CN1830784A - 改良的沸石和分子筛及其用途 - Google Patents

改良的沸石和分子筛及其用途 Download PDF

Info

Publication number
CN1830784A
CN1830784A CNA200610003736XA CN200610003736A CN1830784A CN 1830784 A CN1830784 A CN 1830784A CN A200610003736X A CNA200610003736X A CN A200610003736XA CN 200610003736 A CN200610003736 A CN 200610003736A CN 1830784 A CN1830784 A CN 1830784A
Authority
CN
China
Prior art keywords
zeolite
template
molecular sieve
tea
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200610003736XA
Other languages
English (en)
Other versions
CN100384730C (zh
Inventor
R·A·奥弗贝克
N·范德皮尔
叶春渊
L·L·穆雷尔
常云峰
P·J·安格维尼
J·H·克格勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CB&I Technology Inc
Original Assignee
ABB Lummus Global Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22913491&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1830784(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ABB Lummus Global Inc filed Critical ABB Lummus Global Inc
Publication of CN1830784A publication Critical patent/CN1830784A/zh
Application granted granted Critical
Publication of CN100384730C publication Critical patent/CN100384730C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/40Special temperature treatment, i.e. other than just for template removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/64Synthesis on support in or on refractory materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

一种具有高数量强酸位点的改良沸石,其中所述沸石的AAI至少为1.0。在优选的实施方案中,这样的沸石通过晶体结构产生后控制条件来生产使得四面体铝的损失最小化,从而提供具有以上限定的AAI的沸石。

Description

改良的沸石和分子筛及其用途
本申请是申请号为01820999.8、申请日为2001年10月19日、同题的发明专利申请的分案申请。
本申请要求于2000年10月20日提交的临时申请60/242,110的优先权,并是该临时申请的部分延续,该临时申请的内容并入本文作为参考。
本发明涉及沸石和分子筛,更具体地涉及沸石和分子筛的生产及其用途。
沸石和分子筛通常用在各种催化过程中。一般而言,沸石和分子筛可以用下面的方法制备,该方法包括由一种反应混合物形成结构,该混合物包含二氧化硅和氧化铝,通常还含有一种有机引导剂(常称为“模板剂”),该有机引导剂例如但不限于线性胺、线性二胺、和季铵盐。例如,季铵盐可以是四乙基氢氧化铵。有机引导剂可以用热处理过程从得到的沸石中除去,在高温下该过程通常被称作“煅烧”。所形成的沸石结构或分子筛的酸形式通过离子交换例如但不限于铵交换,和随后的再次煅烧产生。在一些方法中,铵交换步骤发生在煅烧之前,因此简化了步骤。在很多情况下,(附加的)热处理,也称作煅烧,在成型步骤之后进行。在该成形或成型步骤中,沸石或分子筛被制备成一定形状以便使用,例如用于固定床催化操作。
在现有技术中,已经认识到最后的热处理步骤可以影响沸石或分子筛的状态和性质。但没有认识到在除去有机引导剂的热处理过程中,改变沸石或分子筛材料的状态和性质会显著影响沸石或分子筛的性能。本申请人惊奇地发现,除去有机引导剂的受控热处理或煅烧以及在该处理过程中将沸石或分子筛暴露在不高于570℃的平均温度下是希望的,以产生具有特定性质和强度的酸性位点。这些产生的酸性位点可以依照实施例3(“TPD”)中进行的控温脱氨过程来测定,已经惊奇地发现该酸性位点显著提高了在反应中的催化性能,例如但不限于烃转化技术、和环境废料转化技术。本申请人已经发现,与过去本领域的发现所认可的相反,被称作“强酸位点”并可以依照实施例3(“TPD”)中所进行的控温脱氨过程来测定的这些位点,其丰度有益于芳香族的烷基化技术,例如但不限于苯的乙基化形成乙基苯。申请人还发现除了出现这些酸性位点,沸石或分子筛发生了相当大的重构,这一点可以用孔隙率测量来表征,例如用N2物理吸附和/或汞孔隙率仪测定。根据现有理解,申请人认为沸石和分子筛上述性质的结合在催化应用中特别是烃转化应用中优化性能是希望的。已经发现用酸性-活性指数(AAI)可以表征上述改良的性质和提高的催化性能的组合。说明书和权利要求中所用的AAI是温度高于300℃时从沸石中脱附的氨的总量与温度低于300℃时从沸石中脱附的氨的总量之比,依照实施例3(“TPD”)中进行的控温脱氨过程进行测量。
与申请人的发现相反,美国专利5,258,570说明β-沸石的催化活性可以通过活化所形成的沸石获得,活化是在约600℃到675℃下加热以减少所谓的“强”酸性位点。依照美国专利5,258,570,用常规方法得到的β-沸石需经特别处理来减少酸性位点进而提高催化活性。
本发明的一个方面提供了一种沸石或分子筛,它有数目增加的所谓“强酸位点”,即依照实施例3(“TPD”)中所用的控温脱氨过程来测定的位点。更特别的是,申请人发现通过增加强酸位点的数目可以显著提高催化活性。
本发明另一方面提供一种沸石或分子筛,它具有增大的中孔隙率,即孔的尺寸大于2nm且小于50nm,以及数目增加的所谓“强酸性位点”。更具体地,申请人发现通过增大沸石分子筛网络的中孔隙率和强酸性位点的数目可以相当大地提高催化活性。
沸石或分子筛的优选具有平均孔径大于100埃的孔隙。
在另一实施方案中,沸石或分子筛的孔体积大于0.7cm3/g。
按照本发明的一个优选实施方案,沸石或分子筛的酸性-活性指数(AAI)至少为1.0,优选至少为1.2,更优选至少为1.4,最优选至少为1.6,其中,说明书和权利要求中所用的AAI是温度高于300℃时从沸石或分子筛中脱附的氨的总量与温度低于300℃时从沸石或分子筛中脱附的氨的总量之比,测量依照实施例3(“TPD”)中所用的控温脱氨过程进行。
更具体地在一个优选实施方案中,沸石或分子筛包含二氧化硅和氧化铝,其摩尔比为6∶1或更高或15∶1或更高,它是通过使用包含有机氮化合物的模板或有机引导剂制备的。有代表性的但是非限制性的沸石列举如下:β-沸石、TEA-丝光沸石、TEA-ZSM-12、MCM-22、MCM-36、MCM-39、MCM-41、MCM-48、PSH03、ZSM-5、TPA05、Breck 6、ZSM-12、ZSM-22、ZSM-23、ZSM-35、ZSM-48、SSZ-32等。优选的沸石是β-沸石,尽管本发明不限于优选的沸石。
根据本发明的另一方面,申请人发现具有改良催化活性的沸石或分子筛可以通过增加其强酸性位点制备。在这点上,申请人发现在制备沸石和分子筛的过程中,特别是在除去有机氮模板剂的过程中,应该控制所用条件以保存强酸位点。在这方面,强酸位点通过采用防止那些位点损失的工艺条件来保持,这些位点被证明有益于催化转化用途并可采用AAI比例来表征。应当认为,这些位点可以归结为在沸石或分子筛结构中的一种特定的四面体铝的位点。
在这方面,在除去有机氮模板剂的过程中(通常至少50%被除去,在优选的实施方案中基本上全部被除去),控制加热来避免平均温度超过约575℃,优选加热到平均温度不高于550℃(通常至少50%被除去,在优选的实施方案中基本上全部被除去)。此外,在优选实施方案中,应该控制加热使材料的温度以可控的方式升高到最终煅烧温度。在这方面,“仔细”意味着材料温度的升高不会太快使温度高于约575℃的局部过热被避免和/或减到最小。
此外,除去模板剂的煅烧在浅床中进行以便减少局部过热或出现热点。另一选择是使用深的催化剂床,如果流动气体具有足够高的表面速率使传热速率能够维持催化剂床上任意一点的温度与平均床温之差不超过25℃。在另一方法中,煅烧过程中的过热可以通过以下途径减到最小,采用温度均变时的中间停顿或通过减少/控制氧气流量控制有机引导剂的燃烧加热来控制热点。其它本领域中已知的可能方法也可以用来将局部过热或热点的出现减到最小。
申请人还发现,水蒸汽可以影响沸石或分子筛的催化活性。因此,在优选实施方案中,煅烧沸石或分子筛时,把沸石或分子筛缓慢地加热到最终煅烧温度。为了减少暴露于300℃以上的机会,控温加热到最高300℃以便在到达高温前除去水份防止汽蒸,从而保存强酸性位点。在一个实施方案中,这可以通过采用缓慢的升温速率实现,例如小于10℃/min,优选小于5℃/min。
在另一个实施方案中,可以在升温到300℃的过程中采用中间停顿来减少暴露在显著高于300℃的温度。
目前的工作模式是主要由于特定形式的四面体铝的损失减少了所谓的“强酸性位点”。因此,根据本发明的一个方面,在生产沸石或分子筛时,为了提供改良的催化剂活性,应该减少或避免:减少特定形式的四面体铝的量从而减少强酸性位点数目的操作条件。如上面所示,为了减少特定形式的四面体铝的损失从而保持强酸性位点的某一最小含量,应该控制除去模板剂的条件以便减少和/或避免长时间暴露在高于550℃的温度。此外,在优选实施方案中汽蒸应当避免;例如但不限于通过缓慢加热到达最终的煅烧温度。
此外,还应当控制除去模板剂后对沸石或分子筛的处理,以减少和/或避免暴露在高于550℃的温度。例如,离子交换步骤和离子交换后的沸石或分子筛的最后煅烧应该在适中的温度下进行。离子交换包括但不限于用NH4NO3交换Na得到NH4-形式的沸石或分子筛。此外,还应该减少或避免在挤出沸石或分子筛形成所希望的形状的过程中使用有机试剂。
本领域过去没有认识到沸石和分子筛中的强酸性位点提高催化活性,也没有认识到应该控制生产沸石和分子筛的工艺条件以防止强酸性位点的损失。在现有技术中,沸石或分子筛形成后的加工步骤使强酸性位点的数目减少到低于本发明的值,并且这一减少导致催化活性的降低。
本发明的沸石和分子筛可以与其它材料结合,如本领域熟知的。例如,沸石和分子筛任选可以在氢形成性阳离子交换之后进行金属阳离子交换。如果沸石和分子筛在氢形成性阳离子交换之后进行金属阳离子交换,则其沸石或分子筛组分优选地包括很多如上文所述的酸性位点。金属阳离子的代表可以是IIA族、IIIA族、IIIB到VIIB族的阳离子。这些阳离子的使用在本领域中是已知的,并且根据本文的说明这些附加阳离子的引入及其用量被认为包括在本领域的技术中。类似地,沸石或分子筛可以与一种或更多无机氧化物基质组分共同使用,该组分通常在用金属阳离子(如果使用)交换时与沸石和分子筛结合。这些基质组分通常是无机氧化物如二氧化硅-氧化铝、粘土、氧化铝、二氧化硅等。基质可以以溶胶、水凝胶或凝胶的形式存在,并通常是氧化铝、二氧化硅或二氧化硅-氧化铝组分如传统的二氧化硅-氧化铝催化剂。基质可以有催化活性或是惰性的。如上文所述,在优选实施方案中,当与基质结合时,沸石或分子筛的组分有很多强酸性位点。
如上文所述,为了保持强酸性位点,应该控制操作过程以避免沸石或分子筛长时间暴露在高温下。
本发明的沸石和分子筛可用于催化转化原料,其中,沸石或分子筛在反应区形成全部或部分的催化剂。将原料导入反应区,在使原料转化为希望的产品的有效条件下与催化剂接触。
基本上任何原料或原料的组合可以用于本发明。这样的原料,即一种或多种反应物组分,在环境条件即20℃和大气压力下可以是气态、固态或液态的。原料可以是有机的或无机和有机组分的组合。本反应体系特别适用于有机原料,优选具有包含碳和氢、及任选的一种或多种其它元素的分子。该其它元素优选选自氧、硫、卤素、氮、磷及其混合物。
由原料/沸石或分子筛催化剂接触得到的一种或多种产物当然取决于例如所用的原料、催化剂及反应条件。根据原料,产物可以是有机的或无机和有机组分的组合。希望的产物优选是有机物。然而应当注意,即使所寻求的主要产物是有机的,必要的因而也是希望的反应副产物可以是无机的。这可以用甲醇转化为轻烯烃和水来举例说明。一种或多种有机产物的分子优选地含有碳和氢。希望的一种或多种产物的优选动态直径允许该一种或多种产物从沸石或分子筛催化剂组合物的孔中被除去或逃逸。
在反应区中沸石或分子筛催化剂的量可以在很宽的范围内变化,它取决于例如具体的工艺用途。
如果是所希望的和/或对整个过程有益,除了原料外,稀释剂可以和原料一同使用。该稀释剂可以在原料与沸石或分子筛催化剂接触前与原料混合或结合,或可以与原料分别导入反应区。该稀释剂优选地调节原料化学转化的反应速率,并可能调节反应程度,还可能帮助控制温度。在某些实施方案中,优选在操作中将稀释剂充分连续地导入反应区。可用于本方法的典型稀释剂为氦、氩、一氧化碳、二氧化碳、氢、烃及其混合物。稀释剂(如果有的话)的用量可以根据所涉及的特殊应用在很宽的范围内变化。例如,稀释剂量的范围可以是原料摩尔数的约0.1%或更少到约100倍或更多。
根据例如所用的特定原料和催化剂以及所希望的一种或多种特定产物,过程发生的转化条件可以大范围变化。本方法特别适用于与原料接触的沸石或分子筛催化剂的接触温度超过约50℃,更优选地超过约100℃,压力从约大气压到约2000psig。根据例如所用的特定原料和催化剂以及所希望的一种或多种特定产物,原料在反应区的停留时间可以独立地选择。
有机原料优选为烃原料,催化转化过程优选为烃转化过程。能够用沸石或分子筛催化剂组合物催化的基本任何烃转化过程都可以按照本发明进行。有代表性的烃转化过程包括例如芳族和异链烷烃的裂解、氢化裂解、烷基化;异构化包括直链烷烃或二甲苯的异构化;聚合;重整;加氢;脱氢;烷基交换;脱烷基化;氢化开环和脱氢环化。
当使用含有加氢助催化剂如铂或钯的沸石或分子筛催化剂组合物时,重石油残渣油料、循环料和其它可氢化裂解的进料可以在温度200-450℃下氢化裂解,氢与烃的摩尔比在2到80范围内,氢的分压在大气压到200bar之间,液体时空速度(LHSV)为0.1到20,优选0.5到10。
用于氢化裂解的沸石或分子筛催化剂组合物也适合用在重整过程中,该过程中烃原料在约350-600℃与催化剂接触,氢的分压在1到35bar之间,(LHSV)在0.1到10的范围内,氢与烃的摩尔比在1到20之间,优选4到12之间。
其它异构化反应在与上述重整反应相似的条件下进行。烯烃优选在200-500℃异构化,而重质烷烃、环烷烃、烷基芳烃优选在300-550℃异构化。除了上述直链烷烃的异构化,本文预期的特别希望的异构化反应还包括下列转化:正庚烯和/或正辛烯到异庚烯和异辛烯、甲基环戊烷到环己烷、间二甲苯和/或邻二甲苯到对二甲苯、1-丁烯到2-丁烯和/或异丁烯、正己烯到异己烯、环己烯到甲基环戊烯等。优选的阳离子形式是β-沸石与多价金属化合物(如硫化物)的组合,其中金属为IIA族、IIB族和稀土金属。
在略高的温度下,即约350-550℃,优选450-500℃及通常在约1到5bar的略低压力下,同样的催化剂组合物用来加氢异构含有较重直链烷烃的原料。重直链烷烃原料优选包括具有7-20个碳原子的直链烷烃。为了避免不希望的副反应如烯烃的聚合和烷烃的裂解,原料与催化剂的接触时间通常较短。LHSV值为0.1到10,优选0.5到6是合适的。
活化的沸石或分子筛催化剂的晶体结构及其完全不含碱金属的存在形式有利于该催化剂用于烷基芳族化合物的转化,特别是甲苯、二甲苯、三甲基苯、四甲基苯等的催化歧化。在歧化过程中,异构化和烷基交换也能够发生。优选地将VIII族的贵金属助剂单独或与VIB族金属如钨、钼和铬一同加入催化剂组合物中,其量从组合物总量的约3到15重量%。外加的氢可以但不必存在于反应区中,反应区的温度保持在约200-400℃,压力为5到150bar,LHSV值在0.1到15范围内。
催化裂解过程优选用β-沸石组合物进行,所用原料为柴油、重质石脑油、脱沥青原油残渣等,以汽油为主要希望产物。合适的反应条件为温度450-600℃,LHSV值为0.5到10,压力为大气压到4bar。
采用烷烃原料,优选为具有多于6个碳原子的直链烷烃原料进行的形成苯、二甲苯、甲苯等的脱氢环化反应,使用与催化裂解基本相同的反应条件进行。对于这些反应,活化的β-沸石催化剂与VIII族非贵金属阳离子如钴和镍一同使用是优选的。
在希望从芳香环上断裂烷烃侧链而基本不引起环结构的加氢的催化脱烷基化中,采用约450-600℃的较高温度,约20到70bar的中等氢压力,其它条件与上述催化氢化裂解的条件相似。优选的催化剂是与上述催化脱氢环化有关的同种催化剂。这里预期的特别希望的脱烷基化反应包括甲基萘到萘、甲苯和/或二甲苯到苯的转化。当用于烷基芳香族脱烷基化时,温度通常至少175℃,最高到原料大量裂解或转化产物出现的温度,通常最高到约370℃。温度优选至少230℃且不高于化合物发生脱烷基化的临界温度。所用的压力条件至少使芳香族进料保持液态。对于烷基化反应,温度可以低到120℃但优选至少175℃。在苯、甲苯和二甲苯的烷基化中,优选的烷基化试剂选自烯烃如乙烯和丙稀。
在催化氢化精制中,主要目标是在基本上不影响烃分子的情况下促进进料中有机硫和/或氮化合物的选择性氢化分解。针对这一目标,优选采用与上述催化裂解相同的通用条件和与上述脱氢环化操作中所述的相同一般性质的催化剂。原料包括汽油馏分、煤油、喷气机燃料馏分、柴油馏分、轻和重柴油、脱沥青原油残渣等,其中任何一种可以含有最高约5重量%的硫和最高3重量%的氮。
烃转化过程可以以间歇、半连续、或连续方式进行。这些过程可以在单一反应区或安置成串联或并联的许多反应区中进行,或在长管状区域或许多这样的区域中间歇地或连续地进行。当采用多个反应区时,串联使用一种或多种β-沸石催化剂组合物有利于得到希望的产物混合物。根据烃转化过程的本质,在动态(例如流动的或移动的)床体系或任何输送床体系而不是在固定床体系上使用沸石催化剂组合物实施某些过程是希望的。在一段给定的时间后,这样的体系容易地提供β-沸石催化剂组合物的任何再生(如果需要)。如果需要再生,β-沸石催化剂组合物可以以移动床形式连续地被导入再生区,在这里它们能够再生,例如通过在含氧的气氛下氧化除去含碳的材料。在一些烃转化过程的优选实践中,β-沸石催化剂组合物经历的再生步骤是烧掉在反应中积累的含碳的沉积物。
在本发明的一个优选实施方案中,本发明的沸石或分子筛作为用于烷基化过程中的催化剂如苯烷基化生产乙基苯。特别是酸性位点的小增加会导致催化剂活性的大增加。
在本发明的另一个优选实施方案中,在烷基化过程如苯烷基化生产乙基苯中用作催化剂的沸石是β-沸石。
本发明将在下列实施例中作进一步描述,但是本发明的范围并不限于此。除非另外说明,所有的份和百分数都按重量计。
实施例1
β-沸石根据Murrell等人的专利(美国专利6,004,527,1999)制备。把喷雾干燥的二氧化硅(486克,Davison 948,60μm的平均粒径)浸入202g Al(NO3)3·9H2O和800g蒸馏水的混合物中,在120℃干燥2小时并以5℃/min的升温速率在500℃煅烧2小时。计算出的材料的二氧化硅-氧化铝比是30。
将得到的二氧化硅-氧化铝162g浸入162g 35重量%的TEAOH(Aldrich)中,然后浸入80g 3.76重量%的NaNO3水溶液中。在玻璃烧杯中搅拌着缓慢加入液体。将浸渍后的固体转移到一个2升的在马达驱动的滚床上旋转的Parr高压釜中。混合物在空气循环炉中在157℃下加热36小时。将高压釜冷却到室温,用大量的水清洗并过滤固体。产物在空气中120℃下干燥。X-射线衍射表明产物含有相对结晶度为113%的β-沸石。市售β-沸石粉用来作为参比。
随后,把20克的β-产物(实验室样品1)用下列程序在空气中煅烧:以5℃/min升温到200℃,保温1小时,以5℃/min升温到650℃,保温6小时,并以5℃/min降温到室温。把20克的另一部分β-产物(实验室样品2)用下列程序在空气中煅烧:以5℃/min升温到200℃,保温1小时,以1℃/min升温到500℃,保温12小时,并以10℃/min降温到室温。煅烧后的粉体在0.1M的NH4NO3溶液中在室温离子交换5天。
把650℃煅烧的离子交换样品(实验室样品1)2.50克与3.0克Nyacol氧化铝溶胶(20重量%)和2.0克去离子水混合。糊状物在80℃干燥2小时,然后以加热速率5℃/min在550℃煅烧6小时。得到的产物含有80重量%的β-沸石。样品研磨并筛分到+20/-12目大小,将其中1.0g样品装入烷基化反应器中。在根据实施例2的苯到乙基苯的烷基化中,该样品具有的一级观测速率常数为0.31cm3/g/s。
把500℃煅烧的干燥样品(实验室样品2)3.225克与4.06克Nyacol氧化铝溶胶(20重量%)和3克去离子水混合。糊状物在80℃干燥2小时,然后以下列程序煅烧:以5℃/min升温到200℃,保温1小时,以5℃/min升温到500℃,保温6小时。得到的产物含有80重量%的β-沸石。样品研磨并筛分到+20/-12目大小,将其中的0.76g样品装入烷基化反应器中。在根据实施例2的苯到乙基苯的烷基化中,该样品具有的一级观测速率常数为0.95cm3/g/s。
实施例2
下面描述了用来测定本发明沸石催化剂(实施例1的实验室样品2)、用常规技术煅烧的沸石催化剂(实施例1的实验室样品1)以及某些市售的催化剂的催化活性的烷基化过程。
沸石催化剂的催化活性用苯与乙烯烷基化形成乙基苯(EB)的标准反应来评价。
测试反应器是再循环的差示固定床反应器。测试条件为300psig、190℃,再循环速率是200克/分钟。进料包含0.35重量溶解在苯中的乙烯,进料速率为6.0克/分钟。
12到20目尺寸颗粒的催化剂的载量是1.000克。用计量泵常规进料前,催化剂通常用热苯清洗约7小时(除去水分)。测量持续7到8小时并每30min取样作GC分析。计算出一级速率常数来代表催化剂活性。
实施例3
在微反应器/质谱仪组件内进行温度编程脱附(TPD),该组件是石英微反应器和四级质谱仪(Hiden Analytical HPR-20)的结合。
把粉体形式的40-44mg样品装入石英微反应器。
样品首先在含5.2%氧气的流速为30cc/min的氦气流中氧化,温度从30℃到550℃并在550℃(TPD)维持30分钟。氧化处理后,在冷却到100℃前样品在550℃用氦气洗涤20分钟。
氨的吸附在100℃在含氨4-5%流速为27-30cc/min的氦气流中进行30分钟。
在温度脱附开始前,氨处理的样品在氦气(30cc/min)中在100℃洗涤45分钟(足以使氨的质谱信号回到背景水平)。
氨的TPD按以下条件进行:以30℃/min从100℃升温到600℃。有两个明显的脱附峰;一个在<200℃另一个在>300℃。低于300℃的脱附归类为弱酸性位点而高于300℃的脱附归类为强酸性位点。
质量数为16和17的氨都被使用。质量数为17的信号用于氨的定量。
氨脱附的定量基于用4-5%的氨对质谱仪的校正。
实施例4
表1总结了TPD的结果、AAI比例和催化活性。
                                    表1
  催化剂  *强酸性(mmol/g)  **弱酸性   Keb(cm3/g/s)For   AAI
  烷基化
  实施例1的样品1实施例1的样品2市售β-I市售β-II-A市售β-II-B市售β-II-C   0.5860.8440.5380.6260.5010.519   0.8860.3860.6180.5780.4630.533   0.310.950.340.380.280.36   0.6612.190.8711.081.080.973
*在TPD过程中高于300℃时脱附的氨的总量。
**在TPD过程中低于300℃时脱附的氨的总量。
实施例5
用实施例1和2相似方法制备的一系列样品测试铝核磁共振谱。在55和0ppm的峰可分别归属于四面体和八面体铝。基于现有技术和本发明制备的样品,其55ppm峰面积(四面体铝)分别是25.3和48.4。相似地,基于现有技术和本发明制备的样品,其0ppm峰面积(八面体铝)分别是41.9和10.1。前一样品的芳香族烷基化速率常数是0.23cm3/g-s而后一样品的速率常数是1.71cm3/g-s。
实施例6
实施例5中样品的孔尺寸分布还用汞孔隙率仪测定。基于现有技术获得的样品具有宽的孔尺寸分布,即孔直径从50到50,000埃。基于本发明获得的样品具有很窄的孔尺寸分布,即高于90%的孔在200到800埃范围内。
实施例7
如上面实施例1所述,把3.10克Davison Sylopol 948硅胶的50微米小球浸入0.63gAl(NO3)3·9H2O和11.5g水的混合物中使Si/Al比为30,并且在空气中在120℃干燥至恒重。将两克半(2.50克)这些小球浸于1.25克35重量%四丙基氢氧化铵的水溶液和1.25克3.68重量%的NaNO3水溶液中,得到氧化物的摩尔比为:
33.6 SiO2∶0.56 Al2O3∶1 TPA2O∶0.22 Na2O∶108 H2O
把混合物置于一个35ml带有10ml Teflon衬管的不锈钢高压釜中。在158℃放置25小时后,用XRD相对于参考样品测量,产物的ZSM-5结晶度是25.1%。原始无定形的网络结构小球的形状和尺寸在产物中保留下来。模板(或有机引导剂)利用示于实施例1实验室样品2中的温度描述除去。
实施例8
根据实施例7的过程,用给定氧化物摩尔比如下的溶液制备丝光沸石:
5.94 SiO2∶0.43 Al2O3∶0.09 TEA2O∶1 Na2O∶16 H2O
把混合物置于一个35ml带有10ml Teflon衬管的不锈钢高压釜中。182℃放置46小时后,用XRD测量的丝光沸石的结晶度是75%,并保持原有形貌。模板剂用示于实施例1实验室样品2中的温度描述除去。
根据以上说明,本发明的很多修改和变化都是可能的;因此,在附加权利要求的范围内,本发明可以用不同于本文中具体描述的方式进行实施。
综上所述,本发明提供的部分技术方案如下:
1.一种沸石或分子筛,所述沸石或分子筛的AAI至少为1.0。
2.技术方案1的沸石或分子筛,其中,所述沸石或分子筛具有平均孔径大于100埃的孔隙。
3.技术方案1的沸石或分子筛,其中,所述沸石或分子筛的孔体积大于0.7cm3/g。
4.技术方案1的沸石或分子筛,其中,二氧化硅与氧化铝的摩尔比至少为6∶1。
5.技术方案4的沸石,其中,沸石选自β-沸石、TEA-丝光沸石、TEA-ZSM-12、MCM-22、PSH-3、ZSM-5、TPA-5、Breck 6。
6.技术方案4的沸石,其中,所述沸石用有机氮引导剂制备。
7.技术方案6的沸石,其中,二氧化硅与氧化铝的摩尔比至少为15∶1。
8.转化化学物质的方法,包括:
在包含技术方案1的沸石或分子筛的催化剂存在下进行转化。
9.技术方案8的方法,其中,所述转化是芳香族的烷基化。
10.技术方案9的方法,其中,所述沸石选自β-沸石、MCM-22和PSH-3。
11.技术方案8的方法,其中,所述转化是加氢异构化。
12.技术方案8的方法,其中,所述转化是氢化裂解。
13.技术方案8的方法,其中,所述转化是除去氮的氧化物。
14.技术方案8的方法,其中,沸石是技术方案2的沸石。
15.技术方案8的方法,其中,沸石是技术方案3的沸石。
16.技术方案8的方法,其中,沸石是技术方案4的沸石。
17.技术方案8的方法,其中,沸石是技术方案5的沸石。
18.一种制备沸石或分子筛的方法,其中,所述方法包括除去有机模板剂,其改进包括:
在不高于550℃及除去模板剂后沸石或分子筛的AAI至少为1.0的条件下除去该模板剂。
19.技术方案18的方法,其中,至少50%的模板剂被除去。
20.技术方案19的方法,其中,沸石选自β-沸石、TEA-丝光沸石、TEA-ZSM-12、MCM-22、PSH-3、ZSM-5、TPA-5、Breck 6。
21.技术方案19的方法,其中,加热在床体内进行,并控制加热防止床内的温度变化高于平均床温25℃。
22.技术方案21的方法,其中,加热速率低于10℃/min。
23.技术方案18的方法,其中,在除去模板剂后,所述沸石或分子筛具有平均孔径大于100埃的孔隙。
24.技术方案18的方法,其中,在除去模板剂后,所述沸石或分子筛的孔体积大于0.7cm3/g。

Claims (20)

1.转化化学物质的方法,包括在包含沸石的催化剂存在下进行转化;
其中所述沸石的AAI至少为1.2,
所述沸石为按照以下方法制得:其中所述方法包括除去为四乙基胺的模板剂,其中所述方法包括在不高于550℃及除去所述模板剂后沸石的AAI至少为1.2的条件下除去所述模板剂;
所述沸石选自β-沸石、TEA-丝光沸石和TEA-ZSM-12。
2.权利要求1的方法,其中,所述转化是芳香族的烷基化。
3.权利要求1的方法,其中,所述转化是加氢异构化。
4.权利要求1的方法,其中,所述转化是氢化裂解。
5.权利要求1的方法,其中,所述转化是除去氮的氧化物。
6.权利要求1的方法,其中,所述沸石具有平均孔径大于100埃的孔隙。
7.权利要求1的方法,其中,所述沸石的孔体积大于0.7cm3/g。
8.权利要求1的方法,其中,所述沸石中的二氧化硅与氧化铝的摩尔比至少为6∶1。
9.权利要求1的方法,其中,沸石为β-沸石。
10.权利要求1的方法,其中,沸石为TEA-丝光沸石。
11.权利要求1的方法,其中,沸石为TEA-ZSM-12。
12.一种制备沸石的方法,其中,
所述沸石的AAI至少为1.2,
所述沸石选自β-沸石、TEA-丝光沸石和TEA-ZSM-12;
所述方法包括除去为四乙基胺的模板剂,其改进包括:
在不高于550℃及除去模板剂后沸石的AAI至少为1.2的条件下除去该模板剂。
13.权利要求12的方法,其中,至少50%的模板剂被除去。
14.权利要求13的方法,其中,加热在床体内进行,并控制加热防止床内的温度变化高于平均床温25℃。
15.权利要求14的方法,其中,加热速率低于10℃/min。
16.权利要求12的方法,其中,在除去模板剂后,所述沸石具有平均孔径大于100埃的孔隙。
17.权利要求12的方法,其中,在除去模板剂后,所述沸石的孔体积大于0.7cm3/g。
18.权利要求12的方法,其中,沸石为β-沸石。
19.权利要求12的方法,其中,沸石为TEA-丝光沸石。
20.权利要求12的方法,其中,沸石为TEA-ZSM-12。
CNB200610003736XA 2000-10-20 2001-10-19 转化化学物质的方法 Expired - Fee Related CN100384730C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24211000P 2000-10-20 2000-10-20
US60/242110 2000-10-20

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB018209998A Division CN1250453C (zh) 2000-10-20 2001-10-19 改良的沸石

Publications (2)

Publication Number Publication Date
CN1830784A true CN1830784A (zh) 2006-09-13
CN100384730C CN100384730C (zh) 2008-04-30

Family

ID=22913491

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB200610003736XA Expired - Fee Related CN100384730C (zh) 2000-10-20 2001-10-19 转化化学物质的方法
CNB018209998A Expired - Fee Related CN1250453C (zh) 2000-10-20 2001-10-19 改良的沸石

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB018209998A Expired - Fee Related CN1250453C (zh) 2000-10-20 2001-10-19 改良的沸石

Country Status (18)

Country Link
US (1) US6809055B2 (zh)
EP (1) EP1328475B1 (zh)
JP (1) JP4315679B2 (zh)
KR (1) KR100776468B1 (zh)
CN (2) CN100384730C (zh)
AR (1) AR031026A1 (zh)
AT (1) ATE364575T1 (zh)
AU (1) AU2002232753A1 (zh)
BR (1) BR0114699A (zh)
CA (1) CA2426034C (zh)
DE (1) DE60128938T2 (zh)
DK (1) DK1328475T3 (zh)
ES (1) ES2289007T3 (zh)
MX (1) MXPA03003283A (zh)
RU (1) RU2278818C2 (zh)
SG (1) SG155033A1 (zh)
WO (1) WO2002032812A2 (zh)
ZA (1) ZA200302826B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792153A (zh) * 2010-03-02 2010-08-04 黑龙江大学 硅镓酸盐分子筛Ga-ZSM-12的合成方法
CN108218654A (zh) * 2018-02-12 2018-06-29 安徽海德化工科技有限公司 一种利用异丁醇制备异辛烷的方法
CN113233950A (zh) * 2021-05-21 2021-08-10 重庆华峰化工有限公司 一种环己烯制备甲基环戊烯的方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7098161B2 (en) * 2000-10-20 2006-08-29 Abb Lummus Global Inc. Method of treating zeolite
US7371910B2 (en) * 2000-10-20 2008-05-13 Lummus Technology Inc. Process for benzene alkylation and transalkylation of polyalkylated aromatics over improved zeolite beta catalyst
US6844479B2 (en) 2000-10-20 2005-01-18 Abb Lummus Global Inc. Alkylation process
DE60309707T2 (de) * 2002-06-28 2007-09-20 Haldor Topsoe A/S Verwendung eines zeolith beta enthaltender katalysators in kohlenwasserstoffumwandlungsverfahren
US7985400B2 (en) * 2004-01-26 2011-07-26 Lummus Technology Inc. Method for making mesoporous or combined mesoporous and microporous inorganic oxides
EP1656993A1 (en) * 2004-11-03 2006-05-17 Albemarle Netherlands B.V. Alkylation catalyst, its preparation and use
US7348465B2 (en) * 2005-02-08 2008-03-25 Shell Oil Company Selective alkylation of aromatic hydrocarbons
WO2007130054A1 (en) 2006-05-08 2007-11-15 Exxonmobil Chemical Patents Inc. Improved catalyst composition
US7919421B2 (en) * 2006-12-21 2011-04-05 Exxonmobil Chemical Patents Inc. Catalyst composition, the method of manufacturing and the process of use thereof in aromatics alkylation
US8314280B2 (en) 2009-03-20 2012-11-20 Lummus Technology Inc. Process for the production of olefins
WO2011105511A1 (ja) 2010-02-25 2011-09-01 日本碍子株式会社 ゼオライト膜、及びゼオライト膜の製造方法
DE102012006541A1 (de) * 2012-04-02 2013-10-02 Clariant Produkte (Deutschland) Gmbh Wasserstoffoxidationskatalysator, Verwendung desselben und Verfahren zur Wasserstoffrekombination
US9914672B2 (en) 2012-10-19 2018-03-13 Lummus Technology Inc. Conversion of alcohols to distillate fuels
WO2015001004A1 (en) * 2013-07-04 2015-01-08 Total Research & Technology Feluy Catalyst compositions comprising small size molecular sieves crystals deposited on a porous material
RU2728777C1 (ru) 2016-09-16 2020-07-31 ЛАММУС ТЕКНОЛОДЖИ ЭлЭлСи Способ каталитического крекинга со взвешенным катализатором и устройство для максимизации выхода легкого олефина и других приложений
SG11201906864VA (en) 2017-02-28 2019-09-27 Exxonmobil Chemical Patents Inc Catalyst compositions and their use in aromatic alkylation processes
TW202104562A (zh) 2019-04-03 2021-02-01 美商魯瑪斯科技有限責任公司 用於升級輕油系列材料之合併有固體分離裝置之分段流體化媒裂程序
TW202112436A (zh) 2019-07-02 2021-04-01 美商魯瑪斯科技有限責任公司 流體催化裂解方法及設備
AU2020314473B2 (en) 2019-07-15 2023-02-02 Lummus Technology Llc Fluid catalytic cracking process and apparatus for maximizing light olefin yield and other applications
CN112850739B (zh) * 2021-03-12 2023-07-25 许昌学院 一种大晶粒ltj沸石及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104294A (en) * 1977-11-10 1978-08-01 Union Carbide Corporation Crystalline silicates and method for preparing same
US4554145A (en) 1984-04-16 1985-11-19 Mobil Oil Corporation Preparation of crystalline silicate zeolite Beta
US4554185A (en) * 1984-05-15 1985-11-19 Marine Shield Corporation Anti-fouling coating composition, process for applying same and coating thereby obtained
US4994250A (en) * 1989-09-29 1991-02-19 Union Oil Company Of California Process for synthesizing a molecular sieve having the offretite structure and containing aluminum and gallium
US4746763A (en) * 1987-04-22 1988-05-24 Uop Inc. Process for producing aromatic compounds from C2 -C6 aliphatic hydrocarbons
US5258570A (en) 1988-03-30 1993-11-02 Uop Activated zeolite beta and its use for hydrocarbon conversion
US5116794A (en) * 1988-03-30 1992-05-26 Uop Method for enhancing the activity of zeolite beta
US4927525A (en) * 1988-08-30 1990-05-22 Mobil Oil Corporation Catalytic reforming with improved zeolite catalysts
FR2660578B1 (fr) 1990-04-09 1994-09-23 Elf Aquitaine Catalyseur a base d'une faujasite de haut rapport si:al de synthese et son application aux reactions de catalyse acide realisees sur des charges hydrocarbonees.
CN1041399C (zh) 1994-12-30 1998-12-30 中国石油化工总公司 一种含稀土的结晶硅酸铝沸石
EP0948407B1 (en) * 1996-12-18 2001-08-22 BP Corporation North America Inc. Preparation of uniformly impregnated extrudate catalyst
US5895828A (en) * 1997-06-04 1999-04-20 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
US6090991A (en) * 1999-02-27 2000-07-18 Fina Technology, Inc. Gas phase alkylation method and catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792153A (zh) * 2010-03-02 2010-08-04 黑龙江大学 硅镓酸盐分子筛Ga-ZSM-12的合成方法
CN101792153B (zh) * 2010-03-02 2012-03-07 黑龙江大学 硅镓酸盐分子筛Ga-ZSM-12的合成方法
CN108218654A (zh) * 2018-02-12 2018-06-29 安徽海德化工科技有限公司 一种利用异丁醇制备异辛烷的方法
CN113233950A (zh) * 2021-05-21 2021-08-10 重庆华峰化工有限公司 一种环己烯制备甲基环戊烯的方法

Also Published As

Publication number Publication date
EP1328475B1 (en) 2007-06-13
AU2002232753A1 (en) 2002-04-29
EP1328475A2 (en) 2003-07-23
CN1501887A (zh) 2004-06-02
MXPA03003283A (es) 2004-01-26
RU2278818C2 (ru) 2006-06-27
CA2426034C (en) 2008-02-19
WO2002032812A3 (en) 2003-01-16
DK1328475T3 (da) 2007-10-08
DE60128938D1 (de) 2007-07-26
SG155033A1 (en) 2009-09-30
WO2002032812A2 (en) 2002-04-25
CN1250453C (zh) 2006-04-12
AR031026A1 (es) 2003-09-03
ATE364575T1 (de) 2007-07-15
US20020111522A1 (en) 2002-08-15
ES2289007T3 (es) 2008-02-01
ZA200302826B (en) 2004-07-12
KR20040012674A (ko) 2004-02-11
CN100384730C (zh) 2008-04-30
BR0114699A (pt) 2003-11-18
JP2004511416A (ja) 2004-04-15
CA2426034A1 (en) 2002-04-25
KR100776468B1 (ko) 2007-11-16
DE60128938T2 (de) 2008-02-21
JP4315679B2 (ja) 2009-08-19
US6809055B2 (en) 2004-10-26

Similar Documents

Publication Publication Date Title
CN1250453C (zh) 改良的沸石
US8758596B2 (en) Hydrogenation isomerization catalyst, method for producing same, method for dewaxing hydrocarbon oil, and method for producing lubricant base oil
US9637692B2 (en) Hydroisomerization catalyst, process for producing the same, method of dewaxing hydrocarbon oil, process for producing hydrocarbon, and process for producing lube base oil
JP5496664B2 (ja) 水素化異性化触媒、炭化水素油の脱蝋方法、基油の製造方法及び潤滑油基油の製造方法
KR101810827B1 (ko) 윤활유 기유의 제조 방법 및 윤활유 기유
JP5312013B2 (ja) 水素化異性化触媒、その製造方法、炭化水素油の脱蝋方法及び潤滑油基油の製造方法
JP2002512580A (ja) ゼオライトssz−47
JP6001531B2 (ja) 炭化水素油の脱蝋方法及び潤滑油用基油の製造方法
US7510644B2 (en) Zeolites and molecular sieves and the use thereof
WO2017074641A1 (en) Upgrading olefin-containing feeds to diesel boiling range compounds
JP6038780B2 (ja) 水素化異性化触媒の製造方法及び潤滑油基油の製造方法
WO2013147184A1 (ja) 潤滑油基油の製造方法
WO2013147210A1 (ja) 潤滑油基油の製造方法
US9677012B2 (en) Method for producing lubricant base oil
JP6009196B2 (ja) 潤滑油用基油の製造方法
JP6446434B2 (ja) 水素化油の製造方法及び単環芳香族炭化水素の製造方法
WO2013147201A1 (ja) 潤滑油用基油の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080430

Termination date: 20141019

EXPY Termination of patent right or utility model