CN1864233A - 包括碳纳米管的导电性组合物及其制备方法 - Google Patents
包括碳纳米管的导电性组合物及其制备方法 Download PDFInfo
- Publication number
- CN1864233A CN1864233A CN 200480029375 CN200480029375A CN1864233A CN 1864233 A CN1864233 A CN 1864233A CN 200480029375 CN200480029375 CN 200480029375 CN 200480029375 A CN200480029375 A CN 200480029375A CN 1864233 A CN1864233 A CN 1864233A
- Authority
- CN
- China
- Prior art keywords
- carbon nanotube
- composition
- organic polymer
- conductive composition
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明公开一种导电性组合物,包括有机聚合物和碳纳米管组合物,其中该碳纳米管组合物包括可以拧成绳状并且具有大于或等于约0.1wt%,基于碳纳米管组合物总重量计的生产涉及杂质的碳纳米管,以及其中该组合物具有小于或等于约1012ohm-cm的整体体积电阻率和大于或等于约5千焦/平方米的缺口悬臂梁式冲击强度。
Description
相关申请的交叉引用
本申请要求2003年8月8日提交的美国临时申请序列号60/493,845和2003年9月9日提交的美国临时申请序列号60/501,504的优先权。
发明背景
本发明涉及导电性组合物及其制备方法。
由有机聚合物制造的制品通常用于材料处理和电子设备,例如包装薄膜、芯片载体、计算机、打印机和复印机部件,在其中静电耗散或电磁屏蔽是重要的要求。静电耗散(以下记为ESD)被定义为通过直接接触或通过感生的静电场将处于不同电位的物体之间的静电荷转移。电磁屏蔽(以下记为EM屏蔽)效率被定义为入射到屏蔽物上的,也即经由其传送的电磁场的比例比率(以分贝计)。随着电子设备变得越来越小和越来越快,它们对于静电荷的敏感度提高,因此通常希望使用已经改性的有机聚合物以提供改善的静电放电性能。以类似方式,希望对有机聚合物加以改性,这样它们可以提供改善的电磁屏蔽同时保持一些或全部该有机聚合物的有利机械性能。
通常将直径大于2微米的导电填料,例如衍生自沥青和聚丙烯腈的石墨纤维引入有机聚合物,以改善电学性能以及达到ESD和EM屏蔽。但是,因为这些石墨纤维尺寸较大,引入这种纤维通常引起机械性能,例如冲击性能降低。因此本领域中仍然需要提供足够ESD和EM屏蔽的同时可以保持其机械性能的导电聚合物组合物。
发明简述
在一个实施方案中,一种导电性组合物包括有机聚合物和碳纳米管组合物,其中该碳纳米管组合物包括可以拧成绳状的并且具有大于或等于约0.1wt%基于碳纳米管组合物总重量计的生产涉及杂质的碳纳米管,以及其中该组合物具有小于或等于约1012ohm-cm的整体体积电阻率和大于或等于约5千焦/平方米的缺口悬臂梁式冲击强度。
在另一个实施方案中,一种导电性组合物包括有机聚合物和包括碳纳米管的碳纳米管组合物,其中该碳纳米管组合物的碳纳米管具有大于或等于约0.1wt%基于该碳纳米管组合物总重量计的生产涉及杂质;以及其中该碳纳米管以包括绳的网络形式存在于有机聚合物中;以及其中该导电性组合物具有小于或等于约108ohm-cm的整体体积电阻率和大于或等于约10千焦/平方米的缺口悬臂梁式冲击强度。
在另一个实施方案中,一种导电性组合物包括有机聚合物和包括碳纳米管的碳纳米管组合物,其中该碳纳米管组合物的碳纳米管具有大于或等于约0.1wt%基于该碳纳米管组合物总重量计的生产涉及杂质;以及其中该碳纳米管以包括绳和附聚物的网络形式存在于有机聚合物中;以及其中该导电性组合物具有小于或等于约108ohm-cm的整体体积电阻率和大于或等于约10千焦/平方米的缺口悬臂梁式冲击强度以及A级表面光洁度。
本发明公开了一种制备组合物的方法,包括将有机聚合物和/或有机聚合物前体组合物与碳纳米管组合物共混,其中该碳纳米管组合物包括可以拧成绳状的碳纳米管,以及其中该碳纳米管组合物包括大于或等于约0.1wt%基于碳纳米管组合物总重量计的生产涉及杂质。
本发明还公开了一种制备导电性组合物的方法,包括将碳纳米管组合物与有机聚合物或有机聚合物前体共混;其中该碳纳米管组合物含有可以拧成绳状的碳纳米管;以及其中包括碳纳米管的绳在共混时改变其尺寸。
本发明还公开了一种制备导电性组合物的方法,包括将第一有机聚合物和碳纳米管组合物共混形成母料;其中该碳纳米管组合物包括大于或等于约0.1wt%基于碳纳米管组合物总重量计的生产涉及杂质;以及其中该碳纳米管组合物包括可以拧成绳状的碳纳米管;以及进一步将母料与第二有机聚合物共混形成导电性组合物。
附图简述
图1为描绘石墨纳米片的示意图;
图2为具有SWNT-3和SWNT-10的尼龙6,6试样的比体积电阻率图示;以及
图3为显示组合物中SWNT分散的电子显微照片,其中SWNT分别为SWNT-3和SWNT-10。
发明详述
应当注意如在此使用的,术语“第一”、“第二”等并不表示任何顺序或重要性,而是用来区别一个元件和另一个元件,并且术语“该”、“一个”和“一种”并不表示量的限制,而是表示存在至少一种提到的物品。此外,在此公开的所有范围包含端点并且是可独立组合的。
本发明公开导电性组合物,包括一种或多种有机聚合物和碳纳米管组合物,其具有小于或等于约1012ohm-cm的整体体积电阻率,同时显示大于或等于约5千焦/平方米的冲击性能和A级表面光洁度。该碳纳米管组合物包括碳纳米管,所述碳纳米管可以进行拧成绳状并且具有大于或等于约1,大于或等于约2以及大于或等于约5重量百分比(wt%),基于碳纳米管总重量计的生产涉及杂质。在有利特征方面,这种生产涉及杂质的存在有助于有机聚合物基质内碳纳米管的分散和/或促进在贯穿有机聚合物基质的导电性网络形成中使用降低的能量。绳的存在允许使用较小体积分数的碳纳米管贯穿导电性组合物形成导电性网络。该绳以单壁碳纳米管、多壁碳纳米管以及单壁碳纳米管与多壁碳纳米管的组合方便地存在。在一个实施方案中,该导电性组合物由含有可以拧成绳状的碳纳米管的母料制成。
在一个实施方案中,该导电性组合物具有大于或等于约1012欧姆/平方(ohm/sq)的表面电阻率同时具有小于或等于约108ohm-cm的整体体积电阻率,同时显示大于或等于约5千焦/平方米的冲击性能和A级表面光洁度。在另一个实施方案中,该导电性组合物具有小于或等于约108ohm-cm的整体体积电阻率,同时显示大于或等于约10千焦/平方米的冲击性能。在又另一个实施方案中,该导电性组合物具有小于或等于约108ohm-cm的整体体积电阻率,同时显示大于或等于约15千焦/平方米的冲击性能。在又另一个实施方案中,该组合物具有小于或等于约108ohm-cm的整体体积电阻率,同时显示大于或等于约20千焦/平方米的冲击性能。该导电性组合物可以模塑成具有A级表面光洁度的制品。
这种导电性组合物可以方便地用于需要免受静电荷的计算机、电子产品、半导体部件或电路板等。它们也可以方便地用在用于汽车内部和外部部件的汽车车体板,如果需要其可被静电油漆。
现已在无意中发现包括各种粒度和形状的导电填料产生具有低渗流阈的导电性组合物。碳纳米管,由于其管状(高纵横比)几何形状和强烈的范德华力相互作用,以绳的形式附聚。加工过程中,对于这些绳理想的是分散和无规横生枝节与其它绳结合,由此形成导电性网络。但是,这种支节横生并不容易实现,因为范德华力不容易克服。因此现已发现具有各种不同粒度和形状,生产涉及杂质形式的碳纳米管可以被轻易地分散形成渗透网络。还有利地发现包括具有各种尺寸和形状的颗粒的碳纳米管组合物可以比具有较均匀粒度的碳纳米管组合物更容易地分散在有机聚合物中。
用于该导电性组合物的有机聚合物可以选自多种热塑性树脂、热塑性树脂共混物或热塑性树脂与热固性树脂的共混物。该有机聚合物还可以为聚合物、共聚物、三元共聚物的共混物,或包括上述有机聚合物的至少一种的组合。热塑性树脂的具体但非限制性实例包括聚缩醛、聚丙烯酸系树脂、聚碳酸酯、聚苯乙烯、聚酯、聚酰胺、聚酰胺酰亚胺、聚芳酯、聚氨酯、聚芳砜、聚醚砜、聚亚芳基硫醚、聚氯乙烯、聚砜、聚醚酰亚胺、聚四氟乙烯、聚醚酮、聚醚醚酮以及包括上述有机聚合物的至少一种的组合。
热塑性树脂的共混物的具体非限制性实例包括丙烯腈-丁二烯-苯乙烯/尼龙、聚碳酸酯/丙烯腈-丁二烯-苯乙烯、聚苯醚/聚苯乙烯、聚苯醚/聚酰胺、聚碳酸酯/聚酯、聚苯醚/聚烯烃以及包括上述热塑性树脂共混物的至少一种的组合。
在一个实施方案中,可以用于该导电性组合物的有机聚合物为聚亚芳基醚。术语聚(亚芳基醚)聚合物包括聚苯醚(PPE)和聚(亚芳基醚)共聚物;接枝共聚物;聚(亚芳基醚)醚离聚物;以及链烯基芳香族化合物与聚(亚芳基醚),乙烯基芳香族化合物与聚(亚芳基醚)的嵌段共聚物等;以及包括上述至少一种的组合。聚(亚芳基醚)聚合物自身是包括多个结构式(I)的结构单元的聚合物:
其中对于每个结构单元,每个Q1独立地为氢、卤素、伯或仲低级烷基(例如含有至多7个碳原子的烷基)、苯基、卤代烷基、氨基烷基、烃氧基、其中至少两个碳原子隔开卤素和氧原子的卤代烃氧基等;每个Q2独立地为氢、卤素、伯或仲低级烷基、苯基、卤代烷基、烃氧基、其中至少两个碳原子隔开卤素与氧原子的卤代烃氧基等。每个Q1可以为烷基或苯基,特别为C1-4烷基,以及每个Q2可以为氢。
均聚物和共聚物聚(亚芳基醚)都被包括。示例性均聚物为那些含有2,6-二甲基亚苯基醚单元的均聚物。合适的共聚物包括含有例如与2,3,6-三甲基-1,4-亚苯基醚单元结合的这种单元的无规共聚物或衍生自2,6-二甲基苯酚与2,3,6-三甲基苯酚共聚合的共聚物。还包括的是含有由接枝乙烯基单体或聚合物,例如聚苯乙烯,以及偶联的聚(亚芳基醚)制备的部分的聚(亚芳基醚),其中偶联剂例如低分子量聚碳酸酯、醌类、杂环和甲缩醛,与两个聚(亚芳基醚)链的羟基进行反应,产生高分子聚合物。聚(亚芳基醚)另外包括包括以上至少一种的组合。
该聚(亚芳基醚)具有约10,000到约30,000克/摩尔(g/mol)的数均分子量和约30,000到约60,000g/mol的重均分子量,通过凝胶渗透色谱法测定。该聚(亚芳基醚)可以具有约0.10到约0.60分升每克(dl/g)的特性粘度,在25℃下氯仿中测定。还可能在组合物中使用高特性粘度聚(亚芳基醚)和低特性粘度聚(亚芳基醚)。当使用两种特性粘度时,确定精确的比率将某种程度上取决于使用的聚(亚芳基醚)的精确特性粘度以及所需的最终物理性能。
该聚(亚芳基醚)通常通过至少一种一羟基芳香族化合物,例如2,6-二甲苯酚或2,3,6-三甲基苯酚的氧化偶合制备。催化剂体系通常被用于这种偶合;它们通常含有至少一种重金属化合物,例如铜、锰或钴化合物,其通常与各种其它材料组合。
对于许多目的特别有用的聚(亚芳基醚)为那些包括具有至少一个含氨基烷基的端基的分子的聚(亚芳基醚)。该氨基烷基基团通常位于羟基的邻位。含这种端基的产物可以通过将合适的伯或仲一元胺,例如二正丁胺或二甲胺作为氧化偶合反应混合物的组分之一引入而得到。同样经常存在的是4-苯基苯酚端基,其通常从其中副产物二苯酚合苯醌特别存在于铜-卤化物-仲或叔胺体系中的反应混合物中得到。相当大的比例的该聚合物分子,通常占该聚合物的多达约90wt%,可以含有含氨基烷基的端基和4-苯基苯酚端基的至少一个。
在另一个实施方案中,用于该导电性组合物的有机聚合物可以为聚碳酸酯。包括芳香族碳酸酯链单元的聚碳酸酯,包括具有结构式(II)的结构单元的组合物:
其中R1基团为芳香族、脂肪族或脂环族基团。R1为芳香族有机基团,以及更理想地为结构式(III)的基团:
—A1—Y1—A2— (III)
其中A1和A2均为单环二价芳基,Y1为具有零、一或两个原子,隔开A1和A2的桥连基团。在一个示例性实施方案中,一个原子隔开A1和A2。该类型基团的说明性实例为-O-、-S-、-S(O)-、-S(O2)-、-C(O)-、亚甲基、环己基-亚甲基、2-[2,2,1]-双环庚叉基、乙叉基、异丙叉基、新戊叉基、环已叉基、环十五叉基、环十二叉基、金刚烷叉基等。该桥连基团Y1可以为烃基或饱和烃基,例如亚甲基、环已叉基或异丙叉基。
聚碳酸酯可以通过碳酸酯前体与二羟基化合物的Schotten-Bauman界面反应产生。通常将水性碱,例如氢氧化钠、氢氧化钾、氢氧化钙等与含有二羟基化合物的有机水不混溶的溶剂,例如苯、甲苯、二硫化碳或二氯甲烷混合。相转移剂通常被用来促进反应。可以单独或以混合物形式将分子量调节剂加入反应混合物。也可以单独或以混合物形式添加立即叙述的支化剂。
可以用于本发明的芳香族二羟基化合物共聚单体包括通式(IV)的那些:
HO—A2—OH (IV)
其中A2选自二价取代和未取代的芳族基。
在一些实施方案中,A2具有结构式(V)的结构:
其中G1表示芳基,例如亚苯基、亚联苯基、亚萘基等。E可以为亚烷基或烷叉基,例如亚甲基、亚乙基、乙叉基、亚丙基、丙叉基、异丙叉基、亚丁基、丁叉基、异丁叉基、亚戊基、戊叉基、异戊叉基等,以及可以由通过不同于亚烷基或烷叉基的部分连接的两种或多种亚烷基或烷叉基组成,例如芳族键;叔氨基键;醚键;羰基键;含硅键;或者含硫键,例如硫化物、亚砜、砜等;或含磷键,例如氧膦基、膦酰基等。另外,E可以为脂环族基。R1表示氢或单价烃基,例如烷基、芳基、芳烷基、烷芳基或环烷基。Y1可以为无机原子,例如卤素(氟、溴、氯、碘);无机基团,例如硝基;有机基团,例如链烯基、烯丙基、或以上R1,或氧基基团,例如OR;唯一必需的是Y1对于用于制备该聚合物的反应物和反应条件是惰性的以及不受其影响。字母m表示G1上可以取代的位置数目的任何整数,包括零;p表示E上可以取代的位置数目的整数,包括零;“t”表示等于至少为一的整数;“s”为零或一;以及“u”表示包括零的任何整数。
