CN1879951A - 一种截留率可调控的电磁约束分离膜 - Google Patents

一种截留率可调控的电磁约束分离膜 Download PDF

Info

Publication number
CN1879951A
CN1879951A CN 200610040159 CN200610040159A CN1879951A CN 1879951 A CN1879951 A CN 1879951A CN 200610040159 CN200610040159 CN 200610040159 CN 200610040159 A CN200610040159 A CN 200610040159A CN 1879951 A CN1879951 A CN 1879951A
Authority
CN
China
Prior art keywords
film
magnetic
separation film
rate adjustable
interception rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610040159
Other languages
English (en)
Other versions
CN100371059C (zh
Inventor
潘见
谢慧明
何亚荟
张文成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CNB2006100401591A priority Critical patent/CN100371059C/zh
Publication of CN1879951A publication Critical patent/CN1879951A/zh
Application granted granted Critical
Publication of CN100371059C publication Critical patent/CN100371059C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

一种截留可调控的电磁约束分离膜,是在分离膜中均匀分布有纳米级至毫米级的磁性材料或/和磁致伸缩材料。本分离膜在外加磁场的作用下实现截留率的调控和选择,从而方便多组分物质的分级与分离。本分离膜的加工就是在原料中加入磁性介质用公知的成型工艺如溶液浇铸法、熔融拉伸法、聚合法等加工成型。

Description

一种截留率可调控的电磁约束分离膜
一、技术领域
本发明涉及膜分离过程用的一种合成的固态膜,特别涉及合成的固态多孔膜,确切地说是一种截留率可调控的电磁约束分离膜。
二、背景技术
膜分离在众多科学与工程领域得到应用。此前的分离膜因膜孔径为固定式而不能在线及时调控,所以其截留率也相对固定或变化范围很小。一种膜难以实现多组分物质的分离或分级。
三、发明内容
本发明的分离膜与此前常规的分离膜的区别在于:本分离膜中均匀分布有纳米级至毫米级的磁性介质,所述的磁性介质可以是磁性材料或/和磁致伸缩材料。
磁性介质在膜中的重量百分比为5~50%。
构成膜中磁性介质的材料,包括但不限于固态、液态磁性材料或有机、无机(例如Ni,Fe3O4)、无机-有机复合磁性材料;或者氧化铽或氧化镝铁等磁致伸缩材料;添加的原始磁性材料、反应生成的磁性材料或磁致伸缩材料其颗粒直径在纳米至毫米级。磁性介质在膜中的分布通常要求均匀一致,这样既有利于分离膜的调控操作,又便于工业制备和生产应用。
磁性介质所在的膜基材包括但不限于是聚砜、聚醚砜、聚偏氟乙烯、醋酸纤维素、聚丙烯腈等可以制成有机膜的高分子材料,氧化铝、氧化锆等无机材料,蛋白质、多糖等生物高分子材料,或无机与有机复合材料。
本分离的形状可以但不限于制作成薄层状、平板状、螺旋卷状、中空纤维状、柱状、单层或多层结构。
本发明在分离膜孔周围均匀分布有磁性介质,当在膜外施加一外磁场时,分离膜内的磁性材料受外磁场诱导而产生附加磁场。附加磁场作用在膜孔周围,对欲通过膜孔分离的物质产生诱导或阻滞作用。诱导或阻滞作用的大小受外磁场的调控。调控外磁场,即相应改变诱导或阻滞作用,不同的待分离物质的分子因化学结构、极性、荷电性、磁性等差异而表现出截留率变化。就膜而言,相当于随外磁场调控而产生截留率选择性。
对于磁致伸缩作用材料,外磁场的变化还会引起材料的较大变形,从而改变膜孔的物理结构,也直接影响到膜的选择性截留率。
这种选择性截留率,有利于实现多组分物质的分级或分离。
施加于电磁诱导分离膜的外磁场,可以但不限于为电磁场、永久磁铁形成的磁场。作用在膜上的外加磁场的大小变化,可以但不限于通过变换外加磁场和膜器的相对位置,调节通过电磁线圈的电流大小,增加永久磁铁或电磁铁的个数或组数。外加磁场的大小变化范围可以0~10T(特斯拉)内。
外磁场与分离膜的相对位置,可以但不限于平行、交叉、垂直、包含(例如线圈状)或置于膜组件的内部。
这种膜的成型可采用溶液浇铸法、熔融拉伸法、聚合法、溶剂蒸发法、浸沉凝胶相转化法、浸入沉淀相转化法、热致相分离法、烧结法、涂布法等工艺。
四、具体实施方式
实施例1(制膜工艺)
选用聚砜为膜基材,聚乙二醇400为添加剂,N,N-二甲基甲酰胺为溶剂,纯水为凝胶剂。改变制膜条件,即变化制膜液的质量百分比:聚砜8%-20%,聚乙二醇(400)1%-6%。在制膜液中加入纳米Fe3O4(粒径为8~12nm),表面活性剂为油酸,聚砜与纳米Fe3O4的质量比为15∶1至15∶15。溶剂蒸发时间1min~5min,可以制得截留分子量在8000~10000范围内的磁性聚砜超滤膜。纳米Fe3O4最佳加入量由膜的磁性、膜的水通量、膜的截留率、膜孔内纳米粒子的填充情况及纳米粒子的团聚情况最终权量确定。
实施例2(制膜工艺)
用聚偏氟乙烯配制成制膜液,在制膜液中加入一定量的磁性纳米粒子和表面活性剂,搅拌后用相转化法在无纺布上刮膜。通过调节制膜液膜基材和添加剂的多少,膜在空气中的蒸发时间可以制备出不同孔径的磁性超滤膜;加入不同量,不同种类的磁性粒子制得不同磁性大小的磁性膜。
实施例3(分离实例)
取截留分子量在8000-100000范围的磁性分离膜,分离溶菌酶。外磁场变化在0~2T,溶菌酶的截留率在15%-88%范围变化。

