鎂鎢酸鉛系、二氧化鈦系等。鈦酸鋇系 係爲包含鈦酸鋇結晶內部分元素以其他元素取代,且在結® 晶構造內侵入其他元素,且以鈦酸鋇爲母材的固溶體之總 稱。包含其他之鈦酸锆酸鋇系、鈦酸.緦系、鈦酸鈣系、鈦 酸鉍系、鈦酸鎂系、鈦酸鋇铷系、鈦酸鋇錫系 '鎂鈮酸鋇 系、鎂鉬酸鋇系、鈦酸鉛系、锆酸鉛系、鈦酸鍩酸鉛系、 鈮酸鉛系 '鎂鈮酸鉛系、鎳鈮酸鉛系、鎢酸鉛系、鎢酸鈣 系、鎂鎢酸鉛系、二氧化鈦系皆相同地各作爲母材之固溶 體的總稱》 -18- 1352663 特別是以使鈣鈦型結晶構造、或具有複合鈣鈦型結晶 構造之塡充物較佳。此等之中可單獨一種使用,或2種以 上混合使用,至少具有2種不同平均粒徑之無機塡充物爲 同一化學組成時,就介電特性而言較佳。特別是可得具有 高比介電率之介電體組成物時,就與商業便利性兩立而言 以使用主要由鈦酸鋇所成的化合物較佳。惟以提高介電特 性或溫度安定性爲目的時,可添加少量的移相劑、阻浮劑 等使用。 無機塡充物之製作方法例如固相反應法、水熱合成# 、超臨界水熱合成法、溶膠凝膠法、草酸鹽等之方法。具 有最大平均粒徑之無機塡充物的製作方法,就高比介電率 與品質安定性而言以使用固相反應法、或草酸鹽法較佳。 另外,具有最小平均粒徑之無機塡充物的製作方法,就容 易小粒徑化的理由而言以使用水熱合成法、超臨界水熱合 成法、溶膠凝膠法較佳。 本發明之糊膏組成物及介電體組成物所含的無機塡充 物與樹脂比例,對無機塡充物之總體積與樹脂固成份之# 體積的合計體積而言無機塡充劑的比例Vf以50%〜95%以 下較佳。更佳者爲7〇%〜9〇%。無機塡充物之含率Vf爲5〇% 以上時,可得充分大的比介電率,且可得小熱膨脹率。此 外,無機塡充物之含率Vf爲70%以上時,使用至少具有2 平均fii徑之無機塡充物的效果顯著,可得大的比介電率 另外,無機塡充物之含率爲95%以下時,可抑制組成物 內Μ之空隙產生,可得充分大的比介電率,空隙起因的吸 1352663 濕率小,物性不易受水分或溼度所影響。而且,無機塡充 物之含率Vf爲90%以下時,耐久性促進試驗之PCT(布萊 歇庫克(譯音)試驗)後之黏合性不易降低。 其次,本發明使用的樹脂可選自於熱塑性、熱硬化性 樹脂中任何一種。 熱塑性樹脂例如可使用聚伸苯醚、聚伸苯基硫醚、聚 醚碾、聚醚醯亞胺、液晶聚合物、聚苯乙烯、聚乙烯、氟 樹脂等。 而且,熱硬化性樹脂例如可使用除環氧樹脂、苯酚β 脂、聚矽氧烷樹脂、聚醯亞胺、丙烯酸樹脂、氰酸酯樹脂 、苯并環丁烯樹脂等外,一般而言可使用印刷配線板之絕 緣層所使用的樹脂。就焊接耐熱性而言以使用熱硬化性樹 脂較佳,特別是就熱硬化收縮性、黏性等而言以使用環氧 樹脂較佳。 此處,環氧樹脂係爲具有在分子構造中含有2個以上 環氧基(環氧乙烷環)之預聚物的樹脂。預聚物就介電特性 而言以具有聯苯基架構或二環戊二烯架構較佳。而且,亦® 可以具有硬化劑,硬化劑可使用苯酣酹醛淸漆樹脂、雙酚 Α型酚醛淸漆,樹脂、胺基三哄化合物、萘酚化合物等之硬 化劑。另外,可添加三苯基膦、苯并咪唑啉系化合物、參(2,4-戊二酮)鈷等之金屬螯合物化合物等之硬化促進劑。 本發明之糊膏組成物可藉由使無機塡充物分散至樹脂 予以製得。例如在樹脂溶液中加入無機塡充物予以混合分 散的方法、或藉由預先製作使無機塡充物分散於適當溶劑 -2 0 - 1352663 之分散液且使該分散液與樹脂溶液混合之減速法等製作。 而且,使無機塡充物分散於樹脂或溶劑中的方法,沒有特 別的限制,例如可使用超音波分散、球磨、輥磨、克雷亞 混合器、均混器' 介質分散機等之方法,特別就分散性而 言以球磨、均混器較佳。 無機塡充物分散時爲提筒分散性時,例如進行無機塡 充物之表面處理、分散劑之添加、界面活性劑之添加 '溶 劑之添加等。無機塡充物之表面處理除藉由矽院系、欽系 、鋁系等各種偶合劑 '脂肪酸、磷酸酯等處理外,有松 處理、酸性處理、鹼性處理等。而且,分散劑之添加例如 磷酸、羧酸、脂肪酸、及此等之酯類等具有酸基之分散劑 等,特別是具有磷酸酯架構之化合物較佳。其他例如添加 非離子性、陽離子性、陰離子性界面活性劑 '多價殘酸等 之濕潤劑、兩親和性物質、具高立體障害之取代基的樹脂 。此外,於分散時或分散後系之極性可以添加溶劑控制。begging. The specific dielectric constant of the inorganic cerium referred to herein means the specific dielectric constant of the sintered body obtained by heating the inorganic filler as the raw material powder. The specific dielectric ratio of the sintered body is measured, for example, by the following procedure. The inorganic filler is mixed with a binder resin such as polyvinyl alcohol, an organic solvent or water to prepare a paste-like composition, which is then dried in a pellet former and dried to obtain a pellet-like solid. The pellet-like solid is obtained by firing at a temperature of, for example, 900 to 12 Torr (TC) to decompose and remove the binder resin, and sintering the inorganic ruthenium to obtain a sintered body composed only of an inorganic component. When the void of the sintered body is sufficiently determined from the theoretical density and the measured density, the void ratio must be i% or less. The upper and lower electrodes are formed on the sintered body pellet, and the specific dielectric constant can be calculated from the electrostatic capacity and the dimensional measurement result. The ruthenium is barium titanate, barium titanate, barium titanate, calcium titanate, barium titanate, magnesium titanate, barium titanate, strontium titanate, magnesium strontium Acid bismuth, lanthanum molybdate, lead titanate, lead citrate, lead phthalate lead, lead citrate, lead magnesium citrate, lead niobate, lead tungstate, tungsten Calcium acid, lead magnesium titanate, titanium dioxide, etc. Barium titanate is a part of the barium titanate crystal containing other elements, and invading other elements in the structure of the crystal, and barium titanate A general term for the solid solution of the base metal. It contains other barium titanate, titanic acid, lanthanum, calcium titanate, barium titanate. , magnesium titanate, barium titanate, barium tin titanate, barium magnesium strontium, barium magnesium molybdate, lead titanate, lead zirconate, lead titanate, tannic acid Lead-type 'lead magnesium niobate, lead niobate, lead tungstate, calcium tungstate, lead magnesium tungstate, and titania are the same as the solid solution of the base material. -18- 1352663 is particularly preferably a crucible having a calcium-titanium crystal structure or a composite calcium-titanium crystal structure. These may be used alone or in combination of two or more, and have at least two different average particle diameters. When the inorganic filler is of the same chemical composition, it is preferable in terms of dielectric properties. In particular, when a dielectric composition having a high specific dielectric ratio can be obtained, it is mainly used in connection with commercial convenience. A compound formed of barium titanate is preferred. For the purpose of improving dielectric properties or temperature stability, a small amount of a phase shifting agent, a flow-stopping agent, or the like may be added. Method, hydrothermal synthesis #, supercritical hydrothermal synthesis, sol-gel method, oxalate, etc. The method for producing an inorganic ruthenium having the largest average particle diameter is preferably a solid phase reaction method or an oxalate method for high specific dielectric ratio and quality stability. Further, inorganic having the smallest average particle diameter The method for producing the ruthenium is preferably a hydrothermal synthesis method, a supercritical hydrothermal synthesis method, or a sol-gel method for the reason that the particle size is easily reduced. The paste composition and the dielectric composition of the present invention The ratio of the inorganic ruthenium to the resin contained in the substance is preferably 50% to 95% or less, based on the total volume of the inorganic ruthenium and the total volume of the volume of the resin solid component. When the content of the inorganic ruthenium Vf is 5% or more, a sufficiently large specific dielectric ratio can be obtained, and a small thermal expansion rate can be obtained. Further, the inorganic swell can be obtained. When the content ratio Vf is 70% or more, the effect of using an inorganic ruthenium having at least two average fii diameters is remarkable, and a large specific dielectric ratio can be obtained. Further, when the content of the inorganic ruthenium is 95% or less, the effect can be suppressed. The voids in the composition are generated, and a sufficiently large specific dielectric ratio can be obtained, and the gap is caused by the suction 135266 3 The moisture rate is small, and the physical properties are not easily affected by moisture or humidity. Further, when the content Vf of the inorganic filler is 90% or less, the adhesion after the PCT (Bright Cook) test for the durability promotion test is not easily lowered. Further, the resin used in the present invention may be selected from any of thermoplastic and thermosetting resins. As the thermoplastic resin, for example, polyphenylene ether, polyphenylene sulfide, polyether oxime, polyether quinone, liquid crystal polymer, polystyrene, polyethylene, fluororesin or the like can be used. Further, as the thermosetting resin, for example, an epoxy resin, a phenol β-lipid, a polyoxyalkylene resin, a polyimine, an acrylic resin, a cyanate resin, a benzocyclobutene resin, or the like can be used. The resin used for the insulating layer of the printed wiring board is used. It is preferable to use a thermosetting resin in terms of solder heat resistance, and in particular, it is preferable to use an epoxy resin in terms of thermosetting shrinkage, viscosity, and the like. Here, the epoxy resin is a resin having a prepolymer having two or more epoxy groups (ethylene oxide rings) in a molecular structure. The prepolymer preferably has a biphenyl structure or a dicyclopentadiene structure in terms of dielectric properties. Further, it may have a hardener, and a hardener may be used as the hardener, such as a benzoquinone lacquer resin, a bisphenol oxime type phenol lacquer, a resin, an amine triterpenoid compound, or a naphthol compound. Further, a curing accelerator such as a metal chelate compound such as triphenylphosphine, a benzimidazoline compound or ginseng (2,4-pentanedione) cobalt may be added. The paste composition of the present invention can be obtained by dispersing an inorganic chelating agent into a resin. For example, a method of mixing and dispersing an inorganic cerium in a resin solution, or a deceleration method in which a dispersion of an inorganic cerium in a suitable solvent - 2 0 - 1352663 is prepared in advance and the dispersion is mixed with a resin solution Waiting for production. Further, the method of dispersing the inorganic cerium in the resin or the solvent is not particularly limited, and for example, a method such as ultrasonic dispersion, ball milling, roll milling, Crea mixer, homomixer 'media dispersion machine, or the like can be used. In particular, in terms of dispersibility, a ball mill or a homomixer is preferred. When the inorganic cerium is dispersed in the case of dispersibility, for example, surface treatment of an inorganic ruthenium, addition of a dispersant, addition of a surfactant, addition of a solvent, and the like are carried out. The surface treatment of the inorganic sputum is carried out by treatment with various coupling agents such as fascia, chin, and aluminum, such as fatty acid and phosphate, and has a loose treatment, an acidic treatment, and an alkaline treatment. Further, the dispersant is added, for example, a dispersant having an acid group such as phosphoric acid, a carboxylic acid, a fatty acid, or the like, and the like, and particularly a compound having a phosphate structure is preferable. Other examples include a non-ionic, cationic, anionic surfactant, a wetting agent such as a polyvalent residual acid, an amphiphilic substance, and a resin having a substituent having a high steric hindrance. Further, solvent control may be added during the dispersion or after dispersion.
另外,糊膏組成物視其所需亦可含有安定化劑、分散劑、 防止沉源劑、可塑劑、抗氧化劑等。 1 本發明之糊膏組成物中所含的固成份中佔有的無機塡 充物之含量以85重量%〜99重量%較佳、更佳者爲90重量 %以上、最佳者爲94重量%以上。無機塡充物之含有量爲85 重量%以上時,可容易地提高組成物之比介電率。本發明伴 隨無機塡充物之含率增加,可製得具有高比介電率之介電 體組成物,爲99重量%以下之含率時,於製膜時容易成形, 容易控制無機塡充物之分散。而且,固成份係指組合無機 -21 - 1352663 塡充與樹脂及其他添加劑等。 本發明之介電體組成物爲含有無機塡充物、樹脂所成 的介電體組成物,無機塡充物之量爲介電體組成物中所含 固成份總量的8 5〜9 9重量%,且空隙率爲3 0體積%以下。 製得本發明之介電體組成物的方法例如首先製作在樹 脂中混合無機塡充物的糊膏組成物,且使該糊膏組成物塗 覆於某被黏著體(例如基板)上,進行脫溶劑、硬化,以製得 介電體組成物的方法。此時,硬化的方法例如熱、光等硬 化。惟由於本發明之介電體組成物不爲燒結體,故不需4 樹脂完全分解、除去,在電子零件之耐熱溫度範圍內、例 如5 00 °C以下之溫度下加熱較佳。 介電體組成物之空隙率必須爲3 0體積%以下,較佳者 爲2 0體積%以下、更佳者爲丨〇體積%以下。空隙率大於3 〇 體積%時,膜體積中佔有的無機塡充物之比例變低,不易製 得比介電率爲50以上之介電體組成物。而且,由於會引起 絕緣電阻降低或洩漏電流增大、彎曲強度降低等情形,故 不爲企求。 ® 此處,使空隙率爲3 0體積%以下的方法,例如藉由於 上述中適當選擇無機塡充物、樹脂、溶劑予以達成,藉由 糊膏組成物至少含有一種沸點1 6 〇。(:以上之溶劑 '且全部溶 劑量爲糊膏組成物總量之25%以下,可容易達成。 而且,例如空隙率爲2 0體積%以下時,糊膏組成物爲 至少含有一種具有內酯構造之溶劑時,可使空隙率爲2〇體 積%以下。於具有內醒構造之溶劑中以γ 丁內醋最佳。 -22- 1352663 者。有機系基板例如玻璃布、環氧銅張積層板等之玻璃基 材銅張積層板、玻璃不織布、環氧銅張積層板等之複合銅 張積層板、聚醚醯亞胺樹脂基板、聚醚酮樹脂基板、聚碾 系樹脂基板等之耐熱•熱塑性基板、聚酯酮張薄膜基板、 聚醯亞胺銅張薄膜基板等之柔韌基板。Further, the paste composition may contain a stabilizer, a dispersant, a sinking agent, a plasticizer, an antioxidant, and the like as needed. 1 The content of the inorganic filler contained in the solid content contained in the paste composition of the present invention is preferably 85% by weight to 99% by weight, more preferably 90% by weight or more, and most preferably 94% by weight. the above. When the content of the inorganic filler is 85 wt% or more, the specific dielectric constant of the composition can be easily increased. The present invention can produce a dielectric composition having a high specific dielectric ratio with an increase in the content of the inorganic filler. When the content is 99% by weight or less, it is easy to form at the time of film formation, and it is easy to control the inorganic charge. Dispersion of things. Further, the solid component means a combination of inorganic -21 - 1352663 hydrazine and a resin and other additives. The dielectric composition of the present invention is a dielectric composition comprising an inorganic ruthenium and a resin, and the amount of the inorganic ruthenium is 8 5 to 9 9 of the total amount of solid components contained in the dielectric composition. % by weight and a void ratio of 30% by volume or less. The method for producing the dielectric composition of the present invention is, for example, first, preparing a paste composition in which an inorganic cerium is mixed in a resin, and applying the paste composition to an adherend (for example, a substrate). A method of desolventizing and hardening to obtain a dielectric composition. At this time, a hardening method such as heat, light, or the like is hardened. However, since the dielectric composition of the present invention is not a sintered body, it is not necessary to completely decompose and remove the resin, and it is preferable to heat it in a heat-resistant temperature range of the electronic component, for example, at a temperature of 500 ° C or lower. The porosity of the dielectric composition must be 30% by volume or less, preferably 20% by volume or less, and more preferably 丨〇% by volume or less. When the void ratio is more than 3 vol%, the ratio of the inorganic ruthenium occupied in the film volume becomes low, and it is difficult to obtain a dielectric composition having a specific dielectric ratio of 50 or more. Further, since the insulation resistance is lowered, the leakage current is increased, and the bending strength is lowered, it is not desirable. Here, the method of setting the void ratio to 30% by volume or less, for example, by appropriately selecting the inorganic chelating substance, the resin, and the solvent, is at least one boiling point of 16 〇 by the paste composition. (The above solvent is used, and the total solvent amount is 25% or less of the total amount of the paste composition, and can be easily achieved. Further, for example, when the void ratio is 20% by volume or less, the paste composition contains at least one having a lactone. When the solvent is constructed, the void ratio can be made 2% by volume or less. In the solvent having an internal wake structure, γ butyl vinegar is optimal. -22- 1352663. Organic substrate such as glass cloth, epoxy copper laminate Heat resistance of a composite copper laminate, a polyether phthalimide resin substrate, a polyether ketone resin substrate, a polycrystalline resin substrate, or the like, such as a glass substrate such as a sheet, a glass non-woven fabric, or an epoxy copper laminate. • A flexible substrate such as a thermoplastic substrate, a polyester ketone film substrate, or a polyimide film.