E的合适实例包括环戊叉基、环己叉基、3,3,5-三甲基环己叉基、甲基环己叉基、2-[2.2.1]-双环庚叉基、新戊叉基、环十五叉基、环十二叉基、金刚烷叉基等;含硫键,例如硫化物、亚砜或砜;含磷键,例如氧膦基、膦酰基;醚键;羰基;叔氮基;或含硅键,例如硅烷或甲硅烷氧基。在芳族二羟基共聚单体化合物(III)中,其中A2由以上结构式(IV)表示,当存在多于一个Y1取代基时,它们可以相同或不同。这也适用于R1取代基。当结构式(IV)中s为零以及u不为零时,芳族环直接连接,不插入烷叉基或其它桥键。羟基和Y1在芳族核残基G1上的位置可以在邻、间或对位变化,以及该基团可以为邻位、不对称或对称关系,其中烃残基的两个或多个环碳原子用Y1和羟基取代。在一些具体实施方案中,参数“t”、“s”和“u”均为一;两个G1基为未取代的亚苯基;以及E为烷叉基基团,例如异丙叉基。在特别的实施方案中,两个G1基为对亚苯基,但是两个可以为邻或间亚苯基或一个为邻或间亚苯基以及另一个为对亚苯基。结构式(IV)的芳族二羟基化合物的合适实例由以下物质说明:2,2-双-(4-羟苯基)丙烷(双酚A);2,2-双-(3-氯-4-羟苯基)丙烷;2,2-双-(3-溴-4-羟苯基)丙烷;2,2-双-(4-羟基-3-甲基苯基)丙烷;2,2-双-(4-羟基-3-异丙基苯基)丙烷;2,2-双-(3-叔丁基-4-羟苯基)丙烷;2,2-双-(3-苯基-4-羟苯基)丙烷;2,2-双-(3,5-二氯-4-羟苯基)丙烷;2,2-双-(3,5-二溴-4-羟苯基)丙烷;2,2-双-(3,5-二甲基-4-羟苯基)丙烷;2,2-双-(3-氯-4-羟基-5-甲基苯基)丙烷;2,2-双-(3-溴-4-羟基-5-甲基苯基)丙烷;2,2-双-(3-氯-4-羟基-5-异丙基苯基)丙烷;2,2-双-(3-溴-4-羟基-5-异丙基苯基)丙烷;2,2-双-(3-叔丁基-5-氯-4-羟苯基)丙烷;2,2-双-(3-溴-5-叔丁基-4-羟苯基)丙烷;2,2-双-(3-氯-5-苯基-4-羟苯基)丙烷;2,2-双-(3-溴-5-苯基-4-羟苯基)丙烷;2,2-双-(3,5-二异丙基-4-羟苯基)丙烷;2,2-双-(3,5-二叔丁基-4-羟苯基)丙烷;2,2-双-(3,5-二苯基-4-羟苯基)丙烷;2,2-双-(4-羟基-2,3,5,6-四氯苯基)丙烷;2,2-双-(4-羟基-2,3,5,6-四溴苯基)丙烷;2,2-双-(4-羟基-2,3,5,6-四甲基苯基)丙烷;2,2-双-(2,6-二氯-3,5-二甲基-4-羟苯基)丙烷;2,2-双-(2,6-二溴-3,5-二甲基-4-羟苯基)丙烷;1,1-双(4-羟苯基)环己烷;1,1-双(3-氯-4-羟苯基)环己烷;1,1-双(3-溴-4-羟苯基)环己烷;1,1-双-(4-羟基-3-甲基苯基)环己烷;1,1-双-(4-羟基-3-异丙基苯基)环己烷;1,1-双(3-叔丁基-4-羟苯基)环己烷;1,1-双(3-苯基-4-羟苯基)环己烷;1,1-双(3,5-二氯-4-羟苯基)环己烷;1,1-双(3,5-二溴-4-羟苯基)环己烷;1,1-双(3,5-二甲基-4-羟苯基)环己烷;1,1-双-(3-氯-4-羟基-5-甲基苯基)环己烷;1,1-双-(3-溴-4-羟基-5-甲基苯基)环己烷;1,1-双-(3-氯-4-羟基-5-异丙基苯基)环己烷;1,1-双-(3-溴-4-羟基-5-异丙基苯基)环己烷;1,1-双(3-叔丁基-5-氯-4-羟苯基)环己烷;1,1-双(3-溴-5-叔丁基-4-羟苯基)环己烷;1,1-双(3-氯-5-苯基-4-羟苯基)环己烷;1,1-双(3-溴-5-苯基-4-羟苯基)环己烷;1,1-双(3,5-二异丙基-4-羟苯基)环己烷;1,1-双(3,5-二叔丁基-4-羟苯基)环己烷;1,1-双(3,5-二苯基-4-羟苯基)环己烷;1,1-双-(4-羟基-2,3,5,6-四氯苯基)环己烷;1,1-双-(4-羟基-2,3,5,6-四溴苯基)环己烷;1,1-双-(4-羟基-2,3,5,6-四甲基苯基)环己烷;1,1-双(2,6-二氯-3,5-二甲基-4-羟苯基)环己烷;1,1-双(2,6-二溴-3,5-二甲基-4-羟苯基)环己烷;1,1-双(4-羟苯基)-3,3,5-三甲基环己烷;1,1-双(3-氯-4-羟苯基)-3,3,5-三甲基环己烷;1,1-双(3-溴-4-羟苯基)-3,3,5-三甲基环己烷;1,1-双(4-羟基-3-甲基苯基)-3,3,5-三甲基环己烷;1,1-双(4-羟基-3-异丙基苯基)-3,3,5-三甲基环己烷;1,1-双(3-叔丁基-4-羟苯基)-3,3,5-三甲基环己烷;1,1-双(3-苯基-4-羟苯基)-3,3,5-三甲基环己烷;1,1-双(3,5-二氯-4-羟苯基)-3,3,5-三甲基环己烷;1,1-双(3,5-二溴-4-羟苯基)-3,3,5-三甲基环己烷;1,1-双(3,5-二甲基-4-羟苯基)-3,3,5-三甲基环己烷;1,1-双(3-氯-4-羟基-5-甲基苯基)-3,3,5-三甲基环己烷;1,1-双(3-溴-4-羟基-5-甲基苯基)-3,3,5-三甲基环己烷;1,1-双(3-氯-4-羟基-5-异丙基苯基)-3,3,5-三甲基环己烷;1,1-双(3-溴-4-羟基-5-异丙基苯基)-3,3,5-三甲基环己烷;1,1-双(3-叔丁基-5-氯-4-羟苯基)-3,3,5-三甲基环己烷;1,1-双(3-溴-5-叔丁基-4-羟苯基)-3,3,5-三甲基环己烷;1,1-双(3-氯-5-苯基-4-羟苯基)-3,3,5-三甲基环己烷;1,1-双(3-溴-5-苯基-4-羟苯基)-3,3,5-三甲基环己烷;1,1-双(3,5-二异丙基-4-羟苯基)-3,3,5-三甲基环己烷;1,1-双(3,5-二叔丁基-4-羟苯基)-3,3,5-三甲基环己烷;1,1-双(3,5-二苯基-4-羟苯基)-3,3,5-三甲基环己烷;1,1-双(4-羟基-2,3,5,6-四氯苯基)-3,3,5-三甲基环己烷;1,1-双(4-羟基-2,3,5,6-四溴苯基)-3,3,5-三甲基环己烷;1,1-双(4-羟基-2,3,5,6-四甲基苯基)-3,3,5-三甲基环己烷;1,1-双(2,6-二氯-3,5-二甲基-4-羟苯基)-3,3,5-三甲基环己烷;1,1-双(2,6-二溴-3,5-二甲基-4-羟苯基)-3,3,5-三甲基环己烷;4,4′-二羟基-1,1-联苯;4,4′-二羟基-3,3′-二甲基-1,1-联苯;4,4′-二羟基-3,3’-二辛基-1,1-联苯;4,4′-二羟基二苯醚;4,4′-二羟基二苯基硫醚;1,3-双(2-(4-羟基苯基)-2-丙基)苯;1,3-双(2-(4-羟基-3-甲基苯基)-2-丙基)苯;1,4-双(2-(4-羟基苯基)-2-丙基)苯和1,4-双(2-(4-羟基-3-甲基苯基)-2-丙基)苯。示例性芳族二羟基化合物为双酚A(BPA)。
可以由结构式(IV)表示的其它双酚A化合物包括那些其中X为-O-、-S-、-SO-或-SO2-的化合物。这种双酚A化合物的一些实例为双(羟基芳基)醚,例如4,4′-二羟基二苯醚、4,4′-二羟基-3,3′-二甲基苯醚等;双(羟基二芳基)硫化物,例如4,4′-二羟基二苯硫、4,4′-二羟基-3,3′-二甲基二苯硫等等;双(羟基二芳基)亚砜,例如4,4′-二羟基二苯亚砜、4,4′-二羟基-3,3′-二甲基二苯亚砜等;双(羟基二芳基)砜,例如4,4′-二羟基二苯砜、4,4′-二羟基-3,3′-二甲基二苯砜等等;或包括上述双酚A化合物的至少一种的组合。
其它可以用于聚碳酸酯缩聚的双酚A化合物由结构式(VI)表示
其中Rf为具有1到10个碳原子的烃基的卤素原子或卤素取代的烃基;n为0到4的值。当n至少为2时,Rf可以相同或不同。可以由结构式(V)表示的双酚A化合物的实例为间苯二酚、取代的间苯二酚化合物,例如3-甲基间苯二酚、3-乙基间苯二酚、3-丙基间苯二酚、3-丁基间苯二酚、3-叔丁基间苯二酚、3-苯基间苯二酚、3-异丙苯基间苯二酚、2,3,4,6-四氟间苯二酚、2,3,4,6-四溴间苯二酚等;儿茶酚、氢醌、取代的氢醌,例如3-甲基氢醌、3-乙基氢醌、3-丙基氢醌、3-丁基氢醌、3-叔丁基氢醌、3-苯基氢醌、3-异丙苯基氢醌、2,3,5,6-四甲基氢醌、2,3,5,6-四叔丁基氢醌、2,3,5,6-四氟氢醌、2,3,5,6-四溴氢醌等,或包括上述双酚化合物的至少一种的组合。
也可以使用由以下结构式(VII)表示的例如2,2,2′,2′-四氢-3,3,3′,3′-四甲基-1,1′-螺二[IH-茚]-6,6′-二醇的双酚化合物。
示例性双酚化合物为双酚A。
典型的碳酸酯前体包括羰基卤化物,例如碳酰氯(光气)和碳酰溴;二卤甲酸酯,例如二元酚,如双酚A、氢醌等的二卤甲酸酯,以及二元醇,例如乙二醇和新戊二醇的二卤甲酸酯;以及碳酸二芳基酯,例如碳酸二苯酯、碳酸二(甲苯基)酯和碳酸二(萘基)酯。用于界面反应的示例性碳酸酯前体为碳酰氯。
也可能使用由两种或多种不同二元酚或二元酚共聚物与二元醇或与羟基或酸终止的聚酯或与二元酸或与羟基酸或与脂肪族二酸聚合产生的聚碳酸酯,该情况下理想的是使用碳酸酯共聚物而不是均聚物。通常,有用的脂肪族二酸具有约2到约40个碳。示例性脂肪族二酸为十二烷二酸。
支化聚碳酸酯以及线性聚碳酸酯和支化聚碳酸酯的共混物也可以用于该导电性组合物。该支化聚碳酸酯可以通过在聚合过程中添加支化剂制备。这些支化剂可以包括含有至少三个官能团的多官能有机化合物以及包括上述支化剂的至少一种的组合,所述官能团可以为羟基、羧基、羧酸酐、卤甲酰。具体实例包括偏苯三酸、偏苯三酸酐、偏苯三酰氯、三-对羟基苯基乙烷、靛红-二苯酚、三苯酚TC(1,3,5-三((对羟苯基)异丙基)苯)、三苯酚PA(4(4(1,1-双(对羟苯基)-乙基)α,α-二甲基苯甲基)苯酚)、4-氯甲酰邻苯二甲酸酐、均苯三酸、二苯甲酮四羧酸等,或包括上述支化剂的至少一种的组合。该支化剂可以以基于聚碳酸酯总重量计,约0.05到约2.0重量百分比(wt%)的水平添加。
在一个实施方案中,聚碳酸酯可以通过二羟基化合物和碳酸二酯之间的熔融缩聚反应产生。可以用于产生聚碳酸酯的该碳酸二酯的实例为碳酸二苯酯、碳酸双(2,4-二氯苯基)酯、碳酸双(2,4,6-三氯苯基)酯、碳酸双(2-氰基苯基)酯、碳酸双(邻硝基苯基)酯、碳酸二甲苯酯、碳酸间甲酚酯、碳酸二萘酯、碳酸双(二苯基)酯、碳酸双(甲基水杨基)酯、碳酸二乙酯、碳酸二甲酯、碳酸二丁酯、碳酸二环己酯等,或包括上述碳酸二酯的至少一种的组合。示例性碳酸二酯为碳酸二苯酯或碳酸双(甲基水杨基)酯。
该聚碳酸酯的数均分子量为约3,000到约1,000,000克/摩尔(g/mol)。在一个实施方案中,理想的是使用数均分子量为约10,000到约100,000g/mol的聚碳酸酯。在另一个实施方案中,理想的是使用数均分子量为约20,000到约75,000g/mol的聚碳酸酯。在又另一个实施方案中,理想的是使用数均分子量为约25,000到约50,000g/mol的聚碳酸酯。
脂环族聚酯通常通过二醇与二元酸或衍生物反应制备。用于制备脂环族聚酯聚合物的二醇为直链、支化或脂环族的烷烃二醇,可以含有2到12个碳原子。
二醇的合适实例包括乙二醇、丙二醇,即1,2-丙二醇和1,3-丙二醇;丁二醇,即1,3-丁二醇和1,4-丁二醇;二甘醇、2,2-二甲基-1,3-丙二醇、2-乙基-2-甲基-1,3-丙二醇、1,3-戊二醇和1,5-戊二醇、二丙二醇、2-甲基-1,5-戊二醇、1,6-己二醇、1,4-环己烷二甲醇以及特别是其顺式和反式异构体、三甘醇、1,10-癸二醇,以及上述任何的混合物。特别理想的是二甲醇二环辛烷、二甲醇十氢化萘、脂环族二醇或其化学等价物以及特别是1,4-环己二甲醇或其化学等价物。如果使用1,4-环己烷二甲醇作为二醇组分,通常理想的是使用顺式对反式异构体的摩尔比为约1∶4到约4∶1的混合物。在该范围内,通常理想的是使用约1∶3的顺式对反式异构体的摩尔比。
用于制备脂环族聚酯聚合物的二酸为包括具有两个羧基的羧酸的脂肪族二酸,其中每个羧基连接到饱和环中的饱和碳。脂环族酸的合适实例包括十氢化萘二羧酸、降冰片烯二羧酸、二环辛烷二羧酸。示例性脂环族二酸为1,4-环己烷二羧酸和反式-1,4-环己烷二羧酸。当聚酯具有至少一种含脂环族环的单体时,也可以使用线性脂肪族二酸。线性脂肪族二酸的说明性实例为琥珀酸、己二酸、二甲基丁二酸和壬二酸。二酸和二醇的混合物也可以用于制备该脂环族聚酯。
环己烷二羧酸和它们的化学等价物可以例如通过将环芳族二酸和相应衍生物,例如间苯二甲酸、对苯二甲酸或萘二甲酸在适当溶剂、水或乙酸中,在室温和在大气压下使用合适的催化剂氢化制备,所述催化剂例如承载在碳或氧化铝合适载体上的铑。它们也可以通过使用惰性液体介质制备,其中酸在反应条件下为至少部分可溶以及使用碳或二氧化硅中的钯或钌催化剂。
通常,氢化过程中得到两种或多种其中羧酸基团在顺式或反式位置的异构体。该顺式和反式异构体可以通过用或不用例如正庚烷的溶剂结晶,或者通过蒸馏分离。虽然该顺式异构体易于更好的混合,但是该反式异构体具有更高的熔融和结晶温度并且是通常更加理想的。也可以使用该顺式和反式异构体的混合物,并且当使用这种混合物时,反式异构体可以占至少约75wt%,以及该顺式异构体可以为余量,基于混合的顺式和反式异构体总重量计。当使用多于一种二酸的异构体的混合物时,共聚酯或两种聚酯的混合物可以用作该脂环族聚酯树脂。
包括酯的这些二酸的化学等价物也可以用于制备该脂环族聚酯。该二酸的化学等价物的合适实例为烷基酯,例如二烷基酯、二芳基酯,酸酐、酰基氯、酰基溴等,或包括上述化学等价物的至少一种的组合。示例性化学等价物包括该脂环族二酸的二烷基酯。合适的化学等价物包括酸的二甲酯,特别是反式-1,4-环己烷二甲酸二甲酯。
1,4-环己烷二甲酸二甲酯可以通过对苯二甲酸二甲酯的环氢化得到,其中得到在顺式和反式位置具有羧酸基团的两种异构体。该异构体可以被分离,该反式异构体是特别理想的。如以上详述的也可以使用该异构体的混合物。
该聚酯聚合物通常经由二醇或二醇化学等价物组分与二酸或二酸化学等价物组分的缩合或酯交换聚合得到,并且具有结构式(VIII)的重复单元:
其中R3表示芳基、烷基或环烷基,其为直链、支化或脂环族烷烃二醇或其化学等价物的残基;以及R4为芳基、烷基或脂环族基团,其为衍生自二酸的脱羧基残基,条件是R3或R4的至少一个为环烷基。如果需要该芳基可以为取代芳基。
示例性脂环族聚酯为具有结构式(IX)的重复单元的聚(1,4-环己烷-二甲醇-1,4-环己烷二羧酸酯)
其中在结构式(VIII)中,R3为环己烷环,以及其中R4为衍生自环己烷二羧酸酯或其化学等价物的环己烷环以及选自其顺式或反式异构体或其顺式和反式异构体的混合物。脂环族聚酯聚合物通常可以在合适的催化剂,例如钛酸四(2-乙基己)酯,以合适的量存在下制备,所述量通常为约50到400ppm钛,基于最终产品总重量计。聚(1,4-环己烷二甲醇-1,4-环己烷二羧酸酯)通常与聚碳酸酯形成合适的共混物。
该共聚酯碳酸酯或聚酯的数均分子量为约3,000到约1,000,000g/mol。在一个实施方案中,理想的是使用数均分子量为约10,000到约100,000g/mol的聚酯。在另一个实施方案中,理想的是使用数均分子量为约20,000到约75,000g/mol的聚酯。在又另一个实施方案中,理想的是使用数均分子量为约25,000到约50,000g/mol的聚酯。
另一种示例性聚酯为聚芳酯。聚芳酯通常表示芳族二羧酸和双酚的聚酯。包括除芳基酯键之外的碳酸酯键的聚芳酯共聚物被称作聚酯-碳酸酯,以及也可以以混合物的形式方便地使用。该聚芳酯可以通过芳族二羧酸或它们的成酯衍生物与双酚或它们的衍生物在溶液中或熔体聚合制备。
通常,对于聚芳酯理想的是包括至少一种与至少一种芳族二羧酸残基结合的二酚残基。结构式(X)中说明的示例性二酚残基衍生自1,3-二羟基苯部分,贯穿本说明书称为间苯二酚或间苯二酚部分。间苯二酚或间苯二酚部分包括未取代的1,3-二羟基苯和取代的1,3-二羟基苯。
结构式(X)中,R为C1-12烷基或卤素的至少一种,以及n为0到3。合适的二羧酸残基包括衍生自单环部分,例如间苯二甲酸、对苯二甲酸或间苯二甲酸和对苯二甲酸的混合物的芳族二羧酸残基。合适的二羧酸也衍生自多环部分,例如二苯基二羧酸、二苯基醚二羧酸和萘-2,6-二羧酸等,以及包括上述多环部分的至少一种的组合物。示例性多环部分为萘-2,6-二羧酸。
该芳族二羧酸残基衍生自如结构式(XI)中一般说明的间苯二甲酸和/或对苯二甲酸的混合物。
因此,在一个实施方案中该聚芳酯包括如结构式(XII)中说明的间苯二酚芳化聚酯。
其中R为C1-12烷基或卤素的至少一种,n为0到3,以及m至少为约8。理想的是R为氢。在一个实施方案中,n为零并且m是约10和约300。间苯二酸酯对对苯二酸酯的摩尔比率为约0.25∶1到约4.0∶1。
在另一个实施方案中,该聚芳酯包括如结构式(XIII)所示具有多环芳族基的热稳定间苯二酚芳化聚酯。
其中R为C1-12烷基或卤素的至少一种,n为0到3,以及m至少为约8。