Claims (2)

1、一种截留率可调控的电磁约束分离膜,其特征在于:本分离膜中均匀分布有纳米级至毫米级的磁性介质,所述的磁性介质可以是磁性材料或/和磁致伸缩材料。
2、根据权利要求1所述的分离膜,其特征在于:磁性介质在膜中的重量百分比为5~50%。
CNB2006100401591A 2006-04-28 2006-04-28 一种截留率可调控的电磁约束分离膜 Expired - Fee Related CN100371059C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100401591A CN100371059C (zh) 2006-04-28 2006-04-28 一种截留率可调控的电磁约束分离膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100401591A CN100371059C (zh) 2006-04-28 2006-04-28 一种截留率可调控的电磁约束分离膜

Publications (2)

Publication Number Publication Date
CN1879951A true CN1879951A (zh) 2006-12-20
CN100371059C CN100371059C (zh) 2008-02-27

Family

ID=37518442

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100401591A Expired - Fee Related CN100371059C (zh) 2006-04-28 2006-04-28 一种截留率可调控的电磁约束分离膜

Country Status (1)

Country Link
CN (1) CN100371059C (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100534593C (zh) * 2007-07-11 2009-09-02 湖北工业大学 一种高渗透通量平板多孔膜的制备方法
CN100534592C (zh) * 2007-07-11 2009-09-02 湖北工业大学 一种高渗透通量管式多孔膜的制备方法
CN103752185A (zh) * 2014-01-24 2014-04-30 成都新柯力化工科技有限公司 一种磁感应荷电陶瓷超滤膜及其制备方法
CN104761655A (zh) * 2015-04-28 2015-07-08 福建省神六保健食品有限公司 一种从海鲜菇下脚料中提取海鲜菇多糖的方法
CN107930703A (zh) * 2017-11-27 2018-04-20 桐乡佳车科技有限公司 一种磁场可控阴离子交换膜制备方法
CN107983163A (zh) * 2017-11-27 2018-05-04 桐乡佳车科技有限公司 一种磁场可控阳离子交换膜制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1027680C (zh) * 1988-08-08 1995-02-22 中国科学院兰州化学物理研究所 催化-高分子气体分离膜
JP4139547B2 (ja) * 1999-11-02 2008-08-27 株式会社日立製作所 膜磁気分離装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100534593C (zh) * 2007-07-11 2009-09-02 湖北工业大学 一种高渗透通量平板多孔膜的制备方法
CN100534592C (zh) * 2007-07-11 2009-09-02 湖北工业大学 一种高渗透通量管式多孔膜的制备方法
CN103752185A (zh) * 2014-01-24 2014-04-30 成都新柯力化工科技有限公司 一种磁感应荷电陶瓷超滤膜及其制备方法
CN104761655A (zh) * 2015-04-28 2015-07-08 福建省神六保健食品有限公司 一种从海鲜菇下脚料中提取海鲜菇多糖的方法
CN107930703A (zh) * 2017-11-27 2018-04-20 桐乡佳车科技有限公司 一种磁场可控阴离子交换膜制备方法
CN107983163A (zh) * 2017-11-27 2018-05-04 桐乡佳车科技有限公司 一种磁场可控阳离子交换膜制备方法

Also Published As

Publication number Publication date
CN100371059C (zh) 2008-02-27

Similar Documents

Publication Publication Date Title
Sevim et al. Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures
CN1879951A (zh) 一种截留率可调控的电磁约束分离膜
Zhang et al. Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis
Zhang et al. Sub‐10 nm wide cellulose nanofibers for ultrathin nanoporous membranes with high organic permeation