此外,無機系基板例如有氧化鋁基板、氮化鋁基板、 碳化矽基板等之陶瓷基板、鋁基體基板、鐵基體基板等之 金屬系基板。電路之構成材料例如含有銀、金、銅等金屬 之導體、含有無機系氧化物等之電阻體、含有玻璃系材4 及/或樹脂等之低介電體、含有樹脂或無機塡充物等之高介 電體、含有玻璃系材料等之絕緣體等。Further, the inorganic substrate includes, for example, a ceramic substrate such as an alumina substrate, an aluminum nitride substrate, or a tantalum carbide substrate, a metal substrate such as an aluminum base substrate or an iron base substrate. The constituent material of the circuit includes, for example, a conductor of a metal such as silver, gold or copper, a resistor including an inorganic oxide, a low dielectric containing a glass material 4 and/or a resin, a resin or an inorganic filler, and the like. A high dielectric material, an insulator containing a glass-based material, or the like.
本發.明介電體組成物之形態沒有特別的限制,可組合 用途選擇膜狀、棒狀、球狀等,尤以膜狀較佳。此處所指 之膜包含薄膜、片板、板、粒料等。當然,爲導通時之孔 形成、阻抗或靜電容量或內部應力之調整、或放熱功能賦 予等、組合用途以進行圖案形成。 使用介電體組成物作爲膜時之膜厚,可在靜電容量滿 ® 足企求之値的範圍內任意設定,以0.5μιη〜20μιη較佳。更 佳者爲2μιη〜20μιη。爲確保作爲電容器之大靜電容量時,以 膜厚薄者較佳,爲小於〇.5|Im時,容易產生針孔等情形,不 易得到電絕緣性。而且,爲2μπι以上時,耐久性促進試驗 之PCT(布萊歇庫克試驗)後介電正切不易增大。此外,膜厚 大於20μπι時,就爲可得充分電容器性能時必須具有大的比 介電率而言,無法提高實裝密度。 ~24~ 1352663 本發明之糊膏組成物及介電體組成物的用途,沒有特 別的限制,例如除使用於作爲高介電率層之印刷配線基板 的內藏電容器用層間絕緣材料外,亦可使用於多層基板之 層間絕緣膜' 周波數過濾器、無線用天線、電磁密封材、 光配線材料等之多種電子零件、裝置。 本發明之介電體組成物以使用作爲電容器用層間絕緣 材料較佳。使用介電體組成物形成電容器用層間絕緣材料 的方法,沒有特別的限制。例如上所述,在基板上形成高 介電體後,形成適當電極予以製得。 · 相當於使用本發明之介電體組成物所製作的電容器用 層間絕緣材料之面積的靜電容量,以5nF/cm2以上較佳。 更佳者爲l〇nF/cm2以上。小於5nF/cm2之靜電容量使用作 爲除偶合電容器時,無法充分進行與系統全體之電源系分 離,無法達到作爲除偶合電容器之充分效果。 靜電容量之溫度變化、面內不齊性,就電路設計而言 以小者較佳。有關溫度變化亦以儘可能小者較佳,例如以 滿足X 7 R特性(-5 5〜1 2 5 °C中靜電容量之溫度變化率± 1 5 c/P 以內)較佳。靜電容量之面內不齊性以對平均値而言爲5 % 以下(靜電容量之平均値-5% S靜電容量S靜電容量之平均値 + 5%)較佳。 另外,爲減少電源之電力損失時,電容器之介電正切 以0.01〜5%之範圍較佳,更佳者爲〇.〇1〜1%。此處,靜電 容量或介電正切等之電氣特性係爲以周波數20k〜1GHz之 測定値。 -25- !352663 本發明之介電體組成物可使用作爲光配線材料較佳β 光配線材料係使L S I、模件、船等各種之間的信號傳送不以 一般的電氣信號進行,係以光信號進行方式配線。於實裝 基板上或其內部形成光配線時,使折射率高層以折射率低 層形成三明治夾心的構造。折射率低的層可以空間取代。 作爲光配線材料使用時,爲使光配線內導波的信號傳送用 之光散射變小時,使用與該光之波長相比時充分小的無機 塡充物係爲重要,以光波長之1Μ以下的粒徑較佳。而且, 由無機塡充物材料之選擇’、含量、樹脂材料之選擇,可控· 制折射率、折射率之溫度相關性、熱膨脹率。由此形成光 配線層之基板材料的選擇範圍變廣,不僅可使用習知使用 的砂或陶瓷等無機材料所成者,且可使用由有機材料所成 的基板。 於下述中說明有關本發明之實施例,惟本發明不受此 等所限制。 實施例1 使323重量份鈦酸鋇塡充物(堺化學(股)製、ΒΤ-05、® 平均粒徑:0.5 μπι)、18重量份γ-丁內酯,使用均混器、在 冰水中混合分散1小時,製得.分散液A -1。使1 0重量份環 氧樹脂(日本化藥(股)製、EPPN5〇2H)、10重量份苯酚酚醛 淸漆樹脂(大日本油墨工業(股)製、TD-2131)、0.6重量份硬 化促進劑(北興化學(股)製、三苯基膦)、20重量份γ-丁內酯 混合,製得環氧樹脂溶液Β-1。使分散液Α-1與環氧樹脂 溶液Β-1使用球磨混合,製作糊膏組成物c_l。γ-丁內酯之 ~ 26 ~ 1352663 沸點爲204°C。該糊膏組成物C-1使用塑模塗覆器塗覆於厚 度3〇〇μιη之鋁基板上,使用烤箱、在80°Cx 15分鐘內乾燥 後,在175°Cx 1小時內硬化,製得膜厚ΐ〇μιη之高介電體 組成物。 然後,在該高介電體組成物上使直徑11mm之鋁電極 藉由蒸熔法形成,使1MHz之介電特性使用阻抗分析器 HP42 84及試料固定器HP 1 645 1 B(皆爲修雷頓帕卡頓(譯音) 公司製),以:FIS K 6911爲基準測定的結果如表!所示。高 介電體組成物之比介電率爲82、介電正切爲2.8%,面積之# | 靜電容量爲7.3nF/cm2。空隙率爲9體積%。 實施例2The form of the composition of the present invention is not particularly limited, and a film shape, a rod shape, a spherical shape, or the like can be selected for the combined use, and a film shape is preferable. The film referred to herein includes a film, a sheet, a plate, pellets, and the like. Of course, it is used for pattern formation in order to form a hole during conduction, an adjustment of impedance or electrostatic capacity or internal stress, or an exothermic function. The film thickness when the dielectric composition is used as the film can be arbitrarily set within the range of the capacitance of the electrostatic charge, and is preferably 0.5 μm to 20 μm. More preferably, it is 2 μιη to 20 μιη. In order to secure a large electrostatic capacitance as a capacitor, it is preferable that the film thickness is small, and when it is less than 〇5*1m, pinholes or the like are likely to occur, and electrical insulation is not easily obtained. Further, when it is 2 μm or more, the dielectric tangent after the PCT (Bright Cock test) of the durability promotion test is not easily increased. Further, when the film thickness is more than 20 μm, it is necessary to have a large specific dielectric ratio when sufficient capacitor performance is obtained, and the mounting density cannot be improved. ~24~ 1352663 The use of the paste composition and the dielectric composition of the present invention is not particularly limited, and for example, in addition to the interlayer insulating material for a built-in capacitor used as a printed wiring board of a high dielectric constant layer, A variety of electronic components and devices can be used for the interlayer insulating film of the multilayer substrate, such as the circumferential wave number filter, the wireless antenna, the electromagnetic sealing material, and the optical wiring material. The dielectric composition of the present invention is preferably used as an interlayer insulating material for capacitors. The method of forming the interlayer insulating material for a capacitor using the dielectric composition is not particularly limited. For example, as described above, after forming a high dielectric on the substrate, an appropriate electrode is formed. The electrostatic capacitance corresponding to the area of the interlayer insulating material for a capacitor produced by using the dielectric composition of the present invention is preferably 5 nF/cm 2 or more. More preferably, it is l〇nF/cm2 or more. When the electrostatic capacitance of less than 5 nF/cm2 is used as the decoupling capacitor, the power supply of the entire system cannot be sufficiently separated, and the effect of the coupling capacitor cannot be achieved. The temperature change of the electrostatic capacitance and the in-plane irregularity are preferable in terms of circuit design. It is preferable that the temperature change is as small as possible, for example, to satisfy the X 7 R characteristic (the temperature change rate of the electrostatic capacity in -5 5 to 1 2 5 ° C is within ± 15 c/P). The in-plane irregularity of the electrostatic capacity is preferably 5% or less with respect to the average enthalpy (the average 値-5% of the electrostatic capacity S 5% + 5% of the electrostatic capacity S electrostatic capacity). Further, in order to reduce the power loss of the power source, the dielectric tangent of the capacitor is preferably in the range of 0.01 to 5%, more preferably in the range of 〜.〇1 to 1%. Here, the electrical characteristics such as electrostatic capacitance or dielectric tangent are measured by a cycle number of 20 k 1 1 GHz. -25-!352663 The dielectric composition of the present invention can be used as an optical wiring material. Preferably, the β-ray wiring material is used to transmit signals between LSI, a module, a ship, and the like without using a general electrical signal. The optical signal is wired in a way. When an optical wiring is formed on or in the mounted substrate, a high-refractive-index layer has a structure in which a sandwich layer is formed by a low refractive index layer. The layer with a low refractive index can be replaced by a space. When used as an optical wiring material, in order to reduce the light scattering for signal transmission in the optical wiring, it is important to use an inorganic entangled material that is sufficiently smaller than the wavelength of the light, and to have a light wavelength of 1 Μ or less. The particle size is preferred. Further, the selection of the inorganic ruthenium material, the content, and the selection of the resin material can control the refractive index, the temperature dependence of the refractive index, and the thermal expansion coefficient. The selection of the substrate material for forming the optical wiring layer is widened, and not only an inorganic material such as sand or ceramic which is conventionally used, but also a substrate made of an organic material can be used. The embodiments of the present invention are described below, but the present invention is not limited thereto. Example 1 323 parts by weight of barium titanate (manufactured by Seiko Chemical Co., Ltd., ΒΤ-05, ® average particle diameter: 0.5 μm), 18 parts by weight of γ-butyrolactone, using a homomixer, on ice The mixture was mixed and dispersed in water for 1 hour to obtain a dispersion A-1. 10 parts by weight of epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EPPN 5〇2H), 10 parts by weight of phenol novolac resin (manufactured by Dainippon Ink Co., Ltd., TD-2131), and 0.6 parts by weight of hardening promotion An agent (manufactured by Beixing Chemical Co., Ltd., triphenylphosphine) and 20 parts by weight of γ-butyrolactone were mixed to prepare an epoxy resin solution Β-1. The dispersion Α-1 and the epoxy resin solution Β-1 were mixed by ball milling to prepare a paste composition c_l. Γ-butyrolactone ~ 26 ~ 1352663 has a boiling point of 204 ° C. The paste composition C-1 was applied onto an aluminum substrate having a thickness of 3 μm using a mold coater, and dried in an oven at 80 ° C for 15 minutes and then hardened at 175 ° C for 1 hour. A high dielectric composition having a film thickness of ιμιη is obtained. Then, an aluminum electrode having a diameter of 11 mm was formed on the high dielectric composition by a vapor deposition method, and a dielectric analyzer of 1 MHz was used, and an impedance analyzer HP42 84 and a sample holder HP 1 645 1 B were used. The results of the measurement based on FIS K 6911 are shown in Table Paton (trans). Shown. The high dielectric composition has a specific dielectric constant of 82, a dielectric tangent of 2.8%, and an area of # | electrostatic capacity of 7.3 nF/cm 2 . The void ratio was 9% by volume. Example 2
與實施例1相同地製作糊膏組成物C -1。然後,另添 加22.6重量份γ-丁內酯,使糊膏組成物中之溶劑量爲15重 量%下製作糊膏組成物C-2。另外,以實施例1之方法爲基 準,作成高介電體組成物,評估介電特性的結果如表1所 示。高介電體組成物之比介電率爲73、介電正切爲3.4%、 面積之靜電容量爲4.3nF/cm2。空隙率爲12體積。/。。 < 實施例3〜4 在糊膏組成物C-1中另添加γ-丁內酯,且使糊膏組成 物中之溶劑量爲2 0、2 5重量%下,製作溶劑量不同的糊膏 組成物C-3〜C-4。而且,以實施例1之方法爲基準,作成 高介電體組成物,評估介電特性的結果如表1所示。可製 得空隙率爲20體積%以下、且比介電率爲50以上之高介電 體組成物。 -27- 1352663 比較例1 在糊膏組成物CN I中另添加γ-丁內酯,製作糊膏組成 物中之溶劑量爲4〇重量%的糊膏組成物D- 1。而且,以實 施例1之方法爲基準,作成高介電體組成物,評估介電特 性的結果如表4所示。糊膏組成物中所含的溶劑量爲總量 之40%時,空隙率爲31體積%、且比介電率爲41。 實施例5 · 使323重量份鈦酸鋇(堺化學(股)製、BT-05、平均粒 徑:0.5μιη)、0·2重量份分散劑(比古(譯音)化學(股)製、鲁| BYK-W903)、18重量份γ-丁內酯,使用均混器混練,製得 分散液Α-2。使分散液Α-2與環氧樹脂溶液Β-1使用球磨 混合,製作糊膏組成物C-5。另外,以實施例1之方法爲基 準,作成高介電體組成物,評估介電特性的結果如表1所 示。比介電率爲102、介電正切爲3.6%、面積之靜電容量 爲11.3nF/cm2。空隙率爲6體積%。 實施例6 另在糊膏組成物C-5中添加γ-丁內酯,製作糊膏組j φ 物中之溶劑量爲1 5重量%的糊膏組成物C-6。另外,以實 施例1之方法爲基準,作成高介電體組成物,評估介電特 性結果如表1所示。比介電率爲9 5、介電正切爲3 . 1 %、面 積之靜電容量爲8.4nF/cm2。空隙率爲7體積%。 實施例7 除溶劑爲N-甲基-2-吡咯烷酮外,與糊膏組成物C-2相 同地製作糊膏組成物,製作糊膏組成物C - *7。N -甲基-2 -吡 -28- 1352663 咯烷酮之沸點爲2〇2°〇而且,以實施例1之方法爲基準,製 作高介電體組成物,評估介電特性的結果如表1所示。比 介電率爲58、介電正切爲4.6%、面積之靜電容量爲5.3 nF/cm2 、空隙率爲26體積%。 實施例8 除溶劑爲乙二醇二乙酸酯外,與糊膏組成物C-2相同 地製作糊膏組成物,製作糊膏組成物C - 8。乙二醇二乙酸酯 之沸點爲1 90°C。而且,以實施例1之方法爲基準,製作高 介電體組成物,評估介電特性的結果如表1所示。比介電0 率爲64、介電正切爲4.8%、面積之靜電容量爲5.7nF/cm2 、空隙率爲2 1體積%。 實施例9 除溶劑爲乙基卡必醇外,與糊膏組成物C-2相同地製 作糊膏組成物,製作糊膏組成物C-9。乙基卡必醇之沸點爲 2〇2°C。而且,以實施例1之方法爲基準,製作高介電體組 成物,評估介電特性之結果如表2所示。比介電率爲5 0、 介電正切爲2.2% '面積之靜電容量爲4.4nF/cm2、空隙率胃 爲3 0體積%。 比較例2 除溶劑爲嗎啉外,與糊膏組成物C-2相同地製作糊膏 組成物,製作糊膏組成物D - 2。嗎啉之沸點爲1 2 8 °C。而且, 以實施例1之方法爲基準,製作高介電體組成物,評估介 電特性之結果如表4所示。比介電率爲35、介電正切爲5.8% 、面積之靜電容量爲2.6nF/cm2,電氣特性不佳。空隙率爲 -29- 1352663 3 2體積%。 比較例3 除溶劑爲丙二醇單甲基乙酸醋外,與糊膏組成物C·2 相同地製作糊膏組成物,製作糊膏組成物D·3。丙二醇單 甲基乙酸酯之沸點爲146。(:。而且,以實施例1之方法爲基 準,製作高介電體組成物,評估介電特性之結果如表4所 示。比介電率爲46'介電正切爲4.7%、面積之靜電容量爲 2.7nF/cm2,電氣特性不佳。空隙率爲35體積 實施例1 〇 ^ 使494重量份鈦酸鋇(堺化學(股)製、BT-05、平均粒 徑:0.5 μιη)、71重量份γ-丁內酯,使用均混器混練,製得 分散液Α-3。使分散液Α-3與環氧樹脂溶液Β-1使用球磨 混合,製作糊膏組成物C-10。另外,以實施例1之方法爲 基準,作成高介電體組成物,評估介電特性之結果如表2 所示。比介電率爲79、介電正切爲3.4%、面積之靜電容量 爲5.8nF/cm2。空隙率爲1 3體積%。 實施例1 1 ( 使185重量份欽酸鋇(琳化學(股)製、BT-05、平均粒 徑:0.5μπι)、16重量份γ-丁內酯,使用均混器混練,製得 分散液Α-4。使分散液Α-4與環氧樹脂溶液Β-1使用球磨 混合,製作糊膏組成物C -1 1 »另外,以實施例1之方法爲 基準,作成高介電體組成物,評估介電特性之結果如表2 所示。比介電率爲76'介電正切爲3 2%、面積之靜電容量 爲8.4nF/cm2。空隙率爲5體積%。 -30- 1352663 實施例1 2 除使用鈦酸鋇(東邦鈦(股)製、SB 05、平均粒徑:0.5 μχη) 作爲高介電率無機塡充物外,與實施例2相同地製作糊膏 組成物C-12。另外,以實施例1之方法爲基準,作成高介 電體組成物,評估介電特性之結果如表2所示。比介電率 爲70、介電正切爲2.9%、面積之靜電容量爲6.2nF/cm2。 空隙率爲1 4體積%。 實施例1 3 除使用鈦酸緦(堺化學(股)製、ST-03、平均粒徑:0.3μπι· 作爲高介電率無機塡充物外,與實施例2相同地製作糊膏 組成物C- 1 3。另外,以實施例1之方法爲基準,作成高介 電體組成物,評估介電特性之結果如表2所示。比介電率 爲65、介電正切爲1.2%、面積之靜電容量爲3.8nF/cm2。 空隙率爲1 4體積% ^ 實施例1 4〜1 6 除使用表2所示之樹脂 '硬化劑外,與實施例2相同 地製作糊膏組成物C -1 4〜C -1 6。製作高介電體組成物, 估介電特性之結果如表2所示。製得比介電率爲50以上之 高介電體組成物。 實施例1 7〜1 8 使用作爲樹脂之聚醯亞胺樹脂(東麗(股)製、”西米谷法 因(譯音)”SP341)、聚醚碾(住友化學(股)製、5〇03P),製作 糊膏組成物C-1 7〜1 8。製作表3所示組成之高介電體組成 物,且評估介電特性。結果如表3所示。比介電率爲5 0以 一 3 1 - 1352663 上之高介電體組成物。 實施例1 9 使3W重量份鈦酸鋇塡充物(堺化學(股)製、BT-05、 平均粒徑:〇.5μηι)、36重量份γ-丁內醋,使用均混器、在 冰水中混合分散1小時,製得分散液A - 5。使1 2.8重量份 環氧樹脂(日本化藥(股)製、EPPN5 02H)、7_8重量份苯酚酣 醛淸漆樹脂(大日本油墨工業(股)製、TD-2131)、〇.2重量份 硬化促進劑(北興化學(股)製、三苯基膦)、24.8重量份γ-丁 內酯混合,製得環氧樹脂溶液Β-2。使分散液Α-5與環氧 樹脂溶液B-2使用球磨混合,製作糊膏組成物C-1 9。另外, 以實施例1之方法爲基準,作成高介電體組成物,評估介 電特性之結果如表3所示。高介電體組成物之比介電率爲73 、介電正切爲3.4%、面積之靜電容量爲4.3nF/cm2。空隙 率爲1 2體積%。 使323重量份鈦酸鋇塡充物(堺化學(股)製、BT-05、 平均粒徑:〇·5μπι)、0.2重量份分散劑(具有具磷酸酯架構 之酸基的共聚物:比古肯米(譯音)製、BYK-W9010)、36 量份γ-丁內酯,使用均混器混練,製得分散液Α-6。使分散 液Α-6與環氧樹脂溶液Β-2使用球磨混合,製作糊膏組成 物C-20。另外,以實施例1之方法爲基準,作成高介電體 組成物,評估介電特性之結果如表3所示。高介電體組成 物之比介電率爲95、介電正切爲3.1%、面積之靜電容量爲 8.4nF/cm2。空隙率爲7體積%。 實施例2 1 -32- 1352663 使15.3重量份環氧樹脂.(日本化藥(股)製、nc3〇〇〇)、5.3 重量份苯酚酚醛淸漆樹脂(日本化藥(股)製、,,卡耶哈頓” ΊΡΜ(新名· ’’卡耶哈頓” KTG-105))、0.2重量份硬化促進劑 (北興化學(股)製、三苯基膦)' 24.7重量份丁內醋混合,製 得環氧樹脂溶液Β-3。使分散液Α-2與環氧樹脂溶液Β-3 使用球磨混合,製作糊膏組成物C-2 1。另外,以實施例! 之方法爲基準,作成高介電體組成物,評估介電特性之結 果如表3所示。高介電體組成物之比介電率爲76、介電正 切爲2.8%、面積之靜電容量爲5.6nF/cm2。空隙率爲14 積%。 實施例22 使62·3重量份鈦酸鋇(堺化學(股)製、BT-05、平均粒 徑:0·5μηι)、21.9 重量份鈦酸鋇(TPL,Inc.公司製、ΗΡΒ-Ι000 :平均粒徑〇.〇59μπι)、15重量份γ-丁內酯' 0.8重量份分 散劑(具有具磷酸酯架構之酸基的共聚物、比古肯米•日本( 股)製、BYC-W9010),使用均混器混練,製得分散液Α_7。 使2.2重量份環氧樹脂(日本化藥(股)製' ΕΡΡΝ502Η)、1·· 重量份苯酚酚醛淸漆樹脂(大日本油墨工業(股)製、TD-2 1 3 1 ) 、0.04重量份硬化促進劑(北興化學(股)製、三苯基膦)' 7.1 重量份γ-丁內酯混合,製得環氧樹脂溶液Β-4。使分散液Α-7 與環氧樹脂溶液Β-4使用球磨混合,製作糊膏組成物C-22 。另外,以實施例1之方法爲基準,作成高介電體組成物, 評估介電特性之結果如表6所示。高介電體組成物之比介 電率爲123、介電正切爲3.1 %、面積之靜電容量爲10.9nF/cm2 1352663 °空隙率爲4體積%。 實施例23 使2.6重量份環氧樹脂(曰本化藥(股)製、NC-3000)、0.9 重量份苯酚酚醛淸漆樹脂(日本化藥(股)製、,’卡耶哈頓” TPM(新名:”卡耶哈頓” KTG-105))、0.04重量份硬化促進 劑(北興化學(股)製、三苯基膦)' 7.1重量份γ-丁內酯混合,製 得環氧樹脂溶液Β-5。使分散液Α-7與環氧樹脂溶液Β-5 使用球磨混合,製作糊膏組成物C-23。另外,以實施例1 之方法爲基準,作成高介電體組成物,評估介電特性之I# 果如表6所示。高介電體組成物之比介電率爲121、介電正 切爲2.6%、面積之靜電容量爲10.7nF/cm2。空隙率爲4體 積%。 實施例2 4 除使用乙二醇二乙酸酯作爲溶劑外,與實施例23相同 地製作糊膏組成物C-24。乙二醇二乙酸酯之沸點爲190°C 。而且,以實施例1之方法爲基準,製作高介電體組成物, 評估介電特性之結果如表6所示。比介電率爲9 5、介電# 切爲3.1%、面積之靜電容量爲8.4nF/cm2、空隙率爲8體 積%。 實施例25 除使用丙二酸二乙酯作爲溶劑外,與實施例2 3相同地 製作糊膏組成物C-25。丙二酸二乙酯之沸點爲199°C。而 且,以實施例1之方法爲基準,製作高介電體組成物,評 估介電特性。比介電率爲85、介電正切爲2.7%、面積之靜 _ 3 4 _ 1352663 電容量爲7.5nF/cm2、空隙率爲9體積%。 實施例2 6 除溶劑爲乙基卡必醇外,與實施例23相同地製作糊膏 組成物C - 2 6。卡必醇之沸點爲2 0 2 °c。而且,以實施例1 之方法爲基準,製作高介電體組成物,評估介電特性。比 介電率爲99、介電正切爲2.9%、面積之靜電容量爲8.81^/£;1112 、空隙率爲7體積%。 實施例2 7 除溶劑爲4-甲基環己酮外,與實施例23相同地製作 膏組成物C-27。4-甲基環己酮之沸點爲169°C。而且,以實 施例1之方法爲基準,製作高介電體組成物,評估介電特 性之結果如表6所示。比介電率爲7 9、介電正切爲2 . 1 %、 面積之靜電容量爲7.OnF/cm2、空隙率爲12體積%。 實施例2 8 除溶劑爲異佛爾酮外,與實施例2 3相同地製作糊膏組 成物C-28。異佛爾酮之沸點爲215°C。而且,以實施例1 之方法爲基準,製作高介電體組成物,評估介電特性之結® 果如表6所示。比介電率爲76、介電正切爲2.2%、面積之 靜電容量爲6.7nF/cm2、空隙率爲1 1體積%。 實施例2 9 除溶劑爲二乙基甲醯胺外,與實施例2 3相同地製作糊 膏組成物C-29。二乙基甲醯胺之沸點爲177r。而且,以 實施例1之方法爲基準,製作高介電體組成物,評估介電 特性之結果如表6所示。比介電率爲70'介電正切爲23 % -35- 1352663 、面積之靜電容量爲6.2nF/Cm2、空隙率爲15體積%。 實施例3 0 除溶劑爲二甲基乙醯胺外,與實施例23相同地製作糊 膏組成物C-30。二甲基乙醯胺之沸點爲165 °C。而且,以 實施例1之方法爲基準,製作高介電體組成物,評估介電 特性。比介電率爲79、介電正切爲2.3%、面積之靜電容量 爲7.0nF/cm2、空隙率爲1 1體積%。 合成例1 ;分散液X-1 使5 3 28重量份鈦酸鋇塡充物(堺化學工業(股)製、BT· 〇5、平均粒徑:0.5 μπι)、1 8 72重量份鈦酸鋇塡充物(TPL,Inc. 公司製' HPB-1000、平均粒徑:〇·〇59μιη)、928重量份γ-丁 內酯、72重量份分散劑(具有具磷酸酯架構之酸基的共聚物 :比古化學•日本(股)製、BYK-W9010),使用均混器、在 冰水中混合分散1小時,製得分散液X-1。 合成例2 ;分散液Χ-2 使5 32 8重量份鈦酸鋇塡充物(堺化學工業(股)製、ΒΤ-05、平均粒徑:0.5 μιη)、1 872重量份鈦酸鋇塡充物(Cabot Corpf 製、K-Plusl6、平均粒徑:〇.〇6μιη)、928重量份γ-丁內酯 、72重量份分散劑(具有具磷酸酯架構之酸基的共聚物:比 古化學•日本(股)製、BYK-W9010),使用均混器、在冰水 中混合分散1小時,製得分散液Χ-2。 合成例3 ;分散液Χ_3 使5 32 8重量份鈦酸鋇塡充物(堺化學工業(股)製、ΒΤ-02、平均粒徑:0,1 8μιη)、1 872重量份鈦酸鋇塡充物(TPL,Inc. -36- 1352663 公司製、HPB-1000 '平均粒徑:0_059μιη)、928重量份γ_ 丁 內酯、72重量份分散劑(具有具磷酸酯架構之酸基的共聚物 :比古肯米•日本(股)製、BYK-W90 10),使用均混器、在 冰水中混合分散1小時,製得分散液Χ-3。 合成例4 ;分散液Χ-4 使5 32 8重量份鈦酸鋇塡充物(堺化學工業(股)製、ΒΤ_ 03、平均粒徑:〇.28μιη)、1 872重量份鈦酸鋇塡充物(TPL,lnc. 公司製、HPB-1000、平均粒徑:0.059 μηι)、928重量份γ· 丁 內酯、72重量份分散劑(具有具磷酸酯架構之酸基的共聚$ :比古化學•日本(股)製、BYK-W9010),使用均混器、在 冰水中混合分散1小時,製得分散液Χ-4。 合成例5 ;分散液Χ-5 使5 3 2 8童量份鈦酸鋇塡充物(共立瑪迪里亞魯(股)製、 ΒΤ-ΗΡ3、平均粒徑:1·2μιη)、1 872重量份鈦酸鋇塡充物(TPL, Inc.公司製、ΗΡΒ- 1 000、平均粒徑:0.059μιη)、928重量份 γ-丁內酯、72重量份分散劑(具有具磷酸酯架構之酸基的共 聚物:比古化學•日本(股)製、BYK-W9010),使用均混# 、在冰水中混合分散1小時,製得分散液Χ-5。 合成例6 ;分散液Χ-6 使5 3 2 8重量份鈦酸鋇塡充物(共立瑪迪里亞魯(股)製、 BT-SA、平均粒徑:2·1μιη)、1 872重量份鈦酸鋇塡充物(TPL, Inc.公司製、ΗΡΒ-1000、平均粒徑:0.0 5 9μπι)、92 8重量份 γ·丁內酯、72重量份分散劑(具有具磷酸酯架構之酸基的共 聚物:比古化學•日本(股)製、BYK-W9010),使用均混器 1352663 〇5、平均粒徑:0.5 μιη)、928重量份γ-丁內酯' 72重量份 分散劑(具有具磷酸酯架構之酸基的共聚物:比古化學•曰 本(股)製' BYK-W90 10),使用均混器、在冰水中混合分散 1小時,製得分散液Χ-10。 合成例11 ;分散液X-11 使5 3 2 8重量份鈦酸鋇塡充物(共立瑪迪里亞魯(股)製、 BTHP-8YF '平均粒徑:7μηι)、1872重量份鈦酸鋇塡充物( 界化學工業(股)製、ΒΤ-05、平均粒徑:0·5μιη)、928重量 份γ-丁內酯、72重量份分散劑(具有具磷酸酯架構之酸基 共聚物:比古化學•日本(股)製、BYK-W9010),使用均混 器、在冰水中混合分散1小時,製得分散液X· 1 1。 使鈦酸鋇塡充物(共立瑪迪里亞魯(股)製、BT-SA、平 均粒徑:2.ίμιη)使用球磨分散於丙烯酸樹脂黏合劑後,使 用噴霧乾燥器使一次粒子凝聚硬化的二次粒子造粒。然後, 使其在大氣中、1 2 00°C下燒成6小時後,以乳缽粉碎後,以 50篩網與300篩網分級,製得平均粒徑40μιη之鈦酸鋇塡 充物Α。平均粒徑之測定係使用動態散射式粒徑分布測定® 裝置(堀場製作所(股)製 LB-5〇0)。使5 3 2 8重量份該鈦酸 鋇塡充物A ' 1 8 7 2重量份鈦酸鋇塡充物B(共立·瑪迪里亞魯 (股)製、BT-SA、平均粒徑:2.1μη〇、92 8重量份γ-丁內酯 、72重量份分散劑(具有具磷酸酯架構之酸基的共聚物··比 古化學•日本(股)製、BYK-W9010),使用均混器、在冰水 中混合分散1小時,製得分散液Χ-Ι2。 合成例13 ;分散液X-13 -39- 1352663 6 1體積%。 然後,使該糊膏組成物使用旋轉塗覆器塗覆於鋁基板 及銅基板上,使用烤箱、在120 °C下乾燥1〇分鐘後,在175 °C下硬化1小時,製得介電體組成物。視此等2種基板上 形成的介電體組成物之溫度而定使用迪克魯(譯音)公司製 應力測定裝置Flexus測定應力變化,且由其變化率求得介 電體組成物之線膨脹係數,結果爲18ppm/°C,銅(17ppm广C) 保持大約一致良好的値。 另外,在鋁基板上之介電體組成物表面上藉由蒸熔法# 形成鋁電極,使該物與基板之鋁作爲電極,以1 MHz之介 電特性使用阻抗分析器(爲修雷頓帕卡頓(譯音)公司製、 HP4284A、HP 1 645 1 B),以JISK6911爲基準測定的結果,比 介電率爲55、介電正切爲3.3%,面積之靜電容量爲 4.9nF/cm2 ° 另外,使銅基板上之介電體組成物進行布萊歇庫克試 驗(PCT試驗、1 00%RH、121 °c、2氣壓、1 00小時後)結果,以 顯微鏡觀察皆沒有異常情形,藉由棋盤格子膠帶法之試驗® (JIS K5400),評估點數爲10點,係良好。 而且,有關線膨脹係數、介電特性、PCT試驗之任何 測定中,介電體組成物之膜厚以5、1 0、20μπι等3水準進 行評估,由於沒有因膜厚而有差異,故於表9中皆爲ι〇μπι 實施例3 2 在具備攪拌機之容器內加入86重量份分散液Χ-1,徐 -41- !352663 徐地加入11重量份樹脂溶液Υ-1及3霉量份γ_丁內醋,使 用減速法混合後,另在球磨中攪祥1小時,製得糊膏組成 物。此時,無機塡充物與樹脂之合計量爲100體積%時,無 機塡充物之含量約爲72體積%。 使用該所得的糊膏組成物,與實施例31相同地製得介 電體組成物,測定線膨脹係數、介電特性、PCT試驗之結 果如表9所示。 實施例3 3 在具備攪拌機之容器內加入88重量份分散液χ_;ι , 徐地加入7重量份樹脂溶液γ-1及5重量份γ-丁內醋,使 用減速法混合後,另在球磨中攪拌1小時,製得糊膏組成 物。此時,無機塡充物與樹脂之合計量爲.100體積%時,無 機塡充物之含量約爲79體積%。使用該所得的糊膏組成物, 與實施例31相同地製得介電體組成物,測定線膨脹係數、 介電特性、PCT試驗之結果如表9所示。 實施例3 4 在具備攪拌機之容器內加入89重量份分散液Χ-1,徐® 徐地加入4重量份樹脂溶液yu及7重量份丁內酯,使 用減速法混合後,另在球磨中攪拌1小時,製得.糊膏組成 物。此時,無機塡充物與樹脂之合計量爲1 00體積%時,無 機塡充物之含量約爲86體積%。使用該所得的糊膏組成物, 與實施例31相同地製得介電體組成物,測定線膨脹係數、 介電特性、PCT試驗之結果如表9所示。 實施例3 5 . -42- Ϊ352663 在具備攪拌機之容器內加入90重量份分散液Χ-l,.徐 徐地加入2重量份樹脂溶液Yd及8重量份γ_ 丁內酯,使 用減速法混合後,另在球磨中攪拌1小時,製得糊膏組成 物。此時,無機塡充物與樹脂之合計量爲1〇〇體積%時,無 機塡充物之含量約爲91體積❶/。。使用該所得的糊膏組成物, 與實施例31相同地製得介電體組成物,測定線膨脹係數、 介電特性、PCT試驗之結果如表9所示。 實施例3 6 在具備攪拌機之容器內加入91重量份分散液Χ-1,Θ 徐地加入1重量份樹脂溶液γ -1及8重量份γ- 丁內酯,使 用減速法混合後,另在球磨中攪拌1小時,製得糊膏組成 物。此時,無機塡充物與樹脂之合計量爲1 〇 〇體積%時,無 機塡充物之含量約爲93體積%。使用該所得的糊膏組成物, 與實施例3 1相同地製得介電體組成物,測定線膨脹係數'、 介電特性、PCT試驗之結果如表9所示。 實施例3 7〜4 3 在具備攪拌機之容器內加入88重量份表5所示分散液,胃 徐徐地加入7重量份表5所示之樹脂溶液及5重量份γ-丁 .內酯,使用減速法混合後,另在球磨中攪拌1小時,製得 糊膏組成物。此時,無機塡充物與樹脂之合計量爲100體 積%時,無機塡充物之含量約爲79體積%。使用該所得的 糊膏組成物,與實施例31相同地製得介電體組成物,測定 線膨脹係數、介電特性、PCT試驗之結果如表9、10所示 -43- 1352663 實施例.44 在具備攪拌機之容器內加入93重量份分散液X-7,徐 徐地加入7重量份樹脂溶液Y-1,使用減速法混合後,另在 球磨中攪拌1小時,製得糊膏組成物。此時,無機塡充物 與樹脂之合計量爲100體積%時,無機塡充物之含量約爲79 體積%。使用該所得的糊膏組成物,與實施例31相同地製 得介電體組成物,測定線膨脹係數、介電特性、PCT試驗 之結果如表1 0所示。 實施例4 5 ^ 在具備攪拌機之容器內加入93重量份分散液X-8,徐 徐地加入7重量份樹脂溶液Y-1,使用減速法混合後,另在 球磨中攪拌1小時,製得糊膏組成物。此時,無機塡充物 與樹脂之合計量爲100體積%時,無機塡充物之含量約爲81 體積%。使用該所得的糊膏組成物,與實施例31相同地製 得介電體組成物,測定線膨脹係數、介電特性、PCT試驗 之結果如表10所示。 x 實施例4 6 着 在具備攪拌機之容器內加入_ 93重量份分散液χ_9,徐 徐地加入7重量份樹脂溶液Y · 1,使用減速法混合後,另在 球磨中攪拌1小時,製得糊膏組成物。此時,無機塡充物 與樹脂之合計量爲1 0 0體積%時,無機塡充物之含量約爲8 6 體積%。使用該所得的糊膏組成物,與實施例31相同地製 得介電體組成物,測定線膨脹係數 '介電特性、PCT試驗 之結果如表1 0所示。 -44- 1352663 比較例4 除使用合成例14之環氧樹脂溶液、沒有使用無機塡充 物分散液外,與實施例31相同地製得介電體組成物,測定 線膨脹係數、介電特性、PCT試驗之結果如表10所示。 比較例5 在具備攪拌機之容器內加入88重量份分散液X-1〇,徐 徐地加入7重量份樹脂溶液1及5重量份γ-丁內酯,使 用減速法混合後,另在球磨中攪拌1小時,製得糊膏組成 物。此時,無機塡充物與樹脂之合計量爲100體積%時,$ 機塡充物之含量約爲7 9體積%。使用該所得的糊膏組成物, 與實施例3 1相同地製得介電體組成物,測定線膨脹係數、 介電特性、PCT試驗之結果如表10所示。 比較例ό 在具備攪拌機之容器內加入88重量份分散液Χ-11,徐 徐地加入7重量份樹脂溶液Υ-1及5重量份γ-丁內酯,使 用減速法混合後,另在球磨中攪拌1小時,製得糊膏組成 物。使該糊膏組成物藉由放置以使塡充物容易沉澱。此時了 無機塡充物與樹脂之合計量爲100體積%時,無機塡充物之 含量約爲79體積%。使用該所得的糊膏組成物,與實施例 3 1相同地製得介電體組成物,試行測定介電特性,惟沒有 安定的測定値、無法測定。 比較例7 在具備攪拌機之容器內加入88重量份分散液Χ-12,徐 徐地加入7重量份樹脂溶液Υ-1及5重量份γ-丁內酯,使 -45- 1352663 用減速法混合後,另在球磨中擾伴1小時,製得糊膏,組成 物。使該糊膏組成物藉由放置以使塡充物容易沉澱。此時, 無機塡充物與樹脂之合計量爲100體積%時,無機塡充物之 含量約爲79體積%。使用該所得的糊膏組成物,與實施例 31相同地製得介電體組成物,試行測定介電特性,惟&冑 安定的測定値、無法測定。 比較例8 在具備攪拌機之容器內加入93重量份分散液χ_13,徐 徐地加入7重量份樹脂溶液Υ-1及5重量份丁內醋,使φ 用減速法混合後,另在球磨中攪拌1小時,製得糊膏組成 物。使該糊膏組成物藉由放置以使塡充物容易沉澱。此時, 無機塡充物與樹脂之合計量爲100體積%時,無機塡充物之 含量約爲7 9體積%。使用該所得的糊膏組成物,與實施例 3 1相同地製得介電體組成物,試行測定介電特性,惟沒有 安定的測定値、無法測定。 比較例9 除使大粒徑塡充物之鈦酸鋇塡充物(堺化學工業(股)製® 、ΒΤ-05、平均粒徑:〇,5μιη)改成鈦酸鋇塡充物(TPL,Inc. 製、HPB-1 000、平均粒徑:〇·〇59μηι)、且使用小粒徑塡充 物之鈦酸鋇塡充物(TPL,Inc.製、ΗΡΒ-1000、平均粒徑: 0·059μηι)改成鈦酸鋸塡充物(TPL,Inc.製、HPS-2000、平均 粒徑:0·045μιη)外,與合成例3相同地製作分散液,惟塡 充物凝聚且分散液亦不安定,無法製得糊膏組成物。 產業上之利用價値 -46- 1352663 本發明之糊膏組成物及介電體組成物適合使用於電容 器或具有作爲電容器功能之電路材料用層間絕緣材料或光 配線材料等之用途。The paste composition C-1 was produced in the same manner as in Example 1. Then, 22.6 parts by weight of γ-butyrolactone was further added, and the amount of the solvent in the paste composition was 15% by weight to prepare a paste composition C-2. Further, a high dielectric composition was prepared based on the method of Example 1, and the results of evaluation of dielectric properties are shown in Table 1. The high dielectric composition had a dielectric constant of 73, a dielectric tangent of 3.4%, and an electrostatic capacitance of 4.3 nF/cm 2 . The void ratio is 12 volumes. /. . <Examples 3 to 4 Further, γ-butyrolactone was added to the paste composition C-1, and the amount of the solvent in the paste composition was 20 and 25 wt%, and a paste having a different solvent amount was prepared. Paste composition C-3~C-4. Further, a high dielectric composition was prepared based on the method of Example 1, and the results of evaluation of dielectric characteristics are shown in Table 1. A high dielectric composition having a void ratio of 20% by volume or less and a specific dielectric constant of 50 or more can be obtained. -27- 1352663 Comparative Example 1 γ-butyrolactone was additionally added to the paste composition CN I to prepare a paste composition D-1 having a solvent amount of 4% by weight in the paste composition. Further, a high dielectric composition was prepared based on the method of Example 1, and the results of evaluating the dielectric characteristics are shown in Table 4. When the amount of the solvent contained in the paste composition was 40% of the total amount, the void ratio was 31% by volume and the specific dielectric ratio was 41. Example 5: 323 parts by weight of barium titanate (manufactured by Seiko Chemical Co., Ltd., BT-05, average particle diameter: 0.5 μm), and 0.2 parts by weight of a dispersing agent (manufactured by Biotech Co., Ltd.) Lu | BYK-W903), 18 parts by weight of γ-butyrolactone, and kneaded using a homomixer to prepare a dispersion Α-2. The dispersion Α-2 and the epoxy resin solution Β-1 were mixed by ball milling to prepare a paste composition C-5. Further, a high dielectric composition was prepared based on the method of Example 1, and the results of evaluation of dielectric properties are shown in Table 1. The specific dielectric constant was 102, the dielectric tangent was 3.6%, and the electrostatic capacitance of the area was 11.3 nF/cm2. The void ratio was 6% by volume. Example 6 Further, γ-butyrolactone was added to the paste composition C-5 to prepare a paste composition C-6 having a solvent amount of 15% by weight in the paste group j φ . Further, a high dielectric composition was prepared based on the method of Example 1, and the dielectric properties were evaluated as shown in Table 1. The specific dielectric constant is 9.5, the dielectric tangent is 3.1%, and the area has an electrostatic capacity of 8.4 nF/cm2. The void ratio was 7 vol%. Example 7 A paste composition was prepared in the same manner as the paste composition C-2 except that the solvent was N-methyl-2-pyrrolidone to prepare a paste composition C - *7. The boiling point of N-methyl-2-pyridin-28- 1352663 pyrrolidone is 2〇2°〇, and a high dielectric composition is prepared based on the method of Example 1, and the results of evaluating the dielectric properties are shown in the table. 