在另一个实施方案中,该聚芳酯被共聚合形成嵌段共聚酯碳酸酯,其包括碳酸酯和芳化嵌段。它们包括包含结构式(XIV)结构单元的聚合物。
其中每个R1独立地为卤素或C1-12烷基,m至少为1,p为约0到约3,每个R2独立地为二价有机基,以及n至少为约4。在一个实施方案中,n至少为约10,更理想的是至少为约20以及最理想的是为约30到约150。通常理想的是m至少为约3。在一个实施方案中,m可以为至少约10,而在另一个实施方案中,m可以为至少约20到约200。在一个示例性实施方案中,m可以为约20到约50。
通常理想的是该聚芳酯的重均分子量为约500到约1,000,000克/摩尔(g/mol)。在一个实施方案中,该聚芳酯的重均分子量为约10,000到约200,000g/mol。在另一个实施方案中,该聚芳酯的重均分子量为约30,000到约150,000g/mol。在又另一个实施方案中,该聚芳酯的重均分子量为约50,000到约120,000g/mol。该聚芳酯的示例性分子量为60,000和120,000g/mol。
在一个实施方案中,聚合物前体包括烯属不饱和基团。使用的烯属不饱和基团可以为能够聚合的任何烯属不饱和官能团。合适的烯属不饱和官能团包括可以经由基团聚合或阳离子聚合而被聚合的官能团。合适的烯属不饱和基团的具体实例为含有丙烯酸酯、甲基丙烯酸酯、乙烯基芳族聚合物,例如苯乙烯;乙烯基醚、乙烯基酯、N-取代的丙烯酰胺、N-乙烯基酰胺、马来酸酯、富马酸酯等的基团。烯属不饱和由含有丙烯酸酯、甲基丙烯酸酯或苯乙烯官能团的基团提供。
乙烯基芳香族树脂衍生自含有至少25wt%的衍生自结构式(XV)单体的结构单元的聚合物前体:
其中R5为氢、低级烷基或卤素;Z1为乙烯基、卤素或低级烷基;以及p为0到约5。这些聚合物包括苯乙烯、氯苯乙烯和乙烯基甲苯的均聚物、苯乙烯与一种或多种由丙烯腈、丁二烯、α-甲基苯乙烯、乙基乙烯基苯、二乙烯基苯和马来酸酐举例的单体的无规共聚物,以及包括共混物和接技物的橡胶改性的聚苯乙烯,其中该橡胶为聚丁二烯或约98-70%苯乙烯和约2-30%二烯单体的橡胶共聚物。聚苯乙烯可与聚苯醚以任何比例混容,以及任何这种共混物可以含有约5到约95wt%,以及最经常约25到约75wt%的聚苯乙烯,基于该聚合物总重量计。
在又另一个实施方案中,聚酰亚胺可以用作组合物中的有机聚合物。有用的热塑性聚酰亚胺具有通式(XVI)
其中“a”为大于或等于约1,理想的为大于或等于约10,以及更理想的为大于或等于约1000;以及其中V为没有限制的四价连接基团,只要该连接基团不妨碍该聚酰亚胺的合成或使用。合适的连接基团包括(a)具有约5到约50个碳原子的取代或未取代、饱和、不饱和或芳族单环和多环基团,(b)具有1到约30个碳原子的取代或未取代、线性或支化、饱和或不饱和烷基;或其组合。合适的代替基团和/或连接基团包括但不限于醚、环氧化合物、酰胺、酯及其组合。示例性连接基团包括但不限于结构式(XVII)的四价芳族基,例如:
其中W为二价部分,选自-O-、-S-、-C(O)-、-SO2-、-SO-、-CyH2y-(y为1到5的整数)以及其卤代衍生物,包括全氟代亚烷基,或结构式-O-Z-O-的基团,其中该-O-或该-O-Z-O-基团的二价键位于3,3′、3,4′、4,3′或4,4′位,以及其中Z包括,但不限于结构式(XVIII)的二价基。
结构式(XVI)中的R包括取代或未取代的二价有机基,例如(a)具有约6到约20个碳原子的芳族烃基及其卤代衍生物;(b)具有约2到约20个碳原子的直链或支链亚烷基;(C)具有约3到约20个碳原子的环亚烷基,或(d)通式(XIX)的二价基。
其中Q包括二价部分,选自-O-、-S-、-C(O)-、-SO2-、-SO-、-CyH2y-(y为1到5的整数)以及其卤代衍生物,包括全氟亚烷基。
聚酰亚胺的合适类型包括聚酰胺酰亚胺和聚醚酰亚胺,特别是那些熔融可加工的聚醚酰亚胺。
合适的聚醚酰亚胺聚合物包括多于1个结构式(XX)的结构单元。通常理想的是该聚醚酰亚胺聚合物包含约10到约1000个结构式(XX)的结构单元。在一个实施方案中,理想的是该聚醚酰亚胺聚合物包含约10到约500个结构式(XX)的结构单元。
其中T为-O-或结构式-O-Z-O-的基团,其中该-O-或该-O-Z-O-基团的二价键在3,3′、3,4′、4,3′或4,4′位,以及其中Z包括,但不限于如以上定义的结构式(XVIII)的二价基。
在一个实施方案中,该聚醚酰亚胺可以为共聚物,其除如上所述醚酰亚胺单元之外,进一步含有结构式(XXI)的聚酰亚胺结构单元。
其中R如前面结构式(XVI)的定义以及M包括,但不限于结构式(XXII)的基团。
该聚醚酰亚胺可以通过包括使结构式(XXIII)的芳族二(醚酸酐)与结构式(XIV)的有机二胺反应的任何方法制备。
其中T和R如以上结构式(XVI)和(XX)中所述定义。
结构式(XXIII)的芳族二(醚酸酐)的说明性实例包括2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酸酐;4,4′-双(3,4-二羧基苯氧基)二苯醚二酸酐;4,4′-双(3,4-二羧基苯氧基)二苯硫二酸酐;4,4′-双(3,4-二羧基苯氧基)二苯甲酮二酸酐;4,4′-双(3,4-二羧基苯氧基)二苯基砜二酸酐;2,2-双[4-(2,3-二羧基苯氧基)苯基]丙烷二酸酐;4,4′-双(2,3-二羧基苯氧基)二苯醚二酸酐;4,4′-双(2,3-二羧基苯氧基)二苯硫二酸酐;4,4′-双(2,3-二羧基苯氧基)二苯甲酮二酸酐;4,4′-双(2,3-二羧基苯氧基)二苯基砜二酸酐;4-(2,3-二羧基苯氧基)-4′-(3,4-二羧基苯氧基)二苯基-2,2-丙烷二酸酐;4-(2,3-二羧基苯氧基)-4′-(3,4-二羧基苯氧基)二苯醚二酸酐;4-(2,3-二羧基苯氧基)-4′-(3,4-二羧基苯氧基)二苯硫二酸酐;4-(2,3-二羧基苯氧基)-4′-(3,4-二羧基苯氧基)二苯甲酮二酸酐和4-(2,3-二羧基苯氧基)-4′-(3,4-二羧基苯氧基)二苯基砜二酸酐,及其各种混合物。
该二(醚酸酐)可以通过使硝基取代苯基二腈与二元酚化合物的金属盐的反应产物,在双极性非质子溶剂存在下水解,接着脱水制备。由以上结构式(XXIII)包括的芳族二(醚酸酐)的示例性类型,包括但不限于其中T具有结构式(XXV)
以及醚键,例如,在3,3′、3,4′、4,3′或4,4′位的化合物及其混合物,以及其中Q如以上定义。
任何二氨基化合物可以用于制备该聚酰亚胺和/或聚醚酰亚胺。合适的化合物的实例为亚乙基二胺、亚丙基二胺、三亚甲基二胺、二亚乙基三胺、三亚乙基四胺、六亚甲基二胺、七亚甲基二胺、八亚甲基二胺、九亚甲基二胺、十亚甲基二胺、1,12-十二烷二胺、1,18-十八烷二胺、3-甲基七亚甲基二胺、4,4-双甲基七亚甲基二胺、4-甲基九亚甲基二胺、5-甲基九亚甲基二胺、2,5-双甲基六亚甲基二胺、2,5-双甲基七亚甲基二胺、2,2-双甲基亚丙基二胺、N-甲基-双(3-氨基丙基)胺、3-甲氧基六亚甲基二胺、1,2-双(3-氨基丙氧基)乙烷、双(3-氨基丙基)硫化物、1,4-环己基二胺、双(4-氨基环己基)甲烷、间苯二胺、对苯二胺、2,4-二氨基甲苯、2,6-二氨基甲苯、间苯二甲胺、对苯二甲胺、2-甲基-4,6-二乙基-1,3-亚苯基-二胺、5-甲基-4,6-二乙基-1,3-亚苯基-二胺、联苯胺、3,3′-二甲基联苯胺、3,3′-二甲氧基联苯胺、1,5-二氨基萘、双(4-氨基苯基)甲烷、双-(2-氯-4-氨基-3,5-二乙基苯基)甲烷、双(4-氨基苯基)丙烷、2,4-二(b-氨基-叔丁基)甲苯、双(对-b-氨基-叔丁基苯基)醚、双(对-b-甲基-o-氨基苯基)苯、双(对-b-甲基-o-氨基戊基)苯、1,3-二氨基-4-异丙基苯、双(4-氨基苯基)硫化物、双(4-氨基苯基)砜、二(4-氨基苯基)醚和1,3-双(3-氨基丙基)四甲基二硅氧烷。也可以存在这些化合物的混合物。示例性二氨基化合物为芳族二胺,特别是间苯二胺和对苯二胺及其混合物。
在一个示例性实施方案中,该聚醚酰亚胺树脂包括结构式(XX)的结构单元,其中每个R独立地为对亚苯基或间亚苯基或其混合物,以及T为结构式(XXVI)的二价基团。
通常,反应可以使用溶剂,例如邻二氯苯、间甲酚/甲苯等进行,在结构式(XVIII)的酸酐和结构式(XIX)的二胺之间,以约100℃到约250℃的温度实施反应。另外,该聚醚酰亚胺可以通过结构式(XVIII)的芳族二(醚酸酐)和结构式(XIX)的二胺,通过加热该原材料混合物到高温同时伴随搅拌进行熔体聚合制备。通常,熔体聚合使用约200℃到约400℃的温度。链终止剂和支化剂也可以用于该反应。当使用聚醚酰亚胺/聚酰亚胺共聚物时,二酸酐,例如均苯四酸酐与该二(醚酸酐)组合使用。该聚醚酰亚胺聚合物可以任选由芳族二(醚酸酐)与有机二胺的反应制备,其中该二胺在反应混合物中以至多约0.2摩尔过量存在,以及更理想的小于约0.2摩尔过量。在这种条件下,该聚醚酰亚胺树脂具有小于约15微当量每克(μeq/g)酸可滴定基团,以及更理想的具有小于约10μeq/g酸可滴定基团,如采用氯仿溶液以33重量百分比(wt%)氢溴酸的冰醋酸溶液滴定所示。酸可滴定基团基本应归因于该聚醚酰亚胺树脂中的胺端基。
通常,有用的聚醚酰亚胺具有约0.1到约10克每分钟(g/min)的熔融指数,如通过美国材料试验学会(ASTM)D1238,在295℃下使用6.6千克(kg)重量测定。在一种示例性实施方案中,该聚醚酰亚胺树脂具有约10,000到约150,000克每摩尔(g/mol)的重均分子量(Mw),如通过凝胶渗透色谱法,使用聚苯乙烯标准物测定。这种聚醚酰亚胺聚合物通常具有大于约0.2分升每克(dl/g)的特性粘度,以及更理想的在约0.35到约0.7dl/g,在25℃下间甲酚中测定。
在另一个实施方案中,聚酰胺可以用作该组合物中的有机聚合物。聚酰胺通常衍生自具有4到12个碳原子的有机内酰胺的聚合。示例性内酰胺由结构式(XXVII)表示。
其中n为约3到约11。一种示例性内酰胺为n等于5的ε-己内酰胺。
聚酰胺也可以由具有4到12个碳原子的氨基酸合成。示例性氨基酸由结构式(XXVIII)表示。
其中n为约3到约11。一种示例性氨基酸为n等于5的ε-氨基己酸。
聚酰胺也可以由具有4到12个碳原子的脂肪族二羧酸与具有2到12个碳原子的脂肪族二胺聚合。
示例性脂族二羧酸与用于合成聚酯的上述那些脂族二羧酸相同。示例性脂肪族二胺由结构式(XXIX)表示
H2N-(CH2)n—NH2 (XXIX)
其中n为约2到约12。一种示例性脂肪族二胺为六亚甲基二胺(H2N(CH2)6NH2)。理想的是该二羧酸对该二胺的摩尔比为约0.66到约1.5。在一个实施方案中,理想的是使用约0.81到约1.22的摩尔比。在另一个实施方案中,理想的是使用约0.96到约1.04的摩尔比。示例性聚酰胺为尼龙6、尼龙6,6、尼龙4,6、尼龙6,12、尼龙10等,或包括上述尼龙的至少一种的组合。
聚酰胺脂的合成还可以由具有4到12个碳原子的脂族内脂与具有4到12个碳原子的脂肪族内酰胺完成。该脂族内脂与用于聚酯合成的上述那些脂族内脂相同,该脂肪族内酰胺与用于聚酰胺合成的上述那些脂肪族内酰胺相同。脂族内脂对脂肪族内酰胺的比率可以在很大程度上变化,其取决于最终共聚物的所需组成,以及该内酯与该内酰胺的相对反应速度。脂肪族内酰胺对脂族内脂的一个示例性初始摩尔比为约0.5到约4。在该范围内,理想的是摩尔比大于或等于约1。同样理想的是摩尔比小于或等于约2。
该组合物可以进一步包括催化剂或引发剂。通常,适用于相应热聚合的任何已知催化剂或引发剂都可以使用。另外,该聚合可以在没有催化剂或引发剂的情况下实施。例如,在由脂族二羧酸与脂肪族二胺合成聚酰胺中,不需要催化剂。
对于由内酰胺合成聚酰胺,合适的催化剂包括水以及与用于该合成的开环(水解)内酰胺对应的ω-氨基酸。其它合适的催化剂包括金属铝烷基化合物(MAl(OR)3H;其中M为碱金属或碱土金属,R为C1-C12烷基)、二氢双(2-甲氧基乙氧基)铝酸钠、二氢双(叔丁氧基)铝酸锂、铝烷基化合物(Al(OR)2R;其中R为C1-C12烷基)、N-己内酰胺钠、ε-己内酰胺的氯化镁或溴化镁盐(MgXC6H10NO,X=Br或Cl)、二烷氧基铝氢化物。合适的引发剂包括间苯二酰双己内酰胺、N-缩醛己内酰胺、异氰酸酯ε-己内酰胺加合物、醇(ROH;其中R为C1-C12烷基)、二醇(HO-R-OH;其中R为C1-C12亚烷基)、ω-氨基己酸以及甲醇钠。
对于由内酯和内酰胺合成聚酰胺脂,合适的催化剂包括金属氢化物化合物,例如结构式为LiAl(H)x(R1)y的氢化锂铝催化剂,其中x为约1到约4,y为约0到约3,x+y等于4,以及R1选自C1-C12烷基和C1-C12烷氧基;合适的催化剂包括LiAl(H)(OR2)3,其中R2选自C1-C8烷基;特别理想的催化剂为LiAl(H)(OC(CH3)3)3。其它合适的催化剂和引发剂包括用于聚(ε-己内酰胺)和聚(ε-己内酯)聚合的上述那些催化剂和引发剂。
聚酰胺的示例性类型为通过第一聚酰胺和聚合物材料的反应得到者,所述聚合物材料选自第二聚酰胺、聚(亚芳基醚)、聚(链烯基芳香族)均聚物、橡胶改性聚(链烯基芳香族)树脂、丙烯腈-丁二烯-苯乙烯(ABS)接枝共聚物、嵌段共聚物以及包括上述两种或多种的组合。该第一聚酰胺包括结构式(XXX)的重复单元:
其中R1为具有九个碳的支化或未支化的烷基。R1可以为1,9-壬烷和/或2-甲基-1,8-辛烷。聚酰胺树脂特征在于存在属于羧酸和胺的缩合产物的酰胺基(-C(O)NH-)。该第一聚酰胺通常通过一种或多种包括九个碳烷基部分的二胺与对苯二甲酸(1,4-二羧基苯)的反应制备。当使用多于一种二胺时,该二胺的比率可能影响得到的聚合物的一些物理性能,例如熔融温度。二胺对二羧酸的比率通常为等摩尔的,但是可以过量一种或另一种用来决定端基官能团。另外,该反应可以进一步包括用作链终止剂以及至少在某种程度上决定端基官能团的一元胺和一元羧酸。在一个实施方案中,理想的是具有大于或等于约30meq/g的胺端基含量。在一个实施方案中,理想的是具有大于或等于约40meq/g的胺端基含量。
该第二聚酰胺包括结构式(XXXI)和/或结构式(XXXII)的重复单元
其中R2为具有四到七个碳的支化或未支化的烷基,以及R3为具有六个碳的芳族基或具有四到七个碳的支化或未支化的烷基。R2在结构式XXXI中可以为1,6-己烷,在结构式XXXII中可以为1,5-戊烷。R3可以为1,4-丁烷。
该第一聚酰胺与其它聚酰胺相比,具有更好的尺寸稳定性、耐热性、抗湿气吸收性、耐磨性以及耐化学性。因此,当与含有代替该第一聚酰胺的其它聚酰胺的类似组合物对比时,包含第一聚酰胺的导电性组合物显示这些相同的改善性能。在一些实施方案中,该第一和第二聚酰胺的组合改善了多相组合物中聚酰胺相与其它相,例如聚(亚芳基醚)的相容性,由此改善了抗冲击性。不受理论约束,据信该第二聚酰胺提高了可用的末端氨基的量。在一些情况下,该末端氨基可以与其它相的组分反应或被官能化以与其它相反应,由此改善相容性。
该有机聚合物(包括树脂共混物)通常以约5到约99.999重量百分比(wt%)的量使用,基于组合物总重量计。在一个实施方案中,理想的是以约10到约99.99的量使用有机聚合物,基于组合物总重量计。在另一个实施方案中,理想的是以约30到约99.5的量使用有机聚合物,基于组合物总重量计。在又另一个实施方案中,理想的是以约50到约99.3的量使用有机聚合物,基于组合物总重量计。