Liang et al. Rational design and synthesis of Janus composites
Xie et al. Review of research on template methods in preparation of nanomaterials
Xu et al. An advanced necklace-like metal organic framework with an ultrahighly continuous structure in the membrane for superior butanol/water separation
Yu et al. Breath figure fabrication of honeycomb films with small molecules through hydrogen bond mediated self-assembly
Tan et al. Aminated metal‐organic framework (NH2‐MIL‐101 (Cr)) incorporated polyvinylidene (PVDF) hybrid membranes: Synthesis and application in efficient removal of Congo red from aqueous solution
Liu et al. Solvent induced rapid modulation of micro/nano structures of metal carboxylates coordination polymers: mechanism and morphology dependent magnetism
Li et al. Electrospun Fe2O3 nanotubes and Fe3O4 nanofibers by citric acid sol‐gel method
Fang et al. A novel clover-like COFs membrane fabricated via one-step interfacial polymerization for dye/salt separation
CN105778145B (zh) 大面积有序多孔膜的制备方法
Xu et al. Surfactant-induced chirality transfer, amplification and inversion in a cucurbit [8] uril–viologen host–guest supramolecular system
Zhao et al. Fabrication of ultrahigh hydrogen barrier polyethyleneimine/graphene oxide films by LBL assembly fine-tuned with electric field application
Wang et al. Electrosynthesis of Ionic Covalent Organic Frameworks for Charge‐Selective Separation of Molecules
Liu et al. Anisotropic Colloids: From Non‐Templated to Patchy Templated Synthesis
CN111087615A (zh) 一种cof膜,其制备方法、转移方法、用途和含有其的芯片
Chu et al. Self-construction of magnetic hollow La0. 7Sr0. 3MnO3 microspheres with complex units
Sun et al. MXene-based membranes in water treatment: Current status, and future prospects
CN102942169A (zh) 超临界流体技术制备负载金属富勒烯纳微米材料的方法
CN110606962B (zh) 一种二维限域自组织制备纳米纤维素液晶微网格膜的方法
Yuan et al. Thin Film Prepared by Gas–Liquid Interfacial Self‐Assembly Method and its Applications in Semiconductor Gas Sensors
Zhang et al. Tailoring the chemical potential of crystal growth units to tune the bulk structure of nanocrystals
Niu et al. Preparation and characterization of novel yellow pigments: hollow TiO 2 spheres doped with cerium

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080227

Termination date: 20160428