1 is shown. The specific dielectric ratio was 58, the dielectric tangent was 4.6%, the electrostatic capacitance of the area was 5.3 nF/cm2, and the void ratio was 26% by volume. Example 8 A paste composition was prepared in the same manner as the paste composition C-2 except that the solvent was ethylene glycol diacetate, and a paste composition C-8 was produced. The boiling point of ethylene glycol diacetate is 1 90 °C. Further, a high dielectric composition was prepared on the basis of the method of Example 1, and the results of evaluation of dielectric characteristics are shown in Table 1. The specific dielectric 0 rate was 64, the dielectric tangent was 4.8%, the area electrostatic capacitance was 5.7 nF/cm 2 , and the void ratio was 21% by volume. Example 9 A paste composition was prepared in the same manner as the paste composition C-2 except that the solvent was ethyl carbitol, and a paste composition C-9 was produced. The boiling point of ethyl carbitol is 2 〇 2 ° C. Further, a high dielectric composition was produced on the basis of the method of Example 1, and the results of evaluation of dielectric properties are shown in Table 2. The specific dielectric constant was 50 and the dielectric tangent was 2.2%. The electrostatic capacitance of the area was 4.4 nF/cm2, and the porosity of the stomach was 30% by volume. Comparative Example 2 A paste composition was prepared in the same manner as the paste composition C-2 except that the solvent was morpholine, to prepare a paste composition D-2. The boiling point of morpholine is 1 2 8 °C. Further, a high dielectric composition was prepared on the basis of the method of Example 1, and the results of evaluation of dielectric characteristics are shown in Table 4. The specific dielectric constant is 35, the dielectric tangent is 5.8%, and the electrostatic capacitance of the area is 2.6 nF/cm2, and the electrical characteristics are not good. The void ratio was -29 - 1352663 32 2% by volume. Comparative Example 3 A paste composition was prepared in the same manner as the paste composition C·2 except that the solvent was propylene glycol monomethylacetic acid vinegar, to prepare a paste composition D·3. The boiling point of propylene glycol monomethyl acetate is 146. (: Moreover, a high dielectric composition was prepared based on the method of Example 1, and the dielectric properties were evaluated as shown in Table 4. The specific dielectric ratio was 46' dielectric tangent was 4.7%, and the area was The electrostatic capacity was 2.7 nF/cm 2 and the electrical properties were poor. The void ratio was 35 vol. Example 1 494 ^ 494 parts by weight of barium titanate (manufactured by Sigma Chemical Co., Ltd., BT-05, average particle diameter: 0.5 μm), 71 parts by weight of γ-butyrolactone was kneaded using a homomixer to obtain a dispersion Α-3. The dispersion Α-3 and the epoxy resin solution Β-1 were mixed by ball milling to prepare a paste composition C-10. Further, a high dielectric composition was prepared based on the method of Example 1, and the dielectric properties were evaluated as shown in Table 2. The specific dielectric constant was 79, the dielectric tangent was 3.4%, and the electrostatic capacitance of the area was 5.8 nF/cm2. The void ratio was 13% by volume. Example 1 1 (185 parts by weight of bismuth citrate (manufactured by Lin Chemical Co., Ltd., BT-05, average particle diameter: 0.5 μm), 16 parts by weight γ- Butyrolactone was mixed using a homomixer to prepare a dispersion Α-4. The dispersion Α-4 and the epoxy resin solution Β-1 were mixed by ball milling to prepare a paste composition C. -1 1 » In addition, a high dielectric composition was prepared based on the method of Example 1, and the dielectric properties were evaluated as shown in Table 2. The specific dielectric constant was 76' dielectric tangent of 32%. The electrostatic capacity of the area was 8.4 nF/cm2, and the void ratio was 5% by volume. -30- 1352663 Example 1 2 Except using barium titanate (made by Toho Titanium Co., Ltd., SB 05, average particle diameter: 0.5 μχη) as high A paste composition C-12 was produced in the same manner as in Example 2 except for the dielectric constant inorganic entangled material. Further, a high dielectric composition was prepared based on the method of Example 1, and the results of evaluating the dielectric characteristics were as follows. The specific dielectric ratio was 70, the dielectric tangent was 2.9%, and the electrostatic capacitance of the area was 6.2 nF/cm2. The void ratio was 14% by volume. Example 1 3 In addition to the use of barium titanate (manufacturing system), ST-03, average particle diameter: 0.3 μm·· As a high dielectric constant inorganic entangled material, a paste composition C-1 3 was produced in the same manner as in Example 2. Further, the method of Example 1 was used. For the reference, a high dielectric composition was prepared, and the results of evaluating the dielectric properties are shown in Table 2. The specific dielectric ratio was 65, and the dielectric tangent was 1.2%. The electrostatic capacity was 3.8 nF/cm 2 . The void ratio was 14% by volume ^ Example 1 4 to 1 6 A paste composition C was produced in the same manner as in Example 2 except that the resin 'hardener shown in Table 2 was used. 1 4 to C -1 6. A high dielectric composition was produced, and the dielectric properties were evaluated as shown in Table 2. A high dielectric composition having a specific dielectric constant of 50 or more was obtained. 1 8 Using a polyimine resin (manufactured by Toray Co., Ltd., "Simi Valley Faine" (Translated)" SP341), Polyether Mill (Sumitomo Chemical Co., Ltd., 5〇03P), a paste was prepared. Composition C-1 7~1 8. A high dielectric composition of the composition shown in Table 3 was fabricated, and the dielectric properties were evaluated. The results are shown in Table 3. The specific dielectric composition is 50 volts to a high dielectric composition of 3 1 - 1352663. Example 1 9 3W parts by weight of barium titanate (manufactured by Sigma Chemical Co., Ltd., BT-05, average particle diameter: 〇.5μηι), 36 parts by weight of γ-butyrolactone, using a homomixer, The mixture was dispersed and mixed in ice water for 1 hour to prepare a dispersion A-5. 1 2.8 parts by weight of epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EPPN5 02H), 7-8 parts by weight of phenolphthalal oxime resin (manufactured by Dainippon Ink Co., Ltd., TD-2131), 重量.2 parts by weight A hardening accelerator (manufactured by Beixing Chemical Co., Ltd., triphenylphosphine) and 24.8 parts by weight of γ-butyrolactone were mixed to prepare an epoxy resin solution Β-2. The dispersion Α-5 and the epoxy resin solution B-2 were mixed by a ball mill to prepare a paste composition C-1 9. Further, a high dielectric composition was prepared based on the method of Example 1, and the results of evaluating the dielectric characteristics are shown in Table 3. The high dielectric composition has a dielectric constant of 73, a dielectric tangent of 3.4%, and an area of electrostatic capacitance of 4.3 nF/cm2. The void ratio was 12% by volume. 323 parts by weight of barium titanate (manufactured by Sigma Chemical Co., Ltd., BT-05, average particle diameter: 〇·5 μm), 0.2 parts by weight of a dispersant (copolymer having an acid group having a phosphate structure: ratio Gukkenmi (BYK-W9010), 36 parts of γ-butyrolactone, mixed with a homomixer to obtain a dispersion of Α-6. The dispersion liquid Α-6 and the epoxy resin solution Β-2 were mixed by a ball mill to prepare a paste composition C-20. Further, a high dielectric composition was prepared based on the method of Example 1, and the results of evaluation of dielectric characteristics are shown in Table 3. The high dielectric composition has a dielectric constant of 95, a dielectric tangent of 3.1%, and an area of electrostatic capacitance of 8.4 nF/cm2. The void ratio was 7 vol%. Example 2 1 - 32 - 1352663 15.3 parts by weight of epoxy resin (manufactured by Nippon Kayaku Co., Ltd., nc3 〇〇〇), 5.3 parts by weight of phenol novolac lacquer resin (manufactured by Nippon Kayaku Co., Ltd., Kay Hatton" 新 (new name · ''Kayaharton KTG-105)), 0.2 parts by weight of hardening accelerator (Beixing Chemical Co., Ltd., triphenylphosphine) ' 24.7 parts by weight of vinegar mixture The epoxy resin solution Β-3 was obtained. The dispersion Α-2 and the epoxy resin solution Β-3 were mixed by ball milling to prepare a paste composition C-2 1. Also, by the embodiment! The method is based on a high dielectric composition, and the results of evaluating the dielectric properties are shown in Table 3. The high dielectric composition had a dielectric constant of 76, a dielectric tangent of 2.8%, and an area of electrostatic capacitance of 5.6 nF/cm2. The void ratio is 14% by volume. Example 22 62. 3 parts by weight of barium titanate (manufactured by Seiko Chemical Co., Ltd., BT-05, average particle diameter: 0·5 μηι), and 21.9 parts by weight of barium titanate (TPL, Inc., ΗΡΒ-Ι000) : average particle diameter 〇.〇59μπι), 15 parts by weight of γ-butyrolactone' 0.8 parts by weight of a dispersant (copolymer having an acid group having a phosphate structure, manufactured by Guckenmi Japan, BYC- W9010), using a homomixer to mix, to obtain a dispersion Α_7. 2.2 parts by weight of epoxy resin (manufactured by Nippon Kayaku Co., Ltd., ΕΡΡΝ 502 Η), 1 part by weight of phenol novolac lacquer resin (manufactured by Dainippon Ink Co., Ltd., TD-2 1 3 1 ), 0.04 parts by weight A hardening accelerator (manufactured by Behind Chemical Co., Ltd., triphenylphosphine)' 7.1 parts by weight of γ-butyrolactone was mixed to prepare an epoxy resin solution Β-4. The dispersion Α-7 and the epoxy resin solution Β-4 were mixed by ball milling to prepare a paste composition C-22. Further, a high dielectric composition was prepared based on the method of Example 1, and the results of evaluation of dielectric characteristics are shown in Table 6. The high dielectric composition had a specific dielectric constant of 123, a dielectric tangent of 3.1%, an area of electrostatic capacitance of 10.9 nF/cm2, and a dielectric porosity of 4,352,663. Example 23 2.6 parts by weight of epoxy resin (manufactured by Sakamoto Chemical Co., Ltd., NC-3000), 0.9 parts by weight of phenol novolac lacquer resin (manufactured by Nippon Kayaku Co., Ltd., 'Kaye Hatton' TPM) (New name: "Kayahton" KTG-105)), 0.04 parts by weight of hardening accelerator (Beixing Chemical Co., Ltd., triphenylphosphine)' 7.1 parts by weight of γ-butyrolactone mixed to obtain epoxy The resin solution Β-5. The dispersion Α-7 and the epoxy resin solution Β-5 were mixed by ball milling to prepare a paste composition C-23. Further, a high dielectric composition was prepared based on the method of Example 1. The material evaluation of dielectric properties is shown in Table 6. The high dielectric composition has a specific dielectric constant of 121, a dielectric tangent of 2.6%, and an area of electrostatic capacitance of 10.7 nF/cm2. 4% by volume. Example 2 4 A paste composition C-24 was produced in the same manner as in Example 23 except that ethylene glycol diacetate was used as a solvent. The boiling point of ethylene glycol diacetate was 190 °C. Further, a high dielectric composition was prepared based on the method of Example 1, and the dielectric properties were evaluated as shown in Table 6. The specific dielectric ratio was 9.5, and the dielectric #cut 3.1%, the electrostatic capacitance of the area was 8.4 nF/cm2, and the void ratio was 8 vol%. Example 25 A paste composition C-25 was produced in the same manner as in Example 23 except that diethyl malonate was used as a solvent. The boiling point of diethyl malonate was 199 ° C. Further, a high dielectric composition was prepared based on the method of Example 1, and the dielectric properties were evaluated. The specific dielectric ratio was 85 and the dielectric tangent was 2.7. %, area static _ 3 4 _ 1352663 The capacitance was 7.5 nF/cm 2 and the void ratio was 9% by volume. Example 2 6 A paste composition was prepared in the same manner as in Example 23 except that the solvent was ethyl carbitol. C - 2 6. The boiling point of carbitol is 2 0 2 ° C. Further, a high dielectric composition was prepared based on the method of Example 1, and the dielectric properties were evaluated. The specific dielectric ratio was 99, dielectric. The tangent was 2.9%, the electrostatic capacitance of the area was 8.81%/£; 1112, and the void ratio was 7 vol%. Example 2 7 A paste composition was prepared in the same manner as in Example 23 except that the solvent was 4-methylcyclohexanone. C-27. 4-methylcyclohexanone has a boiling point of 169 ° C. Moreover, a high dielectric composition was prepared based on the method of Example 1, and the dielectric was evaluated. The results of the characteristics are shown in Table 6. The specific dielectric constant was 79, the dielectric tangent was 2.1%, the electrostatic capacitance of the area was 7. OnF/cm2, and the void ratio was 12% by volume. Example 2 8 Solvent removal A paste composition C-28 was produced in the same manner as in Example 23 except that isophorone. The boiling point of isophorone was 215 ° C. Further, a high dielectric was produced based on the method of Example 1. The composition and the evaluation of the dielectric properties are shown in Table 6. The specific dielectric ratio was 76, the dielectric tangent was 2.2%, the electrostatic capacitance of the area was 6.7 nF/cm2, and the void ratio was 11% by volume. Example 2 9 A paste composition C-29 was produced in the same manner as in Example 23 except that the solvent was diethylformamide. The boiling point of diethylformamide is 177r. Further, a high dielectric composition was prepared based on the method of Example 1, and the dielectric properties were evaluated as shown in Table 6. The specific dielectric ratio is 70' dielectric tangent is 23% -35 - 1352663, the area has an electrostatic capacity of 6.2 nF/cm2, and the void ratio is 15% by volume. Example 3 A paste composition C-30 was produced in the same manner as in Example 23 except that the solvent was dimethylacetamide. The boiling point of dimethylacetamide is 165 °C. Further, a high dielectric composition was prepared based on the method of Example 1 to evaluate the dielectric properties. The specific dielectric constant was 79, the dielectric tangent was 2.3%, the electrostatic capacitance of the area was 7.0 nF/cm2, and the void ratio was 11% by volume. Synthesis Example 1; Dispersion X-1 5 3 28 parts by weight of barium titanate (manufactured by Seiko Chemical Industry Co., Ltd., BT·〇5, average particle diameter: 0.5 μm), and 1872 parts by weight of titanic acid Titium (TPB, Inc.'s 'HPB-1000, average particle size: 〇·〇59μιη), 928 parts by weight of γ-butyrolactone, 72 parts by weight of dispersant (having an acid group with a phosphate structure) Copolymer: Biko Chemical Co., Ltd., BYK-W9010, was mixed and dispersed in ice water for 1 hour using a homomixer to prepare a dispersion X-1. Synthesis Example 2; Dispersion Χ-2 To 5 32 8 parts by weight of barium titanate (manufactured by Sigma Chemical Industry Co., Ltd., ΒΤ-05, average particle diameter: 0.5 μm), and 1,872 parts by weight of barium titanate Filling (manufactured by Cabot Corpf, K-Plusl6, average particle diameter: 〇.〇6μιη), 928 parts by weight of γ-butyrolactone, 72 parts by weight of a dispersing agent (copolymer having an acid group having a phosphate structure: Chemicals • Japan (stock) system, BYK-W9010), using a homomixer and mixing and dispersing in ice water for 1 hour to obtain a dispersion Χ-2. Synthesis Example 3; Dispersion Χ _3 5 32 8 parts by weight of barium titanate (manufactured by Seiko Chemical Co., Ltd., ΒΤ-02, average particle diameter: 0,18 μm), and 1,872 parts by weight of barium titanate Filling (TPL, Inc. -36- 1352663 company, HPB-1000 'average particle size: 0_059μιη), 928 parts by weight γ-butyrolactone, 72 parts by weight of dispersant (copolymer having acid group with phosphate structure) : A mixture of GM-3, Japan, and BYK-W90 10) was mixed and mixed in ice water for 1 hour to obtain a dispersion Χ-3. Synthesis Example 4; Dispersion Χ-4 To 5 32 8 parts by weight of barium titanate (manufactured by Seiko Chemical Industry Co., Ltd., ΒΤ 03, average particle diameter: 〇.28 μιη), 1 872 parts by weight of barium titanate Filling (TPL, manufactured by Lnc., HPB-1000, average particle size: 0.059 μηι), 928 parts by weight of γ·butyrolactone, 72 parts by weight of dispersant (copolymerization with acid group with phosphate structure: ratio: Guji Chemical Co., Ltd. (BYK-W9010) was mixed and dispersed in ice water for 1 hour using a homomixer to prepare a dispersion liquid Χ-4. Synthesis Example 5; Dispersion Χ-5 to make 5 3 2 8 parts by weight of barium titanate filling (manufactured by Madhya Riyal, ΒΤ-ΗΡ3, average particle diameter: 1·2 μιη), 1 872 Parts by weight of barium titanate (TPL, Inc., ΗΡΒ-1000, average particle diameter: 0.059 μm), 928 parts by weight of γ-butyrolactone, 72 parts by weight of a dispersant (having a phosphate structure) The acid-based copolymer: Bikin Chemical Co., Ltd., BYK-W9010, was mixed and dispersed in ice water for 1 hour to obtain a dispersion Χ-5. Synthesis Example 6; Dispersion Χ-6 5 3 2 8 parts by weight of barium titanate filling (manufactured by Kyoridia, BT-SA, average particle size: 2·1 μιη), 1 872 a barium titanate filling (TPL, Inc., ΗΡΒ-1000, average particle diameter: 0.05 9 μm), 92 8 parts by weight of γ·butyrolactone, 72 parts by weight of a dispersant (having a phosphate structure) Acid-based copolymer: ICP: Japan (stock), BYK-W9010), using a homomixer 1352663 〇5, average particle size: 0.5 μιη), 928 parts by weight γ-butyrolactone '72 parts by weight dispersion Agent (copolymer with acid group of phosphate structure: BYK-W90 10), used in a homomixer, mixed in ice water for 1 hour to prepare a dispersion Χ- 10. Synthesis Example 11; Dispersion X-11 5 281 parts by weight of barium titanate filling (manufactured by Kyoridia), BTHP-8YF 'average particle diameter: 7 μηι), and 1872 parts by weight of titanic acid钡塡物 (Boundary Chemical Industry Co., Ltd., ΒΤ-05, average particle size: 0·5μιη), 928 parts by weight of γ-butyrolactone, 72 parts by weight of dispersant (having acid group copolymerization with phosphate structure) Substance: Biochemical • Japan (stock), BYK-W9010), using a homomixer and mixing and dispersing in ice water for 1 hour to obtain a dispersion X·1 1 . After the barium titanate filling (manufactured by Sigma-Aldrich Co., Ltd., BT-SA, average particle size: 2. ίμιη) is dispersed in an acrylic resin binder by a ball mill, the primary particles are coagulated and hardened using a spray dryer. Secondary particle granulation. Then, it was baked in the air at 1,200 ° C for 6 hours, and then pulverized in a mortar, and then classified by a 50-mesh sieve and a 300-mesh sieve to obtain a barium titanate-filled product having an average particle diameter of 40 μm. . For the measurement of the average particle size, a dynamic scattering type particle size distribution measurement device (LB-5〇0, manufactured by Horiba, Ltd.) was used. 5 3 2 8 parts by weight of the barium titanate filling A '1 8 7 2 parts by weight of barium titanate filling B (manufactured by Kyori·Madillaru Co., Ltd., BT-SA, average particle diameter: 2.1μη〇, 92 8 parts by weight of γ-butyrolactone, 72 parts by weight of a dispersant (copolymer having an acid group having a phosphate structure, · Guji Chemical Co., Ltd., BYK-W9010), use The mixture was mixed and dispersed in ice water for 1 hour to prepare a dispersion Χ-Ι2. Synthesis Example 13; dispersion X-13-39-1352663 6% by volume. Then, the paste composition was used in a spin coater. It was coated on an aluminum substrate and a copper substrate, dried in an oven at 120 ° C for 1 minute, and then cured at 175 ° C for 1 hour to prepare a dielectric composition. The stress change was measured using a Flexus device, Flexus, and the coefficient of linear expansion of the dielectric composition was determined from the change rate of the dielectric composition. The result was 18 ppm/° C., copper. (17ppm wide C) Maintaining approximately uniform enthalpy. In addition, an aluminum electrode is formed by vapor deposition on the surface of the dielectric composition on the aluminum substrate. The object and the aluminum of the substrate were used as electrodes, and an impedance analyzer (manufactured by Shuraton Pascal (HP), HP 4284A, HP 1 645 1 B) was used for the dielectric characteristics of 1 MHz, and was determined based on JIS K6911. As a result, the specific dielectric ratio was 55, the dielectric tangent was 3.3%, and the electrostatic capacitance of the area was 4.9 nF/cm 2 °. In addition, the dielectric composition on the copper substrate was subjected to the Blytheque test (PCT test, After 100% RH, 121 °c, 2 atmospheres, and 100 hours later, there was no abnormality observed by microscopy. With the checkerboard test method of the checkerboard method (JIS K5400), the evaluation points were 10 points, which was good. Moreover, in any measurement of the coefficient of linear expansion, dielectric properties, and PCT test, the film thickness of the dielectric composition is evaluated at a level of 5, 10, 20 μm, etc., since there is no difference in film thickness, In Table 9, all are ι〇μπι. Example 3 2 In a container equipped with a stirrer, 86 parts by weight of a dispersion Χ-1, Xu-41-!352663 was added, and 11 parts by weight of a resin solution Υ-1 and 3 amount were added. γ _ _ _ vinegar, mixed using a deceleration method, and stirred in the ball mill for 1 hour, prepared In this case, when the total amount of the inorganic chelating agent and the resin is 100% by volume, the content of the inorganic cerium is about 72% by volume. The same paste composition is used in the same manner as in Example 31. The dielectric composition, the coefficient of linear expansion, the dielectric properties, and the results of the PCT test are shown in Table 9. Example 3 3 In a container equipped with a stirrer, 88 parts by weight of a dispersion liquid χ;; ι , Xu Di was added to 7 The resin solution γ-1 and 5 parts by weight of γ-butane vinegar were mixed by a deceleration method, and further stirred in a ball mill for 1 hour to obtain a paste composition. At this time, when the total amount of the inorganic ruthenium and the resin is .100% by volume, the content of the inorganic ruthenium is about 79% by volume. Using the obtained paste composition, a dielectric composition was obtained in the same manner as in Example 31, and the results of measurement of linear expansion coefficient, dielectric property, and PCT test are shown in Table 9. Example 3 4 In a vessel equipped with a stirrer, 89 parts by weight of a dispersion Χ-1 was added, and Xu was added to 4 parts by weight of the resin solution yu and 7 parts by weight of butyrolactone, mixed by a deceleration method, and stirred in a ball mill. 1 hour, the composition of the paste was obtained. At this time, when the total amount of the inorganic filler and the resin is 100% by volume, the content of the inorganic ruthenium is about 86% by volume. Using the obtained paste composition, a dielectric composition was obtained in the same manner as in Example 31, and the results of measurement of linear expansion coefficient, dielectric property, and PCT test are shown in Table 9. Example 3 5 - 42- Ϊ 352663 In a container equipped with a stirrer, 90 parts by weight of a dispersion Χ-l was added, and 2 parts by weight of the resin solution Yd and 8 parts by weight of γ-butyrolactone were slowly added, and after mixing by a deceleration method, Further, the mixture was stirred for 1 hour in a ball mill to prepare a paste composition. At this time, when the total amount of the inorganic ruthenium and the resin is 1% by volume, the content of the inorganic ruthenium is about 91 ❶ /. . Using the obtained paste composition, a dielectric composition was obtained in the same manner as in Example 31, and the results of measurement of linear expansion coefficient, dielectric property, and PCT test are shown in Table 9. Example 3 6 Into a vessel equipped with a stirrer, 91 parts by weight of a dispersion liquid Χ-1 was added, and 1 part by weight of a resin solution γ -1 and 8 parts by weight of γ-butyrolactone were added, mixed by a deceleration method, and further The mixture was stirred for 1 hour in a ball mill to prepare a paste composition. At this time, when the total amount of the inorganic filler and the resin is 1 〇 〇 by volume, the content of the inorganic ruthenium is about 93% by volume. Using the obtained paste composition, a dielectric composition was obtained in the same manner as in Example 31, and the results of measurement of linear expansion coefficient, dielectric properties, and PCT test are shown in Table 9. Example 3 7 to 4 3 88 parts by weight of the dispersion shown in Table 5 was placed in a container equipped with a stirrer, and 7 parts by weight of the resin solution shown in Table 5 and 5 parts by weight of γ-butyrolactone were added to the stomach. After the deceleration method was mixed, the mixture was stirred for 1 hour in a ball mill to obtain a paste composition. At this time, when the total amount of the inorganic filler and the resin is 100% by volume, the content of the inorganic filler is about 79% by volume. Using the obtained paste composition, a dielectric composition was obtained in the same manner as in Example 31, and the coefficient of linear expansion, dielectric properties, and PCT test were measured as shown in Tables 9 and 10 - 43 - 1352663. 44 93 parts by weight of the dispersion liquid X-7 was placed in a vessel equipped with a stirrer, and 7 parts by weight of the resin solution Y-1 was slowly added thereto, mixed by a deceleration method, and further stirred in a ball mill for 1 hour to obtain a paste composition. At this time, when the total amount of the inorganic filler and the resin is 100% by volume, the content of the inorganic filler is about 79% by volume. Using the obtained paste composition, a dielectric composition was obtained in the same manner as in Example 31, and the results of measurement of coefficient of linear expansion, dielectric properties, and PCT test are shown in Table 10. Example 4 5 ^ 93 parts by weight of a dispersion X-8 was placed in a vessel equipped with a stirrer, and 7 parts by weight of a resin solution Y-1 was slowly added thereto, mixed by a deceleration method, and further stirred in a ball mill for 1 hour to prepare a paste. Cream composition. In this case, when the total amount of the inorganic filler and the resin is 100% by volume, the content of the inorganic filler is about 81% by volume. Using the obtained paste composition, a dielectric composition was obtained in the same manner as in Example 31, and the results of measurement of coefficient of linear expansion, dielectric properties, and PCT test are shown in Table 10. x Example 4 6 Into a vessel equipped with a stirrer, _93 parts by weight of a dispersion χ_9 was added, and 7 parts by weight of a resin solution Y·1 was slowly added, and after mixing by a deceleration method, the mixture was further stirred in a ball mill for 1 hour to prepare a paste. Cream composition. At this time, when the total amount of the inorganic filler and the resin is 100% by volume, the content of the inorganic filler is about 86% by volume. Using the obtained paste composition, a dielectric composition was obtained in the same manner as in Example 31, and the coefficient of linear expansion, dielectric properties, and PCT test were measured as shown in Table 10. -44- 1352663 Comparative Example 4 A dielectric composition was obtained in the same manner as in Example 31 except that the epoxy resin solution of Synthesis Example 14 was used, and the inorganic enthalpy dispersion was not used, and the coefficient of linear expansion and dielectric properties were measured. The results of the PCT test are shown in Table 10. Comparative Example 5 88 parts by weight of a dispersion X-1 was added to a vessel equipped with a stirrer, and 7 parts by weight of a resin solution and 5 parts by weight of γ-butyrolactone were slowly added thereto, mixed by a deceleration method, and further stirred in a ball mill. One hour, a paste composition was obtained. At this time, when the total amount of the inorganic filler and the resin is 100% by volume, the content of the organic filler is about 79% by volume. Using the obtained paste composition, a dielectric composition was obtained in the same manner as in Example 31, and the results of measurement of linear expansion coefficient, dielectric property, and PCT test are shown in Table 10. Comparative Example 88 88 parts by weight of the dispersion Χ-11 was placed in a container equipped with a stirrer, and 7 parts by weight of the resin solution Υ-1 and 5 parts by weight of γ-butyrolactone were slowly added, mixed by a deceleration method, and further in a ball mill. The mixture was stirred for 1 hour to prepare a paste composition. The paste composition is allowed to stand to make the filling easy to precipitate. At this time, when the total amount of the inorganic chelating agent and the resin is 100% by volume, the content of the inorganic cerium is about 79% by volume. Using the obtained paste composition, a dielectric composition was obtained in the same manner as in Example 31, and dielectric properties were measured by trial. However, the measurement was not stable and measurement was impossible. Comparative Example 7 88 parts by weight of a dispersion liquid Χ-12 was placed in a vessel equipped with a stirrer, and 7 parts by weight of a resin solution Υ-1 and 5 parts by weight of γ-butyrolactone were slowly added, and the -45-1352663 was mixed by a deceleration method. In addition, it was disturbed in the ball mill for 1 hour to prepare a paste and a composition. The paste composition is allowed to stand to make the filling easy to precipitate. At this time, when the total amount of the inorganic filler and the resin is 100% by volume, the content of the inorganic filler is about 79% by volume. Using the obtained paste composition, a dielectric composition was obtained in the same manner as in Example 31, and the dielectric properties were measured by measurement. However, the measurement of & Comparative Example 8 93 parts by weight of a dispersion liquid χ13 was placed in a vessel equipped with a stirrer, and 7 parts by weight of a resin solution Υ-1 and 5 parts by weight of vinegar were gradually added, and φ was mixed by a deceleration method, and further stirred in a ball mill. In the hour, a paste composition was prepared. The paste composition is allowed to stand to make the filling easy to precipitate. In this case, when the total amount of the inorganic filler and the resin is 100% by volume, the content of the inorganic filler is about 79% by volume. Using the obtained paste composition, a dielectric composition was obtained in the same manner as in Example 31, and dielectric properties were measured by trial. However, the measurement was not stable and measurement was impossible. Comparative Example 9 In addition to changing the barium titanate filling (manufactured by 堺Chemical Industries Co., Ltd., ΒΤ-05, average particle size: 〇, 5 μιη) of large particle size enthalpy, it was changed to barium titanate filling (TPL). , Inc., HPB-1 000, average particle size: 〇·〇59μηι), and barium titanate filling using small particle size enthalpy (TPL, Inc., ΗΡΒ-1000, average particle size: In the same manner as in Synthesis Example 3, a dispersion liquid was prepared in the same manner as in Synthesis Example 3 except that it was changed to a titanate saw sputum filling (manufactured by TPL, Inc., HPS-2000, average particle diameter: 0·045 μm), but the condensate was aggregated and dispersed. The liquid is also unstable and cannot be made into a paste composition. Industrial Applicability 値 -46- 1352663 The paste composition and the dielectric composition of the present invention are suitably used for a capacitor or an interlayer insulating material or an optical wiring material for a circuit material functioning as a capacitor.
1352663 膜特性 创® m *^r TT Ό ^r \o 介電特性(1MHz) © C〇 <k W - <N (N cn fS ΓΊ On (N (N ψ-^ 卜 (Ν 00 (N Ο _爷 姊i ^ - 对 oo m TT 00 (N v〇 〇〇 (Ν v〇 5 α β1 〇\ JO 〇 »〇 SO JO ON v〇 β:言 m 3 Ο (N 00 o Ό rs .〇 链 M ¢1 ^ -N S 概β 瑟_ W) νη to in 一 < f *i ^ 2: <$〇 ss J蓉¢1 2保細i 1鹤一 v〇 Os s 罷 i m w 枨 HI 懿 n 擀 m 篋 m 擗 HI m 橄 in 整 m- 擀 m m m 淋 m m 橄 HI 鼷 m 擀 m 蘅 锭 觀 κ 卜 I 卜 趙 e \~* 1 卜 題 e 卜 1 卜 νηητ 趙 e 卜 1 om 链 E 卜 1 卜 齬 e Η 卜 \ΛΠΤ 範 e h 1 ϊ> 餾 e 卜 1 卜 im f © fltn ^ ΓΤΤ; ·— S 璲(- ss m m s 菡挎 溢m 擀·Κ sg 5 蹈S 狻卜 赃醐 趑s 窗m 浒夂 am ^ m-ι 3? S 狻卜 赃醐 婼:i 螽特 芻m 擀·Κ *-— Dm ^ ΓΓΤ-» 蕕S 璲Η 赃謂 趙坦 窗Ί^· 菡ra 擀K m ^ m-t f— m s 链i- 赃蜊 m m 麄件 窓m 擀·Κ m ^ is 璲η ss ϋ ^ Μ 溢锊 蝱m 鋰睜 m ΐπ 链臣 ite -ψ- m m 囪芒 m¥ri 浒m t ss § J Μ 5 ^ m > 赃醐 m m, 螽讲 菡m 擀·Κ s§ Μ X flSI 鄉 CN Π33 1«1> Ο ϋ® -Η- & 鹉m臣 I 鋰戳S ii -H- 〇-酴m ω X SS戳S w έ 醛m gj X SS戳g 3?安2 ίίΗ4 _ 醛m臣 X SS戳g m¥ct. 酹m & 鲤戳d 蕕安g 嘁锊G 酹m z Sg iK 〇 蕕^ g if Π mmz mm 0 料i if -H- £ 酹ra i m 遊 摧 i/~) Ο Η CQ s m m ^ 蟲晚 l/Ί ο Η m s m ^ e 溫晚 »Λ Ο Η CQ 職9f m e 〇 H CQ 骤琳 vr> o H CQ 職琳 經与 in ο Η CQ 骤琳 μ e \Ti o H CQ . 骤珊 o H CQ 骤琳 揖 W 〇\ o (N Γ^ϊ ο1352663 Membrane Properties® m *^r TT Ό ^r \o Dielectric Properties (1MHz) © C〇<k W - <N (N cn fS ΓΊ On (N (N ψ-^ Bu (Ν 00 ( N Ο _ 姊 姊 i ^ - oo m TT 00 (N v〇〇〇(Ν v〇5 α β1 〇\ JO 〇»〇SO JO ON v〇β: 言 m 3 Ο (N 00 o Ό rs . 〇 chain M ¢1 ^ -NS ββ 瑟 W) νη to in a < f *i ^ 2: <$〇ss J Rong¢1 2 保细i 1鹤一〇V〇Os s 止imw 枨HI懿n 擀m 箧m 擗HI m olive in whole m- 擀mmm 淋mm olive HI 鼷m 擀m 蘅 ingot view κ 卜 I 卜赵 e \~* 1 卜题 e 卜1 卜ηητ Zhao e 卜 1 om chain E 卜1 卜龉e Η Bu\ΛΠΤ eh eh 1 ϊ> Distillation e Bu 1 Bu im f © fltn ^ ΓΤΤ; · S 璲 (- ss mms 菡挎 overflow m 擀·Κ sg 5 S S 狻 赃醐趑s window m 浒夂am ^ m-ι 3? S 狻卜赃醐婼:i 螽特刍m 擀·Κ *-— Dm ^ ΓΓΤ-» 莸S 璲Η 赃 赵 赵 坦 坦 坦 · · · · ·擀K m ^ mt f- ms chain i- 赃蜊mm 窓m 擀·Κ m ^ is 璲η ss ϋ ^ 锊蝱 overflow m lithium 睁m ΐπ chain ite -ψ- mm芒m¥ri 浒mt ss § J Μ 5 ^ m > 赃醐mm, 螽讲菡m 擀·Κ s§ Μ X flSI Township CN Π33 1«1> Ο ϋ® -Η- & Lithium stamp S ii -H- 〇-酴m ω X SS stamp S w έ aldehyde m gj X SS stamp g 3? 安 2 ίίΗ4 _ aldehyde m Chen X SS stamp gm¥ct. 酹m & 鲤 stamp d 莸安g 嘁锊G 酹mz Sg iK 〇莸^ g if Π mmz mm 0 I if -H- £ 酹ra im 游 i i/~) Ο Η CQ smm ^ 虫晚 l/Ί ο Η msm ^ e »Λ Ο Η CQ job 9f me 〇H CQ 琳琳 vr> o H CQ 职琳经 and in ο Η CQ 琳琳μ e \Ti o H CQ . 珊珊o H CQ 揖琳揖 W 〇\ o (N Γ^ϊ ο
1352663 e谳 膜特性 卜 卜 ΓΝΪ 卜 X 介電 正切 (%) 卜 〇 <η Ο ΓΟ cn 〇〇 (N _ P W 1 W S: n - 〇 *〇 CN — 令 οό VO »n & 比介 m率 00 V〇 κη ON \〇 膜厚 (μηι) 〇 00 Ο (N 糊膏組成物 糊膏組成 物總量中 之溶劑量 (重置%) in 固成分中 無機塡充 物含量 (重量%) 添加劑 1 1 三苯基膦 三苯基膦 /BYK- W9010 三苯基膦 m r-丁內酯 T-丁內酯 τ-丁內酯 τ-丁內酯 τ-丁內酯 硬化劑 1 1 am ^ t-l-K ·—· m s m f- m ϋ 菡m am ^ n-rn 癍s 璲H ss m 麄讲 菡ra Μ -K SS驊 键旨 |ε 擀m η m tH3 m 0. C/0 E gg m 狴米 β Β 鱷蜘 κ κ 聚醚楓 住友化學5003P 環氧樹脂 日本化藥EPPN502H 環氧樹脂 日本化藥EPPN502H 環氧樹脂 日本化藥NC3000 無機塡充物 鈦酸鋇 界化學ΒΤ-05 鈦酸鋇 界化學BT-05 鈦酸鋇 界化學BT-05 鈦酸鋇 界化學BT-05 鈦酸鋇 界化學ΒΤ-05 實施例 卜 〇〇 〇1352663 e谳膜性卜卜ΓΝΪ Bu X dielectric tangent (%) 〇 〇<η Ο ΓΟ cn 〇〇(N _ PW 1 WS: n - 〇*〇CN — οο VO »n & Rate 00 V〇κη ON \〇 film thickness (μηι) 〇00 Ο (N The amount of solvent in the total composition of the paste composition (replacement %) in the inorganic component (% by weight) Additive 1 1 Triphenylphosphine triphenylphosphine / BYK- W9010 Triphenylphosphine m r-butyrolactone T-butyrolactone τ-butyrolactone τ-butyrolactone τ-butyrolactone hardener 1 1 am ^ tlK ··· msm f- m ϋ amm am ^ n-rn 癍s 璲H ss m 麄讲菡ra Μ -K SS骅 key purpose|ε 擀m η m tH3 m 0. C/0 E gg m狴米β Β crocodile κ κ κ polyether maple Sumitomo Chemical 5003P epoxy resin Japanese chemical EPPN502H epoxy resin Japanese chemical EPPN502H epoxy resin Japanese chemical NC3000 inorganic ruthenium titanate chemical ΒΤ-05 barium titanate Boundary Chemistry BT-05 Barium Titanate Boundary Chemistry BT-05 Barium Titanate Boundary Chemistry BT-05 Barium Titanate Boundary Chemistry ΒΤ-05 Example Buddhism
1352663 膜特性 空隙率 (體積%) ίΝ cn κη 介電特性(1MHz) 介電 正切 (%) σ\ oo <ή 卜 靜電 容置 (nF/cm2) 寸 cvi ν〇 oi 卜 oi 比介 電率 u-> 菩 膜厚 (μηι) 1〇 <Ν 糊膏組成物 猶_ 鬆蘅$ n m μ ϋ ^ 5 瑟_ 〇 ι/Ί m 揉_ $ •fr ^ ¢)] 1g· ^ S 画鹚 §; S; 添加劑 三苯基膦 三苯基膦 三苯基膦 溶劑 r-丁內酯 嗎啉 丙二醇單甲 醚乙酸酯 硬化劑 赃 軸 趟 m „ 菡鋰挎二 菡 m 擀璲Κ Θ 鹅 HI 趟 s _ 菡擊m pj It ^ -Κ Η 靼 ϋ 趙 m „ ^ SS Ί4 ^ 浒璲K巨 樹脂 環氧樹脂 曰本化藥 EPPN502H 環氧樹脂 曰本化藥 ΕΡΡΝ502Η 環氧樹脂 曰本化藥 EPPN502H 無機塡充物 鈦酸鋇 界化學BT-05 鈦酸鋇 界化學ΒΤ-05 鈦酸鋇 界化學BT-05 比較例 一 (Ν ΓΟ 13526631352663 Membrane characteristic void ratio (% by volume) ίΝ cn κη Dielectric characteristics (1MHz) Dielectric tangent (%) σ\ oo <ή Bu static capacitance (nF/cm2) Inch cvi ν〇oi Bu oi Specific dielectric ratio U-> 菩膜厚(μηι) 1〇<Ν paste composition _ 松蘅 $ nm μ ϋ ^ 5 瑟 _ 〇ι/Ί m 揉_ $ •fr ^ ¢)] 1g· ^ S鹚§; S; additive triphenylphosphine triphenylphosphine triphenylphosphine solvent r-butyrolactone morpholine propylene glycol monomethyl ether acetate hardener 赃 axis 菡 菡 挎 挎 菡 擀璲Κ Θ Θ Goose HI 趟s _ sniper m pj It ^ -Κ Η 靼ϋ Zhao m „ ^ SS Ί4 ^ 浒璲K giant resin epoxy resin EP本本EPPN502H epoxy resin 曰本化药ΕΡΡΝ502Η Epoxy resin 曰本化Medicine EPPN502H Inorganic sulphate barium titanate chemical BT-05 Barium titanate chemical ΒΤ-05 Barium titanate chemistry BT-05 Comparative example 1 (Ν ΓΟ 1352663
lo« 糊膏組成物 蓉觀$ 卵3 mm f皞一 Τέ ¢1 'fe jo liml) 1g£5 画掛 Ό 〇\ v〇 Os v〇 VO 〇\ vo v〇 ON VO On v〇 ON v〇 ch S i Ο Ο m> m% m ® 〇 mi m% m ® o m$ 齡茭 m « ο ο ^ % 掛g HI ® o o m$ in e° 〇 〇 m> HI £9 〇 〇 達| 以 m 〇 O 罄I HI ® 蘅 锭 题 K H , 卜 餾 e 卜 鼯 m h0 11 豳 II 题. K) II 氍 11 K 騷 平 m κι 匾 ΓΏ 醛 m B- -^r 匾 m m 蛾 埋 m E- m K1 丨丨 鏗 m Kl m i· II .贏 tm f am ^ i-rr^ *— s 璲h m ® 菡件 麄m MX s cu 卜 M # mm flg 4l i嫌 M m H 鋰驊 靼隹I mm it -ψ-阱m s (X H 餘轻 fig I mm 菡θ 菡件 浒m s Oh H gg驊 蕕ln mm m .ψ-擀m Cu l·" gg驊 癍隹I mm fc 4c- 鈿鎌 擀m s 0. H 鋰燁 赔隹I mm te ψ- 鈿餓 菡Θ 麄锊 擀m S cu E—* 鋰驊 ®ln 錄薛 |g -Ψ--撒 擀m s Q- H 驗轻 te ψ. 螽梏 浒m s§ u X (N o 2 0- cu UJ 鋰饊 me 嫲件 酿m X S z CL 〇. UJ 鹊戳 *H-醚m X S a a. S3 鋰戳 ίϊ枓 酹m X (N Ο 2 CL, CL· ω 婴激 me 嫲柃 鹏m X S »〇 cu Cu UJ ss戳 me 贓柃 醚ED X S X a. CL· UJ ss攤 嘁梏 醛m X S *Τ) CL, a. W 鋰戳 嘁柃 醉m X S •η 2 0. cu W mm me 嘁柃 醛m X (N 〇 W-> 2 ο. P- W 鲤歡 me 贿柃 醛tn m CO t ϋ ρ- Χ ma 饀d § Ξ 1 a Cu X 驅1 經s § 尨t 2 1 -χ S a ^ j § 尨& 2 ό Pm X 0¾ c ^ j § Ξ 1 U a- X 饀f § 2 1 u CL X im: c <H5i n— 氍g § Ξ ό a. X nnc c <ΗΛ S J § Ξ ύ cu X S a 瀣d i Ξ 1 u CL X u 鼷£ 氍i § Ξ 犖 堞 < ό O H CD 骚挪 O H CD 驟跡 *Ti o H CQ 睚琳 o H CQ 骚跡 ^r> 〇 H CQ 骚Sf *T) 〇 H CQ 驅跡 <n o H CQ 職挪 尨虼 «〇 o H CQ 睚琳 〇 H CQ 職if me <N <N m 辑 1¾ m <N 握 u W cs m m in v〇 <N 闺 * 卜 <N 辑 H 00 <N 辑 * 〇s <N 習 W o m 匡 握 κ 1352663 9漱 膜特性 空隙率(體積%) 寸 寸 oo 〇\ 卜 <N r < 介電特性(1MHz) 介電正切(%) v〇 CN r- CN 〇\ <N r i < (N <N <N m <N m CN 靜電容量(nF/cm2) 10.9 S 10.7 OO v-i OO oo 〇 卜 (N o 比介電率 CM <N Ό Os 00 〇\ o Os 膜厚㈣ o 〇 o o o o O o o 實施例22 實施例23 實施例24 實施例25 實施例26 實施例27 實施例28 實施例29 實施例30Lo« paste composition Rong Guan $ egg 3 mm f皞一Τέ ¢1 'fe jo liml) 1g£5 painting hanging Ό 〇 \ v〇Os v〇VO 〇\ vo v〇ON VO On v〇ON v〇 Ch S i Ο Ο m> m% m ® 〇mi m% m ® om$ Age 茭m « ο ο ^ % Hang g HI ® oom$ in e° 〇〇m> HI £9 〇〇达 | to m 〇 O 罄I HI ® 蘅 ingot title KH , 卜 e e 鼯 鼯 m h0 11 豳 II title. K) II 氍11 K Saiping m κι 匾ΓΏ aldehyde m B- -^r 匾mm moth buried m E- m K1丨丨铿m Kl mi· II .Win tm f am ^ i-rr^ *— s 璲hm ® Software 麄m MX s cu Bu M # mm flg 4l i M M H Lithium 骅靼隹 I mm it - Ψ-well ms (XH 轻轻fig I mm 菡θ 浒 浒ms Oh H gg骅莸ln mm m .ψ-擀m Cu l·" gg骅癍隹I mm fc 4c- 钿镰擀ms 0. H 烨 烨 隹 I mm te ψ 钿 S S S S S S S S S S S | | | | | | | | | | | | | | | | | | | | | | Q Q Q Q Q Q Q Q Q Q § u X (N o 2 0- cu UJ lithium 饊me 酿 酿 X X X X U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U · ω 婴激 me 嫲柃鹏 m XS »〇cu Cu UJ ss stamped me 赃柃 ether ED XSX a. CL· UJ ss spread furfural m XS *Τ) CL, a. W Lithium poke drunk m XS •η 2 0. cu W mm me 嘁Furfural m X (N 〇W-> 2 ο. P- W 鲤欢me brinic aldehyde tn m CO t ϋ ρ- Χ ma 饀d § Ξ 1 a Cu X drive 1 by s § 尨t 2 1 - χ S a ^ j § 尨 & 2 ό Pm X 03⁄4 c ^ j § Ξ 1 U a- X 饀f § 2 1 u CL X im: c <H5i n— 氍g § Ξ ό a. X nnc c <ΗΛ SJ § Ξ ύ cu XS a 瀣di Ξ 1 u CL X u 鼷£ 氍i § Ξ 荦堞< ό OH CD 挪 OH OH CD Trails *Ti o H CQ 睚琳o H CQ 骚 trace ^ r> 〇H CQ Sao Sf *T) 〇H CQ Relics<no H CQ 职尨虼尨虼〇〇H CQ 睚琳〇H CQ 职 if me <N <N m Series 13⁄4 m <N Grip u W cs mm in v〇<N 闺* 卜<N series H 00 <N series* 〇s <N 习W om κ κ 1352663 9 特性膜 characteristic void ratio (% by volume) 寸 inch oo 〇 \卜<N r < Dielectric characteristics (1MHz) Dielectric tangent (%) v〇CN r- CN 〇\ <N ri < (N <N <N m <N m CN Electrostatic capacity (nF/cm2) 10.9 S 10.7 OO vi OO oo卜 (N o specific dielectric ratio CM < N Ό Os 00 〇 \ o Os film thickness (4) o 〇oooo O oo embodiment 22 embodiment 23 embodiment 24 embodiment 25 embodiment 26 embodiment 27 embodiment 28 29 Example 30
1352663 Γ-概 糊膏組成物 分散安定性 安定 安定 安定 安定 安定 安定 安定 安定 '安定 安定 不安定 (塡充物沉澱) 安定 (塡充物沉澱) 無機塡充物/樹脂之比例 體積比 _61Ζ39_ 72/28 1_ 79/21 86/14 91/9 93/7 79/21 79/21 79/21 79/21 79/21 79/21 樹脂溶液 環氧樹脂 Υ-1 Y-1 Y-1 • 1 Y-1 Y-1 Υ-2 Υ-2 1 1 Y-1 Y-1 無機塡充物 最大/最小 (比) yn 00 00 〇〇 〇6 00 00 00 m 00 20.3 35.6 平均粒徑 (μηι) 0,059 0.059 0.059 0.059 0.059 0.059 0.059 0.060 0.059 0.059 0.059 0.059 組成 鈦酸鋇 鈦酸鋇 i駄酸鋇 鈦酸鋇 鈦酸鋇 鈦酸鋇 鈦酸鋇 鈦酸鋇 鈦酸鋇 鈦酸鋇 鈦酸鋇 鈦酸鋇 平均粒徑 (μηι) 〇 d d d d ό 〇 〇 0.18 0.28 CN • < CS 組成 鈦酸鋇 鈦酸鋇 鈦酸鋇 鈦酸鋇 鈦酸鋇 鈦酸鋇 鈦酸鋇 鈦酸鋇 鈦酸鋇 鈦酸鋇 鈦酸鋇 鈦酸鋇 分散液 X-1 X-1 X-1 X-1 X-1 Χ-1 Χ-1 X-2 X-3 X-4 X-5 X-6 實施例31 實施例32 實施例33 實施例34 實施例35 實施例36 實施例37 實施例38 實施例39 實施例40 實施例41 ___1 實施例421352663 Γ-General paste composition Dispersion stability, stability, stability, stability, stability, stability, stability, stability, stability, stability, stability (precipitate precipitation) stability (filling sedimentation) /28 1_ 79/21 86/14 91/9 93/7 79/21 79/21 79/21 79/21 79/21 79/21 Resin solution epoxy resin Υ-1 Y-1 Y-1 • 1 Y -1 Y-1 Υ-2 Υ-2 1 1 Y-1 Y-1 Inorganic enthalpy maximum/minimum (ratio) yn 00 00 〇〇〇6 00 00 00 m 00 20.3 35.6 Average particle size (μηι) 0,059 0.059 0.059 0.059 0.059 0.059 0.059 0.060 0.059 0.059 0.059 0.059 Composition barium titanate barium titanate barium titanate barium titanate barium titanate barium titanate barium titanate barium titanate barium titanate barium titanate barium titanate barium titanate Particle size (μηι) 〇dddd ό 〇〇0.18 0.28 CN • < CS composition barium titanate barium titanate barium titanate barium titanate barium titanate barium titanate barium titanate barium titanate barium titanate barium titanate titanate Barium strontium titanate dispersion X-1 X-1 X-1 X-1 X-1 Χ-1 Χ-1 X-2 X-3 X-4 X-5 X-6 Example 31 Example 32 Example 33 Example 34 Implementation Example 39 Example 35 Example 36 Example 37 38 Example 41 40 embodiment ___1 Example 42
1352663 高介電體組成物 PCT試驗後棋盤格 子試驗之評估點數 〇 o Ο Ο 00 寸 ο Ο Ο Ο Ο Ο 介電特性@1ΜΗζ 靜電容量(nF/cm2) 〇\ 卜 oo 卜 卜 〇\ Γ- οο νο 寸 〇\ 10.1 ' <Ν ΟΟ ο 〇\ 12.0 m 介電正切(%) m m — — <Ν vd 〇6 ΟΝ CS <Ν CN οο οο <Ν Ο 寸· 比介電率 00 Os 110 109 00 〇\ 名 114 Os <Ν Ο Ρ ^ 150 線膨脹係數 (ppm广C) oo 卜 Ό ν〇 νο ψ νο ν〇 VO ν〇 \〇 ν〇 膜厚 (μπι) o ο ο Ο ο ο ο Ο ο ο ο Ο 實施例31 實施例32 實施例33 實施例34 實施例35 實施例36 實施例37 實施例38 實施例39 實施例40 實施例41 實施例421352663 High dielectric composition PCT test after checkerboard grid test evaluation points 〇o Ο 00 00 inch ο Ο Ο Ο Ο 介 Dielectric characteristics @1ΜΗζ Electrostatic capacity (nF/cm2) 〇\ oo oo Bu Bu 〇 - οο νο 〇 〇 \ 10.1 ' <Ν ΟΟ ο 〇\ 12.0 m Dielectric tangent (%) mm — — <Ν vd 〇6 ΟΝ CS <Ν CN οο οο <Ν Ο inch · Specific dielectric ratio 00 Os 110 109 00 〇\名114 Os <Ν Ο Ρ ^ 150 Linear expansion coefficient (ppm wide C) oo Ό Ό ν〇νο ψ νο ν〇VO ν〇\〇ν〇 film thickness (μπι) o ο ο实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施
1352663 0Ϊ漱 高介電體組成物 PCT試驗後棋盤格 子試驗之評估點數 〇 Ο Ο Ο Ο 00 νο VO 由於塡充物凝聚、無法製作糊膏 ^ 介電特性@1 MHz 靜電容量(nF/cm2) 10.2 οό CN 寸 γ-^ m ο 守 \ό 測定値不安定、無法測定 測定値不安定、無法測定 ._ 測定値不安定、無法測定 介電正切(%) ON ΓΝ σ\ m CN ΙΟ 〇〇 CS ΟΟ 〇 比介電率 IT) <Ν 線膨脹係數 (ppm/°C) VO CN CN Γ〇 v〇 •Ο 膜厚 :(μπι) ο Ο Ο Ο ο Ο ο 〇 〇 實施例43 實施例44 實施例45 實施例46 比較例4 實施例5 1 實施例6 實施例7 實施例8 實施例91352663 0Ϊ漱High dielectric composition evaluation point of checkerboard grid test after PCT test 〇Ο Ο Ο Ο 00 νο VO Due to condensation, it is impossible to make paste ^ Dielectric property @1 MHz Electrostatic capacity (nF/cm2 10.2 οό CN γγ-^ m ο 守\ό Measurement 値 Unstable, unable to measure 値 Unstable, unable to measure. _ Determination 値 Unstable, unable to measure dielectric tangent (%) ON ΓΝ σ\ m CN ΙΟ 〇 〇CS ΟΟ 介 Specific dielectric ratio IT) <Ν Linear expansion coefficient (ppm/°C) VO CN CN Γ〇v〇•Ο Film thickness: (μπι) ο Ο Ο Ο ο Ο ο 〇〇 Example 43 Implementation Example 44 Example 45 Example 46 Comparative Example 4 Example 5 1 Example 6 Example 7 Example 8 Example 9
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003101226 | 2003-04-04 | ||
JP2003186632 | 2003-06-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200500210A TW200500210A (en) | 2005-01-01 |
TWI352663B true TWI352663B (en) | 2011-11-21 |
Family
ID=33161504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW93109156A TWI352663B (en) | 2003-04-04 | 2004-04-02 | Paste composition and dielectric composition |
Country Status (5)
Country | Link |
---|---|
US (1) | US20060159927A1 (en) |
EP (1) | EP1612810A4 (en) |
KR (1) | KR101071791B1 (en) |
TW (1) | TWI352663B (en) |
WO (1) | WO2004090912A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050019214A (en) * | 2003-08-18 | 2005-03-03 | 한국과학기술원 | Polymer/ceramic composite paste for embedded capacitor and method for fabricating capacitor using the same |
WO2007029605A1 (en) * | 2005-09-06 | 2007-03-15 | Toray Industries, Inc. | Paste composition, dielectric composition, capacitor, and method for production of paste composition |
KR100665261B1 (en) * | 2005-10-13 | 2007-01-09 | 삼성전기주식회사 | Composite dielectric composition having small capacity change by temperature and signal-matching embedded capacitor prepared using the same |
JP5261896B2 (en) * | 2006-07-27 | 2013-08-14 | ダイキン工業株式会社 | Coating composition |
KR101423456B1 (en) | 2006-12-28 | 2014-07-29 | 서울반도체 주식회사 | Back lighting unit having phosphor film structure |
CN101861629B (en) | 2008-01-18 | 2012-02-01 | 东丽株式会社 | high dielectric constant paste composition and dielectric composition using the same |
US8586660B2 (en) | 2010-04-07 | 2013-11-19 | Samsung Electronics Co., Ltd. | Dielectric paste composition, method of forming dielectric layer, dielectric layer, and device including the dielectric layer |
JP5356326B2 (en) * | 2010-07-20 | 2013-12-04 | 日東電工株式会社 | Manufacturing method of semiconductor device |
WO2012145122A1 (en) | 2011-03-23 | 2012-10-26 | The Curators Of The University Of Missouri | High dielectric constant composite materials and methods of manufacture |
KR20150006713A (en) * | 2013-07-09 | 2015-01-19 | 삼성전기주식회사 | Insulating film for printed circuit board and products having the same |
US9809720B2 (en) * | 2015-07-06 | 2017-11-07 | University Of Massachusetts | Ferroelectric nanocomposite based dielectric inks for reconfigurable RF and microwave applications |
US10839992B1 (en) | 2019-05-17 | 2020-11-17 | Raytheon Company | Thick film resistors having customizable resistances and methods of manufacture |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5102720A (en) * | 1989-09-22 | 1992-04-07 | Cornell Research Foundation, Inc. | Co-fired multilayer ceramic tapes that exhibit constrained sintering |
US5270416A (en) * | 1992-09-04 | 1993-12-14 | Ferro Corporation | Thermosetting glycidyl modified acrylic powder coatings |
US6753108B1 (en) * | 1998-02-24 | 2004-06-22 | Superior Micropowders, Llc | Energy devices and methods for the fabrication of energy devices |
JP2000199956A (en) * | 1999-01-06 | 2000-07-18 | Toray Ind Inc | Photosensitive paste |
JP2000203941A (en) * | 1999-01-11 | 2000-07-25 | Tdk Corp | Production of ceramic paste |
JP3228923B2 (en) * | 2000-01-18 | 2001-11-12 | イビデン株式会社 | Ceramic heater for semiconductor manufacturing and inspection equipment |
US6891263B2 (en) * | 2000-02-07 | 2005-05-10 | Ibiden Co., Ltd. | Ceramic substrate for a semiconductor production/inspection device |
JP2001243837A (en) * | 2000-02-29 | 2001-09-07 | Kyocera Corp | Dielectric paste and method of manufacturing ceramic circuit board by using it |
JP2001283420A (en) * | 2000-03-30 | 2001-10-12 | Fuji Photo Film Co Ltd | Magnetic recording medium |
JP2001294445A (en) * | 2000-04-13 | 2001-10-23 | Toray Ind Inc | Glass paste |
US6350792B1 (en) * | 2000-07-13 | 2002-02-26 | Suncolor Corporation | Radiation-curable compositions and cured articles |
CN1164527C (en) * | 2000-07-28 | 2004-09-01 | 株式会社村田制作所 | Ceramic paste composition, ceramic forming body and ceramic electronic element |
JP2002226675A (en) | 2001-02-05 | 2002-08-14 | Toshiba Chem Corp | Insulating paste |
JP2002293619A (en) * | 2001-03-29 | 2002-10-09 | Tdk Corp | Dielectric composite material and production method therefor |
US7162137B2 (en) * | 2001-06-20 | 2007-01-09 | Ers Company | Optical fiber with nano-particle cladding |
US20030138731A1 (en) * | 2001-12-21 | 2003-07-24 | Treliant Fang | Photoresist formulation for high aspect ratio plating |
JP2004030737A (en) * | 2002-06-24 | 2004-01-29 | Fuji Photo Film Co Ltd | Manufacturing method of magnetic recording medium |
-
2004
- 2004-03-25 WO PCT/JP2004/004182 patent/WO2004090912A1/en active Application Filing
- 2004-03-25 EP EP04723336A patent/EP1612810A4/en not_active Withdrawn
- 2004-03-25 US US10/551,031 patent/US20060159927A1/en not_active Abandoned
- 2004-04-02 TW TW93109156A patent/TWI352663B/en not_active IP Right Cessation
-
2005
- 2005-09-22 KR KR1020057017731A patent/KR101071791B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR101071791B1 (en) | 2011-10-11 |
EP1612810A1 (en) | 2006-01-04 |
TW200500210A (en) | 2005-01-01 |
KR20060002844A (en) | 2006-01-09 |
US20060159927A1 (en) | 2006-07-20 |
WO2004090912A1 (en) | 2004-10-21 |
EP1612810A4 (en) | 2009-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101071791B1 (en) | Paste Composition and Dielectric Composition Using the Same | |
US7609504B2 (en) | High-dielectric constant metal-ceramic-polymer composite material and method for producing embedded capacitor using the same | |
JP3841814B1 (en) | Capacitor layer forming material and method for manufacturing the capacitor layer forming material | |
KR101559605B1 (en) | Thermosetting conductive paste and laminated ceramic electronic component possessing external electrodes formed using same | |
JP4019725B2 (en) | High dielectric constant composite material and multilayer wiring board using the same | |
CN103849008A (en) | Hybridized particle, polymer-based composite material, their preparation methods and use of polymer-based composite material | |
JP2005038821A (en) | Paste composition and dielectric composition using this | |
CN102241844B (en) | Composite dielectric material and preparation method thereof | |
JP2006134869A (en) | Dielectric composition | |
JPWO2009008471A1 (en) | Copper foil with dielectric layer | |
JP5176290B2 (en) | Paste composition, dielectric composition, dielectric sheet, and circuit board with built-in capacitor using the same | |
TW201424887A (en) | Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit | |
JP2007027101A5 (en) | ||
US9058912B2 (en) | Paste composition and dielectric composition using the same | |
CN110168015A (en) | Resin combination, resin copper foil, dielectric layer, copper clad laminate, capacitor element and built-in capacitor printed circuit board | |
JP2015065123A (en) | Conductive paste, conductive thin film, and circuit | |
KR20120114320A (en) | Electrically conductive paste and metal thin film | |
JP2006160934A (en) | Paste composition and dielectric composition | |
JP4867130B2 (en) | Insulated ultrafine powder, method for producing the same, and high dielectric constant resin composite material using the same | |
Hsu et al. | Formulation and dispersion of NiCuZn ferrite paste | |
JP2007217623A (en) | Paste composition and dielectric composition, capacitor using the dielectric composition | |
JP5453789B2 (en) | Metal fine particle dispersion, method for producing metal thin film, and metal thin film | |
CN100418161C (en) | Paste composition and dielectric composition using the same | |
JPWO2008044573A1 (en) | CAPACITOR LAYER FORMING MATERIAL, METHOD FOR PRODUCING CAPACITOR LAYER FORMING MATERIAL, AND PRINTED WIRING BOARD HAVING BUILT-IN CAPACITOR OBTAINED USING THE CAPACITOR LAYER FORMING MATERIAL | |
JP2018076594A (en) | Copper powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |