CN1860207A - 制氢用自热转化器-转化交换器布置 - Google Patents

制氢用自热转化器-转化交换器布置 Download PDF

Info

Publication number
CN1860207A
CN1860207A CNA2004800070761A CN200480007076A CN1860207A CN 1860207 A CN1860207 A CN 1860207A CN A2004800070761 A CNA2004800070761 A CN A2004800070761A CN 200480007076 A CN200480007076 A CN 200480007076A CN 1860207 A CN1860207 A CN 1860207A
Authority
CN
China
Prior art keywords
air
mixture
synthetic gas
hydrogen
gas discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800070761A
Other languages
English (en)
Other versions
CN100564495C (zh
Inventor
A·马尔霍特拉
J·H·戈斯内尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kellogg Brown and Root LLC
Original Assignee
Kellogg Brown and Root LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kellogg Brown and Root LLC filed Critical Kellogg Brown and Root LLC
Publication of CN1860207A publication Critical patent/CN1860207A/zh
Application granted granted Critical
Publication of CN100564495C publication Critical patent/CN100564495C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0476Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds
    • B01J8/0488Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds the beds being placed in separate reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/065Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/141At least two reforming, decomposition or partial oxidation steps in parallel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

本发明涉及制氢方法和设备。所述设备包括与自热转化器(10)(供入经预热的蒸汽-烃混合物)并行布置的转化交换器(14),空气-蒸汽混合物供入自热转化器(10)的燃烧器/混合器以制得650°-1050℃的合成气排放物。得自自热转化器(10)的排放物用于加热转化交换器(14),合并的转化器排放物被导入变换反应器(30)和分离器(32,34)以分离成混合气流和富含氢的产物气流。