用于该碳纳米管组合物的碳纳米管可以拧成绳状并且可以为单壁碳纳米管(SWNT)和/或多壁碳纳米管(MWNT)。用于该碳纳米管组合物的碳纳米管可以通过激光挥发石墨、化学汽相沉积、碳弧合成或高压一氧化碳转化工艺(HIPCO)生产。
该SWNT通常具有包括石墨片的单壁,具有约0.7到约2.4纳米(nm)的外径。通常理想的是该SWNT具有至少2000瓦特每米开尔文(W/m-K)的固有导热率,以及该SWNT绳具有104西门子/厘米(S/cm)的固有导电率。通常同样理想的是该SWNT具有至少80吉帕斯卡(GPa)的拉伸强度以及至少约0.5太帕斯卡(TPa)的劲度。
在另一个实施方案中,该SWNT可以包括金属纳米管和半导体纳米管的混合物。金属纳米管为那些显示类似于金属的电特性的纳米管,而半导体纳米管为那些电学上为半导体的纳米管。通常卷起石墨片的方式产生各种螺旋结构的纳米管。还能确认的两种有锯齿形和扶手椅型纳米管。为了使组合物中使用的SWNT的数量减到最少,通常理想的是该金属纳米管构成用于组合物的SWNT总量的较大部份。通常理想的是用于组合物的该SWNT包括大于或等于约1wt%的该SWNT总重量的金属纳米管。在一个实施方案中,理想的是具有大于或等于该SWNT总重量的约20wt%的金属纳米管,而在另一个实施方案中,理想的是具有大于或等于该SWNT总重量的约30wt%的金属纳米管。在又另一个实施方案中,理想的是具有大于或等于该SWNT总重量的约50wt%的金属纳米管,而在另一个实施方案中,理想的是具有大于或等于该SWNT总重量的约99.9wt%的金属纳米管。
在某些情况下,通常理想的是用于组合物的SWNT包括大于或等于该SWNT总重量的约1wt%的半导体纳米管。在一个实施方案中,理想的是具有大于或等于该SWNT总重量的约20wt%的半导体纳米管,而在另一个实施方案中,理想的是具有大于或等于该SWNT总重量的约30wt%的半导体纳米管。在又另一个实施方案中,理想的是具有大于或等于该SWNT总重量的约50wt%的半导体纳米管,而在另一个实施方案中,理想的是具有大于或等于该SWNT总重量的约99.9wt%的半导体纳米管。
该MWNT通常具有包括石墨片的多层壁,具有约1.4到约500纳米(nm)的外径。MWNT具有至少两个围绕至少一部分内部中空型芯连接的石墨层。在一个实施方案中,该MWNT可以仅具有两个石墨层,而在另一个实施方案中,该MWNT可以仅具有三个石墨层。仅具有两个石墨层的MWNT称作双壁碳纳米管,而仅具有三个石墨层的MWNT称作三壁碳纳米管。半球形帽通常封闭该MWNT的两端,但是理想的是使用仅具有一个半球形帽的MWNT或缺少两个帽的MWNT。通常理想的是使用具有小于或等于约40nm平均直径的MWNT。在一个实施方案中,理想的是使用具有小于或等于约30nm直径的MWNT,而在另一个实施方案中,理想的是使用具有小于或等于约20nm直径的MWNT。
在该组合物中通常使用纵横比大于或等于约5的碳纳米管。在一个实施方案中,纵横比大于或等于100,而在另一个实施方案中,纵横比大于或等于1,000。该碳纳米管通常包括中心部分,其为中空的,但可以填充无定形碳。
在一个示例性实施方案中,在有机聚合物中分散该碳纳米管的目的是使该碳纳米管解缠结,以便得到尽可能接近碳纳米管纵横比的有效纵横比。有效纵横比对纵横比的比率为分散有效性的一种度量。有效纵横比为单碳纳米管旋转半径除以相应单个纳米管外径的值的两倍。通常理想的是有效纵横比对纵横比的比率的平均值大于或等于约0.5,如在放大倍数大于或等于约10,000的电子显微照相中测定的。在一个实施方案中,理想的是有效纵横比对纵横比的比率的平均值大于或等于约0.75,如在放大倍数大于或等于约10,000的电子显微照相中测定的。在另一个实施方案中,理想的是有效纵横比对纵横比的比率的平均值大于或等于约0.9,如在放大倍数大于或等于约10,000的电子显微照相中测定的。在又另一个实施方案中,理想的是有效纵横比对纵横比的比率的平均值大于或等于约1.0,如在放大倍数大于或等于约10,000的电子显微照相中测定的。
在一个示例性实施方案中,分散碳纳米管的目的为从较大聚集体或较大绳解缠结,以便形成拧成绳状的网络。理想的是具有渗透大部分有机聚合物的拧成绳状的网络,以便具有导电性组合物。碳纳米管的分散应是有效得足以使较大聚集体或较大绳分解成小得多的绳,然而不应过于有效以致该网络不能建立或破坏。理想的是建立最细小的能拧成绳状的网络。例如,在一个示例性实施方案,构成渗透网络的绳将包括几个可能只有几个纳米厚度的碳纳米管。这些绳可能彼此高度纠缠,形成大面积的渗透网络。
在一个实施方案中,为了得到导电性组合物,渗透网络可以由直径和长度已经在分散工艺过程中减少的绳形成。在另一个实施方案中,该渗透网络可以包括碳纳米管的绳、不拧成绳状的单个碳纳米管、不分散的碳纳米管附聚物,以及生产涉及杂质。该网络中各个碳纳米管之间的接触点被称作节点。节点的数目可能使得该网络不能有效形成(即碳纳米管附聚物不能有效分散)并且因此不能产生渗透网络。另一方面,当在混合过程中施加太多剪切时,节点的数目同样使得不能产生渗透网络。理想的是使该碳纳米管分散到具有对于产生小于或等于约1012ohm-cm的整体电阻率有效的节点数。更理想的是使该碳纳米管分散到具有对于产生小于或等于约108ohm-cm的整体电阻率有效的节点数。
在一个实施方案中,熔融共混之后的组合物优选含有碳纳米管网络形式的碳纳米管。该碳纳米管网络优选为三维网络并且促进电流经由组合物流通。电子隧穿同样可以发生在存在于网络中的碳纳米管之间。电子隧穿也可以发生在网络中的碳纳米管和其它导电性颗粒(例如炭黑、MWNT等)之间。该碳纳米管网络包括节点,在那里单个碳纳米管或碳纳米管绳进行物理接触。
在一个实施方案中,该碳纳米管可以以绳状聚集体的形式存在。这些聚集体通常称作“绳”并且作为各个碳纳米管之间的范德华力的结果形成。绳中的各个纳米管可以彼此相对滑动并且在绳内自身重排,以使自由能减到最少。通常具有2到105个纳米管的绳可以用于该组合物。在该范围内,通常理想的是具有大于或等于约10个纳米管的绳。在另一个实施方案中,理想的是具有大于或等于约100个纳米管的绳。同样理想的是具有小于或等于约104个纳米管的绳。在另一个实施方案中,理想的是具有小于或等于约5000个纳米管的绳。
碳纳米管通常以导电性组合物总重量的约0.001到约50wt%的量使用。在一个实施方案中,理想的是以约0.25到约30wt%的量使用纳米管,基于导电性组合物总重量计。在另一个实施方案中,理想的是以约0.50到约10wt%的量使用纳米管,基于导电性组合物总重量计。在另一个实施方案中,理想的是以约1.0到约5wt%的量使用纳米管,基于导电性组合物总重量计。
在此使用的“生产涉及杂质”表示在基本上或完全与生产碳纳米管有关的加工过程中产生的杂质。如上所述,碳纳米管在例如激光烧蚀、化学汽相沉积、碳弧、高压一氧化碳转化加工等加工中产生。基本上或完全与生产碳纳米管有关的加工还包括对于碳纳米管的净化加工。生产涉及杂质为在上述加工或类似制造工艺中生产碳纳米管过程中自然形成或有意形成的那些杂质。自然形成的生产涉及杂质的一个实例为用于生产碳纳米管的催化剂颗粒。有意形成的生产涉及杂质的另一个实例为由于在制造工艺过程中有意添加少量氧化剂而在碳纳米管表面上形成的悬空键。生产涉及杂质的又另一个实例为可能在碳纳米管生产或碳纳米管净化加工过程中产生的石墨纳米片。
生产涉及杂质包括,例如含碳反应副产物,例如残次的碳纳米管、多壁碳纳米管,支化或卷曲的多壁碳纳米管,无定形碳,烟灰,纳米葱球(nona-onion),纳米角(nanohorns),焦炭等;来自生产过程中使用的催化剂的催化剂残留物,例如金属、金属氧化物、金属碳化物、金属氮化物等,或包括上述反应副产物的至少一种的组合。一种基本上与碳纳米管生产有关的工艺为当与生产涉及杂质的任何其它份额相比时,其中碳纳米管份额更大的工艺。为了让工艺基本上与碳纳米管生产有关,碳纳米管份额将必须大于以上列出的反应副产物或催化剂残留物的任何一种的份额。例如,碳纳米管份额将必须大于烟灰份额或炭黑份额。碳纳米管份额将不必大于认为是基本上旨在碳纳米管生产的该工艺的生产涉及杂质的任何组合的份额总和。
生产涉及杂质不包括在碳纳米管制造过程之前或过程中加入该碳纳米管的任何添加剂,其中这些添加剂不改性该碳纳米管。它们同样不包括在制造或提纯碳纳米管之后加入该碳纳米管的添加剂。生产涉及杂质也不包括在导电性组合物制造过程中加入碳纳米管或有机聚合物的添加剂。
虽然SWNT通常比MWNT具有更少的缺陷(大概因为它们没有相邻壁,抵消了由于在这些相邻壁中的不饱和碳价之间形成桥形成的缺陷),但是它们确实存在一些缺陷。这种缺陷可能破坏相邻碳纳米管之间的范德华力,使得绳可以形成。碳纳米管中缺陷的实例为在碳纳米管壁上形成的悬空碳键。下述缺陷都在本发明范围内:其中悬空碳键具有共价连接到碳纳米管壁上的另一个碳原子的第一末端和连接到反应活性官能团的第二末端,其中这种连接发生在碳纳米管生产过程中。合适的官能团包括,例如羟基、羧基、卤,特别是氟、硫酸盐、硝酸盐、环氧、酸酐、酯、酰胺等。这种反应活性官能团与残次碳纳米管的连接可能由于向其中产生碳纳米管的反应室中添加相应的反应物。现已发现由碳纳米管生产过程中的这种官能化产生的碳纳米管生产出不同于生产之后官能化碳纳米管的产物。
含碳副产物,例如没有拧成绳状的多壁碳纳米管、无定形碳、烟灰、纳米葱球、纳米角、焦炭等或包括上述至少一种的组合,为用于碳纳米管生产的工艺的含碳副产物。多壁碳纳米管为那些对于该纳米管长度的至少一部分具有多于一层壁的碳纳米管。该壁可以具有‘年轮’结构或‘鱼骨’结构。
催化剂残留物通常含有在碳纳米管生产中用作催化剂的金属。用作催化剂的金属通常为过渡金属,例如铁、铜、镍、钴、铂、钌、铑、钯、锇、铱、铂、铬、钼和钨等,或包括上述金属的至少一种的组合。非过渡金属也可以用作催化剂。这种非过渡金属的合适实例为铝、铟等,或包括上述非过渡金属的至少一种的组合。在一个实施方案中,碳纳米管制造过程中形成的杂质为金属氧化物,例如氧化铁、氧化镍、氧化钴等,或包括上述氧化物的至少一种的组合。金属碳化物杂质的合适实例包括碳化铁、碳化钨等,或包括上述金属碳化物的至少一种的组合。
通常,碳纳米管组合物可以包括约0.1到约80wt%杂质,基于该碳纳米管组合物总重量计。在一个实施方案中,碳纳米管组合物可以包括约3到约50wt%的杂质,基于该碳纳米管组合物总重量计。在另一个实施方案中,碳纳米管组合物可以包括约7到约45wt%的杂质,基于该碳纳米管组合物总重量计。在又另一个实施方案中,碳纳米管组合物可以包括约8到约40wt%的杂质,基于该碳纳米管组合物总重量计。
在一个实施方案中,碳纳米管组合物可以包括约0.1到约50wt%的催化剂残留物,基于该碳纳米管组合物总重量计。在一个实施方案中,碳纳米管组合物可以包括约3到约48wt%的催化剂残留物,基于该碳纳米管组合物总重量计。在另一个实施方案中,碳纳米管组合物可以包括约7到约45wt%的催化剂残留物,基于该碳纳米管组合物总重量计。在又另一个实施方案中,碳纳米管组合物可以包括约8到约40wt%的催化剂残留物,基于该碳纳米管组合物总重量计。
其它导电性填料,例如VGCF、炭黑、导电性金属填料、固态非金属导电性填料、石墨纳米片(GNS)等,或包括上述至少一种的组合可以任选用于该组合物。VGCF为微小石墨或部分石墨碳纤维,具有约3.5到约2000nm的直径和大于或等于约5的纵横比。当使用VGCF时,理想的是使用约3.5到约500nm的直径。在另一个实施方案中,理想的是使用具有约3.5到约100nm的直径的VGCF。在又另一个实施方案中,理想的是使用具有约3.5到约50nm的直径的VGCF。同样理想的是具有大于或等于约100的平均纵横比。在一个实施方案中,理想的是使用具有大于或等于约1000的纵横比的VGCF。
VGCF通常以导电性组合物总重量的约0.001到约50wt%的量使用。在一个实施方案中,该组合物可以包括约0.25到约30wt%的VGCF,基于该导电性组合物总重量计。在一个实施方案中,该组合物可以包括约0.5到约10wt%的VGCF,基于该导电性组合物总重量计。在一个实施方案中,该组合物可以包括约1到约5wt%的VGCF,基于该导电性组合物总重量计。
导电性组合物中使用的碳纳米管在生产之后还可以用官能团衍生化,以改善相容性和促进与有机聚合物混合。该碳纳米管可以在构成侧壁、半球形帽的graphene片上或在侧壁和半球形端帽上进行官能化。官能化碳纳米管为那些具有结构式(XXXIII)的碳纳米管
[CnHLRm (XXXIII)
其中n为整数,L为小于0.1n的数目,m为小于0.5n的数目,以及其中每个R均相同并选自-SO3H、-NH2、-OH、-C(OH)R′、-CHO、-CN、-C(O)Cl、-C(O)SH、-C(O)OR′、-SR′、-SiR3′、-Si(OR′)yR′(3-y)、-R″、-AlR2′、卤化物、烯属不饱和官能团、环氧基官能团等,其中y为等于或小于3的整数,R′为氢、烷基、芳基、环烷基、芳烷基、环芳基、聚(烷基醚)等以及R″为氟烷基、氟芳基、氟环烷基、氟芳烷基、环芳基等。Cn碳原子为碳纳米管的表面碳。
非均匀取代的碳纳米管也可以用于该导电性组合物。这些包括以上所示结构式(XXXIII)的组合物,其中n、L、m、R以及碳纳米管本身如上定义,条件是每个R均不含氧,或者如果每个R为含氧基团,那么没有COOH。
还包括具有结构式(XXXIV)的官能化碳纳米管
其中n、L、m、R′以及R具有如上的相同含义。碳纳米管表面层中的大多数碳原子为基面碳。基面碳对于化学侵蚀是相对惰性的。在缺陷位置,例如其中石墨平面不能围绕碳纳米管充分扩展,存在与石墨平面边缘碳原子类似的碳原子。该边缘碳是反应活性的并且必须含有一些使碳原子价饱和的杂原子或基团。
上述取代的碳纳米管可以方便地被进一步官能化。这些可以包括结构式(XXXV)的纳米管
其中n、L和m如上所述,A选自-OY、-NHY、-CR′2-OY、-C(O)OY、-C(O)NR′Y、-C(O)SY或-C(O)Y,其中Y为合适官能团,例如蛋白、肽、酶、抗体、核苷酸、低聚核苷酸、抗原或酶底物、酶抑制剂或酶底物的过渡态类似物或者选自-R′OH、-R′NH2、-R′SH、-R′CHO、-R′CN、-R′X、-R′SiR′3、-RSi-(OR′)y-R′(3-y)、-R′Si-(O-SiR′2)-OR′、-R′-R″、-R′-NCO、(C2H4O)wY、-(C3H6O)wH、-(C2H4O)wR′、-(C3H6O)wR′以及R″,其中w为大于1并且小于200的整数。
结构(XXXIV)的官能化碳纳米管也可以被官能化以生产具有结构式(XXXV)的纳米管
其中n、L、m、R′以及A如上定义。
该纳米管还包括其上吸附某些环状化合物的其它碳纳米管。这些包括结构式(XXXVII)的纳米管
其中n为整数,L为小于0.1n的数目,m为小于0.5n,a为零或小于10的数目,X为多核芳香族、多异核芳香族或金属多异核芳香族部分以及R如以上所述。示例性环状化合物为平面大环,例如reporphyrin(卟啉)和酞菁。
该吸附的环状化合物可以被官能化。这种组合物包括结构式(XXXVIII)的化合物
其中m、n、L、a、X和A如上所定义以及碳在碳纳米管上。
不限于特定理论,该官能化碳纳米管被更好的分散进有机聚合物中,因为该改性的表面性质可以使该碳纳米管变得与该有机聚合物更加相容,或者因为该改性的官能团(特别是羟基或胺基)被直接连接到该有机聚合物作为端基。以这种方法,有机聚合物,例如聚碳酸酯、聚酰胺、聚酯、聚醚酰亚胺等,直接连接到该碳纳米管,由此使得该碳纳米管更易于分散,具有对该有机聚合物改善的粘合。
通过用强氧化剂接触相应的外表面一段足以氧化碳纳米管表面的时间,以及进一步用适于将官能团加入氧化表面的反应物接触该相应的外表面,官能团通常可以被引入到碳纳米管外表面上。示例性氧化剂由强酸中的碱金属氯酸盐溶液组成。示例性碱金属氯酸盐为氯酸钠或氯酸钾。一种所应用的示例性强酸为硫酸。足以氧化的一段时间为约0.5小时到约24小时。
炭黑也可以任选用于该导电性组合物。示例性炭黑为那些具有低于约200nm,更理想的低于约100nm,以及最理想的低于约50nm的平均粒度的炭黑。示例性导电性炭黑还可以具有大于约200平方米每克(m2/g),更理想的大于约400m2/g,以及最理想的大于约1000m2/g的表面积。示例性导电性炭黑可以具有大于约40立方厘米每百克(cm3/100g),更理想的大于约100cm3/100g,以及最理想的大于约150cm3/100g的孔体积(邻苯二甲酸二丁酯吸收)。示例性炭黑包括商购自Columbian Chemicals,商标为Conductex的炭黑;购自Chevron Chemical,商标为S.C.F.(Super Conductive Furnace)和E.C.F.(Electric Conductive Furnace)的乙炔炭黑;购自CabotCorp.,商标为Vulcan XC72和Black Pearls的炭黑;以及商购自Akzo Co.Ltd,商标为Ketjen Black EC 300和EC 600的炭黑。示例性导电性炭黑可以以基于该导电性组合物总重量的约2wt%到约25wt%的量使用。
固态导电性金属填料也可以任选用于该导电性组合物。这些可以为在用于将其引入有机聚合物以及从其制造成品的条件下不熔融的导电性金属或合金。金属,例如铝、铜、镁、铬、锡、镍、银、铁、钛以及包括上述金属的任何一种的混合物可以被引入有机聚合物作为导电性填料。物理混合物以及真合金,例如不锈钢、青铜等也可以作为导电性填料颗粒。另外,这些金属的一些金属间化合物,例如硼化物、碳化物等(例如二硼化钛)也可以作为导电性填料粒子。固态非金属导电性填料粒子,例如氧化锡、氧化铟锡等也可以被任选加入使该有机聚合物变得导电。该固态金属和非金属导电性填料可以以粉末、拉丝、线料、纤维、管、纳米管、薄片、层压材料、片状物、椭圆体、圆片以及其它可商购的本领域中公知几何结构的形式存在。
其表面相当大部分已经用固态导电性金属的粘附层涂布的非导电性非金属填料也可以任选用于该导电性组合物。该非导电性非金属填料通常称为基材,以及涂有固态导电性金属层的基材可以称为“镀金属填料”。典型的导电性金属,例如铝、铜、镁、铬、锡、镍、银、铁、钛以及包括上述金属的任何一种的混合物可以用来涂布该基材。基材的实例是本领域公知的,包括那些记载于“PlasticAdditives Handboot”(塑料添加剂手册),第五版,Hans Zweifel编,Carl Hanser Verlag出版社,慕尼黑,2001中的基材。这种基材的非限制性实例包括二氧化硅粉末,例如熔凝二氧化硅和结晶二氧化硅,氮化硼粉末,硅酸硼粉末,氧化铝,氧化镁(或镁氧),硅灰石,包括表面处理的硅灰石,硫酸钙(以其酸酐,二水合物或三水合物的形式),碳酸钙,包括白垩,石灰石,大理石以及通常以磨碎颗粒形式的合成沉淀碳酸钙,滑石,包括纤维状的,积木式的,针状的和层状的滑石,中空和固体玻璃球,高岭土,包括硬质,软质,煅烧高岭土和包括各种本领域已知的促进与聚合物基体树脂相容性的涂料的高岭土,云母,长石,硅酸盐球体,烟灰,煤胞,惰性硅酸盐微球,硅铝酸盐(铠装球(armospheres)),天然硅岩,石英,石英岩,珍珠岩,硅藻石,硅藻土,合成二氧化硅以及包括上述任何一种的混合物。上述所有基材可以用用于该导电性组合物的金属材料层涂布。
不考虑该固体金属和非金属导电性填料颗粒的精确尺寸、形状和组成,需要时它们可以以该导电性组合物总重量的约0.001到约50wt%的填充量分散进有机聚合物中。在一个实施方案中,该组合物可以包括约1到约50wt%的固体金属和非金属导电性填料颗粒,基于该导电性组合物总重量计。在另一个实施方案中,该碳纳米管组合物可以包括约1.5到约30wt%的固体金属和非金属导电性填料颗粒,基于该导电性组合物总重量计。在又另一实施方案中,该碳纳米管组合物可以包括约2到约25wt%的固体金属和非金属导电性填料颗粒,基于该导电性组合物总重量计。
用于该导电性组合物的GNS’通常在碳纳米管的净化过程中显现并且可以包括在堆叠体中彼此平行排列的碳片。该堆叠体可以具有纵横比大于或等于约1的任何几何形状,例如立方形、板状、柱状、圆筒形等。加工在前的该堆叠体的纵横比为大于或等于约5,大于或等于约10,大于或等于约50,以及更理想的大于或等于约100。
该堆叠体通常包括彼此平行排列的碳片。该碳片之间的间隙通常为约3.35埃到约4.0埃。在一个实施方案中,如图1所示,单个碳片平行于该堆叠体的纵轴排列。在另一个实施方案中,单个碳片垂直于该堆叠体的纵轴排列。在又另一个实施方案中,单个碳片以相对于该堆叠体的纵轴约1到约179度的角度θ排列。在再另一个实施方案中,堆叠体可以具有至少一个平行于纵轴排列的碳片,以及至少一个垂直于纵轴排列的碳片,以及至少一个相对于堆叠体纵轴以约1到约179度的角度θ排列的片。
该堆叠体通常可以分别具有约0.5纳米(nm)到约1000纳米的宽度和广度。在该范围内,该宽度和广度通常可以大于或等于约2nm,以及大于或等于约5nm。在该范围内同样理想的是宽度和广度小于或等于约500纳米,更理想的小于或等于约100纳米,以及更理想的小于或等于约50纳米。
在一个实施方案中,该堆叠体在垂直于纵轴的平面中的横截面可以具有不同形状。这种形状的实例为正方形、长方形、菱形、多边形(例如具有多于4个边)、圆形、椭圆形等,或包括上述形状的至少一种的组合。
该堆叠体可以基本上是直的或者其可以被扭折或弯曲。基本上直的堆叠体在弯曲处或扭折处之间通常具有大于或等于约2,更理想的大于或等于约3,以及最理想的大于或等于约5的纵横比。
该有机聚合物连同该碳纳米管,包括生产涉及杂质以及任何其它任选所需的导电性填料,例如炭黑、固体金属和非金属导电性填料颗粒,通常可以以若干不同方法加工,例如但不限于熔融共混、溶液共混等,或包括上述共混方法的至少一种的组合。组合物的熔融共混包括使用剪切力、拉伸力、压力、超声波能、电磁能、热能或包括上述力或能量形态的至少一种的组合,并在加工设备中进行,其中施加上述力量是通过单螺杆、多螺杆、啮合同向旋转或反向旋转螺杆、非啮合同向旋转或反向旋转螺杆、往复螺杆、有销螺杆、有筛螺杆、有销机筒、辊、撞锤、螺旋转子或包括上述至少一种的组合。
涉及上述力的熔融共混可以在以下设备中进行,例如但不限于单或多螺杆挤出机、布斯捏合机、汉歇尔混合机、helicones、Ross混合机、密炼机、辊炼机、模塑设备,例如注塑机、真空成型机、吹塑机等,或包括上述设备的至少一种的组合。
在一个实施方案中,在被送入熔融共混设备,例如挤出机或布斯捏合机之前,粉末状、颗粒状、片状等的该有机聚合物可以首先与该碳纳米管组合物以及如果需要的其它任选填料在汉歇尔混合机或辊炼机中干混。虽然通常理想的是该熔融共混设备中的剪切力通常引起有机聚合物中的碳纳米管组合物分散,但是同样希望在该熔融共混工艺过程中保持碳纳米管的纵横比。为了这样做,可能理想的是将碳纳米管组合物以母料的形式引入熔融共混设备。在这种工艺中,该母料可以在有机聚合物下游被引入熔融共混设备。
熔融共混物为在共混过程中,如果树脂为半结晶有机聚合物,其中该有机聚合物的至少一部分已经达到大于或等于约熔融温度的温度,或者如果树脂为无定形树脂,其中该有机聚合物的至少一部分已经达到流动点(例如玻璃化转变温度)。干燥共混物为下述情况者在共混过程中,如果树脂为半结晶有机聚合物,其中有机聚合物的全部在小于或等于约熔融温度的温度,或者如果有机聚合物为无定形树脂,其中有机聚合物的全部在小于或等于流动点的温度,以及其中有机聚合物基本上不含任何液态流体。如在此定义的溶液共混物为下述情况者,在共混过程中,其中有机聚合物悬浮于液态流体,例如溶剂或非溶剂。
当使用母料时,该碳纳米管组合物可以以约1到约50wt%的量存在于母料中,基于母料总重量计。在一个实施方案中,母料可以包括约1.5到约30wt%的该碳纳米管组合物,基于母料总重量计。在另一个实施方案中,母料可以包括约2到约10wt%的该碳纳米管组合物,基于母料总重量计。在又另一个实施方案中,母料可以包括约2.5到约5wt%的该碳纳米管组合物,基于母料总重量计。
在一个关于使用母料的实施方案中,虽然当以线料形式挤出或模塑成狗骨形式时,含碳纳米管组合物的母料可以不具有可测的整体或表面电阻率,但是得到的其中引入母料的组合物具有可测的整体或表面电阻率,即使该组合物中碳纳米管的重量分数低于该母料中碳纳米管的重量分数。在另一个关于使用母料的实施方案中,含碳纳米管组合物的母料将具有可测的整体或表面电阻率,其低于得到的其中引入母料的组合物,即使该组合物中碳纳米管的重量分数低于该母料中碳纳米管的重量分数。
优选的是在这种母料中该有机聚合物为半结晶。显示这些特性以及可以用于母料的半结晶有机聚合物的实例为聚丙烯、聚酰胺、聚酯等,或包括上述半结晶有机聚合物的至少一种的组合。
在另一个涉及在制备包括有机聚合物共混物的导电性组合物中使用母料的实施方案中,往往理想的是具有包括与形成该导电性组合物连续相的有机聚合物相同的有机聚合物的母料。该特征允许使用实质上更小比例的碳纳米管,因为仅连续相具有碳纳米管,提供该导电性组合物所需的体积电阻率和表面电阻率。在又另一个涉及在聚合共混物中使用母料的实施方案中,可能理想的是具有包括在化学性质上与用于该导电性组合物的其它有机聚合物不同的有机聚合物的母料。在这种情况下,该母料的有机聚合物将在共混物中形成连续相。在又另一个实施方案中,可能理想的是使用独立的母料,其包括不拧成绳状的多壁纳米管、蒸气生长碳纤维、炭黑、导电性金属填料、固体非金属导电性填料等,或在母料中包括上述的至少一种的组合。
如果需要,包括有机聚合物和碳纳米管组合物的该导电性组合物可以进行多次共混和成型步骤。例如,该导电性组合物可以首先挤出并成型为颗粒。然后该颗粒可以被送入模塑设备,在那里其可以成型为所需形状,例如计算机外壳、可以静电油漆的汽车面板等。另外,从单独熔融共混器流出的导电性组合物可以被成型为片材或线料,以及进行挤出后工艺,例如退火、单轴或双轴取向。
在一个包括使用后工艺的实施方案中,该导电性组合物进一步在单轴方向使用约2到约1,000,000的拉伸比进行超拉伸。该高超拉伸比通常促进串型多晶结构半结晶结构的形成,其可以在无定形区中含有碳纳米管。在另一个实施方案中,该导电性组合物被进一步单轴或双轴受力,产生具有约0.01微米到约5000微米的厚度的薄膜。如果该薄膜包括半结晶有机聚合物,通常理想的是该取向薄膜具有在约θ=0度到约θ=80度的方位角方向中取向的结晶。在又另一个涉及熔融共混之后的后加工的实施方案中,该组合物在共混之后,被过冷到熔点以下约1℃到约100℃的温度约2分钟到约2小时。该过冷导电性组合物通常可以具有宏观半结晶结构,例如球晶,其包括碳纳米管。
在半结晶聚合物中,该碳纳米管可以起成核剂作用。为了改善该导电性组合物的强度,可能理想的是在碳纳米管上具有微晶核。通常理想的是具有1wt%的在碳纳米管上微晶核。在一个实施方案中,理想的是具有至少10wt%的在纳米管上微晶核,而在另一个实施方案中,理想的是具有至少15wt%的在碳纳米管上微晶核。在一个关于使用成核剂的示例性实施方案中,现已注意到使用成核剂(碳纳米管成核剂和其它成核剂)可以改善含碳纳米管的组合物的电气性能。通过改变晶体结构形成的方式,可以形成更加导电的网络。该导电性网络然后可以形成更加连续的结构,其将显示比没有成核剂的类似组合物更低的电阻。
溶液共混也可以用于制备该导电性组合物。溶液共混同样可以使用辅助能量,例如剪切、压缩、超声波振动等,促进碳纳米管与有机聚合物的均质化。在一个实施方案中,悬浮于流体中的有机聚合物可以与碳纳米管一起引入超声波发生器。该混合物可以通过超声处理一段有效地将碳纳米管分散到有机聚合物颗粒上的时间进行溶液共混。如果需要,有机聚合物与碳纳米管一起然后可以干燥、挤出和模塑。通常理想的是在超声处理工艺过程中流体使有机聚合物溶胀。使有机聚合物溶胀通常改善溶液共混工艺过程中碳纳米管浸透有机聚合物的能力并因此改善分散。
在另一个涉及溶液共混的实施方案中,碳纳米管组合物与有机聚合物前体一起进行超声波处理。有机聚合物前体可以为单体、二聚物、三聚物等,其可以反应形成有机聚合物。例如溶剂的流体可以任选随着碳纳米管和有机聚合物前体被引入超声波发生器。超声波处理的时间周期通常为有效促进碳纳米管被有机聚合物前体封闭的量。在封闭之后,有机聚合物前体然后聚合形成有机聚合物,在其中分散碳纳米管组合物。这种将碳纳米管组合物分散进入有机聚合物的方法促进碳纳米管纵横比的保持,其因此使得该组合物以更低的碳纳米管加入量提高导电率。另外,含有封闭的碳纳米管组合物的有机聚合物可以用作例如同另外的有机聚合物共混的母料。在另一个实施方案,有机聚合物、有机聚合物前体、任选的流体和碳纳米管组合物的混合物被超声波处理,封闭该碳纳米管,接着聚合该有机聚合物前体。
可以用来促进封闭和分散方法的有机聚合物前体的合适实例为那些用于合成下述热塑性树脂的有机聚合物前体,例如,但不限于聚缩醛、聚丙烯酸系、聚碳酸酯、聚苯乙烯、聚酯、聚酰胺、聚酰胺酰亚胺、聚芳酯、聚氨酯、聚芳砜、聚醚砜、聚亚芳基硫醚、聚氯乙烯、聚砜、聚醚酰亚胺、聚四氟乙烯、聚醚酮、聚醚醚酮等。通常,理想的是将上述混合物超声波处理约1分钟到约24小时。在一个实施方案中,理想的是将上述混合物超声波处理约5分钟到约15小时。在另一个实施方案中,理想的是将上述混合物超声波处理约10分钟到约10小时。在又另一个实施方案中,理想的是将上述混合物超声波处理约15分钟到约5小时。
在一个实施方案中,具有较高杂质份额的碳纳米管组合物可以比具有较低杂质份额的碳纳米管组合物使用更少的能量分散。不受理论限制,据信在某些有机聚合物中,杂质互相作用促进范德华力的减少,由此促进在有机聚合物内的纳米管更容易分散。
在另一个实施方案中,具有较低杂质份额的碳纳米管组合物可以比具有较高杂质份额的碳纳米管组合物使用更多的能量分散。通常,具有杂质的碳纳米管组合物可能比那些没有杂质的组合物需要不同的混合量。这些导电性组合物可以用于其中需要流动性、冲击性和导电性良好平衡的应用。它们也可以用于其中使用导电性材料以及其中导电性材料具有极低水平的导电性填料的应用,例如燃料电池、静电涂布应用等。
如上所述的导电性组合物可以用于多种工业应用。它们可以方便地用作包装需要免受静电耗散的电子元件的薄膜,所述电子元件例如计算机、电子产品、半导体部件、线路板等。它们也可以内部使用在计算机以及其它电子产品内,为人员和其它位于计算机外部的电子设备提供电磁屏蔽,以及保护内部计算机元件免受其它外部电磁干扰。它们也可以方便地用在用于汽车内部和外部部件的汽车车体板,如果需要其可被静电油漆。
以下实施例意在示例性的,而非限制性的,举例说明在此所述的导电性组合物以及该导电性组合物的各种实施方案的一些的制备方法。
实施例1
该实施例表明当碳纳米管组合物与热塑性树脂共混时,剪切及杂质对可以达到导电性的水平的影响。在该实施例中,数均分子量为约17,000克/摩尔以及重均分子量Mw为约41,000的聚碳酸酯树脂与1wt%的碳纳米管在DACA微型双螺杆挤出机中共混。该DACA微型双螺杆挤出机具有5立方厘米的最大混合容积以及具有以1rpm增量数控的约10到约360rpm的螺杆速度。该碳纳米管组合物含有3wt%或10wt%的杂质。含有3wt%杂质的碳纳米管组合物称作SWNT-3,而含有10wt%杂质的那些碳纳米管组合物称作SWNT-10。
该杂质量通过热解重量分析法(TGA)测定,其中燃烧试样,而测试仪中残留的重量通常构成杂质。为了进行更准确的杂质分析,2个试样经由XRF(X射线荧光)加以分析,测定杂质组成和含量。杂质含量示于表1a。
挤出机螺杆速度调节为75、150或300rpm。挤出机温度为285℃。挤出的试样的导电性在混合时间为1、3、5、7和10min时测定。约1到约2分钟的混合时间大致类似于挤出机中的停留时间。挤出的线料然后被用于电学比体积电阻率测量。对于含有SWNT-3和SWNT-10碳纳米管组合物的组合物而言,比体积电阻率(SVR)测量值分别示于表1b和2。
表1(a)
元素 | SWNT-3 | SWNT-10 |
碳 | 99 | 85 |
镁 | 0.02 | 0.03 |
铝 | 0.004 | 0.04 |
硅 | 0.03 | 0.09 |
磷 | 0.01 | 0.005 |
硫 | 0.04 | 0.1 |
氯 | 0.3 | 4 |
钙 | 0.004 | 0.03 |
铬 | 0 | 0.01 |
铁 | 0.3 | 11 |
镍 | 0 | 0.03 |
铜 | 0 | 0.3 |
钼 | 0.007 | 0.03 |
总计 | 99.7 | 100.7 |
注释:每种杂质元素的相对测定误差为至少+/-10%。
从上表可见,对于含有SWNT-10的组合物,大部分杂质为铁,其在碳纳米管生产中用作催化剂。
表1(b)
不同混合时间下的电阻率(0hm-cm) | |||||
RPM | 1分钟 | 3分钟 | 5分钟 | 7分钟 | 10分钟 |
75 | 15,298 | 10,718 | 7,744 | 13,529 | 13,294 |
150 | 7,353 | 6,550 | 37,918 | 70,782 | 91,215 |
300 | 6,626 | 5,555 | 101,088 | --- | --- |
表2
加工混合时间下的电阻率(0hm-cm) | |||||
RPM | 1分钟 | 3分钟 | 5分钟 | 7分钟 | 10分钟 |
75 | --- | --- | --- | 43,372 | 29,373 |
150 | --- | 494,381 | 44,706 | 48,851 | 90,673 |
300 | --- | 26,420 | 4,365 | 6,387 | 37,188 |
如可以从表1(b)和2所见的,具有较小重量百分比杂质的碳纳米管组合物为了显示导电性通常使用较少的混合。这些碳纳米管组合物与具有较高杂质的碳纳米管组合物相比,形成绳状网络要快的多并且所用动力要少的多。但是,从表1(b)中可见当其被混合5分钟时,含有3wt%杂质的碳纳米管组合物显示导电性水平降低,以及当以300rpm混合7分钟时,进一步不显示导电性。这一情况表明,可能的是,杂质较低的碳纳米管组合物经过度分散会达到组合物丧失导电性的程度。这些碳纳米管组合物被分散到绳状网络崩溃的程度。由此可见DACA微型双螺杆挤出机中的额外混合时间可以导致含有较少量杂质的碳纳米管组合物的导电率降低。
不受理论限制,高纯的碳纳米管组合物(SWNT-3)能够快速形成导电性网络,但是额外配混往往引起导电率降低,正如表1(b)中的150和300rpm,7和10分钟的情况下电阻率升高所看到的。在75rpm的较低搅拌速率下,据信工艺由扩散控制,即有机聚合物扩散进入碳纳米管促进从绳的分离,其促进分散。据信在较低的转数每分钟(rpm)设定下,没有足够的剪切力促进高度缠结。
表2中的结果反映含有SWNT-10的组合物的不同情况。在1分钟混合时间时,不能提供足够的能量以使大于或等于约10,000个绳的非常大的附聚物分解。但是从75提高到150到300的rpm设定显示在3、5和7分钟混合时间时导电率改善(电阻降低)。在3、5和7分钟时的辅助剪切使碳纳米管的大聚集体分解成连接良好的绳状网络。该连接性决定复合材料的导电率。超过7分钟的额外配混显示,网络倾向于崩溃。该绳状网络开始瓦解,导致导电率降低。该过程产生没有渗透过大部分有机聚合物的网络,并由此产生较低的导电率。在最低rpm设定看不到该行为,因为在如此低的rpm设定形不成有力的缠结。
3%碳纳米管组合物/尼龙6,6混合物显示类似数据,其中使用DACA挤出机,测定随混合时间而变的体积电阻率。辅助混合时间帮助较不纯的碳纳米管组合物更有效地分散,其中导电率与3%杂质(高纯情况)时的导电率相对保持相同。该数据也示于图2,其中画出具有2种不同类型纳米管(高纯度和较不纯)的3wt%碳纳米管组合物/尼龙6,6混合物的体积电阻率对混合时间的曲线。两个曲线都基于DACA微型双螺杆挤出机,在285℃温度下使用150的RPM设定产生。试样从线料中获得,该线料用液氮断裂并用银导电漆油漆,以及用Fluke万用表测定电阻。
分散中的差异由图3中的显微照片显示。含有SWNT-10的组合物的比体积电阻率为382ohm-cm,而含有SWNT-3的组合物的SVR为38240ohm-cm。含有较少杂质的试样显示更加高度缠结的碳纳米管结构,其导致更高的电阻率。为了得到令人满意的电学性能,含有SWNT-10的组合物的显微照片中显示的开放网络碳纳米管结构是理想的。
该结果还表明给定的碳纳米管组合物中的杂质水平越低,最初得到电学性能将越困难。但是,当使用辅助混合时,可见含有SWNT-10的组合物中得到的导电率与含有SWNT-3的组合物中得到的导电率水平大致相同。
还可以观察到当混合量提高时,通常导电率水平首先降低接着升高,表明随着混合增加(即混合时间大于7分钟),碳纳米管正被分散到在碳纳米管的导电性区域之间接触减少的程度。还可能当混合增加时,碳纳米管变得更缠结或聚集,由此促进网络连接性的减少。换句话说,不受理论限制,可以假定存在需要赋予给定的组合物的最优化能量水平,以便得到最低的电阻率。
实施例2
进行该实验以测定混合对树脂分子量以及得到的共混物的SVR的影响。该实施例中,聚碳酸酯树脂与1wt%的碳纳米管组合物在DACA微型双螺杆挤出机中共混约1分钟到约10分钟。该组合物和制备方法类似于那些用于实施例1的组合物和制备方法。使用的测试方法类似于那些以上详述的测试方法。聚碳酸酯的数均分子量(Mn)和重均分子量(Mw)通过GPC测定并示于以下表3和4。
表3
时间(分钟) | 杂质(%) | Mn | Mn降低% | Mw | Mw降低% | SVR(ohm-cm) |
0 | 纯PC | 17,136 | --- | 41,609 | --- | --- |
1 | 10 | 15,943 | 7.0 | 39,126 | 6.0 | --- |
3 | 10 | 14,631 | 14.6 | 35,854 | 13.8 | 494,381 |
5 | 10 | 14,413 | 15.9 | 35,587 | 14.5 | 44,706 |
7 | 10 | 14,070 | 17.9 | 34,396 | 17.3 | 49,851 |
10 | 10 | 13,808 | 19.4 | 33,964 | 18.4 | 90,763 |
表4
时间(分钟) | 杂质(%) | Mn | Mn降低% | Mw | Mw降低% | SVR(ohm-cm) |
0 | 纯PC | 17,136 | --- | 41,609 | --- | --- |
1 | 3 | 14,979 | 12.6 | 36,282 | 12.8 | 7,353 |
3 | 3 | 14,802 | 13.6 | 35,822 | 13.9 | 6,550 |
5 | 3 | 14,110 | 17.7 | 33,788 | 18.8 | 37,918 |
7 | 3 | 13,740 | 19.8 | 32,839 | 21.1 | 70,782 |
10 | 3 | 13,509 | 21.2 | 32,128 | 22.8 | 91,215 |
从以上表3和4可见,含有SWNT-3的组合物通常显示,采用非常小的混合量,得到可观的导电率。从该表还可以观察到,共混工艺过程中可比较的分子量的降低量,含有较少杂质的试样与含有较高量的试样的导电率相比,显现更大的导电率。由此,对于给定组合物通过选择杂质的适当水平,可能显现理想的导电率水平,同时使有机聚合物物理性能的降低减到最少。
实施例3
进行该实验以测定碳纳米管对尼龙6,6分子量以及得到的共混物的SVR的影响。该实施例中,如以下表5和6所示,尼龙6,6树脂与3wt%的碳纳米管组合物在DACA微型双螺杆挤出机中共混约1分钟到约7分钟。挤出温度为275℃,以及螺杆速度为150rpm。使用的测试方法类似于那些以上详述的测试方法。尼龙6,6树脂的数均分子量(Mn)和重均分子量(Mw)通过GPC测定并示于以下表5和6。
表5
时间(分钟) | 杂质(残留物TGA%) | Mn | Mn降低% | Mw | Mw降低% | SVR(ohm-cm) |
0 | 纯N66 | 24655 | --- | 59203 | --- | --- |
1 | 3 | 23441 | 4.9 | 60318 | -1.9 | 182,168 |
2 | 3 | 22614 | 8.3 | 59861 | -1.1 | 20,909 |
3 | 3 | 22199 | 10.0 | 59809 | -1.0 | 92,515 |
5 | 3 | 23819 | 3.4 | 62673 | -5.9 | 168,969 |
表6
时间(分钟) | 杂质(残留物TGA%) | Mn | Mn降低% | Mw | Mw降低% | SVR(ohm-cm) |
0 | 纯N66 | 24655 | --- | 59203 | 0.0 | --- |
1 | 10 | 20253 | 17.9 | 57329 | 3.2 | OL |
2 | 10 | 24227 | 1.7 | 63175 | -6.7 | OL |
3 | 10 | 24358 | 1.2 | 64521 | -9.0 | 115,327 |
5 | 10 | 21935 | 11.0 | 60963 | -3.0 | 876 |
7 | 10 | 21221 | 13.9 | 62745 | -6.0 | 382 |
从以上表5和6可见,具有SWNT-3的组合物通常显示,采用非常小的混合量的导电率。另外,含有SWNT-3的组合物通常显示,一般多少与混合时间保持一致的导电率。但是,那些具有SWNT-10的组合物直到3分钟混合时间之前并不显示导电率。一旦在含有SWNT-10的组合物中显示导电率,可见该导电率或表面体积电阻率高度取决于混合时间。这是有利的,因为其可以调节衍生自该组合物的制品的导电率。因为含有SWNT-10的组合物可以在显示经由树脂渗透电学网络之前接受一定量混合,所以预想的是含有不同杂质百分比的碳纳米管组合物可以在与有机聚合物混合之前共混。这将可以调节组合物的所需的导电率水平和表面体积电阻率。
尼龙6,6的分子量进一步显示随时间的有限的降低。从表5和6可见,当挤出含有SWNT-3和SWNT-10的组合物时,数均分子量(Mn)存在轻微减少。进一步可以观察到含有SWNT-10的组合物与含有SWNT-3的试样相比,分子量减少的更大。对于该挤出的组合物进行联用质谱分析法的气相色谱法(GC-MS)。GC-MS的结果分别示于表7和8。
表7
3% SWNT(SWNT-3)/尼龙6,6 | |||||||||||
300℃,5分钟 | 尼龙6,6(纯) | 1分钟 | 3分钟 | 5分钟 | 7分钟 | ||||||
化合物 | 峰面积 | ppm | 峰面积 | ppm | 峰面积 | ppm | 峰面积 | ppm | 峰面积 | ppm | |
停留时间 | |||||||||||
8.20 | d8-甲苯内标 | 72172 | 18.86 | 140046 | 18.86 | 86683 | 18.86 | 104894 | 18.86 | 1182824 | 25.84 |
8.81 | 环戊酮 | 13274 | 0.35 | 26104 | 0.35 | 25269 | 0.55 | 15570 | 0.28 | 80404 | 1.76 |
11.80 | 苯酚 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0.00 | 0.00 |
15.00 | 萘 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 15576 | 0.34 |
15.20 | 苯酚,4-(1-甲基乙基) | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 37206 | 0.81 |
25.59 | PA-6,6环构单体 | 0 | 0.00 | 91055 | 1.23 | 83546 | 1.82 | 82733 | 1.49 | 256009 | 5.59 |
总计 | 0.35 | 1.58 | 2.37 | 1.77 | 8.50 |
表8
3% SWNT(SWNT-3)/尼龙6,6 | |||||||||||
材料加热到300℃,5分钟 | 纯尼龙6,6 | 1分钟 | 3分钟 | 5分钟 | 7分钟 | ||||||
化合物 | 峰面积 | ppm | 峰面积 | ppm | 峰面积 | ppm | 峰面积 | ppm | 峰面积 | ppm | |
停留时间 | |||||||||||
8.20 | d8-甲苯内标 | 72172 | 18.86 | 91653 | 18.86 | 100330 | 18.86 | 75020 | 18.86 | 971122 | 25.84 |
4.780 | 己烷 | - | - | - | - | - | - | - | - | 3274216 | 87.122 |
8.81 | 环戊酮 | 13274 | 0.35 | 53404 | 1.10 | 0 | 0.00 | 22875 | 0.58 | 315158 | 8.39 |
11.80 | 苯酚 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 461532 | 11.60 | 43973 | 1.17 |
15.00 | 萘 | 0 | 0.00 | 50236 | 1.03 | 0 | 0.00 | 59152 | 1.49 | 184589 | 4.91 |
15.20 | 苯酚,4-(1-甲基乙基) | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 361152 | 9.08 | 96634 | 2.57 |
25.59 | 尼龙-6,6环构单体 | 0 | 0.00 | 21306 | 0.44 | 71113 | 1.34 | 20784 | 0.52 | 594045 | 15.81 |
总计 | 0.35 | 2.57 | 1.34 | 23.27 | 119.97 |
从表7和8可见,通过GC-MS检测出的作为尼龙6,6降解的结果的化合物为己烷,环戊酮,苯酚,萘,苯酚、4-(1-甲基乙基)和尼龙6,6环构单体。从该表可见,环状二聚物的wt%随着两种组合物的混合时间上升。组合物中环状二聚物的存在表明,存在由于在挤出过程中碳纳米管的存在而带来的降解,以及在那些具有SWNT-10的组合物中大量环状二聚物的存在表明,杂质的存在可以有助于数均分子量的降低。
实施例4
该实施例在于测定,当由MWNT(不显示拧成绳状)以及SWNT(显示拧成绳状)制造的母料在高剪切条件下制备时,所得母料之间性能的差异,所述高剪切条件例如基于30mm的Werner and Pfleiderer双螺杆挤出机。在该实施例中,包括3wt%的MWNT或SWNT的母料首先用30mm的Werner and Pfleiderer双螺杆挤出机挤出。制备母料的30mm的Werner and Pfleiderer双螺杆挤出机所使用的条件为280℃的机筒温度,350rpm的螺杆速度以及30lbs/hr的输出。用于该聚苯醚-聚酰胺共混物的聚酰胺为尼龙6,6。该聚苯醚聚酰胺共混物首先在290℃用30mm的Werner and Pfleiderer双螺杆挤出机配混。螺杆速度保持在350rpm以及共混物以50lbs/hr生产。
相应的母料的比体积电阻率示于以下表9。
表9
含有MWNT的母料 | 具有SWNT-10的母料 | 具有SWNT-3的母料 | SVR kΩ-cm |
3.0 | -- | -- | 19.1 |
-- | 3.0 | -- | --- |
-- | -- | 3.0 | 0.025 |
从该表可见含有SWNT-3的母料显示电学性能,而具有SWNT-10的母料不显示任何体积电阻率。同样在等量加载时,含有SWNT-3的试样优于MWNT差不多3个数量级。由此可见拧成绳状的碳纳米管与没有拧成绳状的碳纳米管相比,可以更快速地改善导电率。
如表10所示,3wt%母料然后通过与另外的尼龙6,6在30mm的Werner and Pfleiderer双螺杆挤出机中混合形成中间导电性组合物。该组合物然后与另外的成分共混得到表11中的组合物。示于表11中的聚苯醚-聚酰胺共混物在独立运转的30mm双螺杆挤出机中挤出。尼龙6,6和纳米管的最终含量示于表10。导电率(SVR)结果示于表12。
用于制备聚苯醚-聚酰胺共混物以及含有纳米管的聚苯醚-聚酰胺共混物的挤出机条件为290℃的机筒温度,350rpm的螺杆速度以及50lbs/hr的输出。含有纳米管的聚苯醚-聚酰胺共混物的电学性能示于表12。从表12可见,含有MWNT的试样不显示任何导电率,而具有SWNT的试样显示导电率。
表10
试样# | 尼龙6,6 | MWNT | SWNT-10 | SWNT-3 |
1 | 39.87 | 0.60 | --- | |
2 | 39.87 | 0.90 | --- | |
3 | 39.87 | 1.20 | --- | |
4 | 39.87 | --- | 0.60 | |
5 | 39.87 | --- | 0.90 | |
6 | 39.87 | --- | 1.20 | |
7 | 39.87 | 0.60 | ||
8 | 39.87 | 0.90 | ||
9 | 39.87 | 1.20 |
表11
试样# | 聚苯醚 | 柠檬酸 | 碘化铜 | Irganox1076 | 碘化钾 | Kraton G1651 | Kraton G1701X | 尼龙6,6(下游) |
1 | 38.54 | 0.65 | 0.01 | 0.30 | 0.10 | 7.00 | 3.5 | 10.00 |
2 | 38.54 | 0.65 | 0.01 | 0.30 | 0.10 | 7.00 | 3.5 | 10.00 |
3 | 38.54 | 0.65 | 0.01 | 0.30 | 0.10 | 7.00 | 3.5 | 10.00 |
4 | 38.54 | 0.65 | 0.01 | 0.30 | 0.10 | 7.00 | 3.5 | 10.00 |
5 | 38.54 | 0.65 | 0.01 | 0.30 | 0.10 | 7.00 | 3.5 | 10.00 |
6 | 38.54 | 0.65 | 0.01 | 0.30 | 0.10 | 7.00 | 3.5 | 10.00 |
7 | 38.54 | 0.65 | 0.01 | 0.30 | 0.10 | 7.00 | 3.5 | 10.00 |
8 | 38.54 | 0.65 | 0.01 | 0.30 | 0.10 | 7.00 | 3.5 | 10.00 |
9 | 38.54 | 0.65 | 0.01 | 0.30 | 0.10 | 7.00 | 3.5 | 10.00 |
表12
MWNTFibrilHyperion | SWNT-10 | SWNT-3 | 比体积电阻率(SVR)kΩ-cm | 悬臂梁式(kJ/m2) | MV(Pa-s)282C |
0.6 | -- | -- | --- | 23.8 | 218 |
0.9 | -- | -- | --- | 27.5 | 214 |
1.2 | -- | -- | --- | 26.5 | 214 |
-- | 0.6 | -- | 441 | 23.8 | 232 |
-- | 0.9 | -- | 156 | 17 | 235 |
-- | 1.2 | -- | 38 | 14.8 | 233 |
-- | -- | 0.6 | --- | --- | --- |
-- | -- | 0.9 | --- | --- | --- |
-- | -- | 1.2 | --- | --- | --- |
这些结果清楚地表明,含有SWNT-10的母料表现不同于那些含有MWNT或那些含有SWNT-3的母料。从该结果可见,含有SWNT-10的母料不导电,含有MWNT的母料是导电的。如由测定的整体体积电阻率证明的,含有SWNT-3的母料同样导电。但是,当进一步配混母料和聚苯醚-聚酰胺共混物时,具有MWNT的组合物不导电,而含有SWNT-10的组合物显示相当低水平的整体体积电阻率。具有SWNT-3的组合物通常是电学上绝缘的。
不限于理论,据推测SWNT-10的存在促进单壁纳米管解缠结以及随后的分散,由此改善导电率。SWNT-10需要辅助剪切力或混合,以便形成绳的连接网络。另一方面,SWNT-3已经在母料中形成很好的连接的绳状网络,而额外混合使该网络瓦解,由此破坏连接性并由此消除导电性。因此当以上述方式分散时,具有SWNT以及较低份额杂质的聚苯醚聚酰胺共混物通常不显示电学性能。同样不受理论限制,就MWNT而论,据信在母料和聚苯醚聚酰胺共混物共混过程中提供的额外剪切促进网络连接性的减少,使试样的电学性能降低。
实施例5
该实施例在于说明包括MWNT的组合物以及那些包括SWNT-10的组合物之间电学性能的差异。特别地,该实验在于研究半结晶聚合物对于含有MWNT或SWNT的组合物的电学性能以及冲击性能的影响。在Werner and Pfleiderer 30mm双螺杆挤出机中制备包括特性粘度为约0.46dl/g的聚苯醚树脂、苯乙烯-丁二烯-苯乙烯三嵌段共聚物、高抗冲聚苯乙烯(HIPS)以及聚丙烯的Tuftec冲击改性剂的预挤出组合物。在16mm的Prism双螺杆挤出机中制备包括聚丙烯(PD403)和MWNT或SWNT的独立母料。然后该预挤出组合物与母料一起在16mm的Prism双螺杆挤出机中挤出。然后预挤出组合物和母料在进料口被送入挤出机。试样用15吨Boy注塑机注塑成悬臂梁式样条。该样条被切口并进行缺口悬臂梁式冲击测试以及进行测定比体积电阻率的测量。
表13
在30mm的Werner andPfleiderer双螺杆挤出机中预挤出 | 在16mm的Prism双螺杆挤出机中预挤出 | ASTM悬臂梁式样条 | ||||||
在Prism 16mm双螺杆挤出机中挤出 | 平均值 | |||||||
PPO0.46IV | SBS | HIPS | TUFTEC | PPPD403 | MWNT | SWNT-10 | SVR(kΩ-cm) | 悬臂梁式(ft-lbs/英寸) |
17 | 5 | 10 | 8 | 59 | 1 | --- | 1.76 | |
17 | 5 | 10 | 8 | 58 | 2 | --- | 1.32 | |
17 | 5 | 10 | 8 | 57 | 3 | 450 | 1.29 | |
17 | 5 | 10 | 8 | 59 | 1 | 650 | 1.70 | |
17 | 5 | 10 | 8 | 58 | 2 | 198 | 1.49 | |
17 | 5 | 10 | 8 | 58 | 0 | --- | 2.11 |
从表13中的数据可见,含有MWNT的组合物不显示存在任何可测的导电率。但是,含有SWNT的试样在1和2wt%时显示电阻率。这些结果清楚地显示,在一定条件下,对于在半结晶树脂中产生电学性能,具有杂质的SWNT优于MWNT。这一点反映了拧成绳状的碳纳米管形成网络的能力。
实施例6
该实验在于说明SWNT组合物中存在的杂质对于包括聚碳酸酯树脂的组合物以及SWNT组合物的电学性能的影响。SWNT购自CarbonNanotechnologies Incorporated,含有10wt%杂质,基于残留物TGA烧尽(SWNT-10)计,或3wt%杂质,基于残留物TGA烧尽(SWNT-3)计。这些试样从超声波处理工艺中获得,其中SWNT在二氯乙烷中超声波处理30分钟,然后添加聚合物以及再将混合物超声波处理30分钟。将试样干燥、破碎,然后使用小型实验室混合和模塑设备(Atlas USA)形成线料,使用液氮使该线料断裂,然后用导电性银漆油漆断裂端,以及使用Fluke万用表测定电阻。
该SWNT组合物示于以下表14。该组合物的余量为PC-175聚碳酸酯树脂,商购自General Electric Corporation。
表14
配方 | 比体积电阻率(kΩ-cm) |
0.3wt% SWNT-10 | 390 |
0.3wt% SWNT-3 | --- |
0.3wt% SWNT(25% SWNT-3和75%SWNT-10) | 27 |
0.3wt% SWNT(25% SWNT-3和75%SWNT-10)(重复) | 8 |
0.2wt% SWNT(25% SWNT-3和75%SWNT-10) | 400 |
从表14可见,含有具有较高百分比杂质的SWNT组合物的组合物通常产生较好的电学性能。由此具有SWNT-10的组合物显示电阻率,而具有SWNT-3的组合物不显示任何电阻率。当SWNT-3与SWNT-10组合时,网络中的连接性由于组合与那些具有低水平杂质的碳纳米管相比具有较高水平杂质的碳纳米管而改变。SWNT-3倾向于随着混合而聚集,而SWNT-10倾向于形成更多网络结构。因此得到的渗透网络为具有比稀少绳更多聚集体的碳纳米管组合物与具有比聚集体更多稀少绳的碳纳米管组合物的组合。因此该稀少绳可以帮助连接该聚集体。因为形成不同的网络,所以综合的结果是体积电阻率较低。这一点促进纳米管更有效的填充进可以渗透过大部分有机聚合物的网络结构。
从以上实验可见,存在于SWNT组合物中的杂质为改变混合时间、调节组合物电学性能以及改性组合物物理性能提供多种可能。在一个实施方案中,可见组合物可以经历不同混合水平,从而在体系中形成不同的电学网络,其在有机聚合物基质中产生不同水平电阻率。在另一个实施方案中,在有机聚合物,例如聚碳酸酯中,具有较高水平杂质的SWNT组合物可以用较低水平剪切混合分散。在又另一个实施方案中,在有机聚合物,例如尼龙6,6中,可见当含有较低重量份额杂质的组合物通常不随着混合改变导电率,含有较高重量份额杂质的组合物显示随着混合时间导电率水平更高。
不受理论限制,普遍认为杂质水平在分散SWNT的有效性中扮演主要角色。高纯SWNT不能如较不纯SWNT那样与绳轻易分离。似乎是剪切力,例如那些用于双螺杆挤出的剪切力,可以有助于使SWNT在短时间内从高度缠结簇解缠结或解附聚。在挤压工艺过程中形成的剪切力在由高纯SWNT形成的SWNT聚集体破裂时并不十分有效。但是,对于SWNT-3,挤出机混合过程中的扩散作用可以极大地改善导电性SWNT网络。换句话说,聚合物链可以在SWNT之间扩散并帮助绳断裂。具有较高杂质(例如SWNT-10级别)的碳纳米管难以从其聚集体或较大绳分解,而是需要可以分散它们的辅助剪切。具有较低杂质的碳纳米管形成网络快速得多,但是该网络倾向于随着辅助剪切/混合而瓦解。这一点使人们希望从通过改变碳纳米管组合物中杂质的量调节所需的导电性水平,得到导电性组合物。
当高纯SWNT用于组合物时,SWNT与有机聚合物干混以及然后被送入挤出机。通过挤出机最初非常大的绳(>10,000SWNT)被轻易地分解为较小的绳。这一点可以形成导电性通道,但是通常在极低加载时没有。辅助配混开始可以将更多的绳分离成较小的绳。但是,最终要达到下述程度,即,分离的绳结构变得缠结以及结块或附聚。这一点示于图3。这种行为破坏了网络的连接性,并因此降低了这种高纯SWNT在组合物中作为导电性单元的有效性。
当使用具有基于残留物TGA烧尽计的大于3wt%杂质的碳纳米管时,非常大的绳结构(>10,000SWNT)通过挤出机分解为较小的绳。辅助配混进一步将附聚物分解成可以更轻易地穿过有机聚合物基质的更多鱼网型结构。这一点在挤出操作中非常有利,因为其非常容易赋予这种SWNT和有机聚合物的混合物更多的剪切力。这些结构不能形成类似于高纯结构形成的高度缠结簇,而是形成良好连接的很好的绳状网络。最终产物为导电性复合材料。这种纳米管中存在的杂质可能是其原因。
尽管本发明已参考示例性实施方案加以描述,但是本技术领域技术人员可以理解,在不脱离本发明范围的前提下可以作各种改变并且对于其要素可以进行等价物替代。另外,在不脱离本发明实质范围的前提下,可以进行许多改进以使特定情况或材料适应本发明的教导。因此,意味着本发明并不限于所公开的作为预期实施本发明的最佳方式的特定实施方案。
Claims (41)
1.一种导电性组合物,包括:
有机聚合物;和
碳纳米管组合物,其中该碳纳米管组合物包括可以拧成绳状的并且具有大于或等于约0.1wt%基于碳纳米管组合物总重量计的生产涉及杂质的碳纳米管,以及其中该组合物具有小于或等于约1012ohm-cm的整体体积电阻率和大于或等于约5千焦/平方米的缺口悬臂梁式冲击强度。
2.权利要求1的导电性组合物,其中该组合物具有小于或等于约108ohm-cm的体积电阻率,以及大于或等于约10千焦/平方米的缺口悬臂梁式冲击强度。
3.权利要求1的导电性组合物,其中碳纳米管组合物占约0.001到约50wt%,基于组合物总重量计。
4.权利要求1的导电性组合物,其中碳纳米管组合物包括单壁碳纳米管、多壁碳纳米管或包括上述碳纳米管的至少一种的组合。
5.权利要求1的导电性组合物,其中生产涉及杂质包括含碳反应副产物、催化剂残留物、金属、金属氧化物、金属碳化物、金属氮化物或包括上述残留物的至少一种的组合。
6.权利要求5的导电性组合物,其中含碳反应副产物为残缺单壁碳纳米管、多壁碳纳米管、支化和/或卷曲多壁碳纳米管、无定形碳、烟灰、焦炭或包括上述反应副产物的至少一种的组合。
7.权利要求1的导电性组合物,进一步包括未拧成绳的单壁碳纳米管、未拧成绳的多壁碳纳米管、蒸气生长碳纤维、石墨纳米片或包括上述至少一种的组合。
8.权利要求1的导电性组合物,其中生产涉及杂质占碳纳米管组合物总重量的约0.1到约80wt%。
9.权利要求1的导电性组合物,其中有机聚合物包括均聚物、共聚物、三元共聚物或包括上述有机聚合物类型的至少一种的组合。
10.权利要求1的导电性组合物,其中有机聚合物具有相分离形态,以及其中碳纳米管组合物的大部分存在于单相中。
11.权利要求1的导电性组合物,其中碳纳米管组合物的至少一部分包括用官能团衍生的碳纳米管。
12.权利要求1的导电性组合物,其中碳纳米管组合物包括具有至少一个半球形端的单壁碳纳米管或多壁碳纳米管。
13.权利要求1的导电性组合物,其中有机聚合物为热塑性树脂、热塑性树脂的共混物或热塑性树脂与热固性树脂的共混物。
14.权利要求1的导电性组合物,其中有机聚合物为共聚物、三元共聚物、聚合物的共混物或包括上述有机聚合物的至少一种的组合。
15.权利要求13的导电性组合物,其中热塑性树脂为聚缩醛、聚丙烯酸系树脂、聚碳酸酯、聚苯乙烯、聚酯、聚酰胺、聚酰胺酰亚胺、聚芳酯、聚氨酯、聚芳砜、聚醚砜、聚亚芳基硫醚、聚氯乙烯、聚砜、聚醚酰亚胺、聚四氟乙烯、聚醚酮、聚甲基丙烯酸甲酯、聚醚醚酮以及包括上述热塑性树脂的至少一种的组合。
16.一种导电性组合物,包括:
有机聚合物;和
包括碳纳米管的碳纳米管组合物,其中该碳纳米管组合物的碳纳米管具有大于或等于约0.1wt%基于该碳纳米管组合物总重量计的生产涉及杂质;以及其中该碳纳米管以包括绳的网络形式存在于有机聚合物中;以及其中该导电性组合物具有小于或等于约108ohm-cm的整体体积电阻率和大于或等于约10千焦/平方米的缺口悬臂梁式冲击强度。
17.权利要求16的导电性组合物,具有A级表面光洁度。
18.权利要求16的导电性组合物,包括约0.001到约50wt%的碳纳米管组合物,基于导电性组合物总重量计。
19.权利要求16的导电性组合物,其中碳纳米管组合物包括单壁碳纳米管、多壁碳纳米管或包括上述碳纳米管的至少一种的组合。
20.权利要求16的导电性组合物,其中生产涉及杂质包括含碳反应副产物、催化剂残留物或包括上述至少一种的组合,以及其中催化剂残留物包括金属、金属氧化物、金属碳化物、金属氮化物或包括上述残留物的至少一种的组合。
21.一种导电性组合物,包括:
有机聚合物;和
包括碳纳米管的碳纳米管组合物,其中该碳纳米管组合物的碳纳米管具有大于或等于约0.1wt%基于该碳纳米管组合物总重量计的生产涉及杂质;以及其中该碳纳米管以包括绳和附聚物的网络形式存在于有机聚合物中;以及其中该导电性组合物具有小于或等于约108ohm-cm的整体体积电阻率和大于或等于约10千焦/平方米的缺口悬臂梁式冲击强度以及A级表面光洁度。
22.权利要求21的导电性组合物,包括约0.001到约50wt%的碳纳米管组合物,基于导电性组合物总重量计。
23.权利要求21的导电性组合物,其中碳纳米管组合物包括单壁碳纳米管、多壁碳纳米管或包括上述碳纳米管的至少一种的组合。
24.权利要求21的导电性组合物,其中生产涉及杂质包括含碳的反应副产物、催化剂残留物或包括上述至少一种的组合。
25.权利要求21的导电性组合物,其中催化剂残留物包括金属、金属氧化物、金属碳化物、金属氮化物或包括上述残留物至少一种的组合。
26.权利要求24的导电性组合物,其中含碳反应副产物为残缺单壁碳纳米管、多壁碳纳米管、支化和/或卷曲多壁碳纳米管、无定形碳、烟灰、焦炭或包括上述反应副产物的至少一种的组合。
27.一种制品,包括上述权利要求任何一项的组合物。
28.一种制备组合物的方法,包括:
将有机聚合物和/或有机聚合物前体组合物与碳纳米管组合物共混,其中该碳纳米管组合物包括可以拧成绳状的碳纳米管,以及其中该碳纳米管组合物包括大于或等于约0.1wt%基于碳纳米管组合物总重量计的生产涉及杂质。
29.权利要求28的方法,其中共混包括熔融共混、溶液共混或包括上述共混方法的至少一种的组合。
30.权利要求28的方法,其中有机聚合物前体组合物在共混过程中形成有机聚合物。
31.权利要求28的方法,其中共混包括以超声波频率进行的超声波处理。
32.权利要求28的方法,其中共混使用剪切力、拉伸力、压力、超声波能、电磁能、热能或包括上述力和能量的至少一种的组合,并在加工设备中进行,其中通过单螺杆、多螺杆、啮合同向旋转或反向旋转螺杆、非啮合同向旋转或反向旋转螺杆、往复螺杆、有销螺杆、有销机筒、过滤网组、辊、撞锤、螺旋转子或包括上述至少一种的组合施加上述力。
33.一种制备导电性组合物的方法,包括:
将碳纳米管组合物与有机聚合物或有机聚合物前体共混;其中该碳纳米管组合物含有可以拧成绳状的碳纳米管;以及其中包括碳纳米管的绳在共混时改变其尺寸。
34.权利要求33的方法,其中绳包括2到105个碳纳米管。
35.权利要求33的方法,其中共混包括熔融共混、溶液共混或包括上述共混方法的至少一种的组合。
36.权利要求33的方法,其中有机聚合物前体组合物在共混过程中形成有机聚合物。
37.权利要求33的方法,其中共混包括以超声波频率进行的超声波处理。
38.一种制备导电性组合物的方法,包括:
将第一有机聚合物和碳纳米管组合物共混形成母料;其中该碳纳米管组合物包括大于或等于约0.1wt%基于碳纳米管组合物总重量计的生产涉及杂质;其中该碳纳米管组合物包括可以拧成绳状的碳纳米管;以及
进一步将母料与第二有机聚合物共混形成导电性组合物。
39.权利要求38的方法,其中母料具有比导电性组合物的体积电阻率高的体积电阻率,或者其中母料具有比导电性组合物的体积电阻率低的体积电阻率。
40.权利要求38的方法,其中存在于碳纳米管组合物中的碳纳米管绳在共混形成母料过程中改变其尺寸,或者其中存在于碳纳米管组合物中的碳纳米管绳在共混形成导电性组合物过程中改变其尺寸。
41.一种通过权利要求28至40的任何一项的方法制备的制品。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US49384503P | 2003-08-08 | 2003-08-08 | |
US60/493,845 | 2003-08-08 | ||
US60/501,504 | 2003-09-09 | ||
US10/912,919 | 2004-08-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1864233A true CN1864233A (zh) | 2006-11-15 |
Family
ID=37390869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200480029375 Pending CN1864233A (zh) | 2003-08-08 | 2004-08-06 | 包括碳纳米管的导电性组合物及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1864233A (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8088306B2 (en) | 2006-12-22 | 2012-01-03 | Cheil Industries Inc. | Electroconductive thermoplastic resin composition and plastic article including the same |
CN102504516A (zh) * | 2011-10-18 | 2012-06-20 | 四川大学 | 高导电高敏感性或高导电低敏感性复合材料及其制备方法 |
CN103151098A (zh) * | 2007-12-14 | 2013-06-12 | 可隆工业株式会社 | 导电材料 |
US8512600B2 (en) | 2009-12-30 | 2013-08-20 | Cheil Industries Inc. | Polycarbonate resin composition having excellent wear resistance and electric conductivity and method of preparing the same |
US9080039B2 (en) | 2011-12-30 | 2015-07-14 | Cheil Industries Inc. | Thermoplastic resin composition having improved thermal conductivity and articles thereof |
CN115784210A (zh) * | 2022-09-06 | 2023-03-14 | 徐州工程学院 | 一种碳纳米管复合材料及其制备方法和应用 |
CN115836114A (zh) * | 2020-07-20 | 2023-03-21 | 引能仕株式会社 | 导电性热塑性弹性体组合物 |
-
2004
- 2004-08-06 CN CN 200480029375 patent/CN1864233A/zh active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8088306B2 (en) | 2006-12-22 | 2012-01-03 | Cheil Industries Inc. | Electroconductive thermoplastic resin composition and plastic article including the same |
CN103151098A (zh) * | 2007-12-14 | 2013-06-12 | 可隆工业株式会社 | 导电材料 |
CN101945820B (zh) * | 2007-12-14 | 2013-11-06 | 可隆工业株式会社 | 导电材料及其制造方法 |
CN103151098B (zh) * | 2007-12-14 | 2016-06-01 | 可隆工业株式会社 | 导电材料 |
US8512600B2 (en) | 2009-12-30 | 2013-08-20 | Cheil Industries Inc. | Polycarbonate resin composition having excellent wear resistance and electric conductivity and method of preparing the same |
CN102504516A (zh) * | 2011-10-18 | 2012-06-20 | 四川大学 | 高导电高敏感性或高导电低敏感性复合材料及其制备方法 |
US9080039B2 (en) | 2011-12-30 | 2015-07-14 | Cheil Industries Inc. | Thermoplastic resin composition having improved thermal conductivity and articles thereof |
CN115836114A (zh) * | 2020-07-20 | 2023-03-21 | 引能仕株式会社 | 导电性热塑性弹性体组合物 |
CN115784210A (zh) * | 2022-09-06 | 2023-03-14 | 徐州工程学院 | 一种碳纳米管复合材料及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1886808A (zh) | 导电热塑性组合物、其制造方法以及由此种组合物衍生的制品 | |
CN1898753A (zh) | 导电组合物、其制造方法以及由此种组合物衍生的制品 | |
JP2007512658A (ja) | 導電性組成物及びその製造方法 | |
JP5341772B2 (ja) | 導電性熱可塑性樹脂組成物及びプラスチック成形品 | |
JP2007502351A (ja) | 導電性組成物及びその製造方法 | |
EP2097482B1 (en) | New polyester-polycarbonate blends | |
CN102159639B (zh) | 树脂组合物 | |
EP1963416B1 (en) | High flow polyester composition | |
US8222347B2 (en) | Polyester-polycarbonate compositions | |
JP4701645B2 (ja) | 樹脂組成物、錠剤、成形品およびシャーシまたは筐体 | |
TW200632011A (en) | Heat stabilized moulding composition | |
KR20080092342A (ko) | 발포된 및 발포성의 높은 유리 전이 온도 중합체 | |
US20090030128A1 (en) | New polyester-polycarbonate compositions | |
CN1055371A (zh) | 耐热丙烯聚合物组合物 | |
WO2006049139A1 (ja) | 導電性マスターバッチ及びそれを含む樹脂組成物 | |
JP2007112885A (ja) | 熱可塑性エラストマー組成物 | |
TW201224019A (en) | Liquid crystal polyester composition | |
JP2005200620A (ja) | 熱可塑性樹脂組成物及び熱可塑性樹脂成形品 | |
JPWO2014024743A1 (ja) | 絶縁性高熱伝導性熱可塑性樹脂組成物 | |
CN1864233A (zh) | 包括碳纳米管的导电性组合物及其制备方法 | |
KR101954282B1 (ko) | 하드 디스크 드라이브 및 반도체 용도에서 유용한 청정 폴리카보네이트 재료 | |
US5547609A (en) | Electroconductive resin composition, antistatic coating and molded article | |
JP2013519745A (ja) | 耐衝撃性改質熱可塑性組成物の調製における混合物の使用 | |
CN1867591A (zh) | 导电性组合物及其制备方法 | |
JP4973114B2 (ja) | 樹脂組成物、それからなる錠剤の製造方法、および成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20090109 Address after: Bergen Op Zoom Holland Applicant after: Sabic Innovative Plastics Ip Address before: American New York Applicant before: General Electric Company |
|
ASS | Succession or assignment of patent right |
Owner name: SHABO BASE CREATION PLASTICS INTELLECTUAL PROPERTY Free format text: FORMER OWNER: GENERAL ELECTRIC CO. Effective date: 20090109 |
|
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |