CN1841100A - 光学低通滤波器 - Google Patents

光学低通滤波器 Download PDF

Info

Publication number
CN1841100A
CN1841100A CN 200610066091 CN200610066091A CN1841100A CN 1841100 A CN1841100 A CN 1841100A CN 200610066091 CN200610066091 CN 200610066091 CN 200610066091 A CN200610066091 A CN 200610066091A CN 1841100 A CN1841100 A CN 1841100A
Authority
CN
China
Prior art keywords
pass filter
optical low
phase
sealing
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610066091
Other languages
English (en)
Other versions
CN100403068C (zh
Inventor
上原健彦
原和弘
儿岛忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN1841100A publication Critical patent/CN1841100A/zh
Application granted granted Critical
Publication of CN100403068C publication Critical patent/CN100403068C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)

Abstract

本发明提供的光学低通滤波器即使通过使用粘合剂贴合相位差膜而构成时也能提高防潮性。将作为1/4波长板的由高分子膜构成的相位差膜10与粘合剂4、5一起贴在作为双折射板的水晶板2、3之间,在至少包括粘合剂层4的全部外周边4a、粘合剂层5的全部外周边5a和相位差膜10的全部外周边10a的区域内形成有密封部20。密封部20可以由物理成膜层、化学成膜层、胶带和树脂组合物构成。

Description

光学低通滤波器
技术领域
本发明涉及抑制空间频率高通成分的光学低通滤波器。
背景技术
数码相机、数码摄像机等的摄像装置含有CCD或CMOS等的摄像元件,通过按照一定距离排列的有限像素将光学图像转换为电子信号,从而对影像进行拍摄。在这种摄像装置中,如果光学图像的空间频率小于等于由像素的排列间距决定的取样频率的1/2,就不会产生摩尔纹等虚假信号;但如果光学图像的空间频率超过了取样频率的1/2,就会产生虚假信号使画质降低。
为了抑制所述摩尔纹等虚假信号的产生,在以往的摄像装置中,在摄像元件的前面安装抑制光学图像空间频率的高通成分的光学滤镜(所谓的光学低通滤波器)。
作为这种光学低通滤波器的结构,一般有3张双折射板的类型和在2张双折射板的中间夹有相板的类型,在2张双折射板之间夹有作为相板的1/4波长板的结构的垂直附加类型以高性能为人所知。
近年,提出了将以一轴延伸法形成的高分子膜用作1/4波长板(例如,参照专利文献1)。通过使用高分子膜能够实现薄型化并降低制造成本。一般使用水晶板作为双折射板。
[专利文献1]特开平7-152035号公报
发明内容
然而,对于通过粘着剂层或粘合剂层将2张作为双折射板的水晶板与夹在其间的高分子膜进行贴合而形成的光学低通滤波器,在长时间曝露于高温高湿条件下的耐久性实验后发现,在高分子膜与水晶板之间产生了沿外周向中心的剥落现象(下文称为剥落现象),存在质量上的问题。
本发明是鉴于上述情况提出的,其目的在于提供即使在高温高湿条件下也不易产生剥落现象的高质量光学低通滤波器。
为了实现所述目的,本发明提供第1光学低通滤波器,其特征为,所述光学低通滤波器是通过粘着剂层或粘合剂层将高分子膜的相板贴在2张双折射板之间而形成的,在光学低通滤波器的全部外周面设置有密封部。
本发明的发明人认识到,由于用于粘合双折射板和高分子膜相板的粘着剂层或粘合剂层在高温高湿条件下吸水,粘着力或粘合力降低,成为剥落现象的原因,并且发现,防止水分从粘着剂层或粘合剂层的外周进入内部对于防止剥落现象的发生是有效的,并且为此而在包括粘着剂层或粘合剂层全部外周边在内的光学低通滤波器的外周面上设置阻断内部和外部的密封部对于防止剥落现象的发生是有效的。
本发明提供第2光学低通滤波器,其如所述第1的光学低通滤波器,其特征为,所述密封部由按照物理成膜法形成的成膜层或按照化学成膜法形成的成膜层构成。
通过选用适当的材料和成膜法,由蒸镀等物理成膜法或CVD法等化学成膜法形成的成膜层,能够构成为阻挡水分由外部渗透入内部的密封部。
本发明提供第3光学低通滤波器,其如所述第1的光学低通滤波器,其特征为,所述密封部由胶带构成。
通过将使用了难以透过潮气的树脂膜或金属膜的胶带缠绕在外周面上来形成包覆粘着剂层或粘合剂层外周边的密封部,能够从外部阻挡水分而有效防止剥落现象。
本发明提供第4光学低通滤波器,其如所述第1的光学低通滤波器,其特征为,所述密封部由树脂组合物构成。
例如,通过以能够形成粘合剂或涂膜的树脂组合物包覆粘着剂层或粘合剂层的全部外周边而形成从外部阻挡水分的密封部,能够有效防止剥落现象。
本发明提供第5光学低通滤波器,其如所述第1的光学低通滤波器,其特征为,通过粘着剂层或粘合剂层将红外线吸收滤波板贴在所述2张双折射板中位于光线入射侧的双折射板的光线入射侧,所述密封部包覆在所述红外线吸收滤波板以及所述粘着剂层或粘合剂层的全部外周面上。
经验上认为红外线吸收滤波板容易吸潮,这被看作是剥落现象的一个重要原因。并且已经认识到,用于粘着双折射板和红外线吸收滤波板的粘着剂层或粘合剂层在高温高湿条件下由于吸收水分会降低粘着力或粘合力,成为剥落现象的原因。因此,在包括红外线吸收滤波板以及粘着剂层或粘合剂层的全部外周边在内的光学低通滤波器的外周面上,通过密封部从外部阻挡水分能够有效防止剥落现象。
本发明提供第6光学低通滤波器,其如所述第1的光学低通滤波器,其特征为,所述相板的外周边的至少一部分位于所述2张双折射板中至少1张双折射板的外周边的内侧,形成断坡或凹陷,在所述断坡或凹陷处形成有所述密封部。
利用断坡或凹陷能够简单地形成有厚度的密封部,可以准确地将粘着剂层或粘合剂层的外周边与外部进行阻断。
本发明提供第7光学低通滤波器,其特征为,所述光学低通滤波器是通过粘着剂层或粘合剂层将高分子膜的相板贴在2张双折射板之间而形成的,其中,以防水处理剂对所形成的光学低通滤波器的全部外周面进行了处理。
通过使用防水处理剂对暴露在外面的粘着剂层或粘合剂层的外周边进行处理,能够提高粘着剂层或粘合剂层与双折射板以及与高分子膜相板之间的粘着力,并且使水分难以从粘着剂层或粘合剂层的外周边渗透至内部,从而防止剥落现象。
本发明提供第8光学低通滤波器,其如所述第7的光学低通滤波器,其特征为,所述防水处理剂为硅烷偶联剂。
硅烷偶联剂能够提高粘着剂层或粘合剂层与双折射板以及与相板之间的粘着力,即使粘着剂层或粘合剂层发生一定程度的吸潮,也能够有效防止剥落现象。
附图说明
图1(a)是第1实施方式中的光学低通滤波器1的平面图,(b)是光学低通滤波器1的截面图。
图2是示意表示第1实施方式的光学低通滤波器的其他实施例的截面图。
图3是示意表示第2实施方式的光学低通滤波器的大致结构的截面图。
图4(a)是第3实施方式的实施例1中的光学低通滤波器1的平面图,(b)是光学低通滤波器1的截面图。
图5(a)是第3实施方式的实施例2中的光学低通滤波器1的平面图,(b)是光学低通滤波器1的截面图。
图6(a)是第3实施方式的实施例3中的光学低通滤波器1的平面图,(b)是光学低通滤波器1的截面图。
图7是摄像装置中的光学低通滤波器1和固体摄像元件130的截面图。
符号说明
1光学低通滤波器
2、3水晶板
2a、2b、2c、2d凹陷(间隙)
3a、3b、3c、3d断坡
4、5、6粘合剂层
7红外线吸收滤波板
4a、5a、10a外周边
10相位差膜
20密封部
21防水处理部
100摄像装置
110、111防反射膜
120红外线吸收过滤器
130固体摄像元件
131外部连接配线
132接合线
140包装
140a开口部
A箭头
具体实施方式
下面对本发明的光学低通滤波器的实施方式进行说明,但本发明并不仅限于以下实施方式。
[第1实施方式]
图1(a)是第1实施方式中的光学低通滤波器1的平面图,图1(b)是光学低通滤波器1的截面图。
将作为1/4波长板的由高分子膜构成的相位差膜10与粘合剂层4、5一起贴在作为双折射板的水晶板2、3之间,并且设置密封部20,将至少包括粘合剂层4的外周边4a、粘合剂层5的外周边5a和相位差膜10的外周边10a在内的全部区域包覆。
作为双折射板的水晶板2和水晶板3只要是具有双折射性的结晶板即可,除了水晶以外,还可是铌酸锂(LiNbO3)等。可以是两块板都仅使用水晶板,也可以使用水晶和铌酸锂的组合或由其他材料构成的双折射板的组合。双折射是指,入射光分离为所具有的振动方向相互垂直的寻常光线和非常光线两种光线的现象。对于水晶和铌酸锂以外的具有双折射性的结晶,可以例举为智利硝石、铁方解石、金红石、KPD(KH2PO4)、APD(NH4H2PO4)等。
相位差膜10是为了导入相位差而引入光学系统的透明板,是能够使在相互垂直的主轴方向振动的直线偏振光成分通过,并在这两个成分中导入必需相位差的高分子膜,相位差膜有1/2波长板和1/4波长板等。在光学低通滤波器1中,使用1/2波长板与1/4波长板的组合或单独使用1/4波长板作为相位差膜10。
在本发明的光学低通滤波器1中,作为1/4波长板,优选使用具有随着入射光波长的增加相位差也增大的波长分散特性的高分子膜。作为这种1/4波长板发挥作用的高分子膜在市面上有销售。销售的高分子膜由经单轴拉伸的玻璃转变温度大于等于200℃的聚碳酸酯制成。
通过将相位板制成高分子膜10,不仅能够薄薄地构成光学低通滤波器1,还具有随着入射光波长的增加而相位差也增大的波长分散特性,能够跨越大的波长范围将入射光的偏光状态从直线偏振光变换为圆偏振光。因此,能够构成相对于波长范围广阔的入射光具有1/4波长板的作用的高性能的光学低通滤波器1。
另外,图2的截面图所示的光学低通滤波器1,其基本结构与图1所示的光学低通滤波器1相同,通过粘合剂层5和粘合剂层6将红外线吸收滤波板7夹在双折射板2与相位差膜10之间或夹在双折射板3与相位差膜10之间。红外线吸收滤波板7是在玻璃基板中添加进吸收红外线成分的过滤器,用于隔断红外线成分,防止对红外线也有感度的固体摄像元件由于红外线而曝光。优选红外线吸收滤波板7的配置结构为,通过粘着剂层或粘合剂层将红外线吸收滤波板7接合在2张双折射板2、3中位于光线入射侧的双折射板2或双折射板3与高分子膜10之间。
经验上认为红外线吸收滤波板7容易吸潮,这被看作是剥落现象的一个重要原因。因此,如图2所示,优选密封部20也包覆红外线吸收滤波板7的全部外周面以从外部阻挡水分。
密封部20可以由按物理成膜法形成的成膜层、按化学成膜法形成的成膜层、胶带或树脂组合物构成。物理成膜法可以采用真空蒸镀法、离子辅助蒸镀法、离子电镀法、喷溅法等。真空蒸镀法是将薄膜材料在高真空条件下加热蒸发并使这些蒸发颗粒堆积在基板上形成薄膜的方法。离子辅助蒸镀法是将蒸镀颗粒离子化并通过电场加速后使其附着于基板上的方法,分为APS(Advanced Plasma Source)、EBEP(Electron BeamExcited Plasma)法、RF(Radio Frequency)直接基板印加法(于成膜室内产生高频气体等离子的状态下进行反应性真空蒸镀的方法)等方式。喷溅法是使经电场加速的离子与薄膜材料发生碰撞,通过敲打薄膜材料的喷溅使薄膜材料蒸发并使蒸发颗粒堆积在基板上形成薄膜的方法。化学成膜法可以采用CVD(化学气相沉积法)、无电解镀覆法等。
对于能够以物理成膜法或化学成膜法成膜的材料,可以例举为铝、镍、铜、铬、银、金等金属和金属的碳化物、氮化物、氧化物、硼化物等。对于膜厚没有特殊限制,只要能防止水分渗透至内部即可,一般为50nm~1μm左右。
例如,以真空蒸镀法使用氧化硅作金属氧化物进行成膜时可以按照如下方法进行。重叠数张光学低通滤波器,为防止作为表面的部分产生划痕以及防止吸附杂质而设置蒸镀形成的堆积层。划痕或杂质的吸附会影响防潮效果。例如,在真空蒸镀装置中于重叠好的光学低通滤波器的侧面堆积SiO2层。优选SiO2的膜厚为50nm~1μm左右。若膜厚过厚则生产率不好,若膜厚过薄则会得不到足够的阻挡效果。蒸镀可以在每个侧面进行,也可以在蒸镀装置内安装能够使重叠好的光学低通滤波器旋转的结构,连续地或同时对各个侧面进行蒸镀。
用胶带构成密封部20时可以采用如下方法,使用阻气性出色的PEN(聚萘二酸乙二酯)等树脂膜、金属箔作胶带的基材,处理其中一面使硅酮类粘合剂能够粘着,在该面上涂抹硅酮类粘合剂,然后使用赋予了基材和粘合剂不透水性的胶带对光学低通滤波器的外周面缠绕至少1周以上。
对于具体的缠绕胶带的方法可以举例为,在PEN膜的一个面上涂抹硅酮类粘合剂(10μm),形成胶带状后对光学低通滤波器的侧面缠绕至少1周。缠绕的方法为,将光学低通滤波器固定在安装有真空吸盘的旋转台上,将胶带的一端粘在光学低通滤波器的侧面。可以通过使旋转台旋转至少一周后剪断胶带来进行缠绕。由此能够将防止粘合剂吸潮的胶带均匀且无间隙地缠绕。
对于构成密封部20的树脂组合物,可以例举为粘着剂、可用作密封材料的密封用树脂。对于粘着剂可以例举为耐湿性出色的环氧类粘着剂、丙烯酸类粘着剂、热熔类粘着剂、硅酮类粘着剂。对于密封用树脂可以例举为不易透过水的材料,例如用于密封半导体的环氧树脂、硅酮树脂、聚丙烯、甲基丙烯酸树脂、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、氯乙烯树脂、偏氯乙烯树脂、聚酰胺、含氟树脂等。
根据粘着剂的种类按照刷涂式、模压式、喷雾式、刮刀式、辊轮式等规定的涂布方法将粘着剂涂在光学低通滤波器的外周面上并使其固化,利用这种方法使形成密封部20。对于环氧类粘着剂可以例举双液混合型的CS2340-5(商品名,Cemedine株式会社制造)。而且,对于丙烯酸类紫外线固化型粘着剂可以例举为由株式会社Adell制造的防水防潮性出色的OPTOKLEB UT20。该UT20涂在光学低通滤波器的外周面后通过在氮气条件下经紫外线照射后固化。
用密封用树脂形成密封部20时,可以以适当的溶剂稀释树脂后,使用该溶液以毛刷涂布在光学低通滤波器的外周面,然后在100℃的烘箱中干燥1小时使溶剂蒸发,形成密封部20。除了刷涂式以外,涂布方法也可以是模压式、喷雾式、刮刀式和辊轮式等方法。
对于树脂组合物形成的密封部20的厚度没有特殊限制,优选0.001μm~50μm的范围。若厚度过薄会无法得到足够的阻挡水分的效果,若厚度过厚则生产率不好。
在第1实施方式的光学低通滤波器中,在光学低通滤波器1的至少包括粘合剂4的全部外周边4a、粘合剂5的全部外周边5a和相位差膜10在内的全部外周边10a的外周区域形成密封部20,由此能够防止粘合剂4、5或相位差膜10以及红外线吸收滤波板吸潮,防止水晶板2、3、相位差膜10与粘合剂层4、5之间的剥落现象。
[第2实施方式]
图3是示意表示第2实施方式的光学低通滤波器的大致结构的截面图。光学低通滤波器的基本结构与图2基本相同,因此对于同一部分使用相同的符号并省略其说明。与图2所示的光学低通滤波器不同之处在于设有防水处理部21来代替密封部20,所述防水处理部21是用防水处理剂处理光学低通滤波器的外周面中粘合剂层4、5、6外周边的暴露的部分形成的,覆盖着这些粘合剂层4、5、6和相位差膜10的全部外周边、以及红外线吸收滤波板7的全部外周面。该防水处理部21覆盖了粘合剂层4、5、6和相位差膜10的全部外周边以及红外线吸收滤波板7的全部外周面,由此这些粘合剂层4、5、6和相位差膜10的全部外周边以及红外线吸收滤波板7的全部外周面得到了防水处理。
通过以防水剂对粘合剂层4、5、6暴露在外部的外周边和相位差膜10的外周边以及红外线吸收滤波板7的外周面进行处理,能够提高双折射板2、3和相位差膜10以及红外线吸收滤波板7对粘合剂层4、5、6的粘着力,并且由于防水处理得到了防水性,使水分难以从粘合剂层4、5、6或相位差膜10或红外线吸收滤波板7的外周面渗透至内部,能够有效防止剥落现象。
对于防水处理剂,可以例举为硅烷偶联剂、含氟硅烷化合物、含氟树脂、含氟表面活性剂等。
这里所指的硅烷偶联剂是指,在同一分子中具有带有与有机材料成键的取代基的有机基团和与无机材料进行反应的水解基团的碳功能的(carbofunctional)硅烷。具体地说,是以R1SiX1 mX2 (3-m)表示的化合物,其中,R1表示有机基团,X1表示-OR2、-Cl,X2表示-R2,R2表示碳原子数为1~4的烷基,m为2或3。
硅烷偶联剂与水晶板2、3,粘合剂4、5、6以及相位差膜10的表面上的羟基进行化学吸附,提高了粘合剂与相位差膜10以及与水晶板2、3之间的粘合力,同时还具有防水性,因此即使粘合剂4、5、6有一些吸潮也能够防止剥落现象。这些硅烷偶联剂中,特别是使用R1为全氟代烷基CnF2n+1或全氟代烷基醚CpF2p+1O(CpF2pO)r的含氟硅烷偶联剂时,由于固体表面的表面自由能低于25mJ/m2,与具有极性的材料的亲和性变小,能够进一步提高防水性,因此适宜使用。
具体地说,作为硅烷偶联剂可以例举为CF3-CH2CH2-Si(OCH3)3、CF3(CF2)3-CH2CH2-Si(OCH3)3、CF3(CF2)5-CH2CH2-Si(OCH3)3、CF3(CF2)5-CH2CH2-Si(OC2H5)3、CF3(CF2)7-CH2CH2-Si(OCH3)3、CF3(CF2)11-CH2CH2-Si(C 2 H 5 ) 3 、CF3(CF2)3-CH2CH2-Si(CH3)(OCH3)2、CF3(CF2)7-CH2CH2-Si(CH3)(OCH3)2、CF3(CF2)8-CH2CH2-Si(CH3)(OC2H5)2、CF3(CF2)8-CH2CH2-Si(C2H5)(OC2H5)2、CF3O(CF2O)6-CH2CH2-Si(OC2H5)3、CF3O(C3F6O)4-CH2CH2-Si(OCH3)3、CF3O(C3F6O)2(CF2O)3-CH2CH2-Si(OCH3)3、CF3O(C3F6O)8-CH2CH2-Si(OCH3)3、CF3O(C4F9O)5-CH2CH2-Si(OCH3)3、CF3O(C4F9O)5-CH2CH2-Si(CH3)(OC2H5)2、CF3O(C3F6O)4-CH2CH2-Si(C2H5)(OCH3)2等。但并不仅限于这些结构。
对于硅烷偶联剂的涂布方法,可以例举为刷涂式、模压式、喷雾式、刮刀式、辊轮式等。对于涂布的膜厚没有特殊限制,优选0.001μm~50μm的范围。若厚度过薄会得不到足够的防水性,若厚度过厚则生产率不好。
作为实施例,使用硅烷偶联剂对光学低通滤波器进行了防水处理。例如,使用信越化学工业(株式会社)制造的商品名为KBM603的产品作为硅烷偶联剂,用乙醇稀释使其浓度为3wt%。用毛刷将此溶液涂在光学低通滤波器的外周,在100℃的烘箱中干燥1小时。由此能够均匀且无间隙地设置防止粘合剂吸潮的防水处理剂。并且,可以对光学低通滤波器一张张地进行涂抹,不过需要大量生产时,将数张叠在一起后按上述方法同时进行涂抹会提高效率,因此是优选的。
对于含氟硅烷化合物,可以举例为如下通式(1)所示的化合物。
[化合物1]
Figure A20061006609100121
Figure A20061006609100122
通式(1)中的Rf为碳原子数为1~16的直链状或支链状全氟代烷基,优选其为CF3-、C2F5-和C3F7-。X为碘或氢,Y为氢或低级烷基,Z为氟或三氟甲基。R1为能够水解的基团,优选如卤素、-OR3、-OCOR3、-OC(R3)=C(R4)2、-ON=C(R3)2、-ON=CR5。更优选是氯、-OCH3、-OC2H5。这里,R3为脂肪族烃基或芳香族烃基,R4为氢或低级脂肪族烃基,R5为碳原子数为3~6的2价脂肪族烃基。R2为氢或非活性1价有机基团,优选其为碳原子数为1~4的1价烃基。a、b、c、d为0~200的整数,优选其为1~50,e为0或1。m和n为0~2的整数,优选其为0。p为大于等于1的整数,优选其为1~10的整数。并且,分子量为5×102~1×105,但优选其为5×102~1×104
此通式(1)所示的含氟硅烷化合物用于形成眼镜透镜的防污层,具有非常出色的防水防油性。对于含氟硅烷化合物的销售产品,可以例举为大金工业株式会社制造的OPTOOL DSX(商品名)和信越化学工业株式会社制造的KY-130(商品名)。
对于含氟树脂可以使用分子内含有氟原子的低聚物或聚合物,具体举例为,聚四氟乙烯(PTFE)、乙烯-四氟乙烯共聚物、六氟丙烯-四氟乙烯共聚物、聚偏氟乙烯(PVdF)、聚(甲基丙烯酸十五氟庚基乙酯)(PPFMA)、聚(丙烯酸全氟辛基乙酯)等具有长链全氟代烷基结构的乙烯、酯、丙烯酸酯、甲基丙烯酸酯、乙烯基、氨酯、硅酮、酰亚胺、碳酸酯类聚合物。对于适宜用作防水处理的含氟树脂,可以例举为HERBES株式会社销售的商品名为DURASURF的DS-3300TH系列。商品名为DURASURF的该DS-3300TH系列,是将含氟树脂溶解于不可燃的含氟类溶剂中成为溶液形式的含氟涂料,其能够用于防水防油处理剂、降低反射的涂层、和赋予防污性等用途。
对于含氟硅烷化合物和含氟树脂的涂布方法,可以采用溶解于有机溶剂后涂布在光学低通滤波器的外周面,然后再进行干燥除去溶剂的方法。对于涂布方法,可以使用浸渍法、旋涂法、喷雾法、流涂法、刮刀法、辊涂、凹版涂布、帘式淋涂等。对于有机溶剂可以例举为全氟代己烷、全氟代环丁烷、全氟代辛烷、全氟代癸烷、全氟代甲基环己烷、全氟代-1,3-二甲基环己烷、全氟代-4-甲氧基丁烷、全氟代-4-乙氧基丁烷、六氟化间二甲苯等。而且还可以使用全氟代醚油、氯三氟乙烯低聚物油。此外,还可以例举氟里昂225(CF3CF2CHCl2和CClF2CF2CHClF的混合物)。这些有机溶剂中可以单独使用1种也可以至少2种混合使用。
优选以有机溶剂稀释时的浓度为0.03wt%~1wt%。若浓度过低,有时会难以形成具有足够厚度的防水处理层21,无法得到足够的防水效果;另一方面,若浓度过高,则防水处理层过厚,有时不能提高涂布效果,经济上划不来。
对于由含氟硅烷化合物和含氟树脂构成的防水处理层21的厚度没有特殊限制,一般为0.001μm~0.5μm,优选0.001μm~0.03μm。若防水处理层的膜厚过薄,则防水效果不足;若膜厚过厚,则表面发粘,所以不是优选的。
作为实施例,使用商品名为DURASURF的DS-3300TH系列在光学低通滤波器的外周面形成防水处理层。以含氟溶剂稀释含氟树脂使其固体成分浓度为0.2%,使用该溶液作为涂布液。用毛刷涂刷光学低通滤波器的外周后在20℃的烘箱中干燥1小时。
将所得到的形成有防水处理层的光学低通滤波器和没有形成防水处理层的光学低通滤波器于60℃、90%RH的条件下暴露1000小时,然后使用显微镜观察光学低通滤波器外周部上的剥落状态。结果观察到,没有形成防水处理层的光学低通滤波器的外周部上,由外周边向中心形成了弯曲的水槽状的剥落。另一方面,在形成有防水处理层的光学低通滤波器的外周部上没有观察到剥落。
另外,表面活性剂是以R1Y1表示的化合物,Y1为亲水性的极性基团、-OH、-(CH2CH2O)nH、-COOH、-COOK、-COONa、-CONH2、-SO3H、-SO3Na、-OSO3H、-OSO3Na、-PO3H2、-PO3Na2、-PO3K2、-NO2、-NH2、-NH3Cl(铵盐)、-NH3Br(铵盐)、≡NHCl(吡啶嗡盐)、≡NHBr(吡啶嗡盐)等。
对于表面活性剂可以具体举例为CF3-CH2CH2-COONa、CF3(CF2)3-CH2CH2-COONa、CF3(CF2)3-CH2CH2-NH3Br、CF3(CF2)5-CH2CH2-NH3Br、CF3(CF2)7-CH2CH2-NH3Br、CF3(CF2)7-CH2CH2-OSO3Na、CF3(CF2)11-CH2CH 2 -NH 3 Br、CF3(CF2)8-CH2CH2-OSO3Na、CF3O(CF2O)6-CH2CH2-OSO3Na、CF3O(C3F6O)2(CF2O)3-CH2CH2-OSO3Na、CF3O(C3F6O)4-CH2CH2-OSO3Na、CF3O(C4F9O)5-CH2CH2-OSO3Na、CF3O(C3F6O)8-CH2CH2-OSO3Na等。但并不仅限于这些结构。
[第3实施方式]
第3实施方式的光学低通滤波器,其相板的外周边的至少一部分位于2张双折射板中的至少1张双折射板的外周边的内侧,从而形成有断坡或凹陷,利用该断坡或凹陷形成密封部。
图4(a)是第3实施方式的实施例1中的光学低通滤波器1的平面图,图4(b)是光学低通滤波器1的截面图。
作为双折射板的水晶板2比用作双折射板的水晶板3小。将作为1/4波长板的由高分子膜构成的相位差膜10与和粘合剂4、5一起进行贴合时,将水晶板2贴在水晶板3的内侧,以使存在由于水晶板2与水晶板3的大小不同而形成的断坡3a、3b、3c、3d。断坡3a、3b、3c、3d可以分别不相等。作为2张水晶板的外周部不一致的断坡部分,在此断坡3a、3b、3c、3d上形成了上述密封部20。水晶板2和水晶板3的大小关系也可以反过来。
此第3实施方式的实施例1中,由于2张水晶板2、3的大小不同,在2张水晶板2、3各自的外周面之间产生了断坡3a、3b、3c、3d,作为2张水晶板的外周部不一致的断坡部分,利用该断坡3a、3b、3c、3d能够简单地形成有一定厚度的密封部20,还具有更加稳定的防潮性,能够防止剥落现象。
下面对第3实施方式的实施例2进行说明,仅对与实施例1不同的事项进行说明,未进行说明的事项与实施例1相同。
图5(a)是实施例2中的光学低通滤波器1的平面图,图5(b)是光学低通滤波器1的截面图。
作为双折射板的水晶板2、3大小相同。将水晶板2和水晶板3沿斜线方向错开后,将作为1/4波长板的由高分子膜构成的相位差膜10与粘合剂4、5一起进行贴合,由此就可以在水晶板2和水晶板3之间形成断坡3a、3b、3c、3d。断坡3a、3d与断坡3b、3c为相同方向的断坡。作为2张水晶板的外周部不一致的断坡部分,在此断坡3a、3b、3c、3d上形成了所述的密封部20。对于错开水晶板2、3位置的方法,既可以进行相对旋转,也可以沿斜线方向错开,还可以同时进行旋转和斜线方向的移动。
此第3实施方式的实施例2中,由于水晶板2和水晶板3的大小相同,在制造过程中可以没有区别地进行制造,贴合水晶板2和水晶板3时,通过相对错开水晶板2和水晶板3的位置就能够具备断坡3a、3b、3c、3d,利用该断坡3a、3b、3c、3d能够简单地形成有一定厚度的密封部20,还具有更加稳定的防潮性,能够防止剥落现象。
下面对第3实施方式的实施例3进行说明,仅对与实施例1不同的事项进行说明,未进行说明的事项与实施例1相同。
图6(a)是实施例3中的光学低通滤波器1的平面图,图6(b)是光学低通滤波器1的截面图。
作为双折射板的水晶板2、3大小相同。粘合剂4、5与作为1/4波长板的由高分子膜构成的相位差膜10的大小比水晶板2、3小,相位差膜10的全部外周边位于2张水晶板2、3的外周边的内侧,相位差膜10的外周边与2张水晶板2、3的外周边之间形成凹陷(间隙)2a、2b、2c、2d,形成填补该凹陷2a、2b、2c、2d的上述密封部20。凹陷2a、2b、2c、2d可以各自不等,也可以是相对呈倾斜状态的。
此第3实施方式的实施例3中,由于水晶板2和水晶板3的大小相同,在制造过程中可以没有区别地进行制造,贴合水晶板2和水晶板3时,由于相位差膜10比水晶板2或水晶板3小,要使相位差膜10的外周边位于水晶板2或水晶板3的外周边的内侧,利用相位差膜10的外周边与水晶板2、3的外周边之间的凹陷2a、2b、2c、2d,能够简单地形成有一定厚度的密封部20,还具有更加稳定的防潮性,能够防止剥落现象。
[第4实施方式]
下面对将本发明的光学低通滤波器应用于摄像装置的实施方式进行说明。图7是摄像装置中的光学低通滤波器1和固体摄像元件130的截面图。
此摄像装置100中,透过摄像透镜(图中未表示)的光线由箭头A的方向入射后透过防反射膜110和红外线吸收过滤器120。透过该红外线吸收过滤器120的光线中,高空间频率的成分被光学低通滤波器1抑制,穿过防反射膜111射出的光线到达固体摄像元件130。固体摄像元件130接收到的光线被转换为电子信号后被传送到其他所连接的电路上。
该光学低通滤波器1具有水晶板2、粘合剂4、5、相位差膜10和水晶板3,与防反射膜110和红外线吸收过滤器120成为一体。
固体摄像元件130具有的结构是,其由多数的像素构成,像素按照一定的距离正确排列。固体摄像元件130由例如CCD(Charge CoupledDevice)、CMOS(Complementary MOS)构成,具有将接收到的光线转换为电子信号的功能。
固体摄像元件130被封进作为固定部件的凹型包装140中。该包装140至少具有可以容纳光学低通滤波器1的开口部140a。并且,连接包装140内部和外部的外部连接配线131贯穿包装140的侧壁设置,固体摄像元件130与外部连接配线131通过接合线132电连接。
作为固定部件的开口部140a与至少光学低通滤波器1,通过由含氟树脂、环氧树脂或丙烯酸树脂等树脂组合物构成的密封部20粘固在一起。该摄像装置100中,光学低通滤波器1还兼作密封固体摄像元件130的包装的防尘玻璃。密封部20至少涂布在包含粘合剂层4、5和相位差膜10的区域上。因此,在该摄像装置100中,密封部20包覆粘合剂层4、5和相位差膜10的全部外周边以防止水分的渗透,同时还作为固定光学低通滤波器1的粘结材料起作用。
此摄像装置100中,光学低通滤波器1通过由粘着剂或树脂组合物构成的密封部20被固定在作为固定材料的开口部140a上,同时还能提高光学低通滤波器1的相位差膜10的防潮性。
另外,在上述说明中,在接合构成光学低通滤波器的各个部分时使用了粘合剂层,若使用粘着剂层也能得到同样的效果。
工业上的可利用性
本发明的光学低通滤波器安装在摄像元件的前面能抑制空间频率的高通成分,由此其能用于提高由摄像元件输出的画质的领域。

Claims (8)

1.一种光学低通滤波器,其特征为,所述光学低通滤波器是通过粘着剂层或粘合剂层将高分子膜的相板贴在2张双折射板之间而形成的,在光学低通滤波器的全部外周面设置有密封部。
2.如权利要求1所述的光学低通滤波器,其特征为,所述密封部由按照物理成膜法形成的成膜层或按照化学成膜法形成的成膜层构成。
3.如权利要求1所述的光学低通滤波器,其特征为,所述密封部由胶带构成。
4.如权利要求1所述的光学低通滤波器,其特征为,所述密封部由树脂组合物构成。
5.如权利要求1所述的光学低通滤波器,其特征为,通过粘着剂层或粘合剂层将红外线吸收滤波板贴在所述2张双折射板中位于光线入射侧的双折射板的光线入射侧,所述密封部包覆着所述红外线吸收滤波板以及所述粘着剂层或粘合剂层的全部外周面。
6.如权利要求1所述的光学低通滤波器,其特征为,所述相板的外周边的至少一部分位于所述2张双折射板中至少1张双折射板的外周边的内侧,形成断坡或凹陷,在所述断坡或凹陷处形成有所述密封部。
7.一种光学低通滤波器,其特征为,所述光学低通滤波器是通过粘着剂层或粘合剂层将高分子膜的相板贴在2张双折射板之间而形成的,其中,以防水处理剂对所形成的光学低通滤波器的全部外周面进行了处理。
8.如权利要求7所述的光学低通滤波器,其特征为,所述防水处理剂为硅烷偶联剂。
CNB2006100660914A 2005-03-28 2006-03-28 光学低通滤波器 Expired - Fee Related CN100403068C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005090795 2005-03-28
JP2005090795 2005-03-28
JP2006017364 2006-01-26

Publications (2)

Publication Number Publication Date
CN1841100A true CN1841100A (zh) 2006-10-04
CN100403068C CN100403068C (zh) 2008-07-16

Family

ID=37030195

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100660914A Expired - Fee Related CN100403068C (zh) 2005-03-28 2006-03-28 光学低通滤波器

Country Status (1)

Country Link
CN (1) CN100403068C (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101470321B (zh) * 2007-12-28 2011-03-23 佳能株式会社 摄像设备及光学滤波器
CN103733109A (zh) * 2011-08-11 2014-04-16 日立麦克赛尔株式会社 红外线用的透镜单元、摄像模块以及摄像装置
CN104536074A (zh) * 2014-12-24 2015-04-22 电子科技大学 一种可调近红外滤波片
CN106664375A (zh) * 2014-07-08 2017-05-10 索尼公司 滤波器控制装置、滤波器控制方法及成像装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083903A (ja) * 1983-10-14 1985-05-13 Hitachi Ltd 偏光素子及びそれを用いた液晶電気光学デバイス
FR2798478B1 (fr) * 1999-09-10 2003-06-20 Thomson Csf Sextant Ecran de visualisation protege contre l'humidite et procede de fabrication de l'ecran
CN100498383C (zh) * 2001-11-21 2009-06-10 株式会社大真空 光学滤波器及其制造方法和收纳结构、以及光学装置
JP4218941B2 (ja) * 2003-02-25 2009-02-04 日東電工株式会社 光学部材、その製造方法、粘着型光学部材および画像表示装置
JP4277721B2 (ja) * 2003-05-02 2009-06-10 セイコーエプソン株式会社 光学ローパスフィルタの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101470321B (zh) * 2007-12-28 2011-03-23 佳能株式会社 摄像设备及光学滤波器
US8405902B2 (en) 2007-12-28 2013-03-26 Canon Kabushiki Kaisha Imaging apparatus and optical filter
CN103733109A (zh) * 2011-08-11 2014-04-16 日立麦克赛尔株式会社 红外线用的透镜单元、摄像模块以及摄像装置
CN106664375A (zh) * 2014-07-08 2017-05-10 索尼公司 滤波器控制装置、滤波器控制方法及成像装置
CN104536074A (zh) * 2014-12-24 2015-04-22 电子科技大学 一种可调近红外滤波片

Also Published As

Publication number Publication date
CN100403068C (zh) 2008-07-16

Similar Documents

Publication Publication Date Title
TWI739011B (zh) 濾光器、相機模組及附相機之資訊終端
US20060215266A1 (en) Optical low-pass filter
US20180356576A1 (en) Near-infrared cut filter
JP5741283B2 (ja) 赤外光透過フィルタ及びこれを用いた撮像装置
KR101908469B1 (ko) 근적외선 흡수성 조성물, 근적외선 차단 필터와 그 제조 방법, 및 카메라 모듈과 그 제조 방법
JP2008051985A (ja) 近赤外線吸収フィルタ
US9523803B2 (en) Image capturing element and image capturing apparatus for removing infrared components from light
WO2013061990A1 (ja) 光学フィルタとその製造方法、並びに撮像装置
TWI408404B (zh) 影像裝置
JP2013041141A (ja) 撮像装置、固体撮像素子、撮像装置用レンズ、及び近赤外光カットフィルタ
CN1841100A (zh) 光学低通滤波器
JP2014063144A (ja) 光学フィルタおよび固体撮像装置
TW201937209A (zh) 濾光器及攝像裝置
CN1705133A (zh) 固态摄像装置、半导体晶片及照相机组件
JP2007286554A (ja) 反射防止膜、反射防止基材、及び当該反射防止基材が設けられた光電変換装置
JP2006221142A (ja) 光学素子、レンズ鏡筒、撮像装置及び電子機器
JP5849906B2 (ja) 近赤外線吸収フィルタおよび固体撮像装置
CN1484045A (zh) 制造抗反射涂层基片的方法
JP2006030944A (ja) 近赤外線カットフィルター
CN111286064B (zh) 透明构件和图像拾取装置、以及透明构件的制造方法
JP2020112826A (ja) 光学フィルタ
CN1808227A (zh) 功能基板的制造方法、及其应用
JP6530968B2 (ja) 近赤外線カットフィルター
CN104838303A (zh) 用于制造显示元件、光学元件或照明元件的芳香族聚酰胺溶液
JP2005031170A (ja) 撮像装置および光学フィルター

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080716

Termination date: 20200328

CF01 Termination of patent right due to non-payment of annual fee