Description

制氢用自热转化器-转化交换器布置
                      发明背景
本发明涉及使用自热反应器(ATR)和转化交换器制备合成气(syngas)。
烃的转化是一种应用多个通常为吸热的反应来制备含氢合成气的标准方法,其中所述合成气用于制备例如氨或甲醇。常规的自热转化反应器(ATR)为一种包含带有特殊设计的燃烧器/混合器的催化气体生成器床的蒸汽转化装置,其中往所述燃烧器/混合器中供入预热的烃气体、空气或氧气和蒸汽。烃在燃烧器中的部分燃烧为发生于燃烧器下方催化床的转化反应提供了所需的热量以生成主要为蒸汽、氢、一氧化碳(CO)和二氧化碳(CO2)等的混合物。蒸汽转化器的排放物随后在变换器中进一步转化,其中CO和蒸汽反应生成另外的氢和CO2,这些气体特别用于氢为主要需求的合成气组分的氨和其他合成。
ATR相对常规催化蒸汽转化器的优点在于例如成本较低且容易操作。工业上采用的ATR方法的缺点是伴随空气分离单元(ASU)所带来的资金成本、操作困难和占用区要求等问题,特别是操作人员和占用区受限等因素致使ASU不合需要。在合成气用于制备氨时,采用低温蒸馏以脱除过量的氮和其他杂质以获得99.9%的纯度水平。
本发明解决无须使用ASU和/或低温蒸馏而从ATR制备氢的需要,通过用过量的空气运转ATR,将ATR过程的排放物供应到转化交换器为制备另外的合成气提供热量,并在无须低温除氮的情况下部分纯化产物氢流。例如从LeBlanc的美国专利5,011,625和5,122,299以及Cizmer等的美国专利5,362,454中已知与自热转化器联用的转化交换器。所有这些专利文献通过引用结合到本文中。这些转化交换器可从市场上购得,商品名为KRES或Kellogg,Brown and Root(KBR)转化交换器系统。
                      发明概述
本发明于新的氢装置中并行使用转化交换器和自热反应器(ATR),由此降低资金成本、减少能源要求、极大简化操作并减少NOx和CO2的排放,或于现有的氢装置并行使用所述转化交换器和自热反应器而将氢生产量提高40-60%并降低氢装置的蒸汽输出。所得的方法具有非常低的能耗。
本发明在一个实施方案中提供了一种制氢的方法。所述方法包括:(a)在自热反应器中,用蒸汽和空气将第一烃部分催化转化制备温度为650°到1050℃、优选650°到1000℃的第一合成气排放物;(b)将第一合成气排放物供入转化交换器;(c)将第二烃部分和蒸汽通过转化交换器的催化剂区制备第二合成气排放物;(d)从邻近入口的催化区排放第二合成气排放物,与第一合成气排放物形成合成气混合物;(e)将该混合物通过催化剂区并与其间接热交换而冷却混合物并加热催化剂区;(f)从转化交换器的出口收集经冷却的混合物;(g)变换所述混合物以制得富含二氧化碳而一氧化碳贫乏的气流;并(h)分离所述富含二氧化碳的气流以形成包含氮气和二氧化碳的氢贫乏的混合气流和富含氢的产物流。
如果需要,所述转化、变换和混合气分离可在10到200巴,例如30巴以上的工艺压力下进行。氮和二氧化碳的脱除可由膜分离法或变压吸附分离法或类似的单元操作组成,这些单元可同时在工艺压力下从氢中脱除气体混合物并优选不需要脱除二氧化碳和氮的独立后续步骤。该方法优选包括用燃气轮机传动将空气压缩到催化转化器并从燃气轮机的废气中回收热量。催化剂区可包含催化剂管,且该方法还可以包括:将第一合成气排放物供入转化器的壳侧;将第二烃部分和蒸汽通过催化剂管;以及从邻近壳侧入口的催化剂管中卸载第二合成气排放物以形成合成气混合物。自热转化器可用过量的空气运行。得自变换的富氢气流的氢/氮摩尔比小于3。氮和二氧化碳的脱除优选不需低温蒸馏,且该方法优选不需空气分离。第一烃部分占第一和第二烃部分的比例优选为55到85%。第一烃部分占第一和第二烃部分的比例更优选为60到80%。氢产物流的纯度至少为70%到99.5%,优选至少90%,更优选至少95%,甚至更优选至少97%且特别为至少98.5%,其中百分数按体积计。该方法可包括将氢产物流供入燃料电池以产生电流,或供入例如加氢处理装置以提炼原油,或供入其他精炼过程。
在另一个实施方案中,本发明提供了一种制备合成气的设备。该设备包含:(a)用于用蒸汽和空气催化转化第一烃部分以制备温度为650°到1050℃的第一合成气排放物的自热反应器装置;(b)用于将第一合成气排放物供入转化交换器的入口的装置;(c)用于将第二烃部分和蒸汽通过转化交换器中的催化剂区以形成第二合成气排放物的装置;(d)用于从邻近入口的催化剂区排放第二合成气排放物以与第一合成气排放物形成合成气混合物的装置;(e)用于将所述混合物通过催化剂区并与其间接热交换而冷却所述混合物并加热催化剂区的装置;(f)用于从转化交换器的出口收集经冷却的混合物的装置;(g)用于变换所述混合物以制得富含二氧化碳而一氧化碳贫乏的气流的装置;和(h)用于分离富含二氧化碳的气流以形成包含氮气和二氧化碳的氢贫乏的混合气流和富含氢的产物流的装置。所述设备的分离装置可以包括变压吸附单元或膜分离器。
                       附图简述
图1为本发明的一个实施方案的ATR-转化交换器法的工艺流程简化示意图。
                       发明详述
本发明方法的一个实施方案的主要流程如图1所示。管线2供应的经脱硫的天然气或其他烃与管线4供应的工艺蒸汽混合且该混合物在原料预热交换器6中预热。混合物的蒸汽/碳比率优选为2.0到4.0,例如为约3。经预热的蒸汽-烃混合物的第一部分通过管线8导入自热转化器(ATR)10的燃烧器中,而第二部分则通过管线12导入转化交换器14的管侧入口。如果需要,可以通过管线36将另外的蒸汽加入管线8。
空气通过管线16供入并与管线18的蒸汽混合,且蒸汽-空气混合物在预热器38中预热,例如加热到200℃到650℃的温度,并通过管线20传送到燃烧器,注意维持燃烧器的火焰温度低于1500℃。所述空气优选为过量的空气,即意味着所得的合成气的氢/氮摩尔比(变换后)小于约3(氨合成气组成的常见化学计量比率)。在合成气的氮含量和/或氢纯度不是关键要素的情形,例如在燃料电池、原油或其重馏分的加氢处理或在氮为惰性且其存在不会显著影响合成气使用方法的经济性的应用中,使用空气代替氧气或富氧空气具有经济上的益处。在经济或空间考虑限制了常规空气分离单元(ASU)的使用的情形,例如当ATR/转化交换器用于制备氢(用于浮动产物存储和排出(FPSO)设施),空气可用作纯氧的替代物。如果需要,空气可通过燃气轮机驱动的压缩机供入,而从燃气轮机废气中回收的热量例如可用于预热工艺原料流、产生工艺蒸汽等。
空气-蒸汽混合物中蒸汽/分子氧的摩尔比优选为约0.8到约1.8,更优选为约1到约1.6,而导入ATR的烃原料的氧/碳摩尔比可为约0.5到约0.8,优选约0.6到0.7。导入ATR 10(管线8)的烃分流占导入ATR 10和转化交换器14(管线2)的烃总量的比例优选为ATR的55到85%,更优选为60到80%,且特别为65到75%。一般优化运行条件和流量使其达到最大氢产量。
来自ATR 10的管线22中的合成气排放物可供入转化交换器14的壳侧入口。来自催化剂管24的出口端的经转化的气体与ATR的排放物混合,且该混合物通过催化剂管24的外部到达壳侧出口,在此处它被收集于管线26。管线26中的合并合成气在交叉换热器6和废热锅炉28中冷却以制备排出蒸汽并被供入下游加工,所述下游加工包括变换段30(可包括高温、中温和/或低温变换器)、热回收32、混合气分离34(例如CO2脱除(例如变压吸附法(PSA)或膜分离法))等,其所有单元操作为本领域技术人员所熟知。分离34优选不包括用于脱除氨合成气产物中过量的氮的低温或深冷分离工艺,所述工艺要求独立的上游脱除系统以使二氧化碳在脱除氮所需的低温下凝固。
转化交换器14的热量要求是由ATR排放物的量和温度来满足。一般来说,向转化交换器供入越多原料,则需要从ATR排放物中获得越多热量。管线22中的ATR排放物的温度应为650°到1000℃或1050℃,且可优选高达转化交换器18的结构材料所允许的温度。如果温度太低,转化交换器14中将发生不完全转化,然而如果温度太高,则应考虑冶金学问题。也应该注意确保所选择的运行条件能使得金属粉尘降低到最少。运行压力优选10到200巴或更高,特别为至少25或30巴,且可方便地选为在所需的压力下供入氢产物流,因此无须使用氢气压缩机。
以下通过实施例对本发明进行阐述。将转化交换器如图1所示与ATR联合安装,其中空气代替氧气用于50MMSCFD氢的制备,在燃烧的加工加热器中具有总吸附负荷为38.94Gcal/hr,且具有如下表1所示的关联参数:
                                 表1  使用过量空气的ATR-转化交换器工艺
  流编号   催化剂管入口,管线12   ATR原料,管线8   ATR排放物,管线22   壳侧出口,管线26  ATR供入空气-蒸汽,管线20
  干摩尔分数
  H2   0.0200   0.0200   0.3578   0.4492
  N2   0.0190   0.0190   0.4628   0.3561  0.7804
  CH4   0.9118   0.9118   0.0013   0.0036
  AR   0.0000   0.0000   0.0055   0.0042  0.9400
  CO   0.0000   0.0000   0.0835   0.1026
  CO2   0.0000   0.0000   0.0891   0.0843  0.0300
  O2   0.0000   0.0000   0.0000   0.0000  0.2099
  C2H6   0.0490   0.0490   0.0000   0.0000
  C3H8   0.0002   0.0002   0.0000   0.0000
  总流量KMOL/HR(干)   312.6   713.9   4154.2   5414.7  2446.2
  H2OKMOL/H   947.7   2164.0   2827.0   3380.6  728.9
  总流量KMOL/HR   1260.3   2878.0   6981.2   8795.3  3175.1
  总流量KG/HR   22288   50896   134887   156700  83990
  压力(kg/cm2abs)   25.9   25.9   22.4   22.1  24.0
  温度(℃)   601   601   1011   747  621
此外,表1的数据为代表低资金成本、低能耗、运行方便以及减少的NOx和CO2排放(与具有相同产能的相当的蒸汽转化氢装置相比减少56%)的一个实施例。该方法对建造新的制氢设施而言是有吸引力的选择,其中过量的氮气是所需要的、可以容许的或可经济地从合成气中脱除。
在另一个实施例中,转化交换器如图1所示与ATR联合安装,其中空气用作氧气来源用于50MMSCFD氢制备。本实施例的常见的压力和温度见图1所示,其他关联参数见下面表2所示:
                           表2使用过量空气氧化剂的ATR-转化交换器工艺
  流编号   催化剂管入口12   ATR原料管线8   ATR排放物,管线22   壳侧出口,管线26  ATR供入空气-蒸汽,管线20
  干摩尔分数
  H2   0.0200   0.0200   0.4115   0.4792
  N2   0.0023   0.0023   0.4020   0.3089  0.7804
  CH4   0.9612   0.9612   0.0026   0.0227
  AR   0.0000   0.0000   0.0048   0.0037  0.0094
  CO   0.0000   0.0000   0.0803   0.0875
  CO2   0.0150   0.0150   0.0987   0.0980  0.0003
  O2   0.0000   0.0000   0.0000   0.0000  0.2099
  C2H6   0.0013   0.0013   0.0000   0.0000
  C3H8   0.0002   0.0002   0.0000   0.0000
  总流量KMOL/HR(干)   371.5   754.3   4069.7   5299.5  2094.1
  H2OKMOL/HR   1074.8   2182.2   2610.9   3325.1  656.2
  总流量KMOL/HR   1446.3   2936.5   6680.5   8624.6  2750.3
  总流量KG/HR   25395   51557   124039   149434  72482
  压力(kg/cm2abs)   25.5   23.6   22.8   22.5  23.6
  温度(℃)   601   601   884   659  621
表2中的数据同样为代表低资金成本、低能耗、运行方便以及减少的NOx和CO2排放的一个实施例。从转化交换器中回收的排放物包含47.9%的H2、30.9%的N2、8.8%的CO和9.9%的CO2。转化交换器的排放物经过变换(如图1所示)产生组成为51.9%的H2、28.6%的N2、0.5%的CO和16.6%的CO2的排放物。通过PSA的纯化产生组成为98.0%的H2、0.80%的N2和1.0%CH4的纯化产物。
本发明以上的描述是对本发明的举例说明和解释。本领域技术人员将理解有关材料、装置和所采用工艺的各种变化。在附加的权利要求书的范围和精神以内的所有这类变化都是可以接受的。

Claims (23)

1.一种制氢方法,所述方法包括:
在自热反应器中,用蒸汽和空气将第一烃部分催化转化制备温度为650°到1050℃的第一合成气排放物;
将第一合成气排放物供入转化交换器;
将第二烃部分和蒸汽通过转化交换器的催化剂区制备第二合成气排放物;
从邻近入口的催化剂区排放第二合成气排放物,与第一合成气排放物形成合成气混合物;
将该混合物通过催化剂区并与其间接热交换而冷却混合物并加热催化剂区;
从转化交换器的出口收集经冷却的混合物;
变换所述混合物以制得富含二氧化碳而一氧化碳贫乏的气流;并
分离富含二氧化碳的气流以形成包含氮气和二氧化碳的氢贫乏的混合气流和富含氢的产物流。
2.权利要求1的方法,其中所述混合气分离包括膜分离法。
3.权利要求1的方法,其中所述混合气分离包括变压吸附法。
4.权利要求1的方法,其中所述催化剂区包括催化剂管,所述方法还包括:
将第一合成气排放物供入转化器的壳侧;
将第二烃部分和蒸汽通过催化剂管;
从邻近壳侧入口的催化剂管排放第二合成气排放物,形成合成气混合物。
5.权利要求1的方法,其中所述自热转化器使用过量空气运行。
6.权利要求1的方法,其中所述经变换得到的富含二氧化碳的气流的氢/氮摩尔比小于3。
7.权利要求1的方法,其中所述混合气分离不包括深冷分离。
8.权利要求1的方法,其中所述方法不包括空气分离。
9.权利要求1的方法,其中所述第一烃部分占第一和第二烃部分总量的比例为55到85%。
10.权利要求1的方法,其中所述第一烃部分占第一和第二烃部分总量的比例为60到80%。
11.权利要求1的方法,其中所述氢产物流的纯度为至少70%体积。
12.权利要求11的方法,其中所述氢产物流的纯度为90到99.5%体积。
13.权利要求1的方法,其中所述氢产物流的纯度为至少95%体积。
14.权利要求1的方法,其中所述氢产物流的纯度为至少97%体积。
15.权利要求1的方法,其中所述氢产物流的纯度为至少98.5%体积。
16.一种产生电流的方法,所述方法包括权利要求1的方法并将富含氢的产物流供入燃料电池。
17.一种加氢处理方法,所述方法包括权利要求1的方法并将富含氢的产物流供入加氢处理装置。
18.一种制备合成气的设备,所述设备包括:
用于用蒸汽和空气催化转化第一烃部分以制备温度为650°到1050℃的第一合成气排放物的自热反应器装置;
用于将第一合成气排放物供入转化交换器的入口的装置;
用于将第二烃部分和蒸汽通过转化交换器中的催化剂区以形成第二合成气排放物的装置;
用于从邻近入口的催化剂区排放第二合成气排放物以与第一合成气排放物形成合成气混合物的装置;
用于将所述混合物通过催化剂区并与其间接热交换而冷却混合物并加热催化剂区的装置;
用于从转化交换器的出口收集经冷却的混合物的装置;
用于变换所述混合物以制得富含二氧化碳而一氧化碳贫乏的气流的装置;和
用于分离富含二氧化碳的气流以形成包含氮气和二氧化碳的氢贫乏的混合气流和富含氢的产物流的装置。
19.权利要求18的设备,其中所述分离装置包括一个变压吸附单元。
20.权利要求18的设备,其中所述分离装置包括一个膜分离器。
21.权利要求1的方法,其中所述转化、变换和混合气分离的工艺压力为10到200巴。
22.权利要求21的方法,其中所述转化、变换和混合气分离的工艺压力为至少30巴。
23.权利要求1的方法,所述方法还包括用燃气轮机传动将空气压缩到催化转化器并从燃气轮机的废气中回收热量。
CNB2004800070761A 2003-03-18 2004-03-12 制氢用自热转化器-转化交换器布置 Expired - Lifetime CN100564495C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32001503P 2003-03-18 2003-03-18
US60/320,015 2003-03-18

Publications (2)

Publication Number Publication Date
CN1860207A true CN1860207A (zh) 2006-11-08
CN100564495C CN100564495C (zh) 2009-12-02

Family

ID=33029597

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800070761A Expired - Lifetime CN100564495C (zh) 2003-03-18 2004-03-12 制氢用自热转化器-转化交换器布置

Country Status (10)

Country Link
US (2) US7220505B2 (zh)
EP (1) EP1603995B1 (zh)
JP (1) JP4745219B2 (zh)
CN (1) CN100564495C (zh)
AU (1) AU2004221826B2 (zh)
BR (1) BRPI0408349A (zh)
CA (1) CA2507922C (zh)
NZ (1) NZ540784A (zh)
RU (1) RU2343109C2 (zh)
WO (1) WO2004083114A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099445A (zh) * 2008-07-18 2011-06-15 凯洛格·布朗及鲁特有限责任公司 催化部分氧化重整
CN102159497A (zh) * 2008-08-21 2011-08-17 Gtl汽油有限公司 产生超纯高压氢气的系统和方法
CN108557764A (zh) * 2018-05-30 2018-09-21 大连大学 一种无水制氢工艺
CN110225879A (zh) * 2017-01-27 2019-09-10 乔治洛德方法研究和开发液化空气有限公司 通过预加热预重整的燃料气体使蒸汽甲烷重整器的燃烧效率最大化

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030162846A1 (en) * 2002-02-25 2003-08-28 Wang Shoou-L Process and apparatus for the production of synthesis gas
US7932296B2 (en) * 2003-03-16 2011-04-26 Kellogg Brown & Root Llc Catalytic partial oxidation reforming for syngas processing and products made therefrom
RU2343109C2 (ru) * 2003-03-18 2009-01-10 КЕЛЛОГГ БРАУН ЭНД РУТ ЭлЭлСи Способ получения потока, обогащенного водородом, способ генерирования электрического тока, способ гидроочистки, устройство для получения потока, обогащенного водородом
US20100015039A1 (en) * 2004-05-28 2010-01-21 Hyradix, Inc. Hydrogen generation process using partial oxidation/steam reforming
EP1794083A1 (en) * 2004-10-04 2007-06-13 Shell Internationale Research Maatschappij B.V. Integrated process for hydrocarbon synthesis
US7485767B2 (en) 2005-06-29 2009-02-03 Exxonmobil Chemical Patents Inc. Production of synthesis gas blends for conversion to methanol or Fischer-Tropsch liquids
US8216323B2 (en) 2005-06-30 2012-07-10 General Electric Company System and method for hydrogen production
KR100762685B1 (ko) * 2005-11-10 2007-10-04 삼성에스디아이 주식회사 개질기 및 이를 채용한 연료전지 시스템
MY150300A (en) 2006-03-24 2013-12-31 Wisconsin Alumni Res Found Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions
US20080016768A1 (en) 2006-07-18 2008-01-24 Togna Keith A Chemically-modified mixed fuels, methods of production and used thereof
CA2829539C (en) * 2006-08-02 2016-02-23 IFP Energies Nouvelles Hydrogen generation processes and apparatus and control system
US7870717B2 (en) * 2006-09-14 2011-01-18 Honeywell International Inc. Advanced hydrogen auxiliary power unit
DE102006045379B4 (de) * 2006-09-26 2008-07-31 Lurgi Ag Verfahren zur Herstellung von Wasserstoff
CN100406375C (zh) * 2006-10-24 2008-07-30 四川亚连科技有限责任公司 一种甲醇重整制氢方法
EP1926171A1 (en) 2006-11-22 2008-05-28 Technip KTI S.p.A. Method and apparatus for integrating a liquid fuel processor and a fuel cell through dual reforming and a gas turbine
JP5391522B2 (ja) * 2007-03-12 2014-01-15 株式会社Ihi アンモニア合成方法
US7695708B2 (en) * 2007-03-26 2010-04-13 Air Products And Chemicals, Inc. Catalytic steam reforming with recycle
US7850944B2 (en) * 2008-03-17 2010-12-14 Air Products And Chemicals, Inc. Steam-hydrocarbon reforming method with limited steam export
US7988948B2 (en) * 2008-03-17 2011-08-02 Air Products And Chemicals, Inc. Steam-hydrocarbon reforming method with limited steam export
EP2172417A1 (en) * 2008-10-02 2010-04-07 Ammonia Casale S.A. Process for the production of ammonia synthesis gas
US8617270B2 (en) * 2008-12-03 2013-12-31 Kellogg Brown & Root Llc Systems and methods for improving ammonia synthesis efficiency
PL215440B1 (pl) * 2009-03-19 2013-12-31 Shell Int Research Sposób wytwarzania wzbogaconej w wodór mieszaniny gazowej
US9132402B2 (en) * 2009-08-20 2015-09-15 Kellogg Brown & Root Llc Apparatus, systems, and processes for producing syngas and products therefrom
US20110073809A1 (en) * 2009-09-25 2011-03-31 Air Liquide Process And Construction Inc. Reduction Of CO2 Emissions From A Steam Methane Reformer And/Or Autothermal Reformer Using H2 As A Fuel
US20110085967A1 (en) * 2009-10-14 2011-04-14 Troy Michael Raybold Hydrogen product method and apparatus
US20110223101A1 (en) * 2010-02-06 2011-09-15 William Timothy Williams Combustion chamber hydrogen converter accelerator
US8377154B2 (en) * 2010-05-18 2013-02-19 Kellogg Brown & Root Llc Gasification system and process for maximizing production of syngas and syngas-derived products
AU2011258329A1 (en) * 2010-05-25 2012-12-20 Gtlpetrol Llc Generating methanol using ultrapure, high pressure hydrogen
CA2800508A1 (en) * 2010-05-26 2011-12-01 Gtlpetrol Llc Producing ammonia using ultrapure, high pressure hydrogen
US8889093B2 (en) 2010-09-16 2014-11-18 Kellogg Brown & Root Llc High pressure cyrogenic process and system for producing ammonia products
FR2966814B1 (fr) * 2010-10-28 2016-01-01 IFP Energies Nouvelles Procede de production d'hydrogene par vaporeformage d'une coupe petroliere avec production de vapeur optimisee.
GB201019940D0 (en) 2010-11-24 2011-01-05 Davy Process Techn Ltd Process
US8889037B2 (en) * 2011-02-01 2014-11-18 Kellogg Brown & Root Llc Systems and methods for producing syngas and products therefrom
US9101899B2 (en) 2011-10-20 2015-08-11 Kellogg Brown & Root Llc Reforming exchanger with integrated shift conversion
US8545775B2 (en) 2011-10-20 2013-10-01 Kellogg Brown & Root Llc Reforming exchanger system with intermediate shift conversion
GB201219960D0 (en) * 2012-11-06 2012-12-19 Johnson Matthey Plc Process
US9643856B2 (en) 2013-08-07 2017-05-09 Kellogg Brown+Root LLC Methods and systems for making ammonia in a double ammonia converter system
WO2015128395A1 (en) * 2014-02-28 2015-09-03 Haldor Topsøe A/S Process for the production of synthesis gas
US10093541B2 (en) 2014-02-28 2018-10-09 Haldor Topsoe A/S Process for producing synthesis gas
DE102014209635A1 (de) 2014-05-21 2015-11-26 Thyssenkrupp Ag Herstellung von Synthesegas mit zwei autothermen Reformern
CN104984561B (zh) * 2014-08-10 2016-09-14 李挺晖 植物活性组分提取装置
US10384993B2 (en) 2015-05-08 2019-08-20 Sabic Global Technologies B.V. Method for producing hydrocarbons and alcohols
CN107810253A (zh) 2015-05-08 2018-03-16 赛贝克环球科技公司 与合成气到烯烃生产相关的系统和方法
US9843062B2 (en) 2016-03-23 2017-12-12 Energyield Llc Vortex tube reformer for hydrogen production, separation, and integrated use
US9840413B2 (en) 2015-05-18 2017-12-12 Energyield Llc Integrated reformer and syngas separator
EP3538746A1 (en) 2016-11-09 2019-09-18 8 Rivers Capital, LLC Systems and methods for power production with integrated production of hydrogen
ES2960926T3 (es) 2017-07-25 2024-03-07 Topsoe As Procedimiento para la preparación de gas de síntesis
IL271938B2 (en) 2017-07-25 2024-04-01 Haldor Topsoe As A method for making synthesis gas
UA126160C2 (uk) 2017-07-25 2022-08-25 Хальдор Топсьое А/С Спосіб паралельно спільного виробництва метанолу та аміаку
EP3658491B1 (en) 2017-07-25 2023-08-30 Topsoe A/S Method for the preparation of ammonia synthesis gas
IL273219B2 (en) 2017-09-29 2024-01-01 Res Triangle Inst Methods and device to generate hydrogen
CA3071428A1 (en) 2017-09-29 2019-04-04 Research Triangle Institute Internal combustion engine as a chemical reactor to produce synthesis gas from hydrocarbon feeds
CA3082075A1 (en) * 2017-11-09 2019-05-16 8 Rivers Capital, Llc Systems and methods for production and separation of hydrogen and carbon dioxide
US11447389B2 (en) * 2017-12-08 2022-09-20 Haldor Topsøe A/S System and process for production of synthesis gas
BG112796A (bg) * 2018-09-03 2020-04-15 Тодор ТОДОРОВ Получаване на сингаз за производство на водород, чрез паров реформинг на въглеводороди с прилагане на процес на пълно горене на поток горивни газове в автотермичен реформинг
US20220002154A1 (en) * 2018-10-30 2022-01-06 Board Of Regents Of The University Of Texas System Systems and methods for producing synthesis gas
WO2020250194A1 (en) 2019-06-13 2020-12-17 8 Rivers Capital, Llc Power production with cogeneration of further products
CA3238616A1 (en) 2021-11-18 2023-05-25 Rodney John Allam Method for hydrogen production

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0334540B1 (en) * 1988-03-24 1993-10-20 Imperial Chemical Industries Plc Two-step steam-reforming process
US5011625A (en) * 1989-12-11 1991-04-30 The M. W. Kellogg Company Autothermal steam reforming process
US5122299A (en) * 1989-12-11 1992-06-16 The M. W. Kellogg Company Autothermal steam reforming process
JPH04310501A (ja) * 1991-04-03 1992-11-02 Mw Kellogg Co 自己熱式スチーム改質プロセス
US5362454A (en) * 1993-06-28 1994-11-08 The M. W. Kellogg Company High temperature heat exchanger
ATE194816T1 (de) * 1996-10-04 2000-08-15 Haldor Topsoe As Dampfreformierungsverfahren
DK173742B1 (da) * 1998-09-01 2001-08-27 Topsoe Haldor As Fremgangsmåde og reaktorsystem til fremstilling af syntesegas
NO314691B1 (no) * 2000-05-05 2003-05-05 Statoil Asa I & K Ir Pat Fremgangsmåte og reaktor for fremstilling av hydrogen og syntesegass
JP2002020102A (ja) * 2000-06-30 2002-01-23 Mitsubishi Kakoki Kaisha Ltd 水素製造装置の起動方法およびその停止方法
CA2446333A1 (en) * 2001-05-02 2002-11-07 Hydrogen Burner Technology, Inc. Hydrogen generation
US6855272B2 (en) * 2001-07-18 2005-02-15 Kellogg Brown & Root, Inc. Low pressure drop reforming exchanger
US6936238B2 (en) * 2002-09-06 2005-08-30 General Motors Corporation Compact partial oxidation/steam reactor with integrated air preheater, fuel and water vaporizer
DE60336444D1 (de) * 2002-09-26 2011-05-05 Haldor Topsoe As Verfahren zur Herstellung von Synthesegas
RU2343109C2 (ru) * 2003-03-18 2009-01-10 КЕЛЛОГГ БРАУН ЭНД РУТ ЭлЭлСи Способ получения потока, обогащенного водородом, способ генерирования электрического тока, способ гидроочистки, устройство для получения потока, обогащенного водородом

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099445A (zh) * 2008-07-18 2011-06-15 凯洛格·布朗及鲁特有限责任公司 催化部分氧化重整
CN102099445B (zh) * 2008-07-18 2015-01-28 凯洛格·布朗及鲁特有限责任公司 催化部分氧化重整
CN102159497A (zh) * 2008-08-21 2011-08-17 Gtl汽油有限公司 产生超纯高压氢气的系统和方法
CN102159497B (zh) * 2008-08-21 2014-05-14 Gtl汽油有限公司 产生超纯高压氢气的系统和方法
CN110225879A (zh) * 2017-01-27 2019-09-10 乔治洛德方法研究和开发液化空气有限公司 通过预加热预重整的燃料气体使蒸汽甲烷重整器的燃烧效率最大化
CN110225879B (zh) * 2017-01-27 2023-04-14 乔治洛德方法研究和开发液化空气有限公司 通过预加热预重整的燃料气体使蒸汽甲烷重整器的燃烧效率最大化
CN108557764A (zh) * 2018-05-30 2018-09-21 大连大学 一种无水制氢工艺

Also Published As

Publication number Publication date
BRPI0408349A (pt) 2006-03-21
CA2507922C (en) 2012-08-14
RU2005132171A (ru) 2006-02-10
AU2004221826B2 (en) 2009-12-17
NZ540784A (en) 2007-02-23
JP2006520739A (ja) 2006-09-14
RU2343109C2 (ru) 2009-01-10
EP1603995A2 (en) 2005-12-14
US7550215B2 (en) 2009-06-23
EP1603995B1 (en) 2018-05-30
CA2507922A1 (en) 2004-09-30
US20070217989A1 (en) 2007-09-20
EP1603995A4 (en) 2008-07-02
WO2004083114A2 (en) 2004-09-30
JP4745219B2 (ja) 2011-08-10
AU2004221826A1 (en) 2004-09-30
CN100564495C (zh) 2009-12-02
US20040182002A1 (en) 2004-09-23
WO2004083114A3 (en) 2005-04-21
US7220505B2 (en) 2007-05-22

Similar Documents

Publication Publication Date Title
CN100564495C (zh) 制氢用自热转化器-转化交换器布置
CN101208263B (zh) 制氢系统和方法
US9561968B2 (en) Methods and systems for producing and processing syngas in a pressure swing adsorption unit and making ammonia therefrom
CN101801840A (zh) 制备氨合成气的方法
CN113825736A (zh) 用于合成甲醇的工艺
EP3983366B1 (en) Process for synthesising methanol
US8282907B2 (en) Hydrogen generation processes and apparatus and control system
CN1761612A (zh) 部分氧化重整器-重整交换器结构
GB2614780A (en) Method for retrofitting a hydrogen production unit
CN110877897B (zh) 具有co调节的双产物h2和co制备
EP3620431B1 (en) Dual h2 and co production with co turndown
CN211233617U (zh) 一种用于处理气体混合物的装置
WO2023089293A1 (en) Method for retrofitting a hydrogen production unit
Genkin et al. Dual product H 2 and CO production with CO turndown

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20091202

CX01 Expiry of patent term