CN1819947A - 单件共同固化复合翼 - Google Patents

单件共同固化复合翼 Download PDF

Info

Publication number
CN1819947A
CN1819947A CNA038144573A CN03814457A CN1819947A CN 1819947 A CN1819947 A CN 1819947A CN A038144573 A CNA038144573 A CN A038144573A CN 03814457 A CN03814457 A CN 03814457A CN 1819947 A CN1819947 A CN 1819947A
Authority
CN
China
Prior art keywords
wing
spar
composite material
flying surface
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038144573A
Other languages
English (en)
Other versions
CN100575189C (zh
Inventor
克雷格·辛普森
迈克·奥尔曼
史蒂夫·塔特尔
拉里·阿什顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rocky Mountain Composites Inc
Rocky Mountain Research Inc
Original Assignee
Rocky Mountain Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rocky Mountain Research Inc filed Critical Rocky Mountain Research Inc
Publication of CN1819947A publication Critical patent/CN1819947A/zh
Application granted granted Critical
Publication of CN100575189C publication Critical patent/CN100575189C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/20Integral or sandwich constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/006Degassing moulding material or draining off gas during moulding
    • B29C37/0064Degassing moulding material or draining off gas during moulding of reinforced material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/543Fixing the position or configuration of fibrous reinforcements before or during moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/24Moulded or cast structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/8008Component parts, details or accessories; Auxiliary operations specially adapted for winding and joining
    • B29C53/8016Storing, feeding or applying winding materials, e.g. reels, thread guides, tensioners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/8008Component parts, details or accessories; Auxiliary operations specially adapted for winding and joining
    • B29C53/8066Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts
    • B29L2031/3085Wings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/90Direct application of fluid pressure differential to shape, reshape, i.e. distort, or sustain an article or preform and heat-setting, i.e. crystallizing of stretched or molecularly oriented portion thereof
    • Y10S264/904Maintaining article in fixed shape during heat-setting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Textile Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

公开了一种单件共同固化复合翼。所述翼具有飞行的表面和结构件。在一个实施例中,结构件可以是多个翼梁。所述翼梁具有不同的形状以增加弯曲强度。翼梁可以是波形,诸如正弦曲线形状。飞行表面和结构件被共同固化以形成单件、整体翼结构。用于制造单件共同固化翼的过程也被公开。所述过程可以包括展开设置翼的飞行表面用的复合片。然后,翼梁的复合材料被围绕多个可加压模型而设置。最后,复合材料在蛤壳框架中被固化。

Description

单件共同固化复合翼
技术领域
本发明涉及翼结构,具体而言,本发明涉及单件复合翼结构。
背景技术
飞机翼的设计引起设计上多种困难问题。为了设计有效的翼必须平衡多种因素。一个考虑就是翼的形状。所述翼必须具有适当的机翼形状以产生理想的升力。翼的飞行表面必须使得其不干扰空气的空气动力流动。所述翼也必须具有足够的强度以升起飞机的机身的重量。此外,许多飞机翼还被作为燃料箱,这增加了翼设计的复杂性。使得设计参数困难复杂化的是需要使得翼尽可能的轻。
飞机翼通常包括飞行表面和不同的结构件。所述结构件可以包括翼梁或者翼肋,所述翼梁或者翼肋在翼中彼此交叉。所述翼梁或者翼肋一起将升力从飞行表面传输到飞机的机身。翼梁和翼肋经常由机加工金属(诸如铝)制造,所述机加工金属被加工到精确的公差和负载要求。翼的飞行表面也可以是连接到结构件以限定翼的机翼的金属。
将飞行表面连接到结构件典型地包括在飞行表面和结构件中产生数千个的孔。然后需要数千个的铆钉,并经常需要将其手工地设置到各孔中。在翼中产生数千个的孔并将数千个的铆钉插入到孔中增加了翼的制造成本。此外,翼中的各孔弱化了飞行表面和结构件。此外通过增加用于翼的部件的数目,产生有缺陷的部件的机会也相应地增加。当前的翼设计的另外的缺点是,由于无数的紧固件和沉重金属结构件导致重量增加。
最近,复合材料作为飞机结构的理想材料而被引入。复合材料经常包括多股与树脂混合的纤维(典型地是碳素纤维)。所述纤维经常缠绕或者编制为一片材料,然后用树脂浸制。复合材料然后形成为所需的形状并固化直到进行了适当地变硬。复合材料的优点是重量极其轻,强度特别高。此外,复合结构很容易模制为所需的形状和结构。
可惜的是,复合材料有几个缺点。首先,复合材料非常昂贵。高成本是由于原材料以及从原材料制造复合部分的成本所导致。较高的复合结构制造成本与昂贵的原材料相组合,经常使得不能使用复合材料。
复合材料的另外的缺点在于复合材料的装配。将复合材料和其它材料装配必须进行不同的考虑。在复合材料中设置用于连接紧固件的孔切断了材料内的纤维束,并在材料内产生弱化点。尽管通过替换未固化的纤维束在复合材料中形成孔防止纤维被切断,此过程是耗时的并且经常是不实际的。
装配复合材料的另外的可选方案是使用高强度环氧树脂。环氧树脂的优点是限制了制造步骤的数目。但是,环氧树脂的分布和与部件的设置一起需要昂贵的车床和多个夹具。
不管复合材料还是传统的金属被使用在翼中,必须执行对各紧固件连接件的检测。显然,翼中的紧固件和连接件越多,就需要更多的检测。不仅在制造之后检测这些紧固件和连接件,在飞机的整个寿命周期中也必须周期地检测它们。这样,翼的结构的关系不仅在于翼的初始成本,而且也涉及到翼的寿命中的维护的成本。
因此,现有技术中需要一种限制翼中的紧固件的数目的翼。也需要可以有限的步骤来装配的翼。还需要重量轻的翼。也需要一种限制制造和维护过程中所需的检测程度的翼。还需要一种低成本的翼。这样的翼和用于制造翼的方法也被公开和在权利要求中进行了说明。
发明内容
本发明的装置和方法针对现有技术中所存在的问题而研发,尤其针对现有技术中可获得的翼结构还不能解决的问题。这样,本发明的总体的目的是提供一种单件共同固化复合翼。
所述翼包括复合飞行表面和复合结构件。飞行表面和复合结构件共同固化以形成单件复合翼。各种结构件可以并入翼中。例如,结构件可以包括翼梁、翼肋和其它这样的部件。
在一个实施例中,翼梁可以是I-梁。所述I-梁可以包括两个背靠背设置的C形梁。翼梁的其他实施例可以具有J形横截面或者C形横截面。所述翼梁可以包括翼梁端和边带。包括翼梁端和边带的丝带可以根据设置在独立部件上的载荷而取向。
此外,翼梁可以是波形。所述波形可以是正弦曲线形状或者具有阶梯波形。翼梁中波的振幅和频率可以根据翼梁以及沿着单个翼梁的长度而变化。所述翼梁也可以具有不同的扁平部分或者具有不同几何形状的部分,以容纳诸如交叉晃动门(intersecting slosh gate)的不同的连接件和结构。
翼的飞行表面可以包括上部飞行表面和下部飞行表面。上部飞行表面和下部飞行表面可以包括两个单独的复合材料片,或者可选地两个飞行表面可以由单片复合材料构成。其它的实施例可以使用多片复合材料以形成飞行表面。用于飞行表面的不同的复合材料层可以具有被选择的交叉点,诸如翼的前缘之下的位置。
单件共同固化复合翼可以通过不同的方法制造。在一种方法中,复合翼可以首先通过将复合材料层设置在用于第一飞行表面的第一蛤壳框架上而制造。然后,多个可加压模型可以被对齐以限定翼的结构件,复合材料被可选地设置在可加压模型之间。接着,用于上飞行表面的复合材料可以设置在可加压模型和用于下飞行表面的复合材料之上。一旦复合材料和可加压模型被构造,蛤壳框架被闭合,复合材料被固化。
在所述过程的一个实施例中,可加压模型可以在复合材料被固化时加压。对模型的加压使得复合材料通过蛤壳框架和所述模型限定为特定的形状。此外,可加压模型可以具有通过薄膜所围绕的泡沫芯部。所述泡沫芯部在固化的过程中也可以收缩,这样泡沫芯部可以很容易被移除,薄膜可以从复合翼中剥落。
本发明的这些和其它特征、优点将从下述说明和所附的权利要求中变得显而易见,或者可以通过此后的本发明的实施而了解。
附图说明
为了更加清楚说明本发明的特征和优点,下面将参照附图对本发明进行详细说明。但是本发明不限于所显示的实施例,其中:
图1是具有切除部分的翼的透视图;
图2是翼梁的一个实施例的侧视图;
图3是用于装配复合翼的方法的分解装配视图;
图4是蛤壳框架和端板的透视图。
具体实施方式
现在将参照图1-4详细说明本发明的优选实施例,其中相似的附图标记指示相同或者功能相似的部件。本发明的部件,如通常图中所描述的那样,可以较宽的类型的结构来实施。这样,下述本发明的更详细的说明不是为了限制本发明的范围,而只是代表本发明的优选实施例。
本发明提供了单件共同固化复合翼结构。参照图1,具有复合飞行表面112和多个复合结构件的单件共同固化翼100被显示。复合结构件可以具有保持飞行表面112的通常形状和允许翼结构100的升力被传输到机身(未示出)的不同的实施例。
翼结构100可以包括翼的不同的部件,诸如副翼、翼梢、水平稳定器、垂直稳定器、襟翼、升降舵、鸭式翼等。这些翼结构将具有共同固化到单件中的飞行表面和结构件。在一些示例中,结构件可以包括飞行表面的变厚部分以提供结构支撑。此处参照翼100或者翼结构必须包括翼100的独立可连接部件,例如上述所列的部件,而不只是翼的主要部分。必须注意不同的部件不需要彼此共同固化,而是各独立的部件是单件共同固化结构。
此外,翼100的重复和产生翼100的方法包括完整的翼展或者梢对梢翼(tip-to-tip wing)。实现单件共同固化左和右翼结构可以减小将左翼和右翼彼此连接以及将两个单翼连接到机身的装配步骤。这样,此处说明的翼包括完全的梢对梢翼展、单翼和各种翼结构。
在所示的实施例和图1中,结构件包括多个翼梁116。但是,诸如翼肋和强化件的结构件也可以并入到翼100中。通常,翼梁116沿着翼100的长度设置,所述长度处于横向4上。翼梁116对翼100提供了结构支撑,以在飞行的过程中容纳翼100上所承受的较大的载荷。翼梢120上的载荷趋于导致翼100弯曲和故障。但是,翼梁116的存在将充分强化翼100用于飞行。
翼100也可以并入通常垂直于翼梁116设置的翼肋(未示出)。所述翼肋具有通常在横向方向6上与翼100的横截面形状相似的形状。与翼梁116相似,翼肋在飞行的过程中对翼100提供结构支撑。翼肋可以完全沿着翼100的横向6宽度设置,或者可选地,翼肋可以只设置在可选的翼梁116之间。
可以并入到翼100中的其它结构件包括设置在飞行表面112的内部上的强化件118。强化件118可以是连接到或者一体形成到飞行表面112的内部的小的被支撑结构。此外,强化件118可以并入刚性材料,所述刚性材料被嵌入复合飞行表面112内。
翼100具有将飞行表面112和诸如翼梁116的结构件合并到单件共同固化复合翼100中的优点。共同固化使得飞行表面112的复合材料和结构件一起同时固化。当飞行表面112和结构件被共同固化,树脂浸制复合材料的固化将飞行表面112粘接到结构件。通过共同固化所述翼100,使用紧固件将飞行的表面112连接到结构件可以被避免。此外,经常需要被用于将结构件彼此连接的紧固件也可以被消除。
在典型的非复合、或者非共同固化翼中,诸如铆钉的多个紧固件被用于将飞行表面连接到结构件。这些紧固件对翼显著地增加了成本,因为紧固件的实际的成本以及在连接紧固件中所需的大量的装配时间。典型地,数千的孔必须被设置在飞行表面内以提供对结构件的连接。飞行表面中的各孔减小了飞行表面的强度并产生了额外的部件需要检测安全。消除紧固件还有许多其它的优点。这样,单件共同固化复合翼100减小了装配成本和部件数以及增加了翼100的集成。
飞行表面112的复合材料可以是复合材料宽板。复合材料可以缠绕、编织或者其它方法形成。对飞行表面112而言,由尽可能少的层数制造是有利的。通过对飞行表面112通常使用较宽的复合材料,接缝的数目可以受限。限制飞行表面112的接缝的数目通过提供更少的材料分离位置而产生更强的结构。此外,通常无缝的飞行表面112可以具有更好的空气动力学特征并需要更少的装配时间。
翼100的飞行表面112通常可以被描述为上飞行表面124和下飞行表面128。上飞行表面124和下飞行表面128可以包括围绕翼100的单片复合材料并在交叉的位置132上被连接。交叉位置132实际上是复合材料的单件的两端相遇的接缝。交叉位置132处于小应力的位置以及不影响翼100的空气动力学的位置也许是优选的。一个这样的位置显示在图1中,下飞行表面128之上的翼的前缘136之下。
可选的,上飞行表面124和下飞行表面128可以是两个单独的复合材料片。每个层可以基本覆盖上飞行表面124和下飞行表面128之一。但是,在可选的实施例中,复合层之一可以跨越上飞行表面124和下飞行表面128之间,以避免高应力位置中的接缝,诸如前缘136。另外的飞行表面124结构可以并入多层复合材料。
此外,飞行表面112可以由通常是固体的并具有很少的开口的复合材料构成。通常复合材料在各个丝带之间具有开口。这些开口可以被密封以产生完整的飞行表面112。这就必须将开口填充额外的材料或者用一层固体材料覆盖整个飞行表面112。每个选项都产生了额外的装配成本并增加了翼100的重量。同时通常实心和较轻重量的复合材料对飞行表面112是优选的,普通技术人员会认识到多种不同的材料可以被用于产生单件共同固化翼100。
在一个实施例中,当没有固化时,飞行表面112的复合材料具有与布相似的特征。布状特征允许复合材料形成为结构件或者飞行表面112的形状。一旦复合材料被固化,其通常具有刚性特征,所述特征与金属板或者塑料的相似。
飞行表面112与结构件协作以产生高强度翼100。在一个实施例中,结构件包括位于侧向取向4上的翼梁116。翼梁116被构造以保持翼100的形状并将飞行表面112上的升力传输到机身(未示出)。翼梁116可以并入不同的形状以对翼提供足够的强度。
如图1中所示,一些翼梁116a具有波形侧面4尺寸,而另外的翼梁116b通常是直的。尽管翼100可以只使用波形翼梁116a或者窄翼梁116b,不同形状的翼梁116的组合可以允许具有最大的强度和最小的重量。通常,波形翼梁116a比相同厚度和重量的直翼梁116b具有更高的强度。波形翼梁116a由于所增加的材料的缘故而比直翼梁116b更重。
所述波形将增加波形翼梁116a中的屈曲强度。所增加的强度通过将波形翼梁116a看作是一系列端对端连接的小梁段而理解,相邻的梁段在不同的方向中取向。当一个梁段靠近弯曲极限,弯曲力可以被传输为相邻梁段中的剪应力(sheer force)。这样的交互将在波形翼梁116a整个上发生,在所述整个波形翼梁116a上相邻梁段彼此支撑。
在图1所示的实施例中,波形翼梁116a中的波形通常是正弦曲线。但是,另外的波形图案可以应用到翼梁116中。例如,翼梁116可以是阶梯波形,其通常沿着翼梁116的长度具有角向弯曲。波形翼梁116a的其它变形形式可以沿着翼梁116a的长度变化振幅和频率,或者在单个翼100中对不同的翼梁116a而变化。
波形翼梁116a可以被设计使得翼梁116a中的波形的振幅和频率对应翼100的不同部分的不同载荷需要。例如,在具有较小载荷的翼100的位置中,翼梁116a可以具有更大的振幅和频率以对应较大的载荷。通过沿着其长度变化翼梁116a的形状,翼梁116a可以用最小的重量来设计最佳的强度。
翼梁116也可以具有不同的其它几何形状以接收其它结构和非结构件。例如,图1中所示的翼梁116沿着翼梁116的长度具有安装结构140。在此实施例中,安装结构140具有扁平的表面以允许结构的垂直连接。例如,交叉结构可以是晃动门144。
晃动门144存在以防止燃料在翼100中自由流动。在许多飞机应用中,翼100用作飞机的储油箱。在所示的翼100中,燃料可以被设置在通过三个波形翼梁116a所限定的两个通道中。在飞行中,飞机将进行不同的翻转和操作,这将导致液体燃料从翼100的一侧晃动到另外一侧。晃动门144被设置以防止燃料在翼100内快速流动。晃动门144可以或者不是结构化的。同样,晃动门144可以是翼肋的一部分或者其它的结构件。
翼梁116可以具有开口以允许流体在通过翼梁116所限定的通道之间流动。所述开口允许燃料在通过翼梁116所限定的通道之间流动。翼梁116可以沿着翼梁116包括不同的设置结构以允许翼100的布线、液压系统、或者机械部件的连接。
单翼梁116也可以是波形剖面以及直剖面的组合。例如,限定翼盒(wing box)148的翼梁116在翼100的主剖面中可以是波形状并具有直剖面,在所述直剖面上,翼梁116变为翼盒148的一部分。其它的翼梁116可以在翼盒148之前截止,这样它们只存在于翼100的主剖面中。不同的翼梁116可以沿着单翼梁116具有其它波形和直剖面的组合。在另外的实施例中,翼梁116可以位于右翼和左翼之间,从而在两个翼之间产生稳定的连接。
现在参照图2,波形翼梁116a的横截面被显示。尽管波形翼梁116a被显示,横截面视图的特征可以应用到直翼梁116b或者其它形状的翼梁116。所述翼梁116可以包括多层复合材料。复合材料层可以形成为I-梁。I-梁对飞机翼100的结构件是优选的。I-梁提供了优良的弯曲、扭转和剪切特征,这对普通技术人员是公知的。
翼梁116可以包括翼梁端212和边带216。通常在I-梁结构中,I-梁的不同剖面具有不同的承载功能。边带216通常被构造以接收和管理设置在翼梁116上的剪切应力。此外,边带216对可选载荷提供弯曲阻力。翼梁端212也提供弯曲阻力和扭转阻力。但是,相同的特征可以用其它横截面形状的翼梁116来实现,诸如C-梁和J-梁。
翼梁116的各剖面的丝带的取向将根据设置在所述剖面上的载荷而变化。例如,边带216通常容纳剪应力较大的部分。因为剪应力在45度上最大,优选地一些丝带和边带216的取向也是45度,所述角度从翼梁端212作参考基准。
同样,翼梁端212中的丝带的取向可以是用于接收翼梁端212上的载荷的取向。例如,翼梁端212中的丝带可以从翼梁116的长度以0角度对齐。这样,设置到翼梢120上的载荷将丝带张力设置在翼梁端212之内,丝带上的张力载荷是优选的。
如图2中所示,翼梁116可以由多层复合材料所形成。各层可以具有不同的材料复合,包括不同的取向、不同的厚度和不同的纤维材料。例如,翼100可以基本由碳纤维所制造并具有连续纤维玻璃、凯夫拉尔(Kevlar)、金刚砂或者其它材料。通过变化复合材料的成分,翼梁116的各独立部分可以对设置在翼梁116上的载荷精确地设计。飞行表面124的材料可以相似地对各层变化。
此外,飞行表面112可以包括多层复合材料。复合材料可以相似地具有不同取向的不同层。层数和取向可以在飞行表面112的所有的不同的表面上变化。例如,高应力的区域可能需要额外的复合材料层以接收应力。
在其它的实施例中,制造多层复合材料可以在单个过程中用不同的取向来制造。这样的过程将对给定的部件产生多层以及在单个过程中丝带的不同取向。此过程可以是丝绕过程,丝带的层数和取向被缠绕在芯轴或者滚筒上。在制造过程中,通过产生预定数目的层以及所需的复合材料所需取向,装配翼100的步骤数目可以被减小。
复合材料可以通常设置在由多股复合纤维带制造的较大的缠绕或者编织的复合材料片中。复合材料片具有与织物相似的特征,复合材料是可褶皱的。复合材料片也可以切割为不同的形状以形成翼剖面。一个这样的复合材料在本领域中公知为FybeX。
复合材料可以包括导电层以绝缘翼100和翼结构防止闪电击。导电层可以包括铜、铝或者其它当复合材料被制造时缠绕到复合材料的外层上的连接金属。所述层可以包括不同股的导电材料。在装配的过程中,导电材料被取向使得其被设置在翼100的外部上。这样,翼100可以被保护防止被闪电击中。
用于翼100的复合材料可以包括在丝带被缠绕到复合材料层中之前用树脂预先浸制的丝带。通过将复合材料用树脂预先浸制,所述树脂将出现在不同层的翼梁116和飞行表面112中。均匀分布的树脂将增加固化复合材料的强度。树脂可以包括不同的环氧树脂和硬化剂,诸如酚醛塑料和双酚。
复合材料层可以还具有多个向下台阶剖面224,在所述多个向下台阶剖面224上不同的层彼此结合。向下台阶剖面224允许在翼梁端212和飞行表面112之间光滑过渡。向下台阶剖面224防止产生较大应力上升位置的产生。应力上升将在材料厚度突然或者较大变化的位置中产生。但是,通过对复合翼100内的部件提供光滑过渡,部件的接合点和相交点的应力将受到限制。
在I-梁的实施例中,具有I-形状横截面的翼梁116可以通过将两个C形剖面的复合材料背靠背设置而形成,这样其形成I-梁。两个C形状剖面的复合材料可以由通常细长的矩形板复合材料来形成。矩形板复合材料可以简单地被折叠为C形剖面并于另外的C形剖面相结合以形成I-梁。这样的程序将允许当以I-梁工作时更容易的制造步骤。
诸如晃动门144或者翼肋的其它结构件可以使用相似的布层技术来产生。部件的功能必须在选择层数、丝带的取向和部件的通常结构时考虑到。例如,晃动门144可以不需要承载较大的载荷。这样,晃动门144可以需要比从翼肋或者其它的承载部件所需更少的层数。
一旦复合材料被制造,复合材料形成为翼100的形状。不同的方法可以被实施,以将复合材料形成为翼100。通常,形成单件共同固化翼100的过程包括对不同的复合材料取向为翼100的合适形状,然后固化复合材料。
图3显示了制造复合翼100的一个实施例。控制复合翼100的形状和轮廓的方法可以通过多个蛤壳框架312、316以及多个可加压模型320实现。在未固化时,多个复合材料可以具有织物状特征。蛤壳框架312、316和可加压模型320被构造以在装配和固化时保持织物状复合材料为所需的形状。
蛤壳框架312、316可以包括上蛤壳框架312和下蛤壳框架316。上蛤壳框架312基本限定上飞行表面124,下蛤壳框架316基本限定下飞行表面128。蛤壳框架312、316基本是限定翼100的外部形状的框架。
可选地,蛤壳框架312、316可以被分为两个不同的部分,这样第一蛤壳框架限定翼100的前缘136,第二蛤壳框架限定翼100的后缘138。此外,多于两个的蛤壳框架可以被使用以形成翼100。蛤壳框架312、316也可以可枢转地彼此连接。枢转连接件将允许蛤壳框架312、316部分很容易彼此闭合。
在图3所示的实施例中,蛤壳框架312、316是装蛋箱结构,具有通常实心的控制表面324以控制复合材料的形状。蛤壳框架312、316可以由任何合适的刚性材料、诸如金属、复合材料、塑料等制造。但是,所述材料可以优选地是重量较轻的,以允许容易传输和运动。通常,蛤壳框架312、316的结构可以是支撑控制表面324的任何结构。
上蛤壳框架312和下蛤壳框架316被构造连接以形成通常闭合的结构。在所示的实施例中,蛤壳框架312、316连接以在各侧上形成具有开口端的翼100,如图4中所示。蛤壳框架312、316的一侧可以包括翼盒腔32g。其它的开口可以出现在蛤壳框架312、316中以形成不同的翼100结构。
控制表面324具有可以应用到翼100的表面光洁度。控制表面324的表面光洁度将被传输到与控制表面324接触的复合材料。这样,蛤壳框架312、316的控制表面324的表面光洁度必须被选择以允许施加涂料并提供理想的空气动力学特征。
尽管蛤壳框架312、316限定翼100的外部尺寸,可加压模型320限定了内部结构件的形状并将偏压力相对蛤壳框架312、316设置到复合材料上。通常,可加压模型320可以是能够在固化的过程中控制复合材料的形状的任何结构。
在一个实施例中,可加压模型320包括通过薄膜336所围绕的泡沫芯部332。泡沫芯部332被构造以与复合材料相接触,从而限定复合材料的形状。如前所示,一些复合材料116具有正弦曲线形状。为了限定正弦形状剖面或者其它波形剖面,泡沫芯部332被形成具有正弦形状侧面。泡沫芯部332可以被模制或者切割为理想的形状和轮廓。
此外,泡沫芯部332的形状和轮廓必须对应相邻的可加压模型320的形状和轮廓。这种对应产生的模型用于控制复合材料的形状。例如,在一个泡沫芯部332在正弦波中具有峰值,相邻的泡沫芯部332将在正弦波中具有波谷。这样,通过在两个泡沫芯部332之间设置一件复合材料,复合材料将被迫形成波形。
可加压模型320的泡沫芯部332可以通过薄膜336所覆盖。薄膜336可以由任何数目的弹性材料(诸如硅)形成。薄膜336可以用于可加压模型320中的几个功能。首先,薄膜336可以在复合材料和泡沫芯部332之间提供屏障。在固化的过程中,泡沫芯部332的部分可以嵌入复合材料的树脂中。但是,使用薄膜336防止树脂与泡沫芯部332相接触。
薄膜336的另外的功能是保护泡沫芯部332在装配的过程中免受损坏。泡沫的边缘容易损坏,并具有通过与另外的物体相接触的最小的接触的表面所不需要的形状。通过用薄膜336覆盖泡沫芯部332,可以维持泡沫芯部形状的整体性。
薄膜336可以接收空气输入以对模型320进行加压。薄膜336可以基本围绕泡沫芯部332,这样当空气进入薄膜336,可加压模型320部分充气。气体可以通过入口管340或者其它相似的输入机构进入薄膜336。入口管340可以连接到压力气体源,以对模型320加压。
模型320内的压力将根据薄膜336材料和合成材料的厚度而变化。更厚的合成材料和刚性更大的薄膜336材料将需要更大的压力以将复合材料形成所需的形状并在固化的过程中保持所述材料的形状。在一个实施例中,压力对应一种硅薄膜336和复合材料结构而言可以是30psi和50psi之间。但是,其它的薄膜336和复合材料可以需要大于50psi的压力,或者可选地小于30psi的压力。
模型320的加压提供了几个功能。模型320的加压的一个功能是相对相邻的模型320或者蛤壳框架312、316对复合模型320施力。通过多个压力模型320所产生的力将复合材料迫使为模型320或者蛤壳框架312、316的形状和轮廓。
此外,非可加压模型也可以被使用。非可加压模型可以与可加压模型相似,但是,非可加压模型在固化的过程中将不会被充气。非可加压模型可以相对可加压模型偏压以形成复合材料。但是,所有的形状可加压是优选的。全部使用可加压模型允许复合材料相对框架312、316的控制表面324均匀偏压。
可加压模型320也允许模型320的尺寸的一定的公差。缠绕或者设置多层复合材料可以产生具有变化厚度区域的复合材料并产生通常较低的公差。同样,泡沫芯部332和周围的薄膜336将具有较低的公差。为了补偿较低的公差,可加压模型320膨胀以填充可加压模型320和复合材料之间可获得的空间。
可加压模型320的另外的优点是力通过可加压模型320被施加在复合材料上。如图2中所示,复合结构典型地由多个复合材料层所制造。通常优选地复合材料中的空穴或气穴的数目被最小化。为了实现这个目的,可加压模型320将力施加在多层复合材料上,将所述层设置在一起。当复合材料层被设置在一起时,气穴被排除,空穴被填充。
薄膜336可以围绕泡沫芯部332通过将薄膜336设置在通常管形和可变形部分中而缠绕。薄膜336的管形部分可以通过将薄膜336插入到管中而打开,然后利用管密封薄膜336的边缘。真空然后施加到管的侧面以迫使薄膜336的管形段打开。泡沫芯部332然后可以插入到打开的薄膜中。一旦泡沫芯部336在位,真空可以被移除,薄膜可以被允许缠绕泡沫芯部332。
可加压模型320的尺寸和形状将依赖于翼100的类型和翼100的内部结构。图3的可加压模型320被构造以产生具有五个翼梁116,三个中心翼梁116a是正弦波形,并且没有晃动门144。为了实现翼100的结构,不同形状的可加压模型320被使用。
确定翼100的前缘136的第一可加压模型320a具有一个侧面,所述侧面具有弯曲的边缘,另外一侧通常具有扁平部分以产生垂直翼梁116b。第一可加压模型320a相对蛤壳框架312、316的前缘136挤压复合材料。第二可加压模型320b可以具有直的侧面和正弦侧面。直的侧面邻接第一可加压模型320a的直侧,第二可加压模型320b的正弦侧面邻接第三可加压模型320c的正弦侧面。另外的可加压模型320d、300e、300f具有相似形状的侧面以控制结构件的形状。
可加压模型320可以在可加压模型320的单个侧面上从平直形状过渡到正弦的形状,例如第三可加压模型320c中所描述的。可能需要波形与可加压模型320之间的过渡,以允许不同结构的连接或者从不同的部分的过渡。例如,在图3所示的实施例中,可加压模型320具有剖面以形成翼盒148。其它的实施例可以具有扁平段以连接晃动门144、铠装线、液压管道等。
此外,可加压模型320的长度也可以变化以容纳不同形状的翼100或者不同的结构件。例如,具有晃动门144的翼100可以用三个轴向对齐的更小的可加压模型替换单个可加压模型320。这样,复合材料可以在更小的可加压模型之间设置以产生晃动门144或者其它特征。
一旦蛤壳框架312、316和可加压模型320被提供,复合翼100可以被装配。首先,飞行表面112的复合材料被设置在蛤壳框架312、316上。在一个实施例中,下飞行表面128用的复合材料被设置在下蛤壳框架316上,上飞行表面124用的复合材料被设置在上蛤壳框架312上。上蛤壳框架312可以从图3中所示完全颠倒翼,将上飞行表面124用的复合材料设置到上蛤壳框架312上。
复合材料优选地有点粘以允许复合材料粘接到蛤壳框架312、316和可加压模型320。通过使用粘性的复合材料,复合材料可以被设置在不同的支撑结构上,而不使用额外的连接装置或者物质。这样,上飞行表面124的复合材料可以粘接到上蛤壳框架312的控制表面324上,这样上蛤壳框架312可以被翻转以在不干扰上飞行表面124复合材料的情况下连接到下蛤壳框架316。
为了均匀的将复合材料粘接到蛤壳框架312、316,复合材料可以真空挤压到蛤壳框架312、316的表面324上。诸如塑料的气密材料可以设置在表面324之上并围绕边缘密封。然后真空可以施加到气密材料,空气被排空。一旦空气被排空,空气压力将基本均匀的力施加到复合材料上,将复合材料粘接到蛤壳框架312、316的表面324上。
本发明也允许底漆层被共同固化到复合翼100的表面上。为了实现底漆层共同固化到复合翼100,底漆被施加到控制表面324。底漆可以被喷溅、轧辊或者刷到控制表面上。一旦底漆被施加到控制表面324,上飞行表面124和下飞行表面128复合材料被设置到底漆控制表面324上。当飞行表面124、128的复合材料相对控制表面324偏压,复合材料被固化到控制表面324上的底漆上。
一旦翼100被固化,翼100从框架312、316移除。当翼100被移除时,底漆将从控制表面释放并保持粘接到翼100。这个过程通过限制固化后的数目而允许制造周期时间被减小。此外,当底漆在控制表面324上干化之后,底漆的表面光洁度可以通过控制表面324的表面光洁度来限定。这样,外部尺寸和底漆的光洁度可以通过框架312、316的控制表面324来控制。
如前所述,构成飞行表面112的材料可以是单件或者多件。在使用飞行表面112用的单件复合材料的翼100中,单件复合材料可以设置在下蛤壳框架316上。一旦模型320和复合材料在位,单件复合材料可以被折叠以形成上飞行表面。
此外,下飞行表面128不需要完全位于下蛤壳框架316上。同样,上飞行表面124可能不是完全位于上蛤壳框架312上。上飞行表面124的一部分可以向下延伸到下蛤壳框架316,或者反过来。这可以在其形成飞行表面112的复合材料相交的地方不需要以出现在翼100的后缘或者后缘138上。
一旦用于飞行表面112的复合材料被设置,翼梁116可以与可加压模型320一起形成。在一个实施例中,翼梁116的复合材料被设置在C形剖面中。C形剖面可能是优选的,因为其包括细长的折叠到两个侧面上的矩形复合材料段翼形成C形剖面,这减小了复合材料的复杂性。
在一个实施例中,C形剖面部分被可加压模型320部分地包围。单个可加压模型320可以接纳或者成形多于一个的复合材料剖面。例如,两个C形复合材料剖面可以完全围绕可加压模型320,这样两个C形剖面彼此接触。可选地,复合材料的C形剖面可以只覆盖可加压模型320的一部分。
再次,粘性复合材料的使用允许复合翼梁116材料被连接到可加压模型320并允许可加压模型320被移动并设置,而复合材料没有落下。一旦C形剖面被连接到可加压模型320,可加压模型320可以设置在下蛤壳框架316上。当可加压模型320被设置在下蛤壳框架316上,不同的C形剖面可以背靠背对齐,形成I-梁。
在可选的实施例中,翼梁116用复合材料可以设置在I-梁形状剖面中,复合材料一次围绕多个模型。在另外的一个实施例中,复合翼梁116可以设置在翼梁端212和边带216的独立部分中。但是,增加部件的数目和复合材料的复杂度将增加制造时间和成本。
一旦可加压模型320和被连接的复合材料被设置在下飞行表面128的复合材料上,上飞行表面124用复合材料可以设置在顶部。飞行表面112用多层复合材料可以被使用。上蛤壳框架312然后可以设置在下蛤壳框架316上,包围了复合材料和可加压模型320。
现在参照图4,上蛤壳框架312和下蛤壳框架316显示处在闭合状态中。上蛤壳框架312和下蛤壳框架316的连接形成了翼形的内部体积。蛤壳框架312、316的连接必须足以保持通过可加压模型320所产生的向外的力。
多个端板342可以连接到蛤壳框架312、316的端部以密封蛤壳框架312、316的端部。板342的端部可以通过多个不同的紧固件诸如螺栓或者螺钉来连接到蛤壳框架312、316。多个安装孔344可以设置在端板342内和蛤壳框架312、316上。通过在固化的过程中控制复合材料的形状,端板342可以具有与可加压模型320和控制表面324相似的功能。可加压模型320将相对蛤壳框架312、316的端板342挤压复合材料。端板342也防止复合材料部分延伸出蛤壳框架312、316。
端板342的另外的功能是支撑入口管340,如图3所示,所述入口管从可加压模型320延伸。多个孔348可以设置在端板342中以容纳入口管340。入口管340然后可以连接到压力气体源以对可加压模型320充气。
一旦复合材料和可加压模型320设置在蛤壳框架312、316内,模型320可以通过压力气体源来施压。当可加压模型320施压时,膨胀的薄膜336的力相对蛤壳框架312、316的内表面迫使复合材料并且也相对彼此对可加压模型320施力。复合材料然后固化,同时模型320受压。当复合材料固化时,所述材料将通过可加压模型320保持在位。这样合成材料可以通过蛤壳框架312、316和可加压模型320限定的形状。
当复合材料固化时,复合材料的单独部分将结合在一起。复合材料的结合通过可加压模型320的压力协助,将复合材料件彼此挤压。当复合材料件固化时,翼100的部件产生单件结构。
不同的复合材料需要不同的固化时间和温度。固化时间和固化温度必须根据翼100的厚度和结构对各单独的复合材料进行选择。此外,可加压模型320内的压力可以在固化过程的不同阶段变化。
在固化过程的过程中或者之后,可加压模型320可以被加热到可加压模型320的泡沫芯部332收缩的温度。泡沫的收缩必须足以允许剩余的泡沫芯部332很容易从翼100中移除。一旦泡沫芯部332被移除,薄膜336可以从复合翼100的内表面移除。
此处所描述的方法只是可以应用到产生单件共同固化复合翼的一个实施例。此应用包括了多个其它形成这样的翼的方法。通常,翼包括复合飞行表面,其包括上下飞行表面。飞行表面围绕多个复合结构件。复合结构件和复合飞行表面被共同固化翼形成单件翼。
尽管对本发明的一些实施例进行了说明,普通技术人员可以理解在不背离本发明的精神和原则的情况下可以对本发明进行修改和变化,其范围由所附权利要求书所限定。

Claims (57)

1.一种复合翼结构,包括:
复合飞行表面;以及
复合结构件,其中所述飞行表面和结构件形成单件共同固化复合翼。
2.根据权利要求1所述的装置,其特征在于,所述结构件包括至少一个翼梁。
3.根据权利要求2所述的装置,其特征在于,所述翼梁具有翼梁端。
4.根据权利要求3所述的装置,其特征在于,所述翼梁端包括通常从飞行表面平行取向的丝带。
5.根据权利要求2所述的装置,其特征在于,所述翼梁具有边带。
6.根据权利要求5所述的装置,其特征在于,所述边带包括相对翼梁的长度以大约45度取向的丝带。
7.根据权利要求2所述的装置,其特征在于,所述翼梁包括两个大体C形的复合剖面。
8.根据权利要求7所述的装置,其特征在于,所述C形剖面被设置在相对的取向中以形成I-梁。
9.根据权利要求2所述的装置,其特征在于,所述翼梁具有大体J形横截面。
10.根据权利要求2所述的装置,其特征在于,所述翼梁具有C形横截面。
11.根据权利要求2所述的装置,其特征在于,所述至少一个翼梁是正弦形状。
12.根据权利要求2所述的装置,其特征在于,所述至少一个翼梁是波形。
13.根据权利要求12所述的装置,其特征在于,所述波形具有变化的频率。
14.根据权利要求12所述的装置,其特征在于,所述波形具有变化的振幅。
15.根据权利要求12所述的装置,其特征在于,所述波形是阶梯波。
16.根据权利要求2所述的装置,其特征在于,所述翼梁具有基本扁平的剖面以允许交叉结构的连接。
17.根据权利要求1所述的装置,其特征在于,所述翼具有上飞行表面和下飞行表面。
18.根据权利要求17所述的装置,其特征在于,所述上飞行表面大体由第一片复合材料构成,所述下飞行表面大体由第二片复合材料构成。
19.根据权利要求18所述的装置,其特征在于,所述第一片和第二片在翼的后缘之下的位置上交叉。
20.根据权利要求1所述的装置,其特征在于,所述复合结构件是翼肋。
21.根据权利要求1所述的装置,其特征在于,所述翼结构是完整的翼展。
22.根据权利要求21所述的装置,其特征在于,完整的翼展具有在整个翼展上连续的翼梁。
23.根据权利要求1所述的装置,其特征在于,所述翼结构是副翼、翼梢、水平稳定器、垂直稳定器、襟翼、升降舵、鸭式翼中至少之一。
24.根据权利要求1所述的装置,其特征在于,所述翼结构具有嵌入复合材料的多股导电材料。
25.根据权利要求1所述的装置,其特征在于,还包括共同固化到飞行表面的底漆层。
26.一种复合翼结构,包括:
复合飞行表面;
多个复合翼梁,所述复合翼梁具有大体正弦形状,其中飞行表面和多个复合翼梁形成单件共同固化翼;以及
多个晃动门,用于控制翼内燃料的运动。
27.根据权利要求26所述的装置,其特征在于,所述翼梁具有翼梁端。
28.根据权利要求27所述的装置,其特征在于,所述翼梁端包括通常从飞行表面平行取向的丝带。
29.根据权利要求26所述的装置,其特征在于,所述翼梁具有边带。
30.根据权利要求29所述的装置,其特征在于,所述边带包括从飞行表面大约45度取向的丝带。
31.根据权利要求26所述的装置,其特征在于,所述翼梁包括两个大体C形复合剖面。
32.根据权利要求31所述的装置,其特征在于,所述C形剖面被设置在相对的方向中以形成I-梁。
33.根据权利要求26所述的装置,其特征在于,所述翼梁具有J形横截面。
34.根据权利要求26所述的装置,其特征在于,所述翼梁具有C形横截面。
35.根据权利要求26所述的装置,其特征在于,所述翼梁具有大体扁平的剖面以允许连接晃动门。
36.根据权利要求26所述的装置,其特征在于,所述翼具有上飞行表面和下飞行表面。
37.根据权利要求26所述的装置,其特征在于,所述上飞行表面大体第一片复合材料构成,所述下飞行表面大体由第二层复合材料构成。
38.根据权利要求37所述的装置,其特征在于,所述第一片和第二片在翼的前缘之下的位置上交叉。
39.根据权利要求26所述的装置,其特征在于,还包括至少一个翼肋。
40.根据权利要求26所述的装置,其特征在于,所述翼结构是完整的翼展。
41.根据权利要求40所述的装置,其特征在于,所述完整的翼展具有在整个翼展上连续的翼梁。
42.根据权利要求26所述的装置,其特征在于,所述翼结构具有嵌入复合材料的多股导电材料。
43.根据权利要求26所述的装置,其特征在于,还包括共同固化到飞行表面的底漆层。
44.一种形成单件共同固化复合翼结构的方法,所述单件共同固化复合翼结构具有飞行表面和至少一个结构件,所述方法包括:
将第一飞行表面复合材料与第一蛤壳框架相对齐;
将多个模型对齐到第一蛤壳框架,其中复合材料被设置在可选的模型之间,其中可选的模型是可加压的;
将第二飞行表面复合材料设置在多个模型和第二蛤壳框架的控制表面之间;
将第一和第二蛤壳框架一起闭合;以及
固化复合材料。
45.根据权利要求44所述的方法,其特征在于,设置在可选模型之间的复合材料产生翼梁。
46.根据权利要求45所述的方法,其特征在于,所述翼梁包括两个大体C形的复合剖面。
47.根据权利要求46所述的方法,其特征在于,所述C形剖面以相对的取向被设置以形成I-梁。
48.根据权利要求45所述的方法,其特征在于,所述翼梁是正弦形状。
49.根据权利要求44所述的方法,其特征在于,所述模型是通过薄膜所围绕的泡沫芯部。
50.根据权利要求49所述的方法,其特征在于,可选可加压模型的薄膜能够在固化的过程中接收正压力。
51.根据权利要求49所述的方法,其特征在于,在固化的过程中泡沫芯部收缩。
52.根据权利要求49所述的方法,其特征在于,泡沫芯部的形状控制复合材料的成形。
53.根据权利要求44所述的方法,其特征在于,可选可加压模型相对蛤壳框架的控制表面挤压第一飞行表面和第二飞行表面。
54.根据权利要求44所述的方法,其特征在于,可选可加压模型压缩相邻模型。
55.根据权利要求44所述的方法,其特征在于,所述第一飞行表面和第二飞行表面是单片复合材料的一部分。
56.根据权利要求44所述的方法,其特征在于,所述翼结构是副翼、翼梢、水平稳定器、垂直稳定器、襟翼、升降舵、鸭式翼中至少之一。
57.根据权利要求44所述的方法,其特征在于,还包括将底漆层施加到第一蛤壳框架的控制表面和第二蛤壳框架的控制表面。
CN03814457A 2002-06-20 2003-06-19 单件共同固化复合翼 Expired - Fee Related CN100575189C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/175,722 US6889937B2 (en) 1999-11-18 2002-06-20 Single piece co-cure composite wing
US10/175,722 2002-06-20

Publications (2)

Publication Number Publication Date
CN1819947A true CN1819947A (zh) 2006-08-16
CN100575189C CN100575189C (zh) 2009-12-30

Family

ID=29999053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN03814457A Expired - Fee Related CN100575189C (zh) 2002-06-20 2003-06-19 单件共同固化复合翼

Country Status (8)

Country Link
US (2) US6889937B2 (zh)
EP (1) EP1585664B1 (zh)
JP (1) JP4607583B2 (zh)
CN (1) CN100575189C (zh)
AT (1) ATE493333T1 (zh)
AU (1) AU2003245544A1 (zh)
DE (1) DE60335576D1 (zh)
WO (1) WO2004000643A2 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102112297A (zh) * 2008-06-18 2011-06-29 Gkn航天服务有限公司 用于利用微波制造纤维加强复合材料的部件的方法和模具
CN102458992A (zh) * 2009-04-16 2012-05-16 空中客车德国运营有限责任公司 用于防止气体和/或液体从机翼盒流入飞机机身的装置
CN102656085A (zh) * 2009-12-18 2012-09-05 洛林航空工程公司 用于生产飞行器元件的复合后缘板的方法
CN102844563A (zh) * 2010-03-10 2012-12-26 乌本普罗帕蒂斯有限公司 风能设备转子叶片
CN104058097A (zh) * 2013-03-19 2014-09-24 波音公司 形成密封流动导管的接头组件
CN104192292A (zh) * 2014-09-17 2014-12-10 中航通飞华南飞机工业有限公司 一种复合材料整体共固化机身及加工方法
CN105035359A (zh) * 2015-07-28 2015-11-11 中国运载火箭技术研究院 一种刚度递减的复合材料一体成型舵面结构及加工方法
CN106182801A (zh) * 2016-07-15 2016-12-07 西北工业大学 一种飞行器泡沫夹芯复合材料舵面成型方法
CN109229373A (zh) * 2018-09-29 2019-01-18 中船重工(海南)飞船发展有限公司 一种全复合材料地效翼船的连接结构
CN110510145A (zh) * 2019-08-30 2019-11-29 中国民用航空飞行学院 一种三梁式复合材料机翼整体结构及其成型工艺方法
CN113602477A (zh) * 2021-07-26 2021-11-05 成都飞机工业(集团)有限责任公司 一种全复合材料的尾翼结构及其成型方法

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE406998T1 (de) * 2003-07-08 2008-09-15 Airbus Gmbh Leichtbaustruktur
FI118122B (fi) * 2004-10-08 2007-07-13 Patria Aerostructures Oy Ilma-aluksen kääntyvä paneeli ja komposiittirakenteinen tukikappale
EP1666354B1 (de) * 2004-12-01 2010-09-29 Airbus Operations GmbH Strukturbauteil, Verfahren zum Herstellen eines Strukturbauteils und Verwendung eines Strukturbauteils für eine Flugzeugschale
GB0426944D0 (en) * 2004-12-08 2005-01-12 Airbus Uk Ltd A trussed structure
FR2879496B1 (fr) * 2004-12-16 2008-12-12 Eurocopter France Procede et dispositif de fabrication d'une carene de rotor d'helicoptere, et carene obtenue
FR2882681B1 (fr) * 2005-03-03 2009-11-20 Coriolis Composites Tete d'application de fibres et machine correspondante
DE102006031491B4 (de) 2005-07-19 2010-09-30 Eurocopter Deutschland Gmbh Verfahren zur Herstellung eines dreidimensional gekrümmten Faserverbundwerkstoff-Strukturbauteils
EP1764307A1 (en) * 2005-09-14 2007-03-21 EADS Construcciones Aeronauticas, S.A. Process for manufacturing a monolithic leading edge
US7402269B2 (en) * 2005-10-25 2008-07-22 The Boeing Company Environmentally stable hybrid fabric system for exterior protection of an aircraft
GB2435457B (en) * 2006-02-28 2011-03-09 Hal Errikos Calamvokis Aircraft wings and their assembly
WO2007126405A2 (en) * 2006-03-30 2007-11-08 University Of Florida Research Foundation Inc. Airfoil for micro air vehicle
US7487937B2 (en) * 2006-03-30 2009-02-10 University Of Florida Research Foundation, Inc. Airfoil for micro air vehicle
GB0611875D0 (en) * 2006-06-15 2006-07-26 Airbus Uk Ltd A stringer for an aircraft wing and a method of forming thereof
CA2655709A1 (en) * 2006-07-06 2008-01-10 Airbus Deutschland Gmbh Method for producing a fibre composite component for aviation and spaceflight
DE102006031323B4 (de) * 2006-07-06 2010-07-15 Airbus Deutschland Gmbh Verfahren zur Herstellung eines Faserverbundbauteils für die Luft- und Raumfahrt
DE102006031325B4 (de) * 2006-07-06 2010-07-01 Airbus Deutschland Gmbh Verfahren zur Herstellung eines Faserverbundbauteils für die Luft- und Raumfahrt
DE102006031326B4 (de) * 2006-07-06 2010-09-23 Airbus Deutschland Gmbh Formkern und Verfahren zur Herstellung eines Faserverbundbauteils für die Luft- und Raumfahrt
DE102006031334A1 (de) * 2006-07-06 2008-01-10 Airbus Deutschland Gmbh Verfahren zur Herstellung eines Faserverbundbauteils für die Luft- und Raumfahrt
DE102006031336B4 (de) 2006-07-06 2010-08-05 Airbus Deutschland Gmbh Verfahren zur Herstellung eines Faserverbundbauteils in der Luft- und Raumfahrt
DE102006031335B4 (de) 2006-07-06 2011-01-27 Airbus Operations Gmbh Verfahren zur Herstellung eines Faserverbundbauteils für die Luft- und Raumfahrt
GB0616121D0 (en) * 2006-08-14 2006-09-20 Airbus Uk Ltd Moulding tool and method of manufacturing a part
US7753313B1 (en) * 2006-09-19 2010-07-13 The Boeing Company Composite wing slat for aircraft
US7713021B2 (en) * 2006-12-13 2010-05-11 General Electric Company Fan containment casings and methods of manufacture
CN101715411A (zh) * 2007-01-29 2010-05-26 空客运营有限公司 由复合材料制备的飞行器负载框架
FR2912680B1 (fr) * 2007-02-21 2009-04-24 Coriolis Composites Sa Procede et dispositif de fabrication de pieces en materiau composite, en particulier de troncons de fuselage d'avion
WO2008121005A1 (en) * 2007-03-29 2008-10-09 Falcomposite Limited Aircraft component manufacture and assembly
US8490362B2 (en) * 2007-04-05 2013-07-23 The Boeing Company Methods and systems for composite structural truss
US7954763B2 (en) * 2007-04-05 2011-06-07 The Boeing Company Methods and systems for composite structural truss
EP2153979B1 (en) * 2007-04-30 2016-10-19 Airbus Operations S.L. Multispar torsion box made from composite material
US7861969B2 (en) * 2007-05-24 2011-01-04 The Boeing Company Shaped composite stringers and methods of making
ES2335837B1 (es) * 2007-06-29 2011-02-18 Airbus España, Sl. Cubierta para boca de acceso de aeronave.
ITTO20070507A1 (it) * 2007-07-11 2009-01-12 Alenia Aeronautica Spa Procedimento di fabbricazione di una struttura d'ala monolitica a profilo integrale
US8042315B2 (en) * 2007-09-14 2011-10-25 Spectrum Aeronautical, Llc Reinforced composite panel
US8668858B2 (en) * 2007-09-14 2014-03-11 Spectrum Aeronautical, Llc Method for manufacturing a reinforced panel of composite material
US7828246B2 (en) * 2007-09-14 2010-11-09 Spectrum Aeronautical, Llc Wing with sectioned tubular members
FR2921899B1 (fr) * 2007-10-04 2011-04-15 Airbus France Procede de renforcement local d'un element en materiau composite, et caisson central de voilure pour aeronef renforce
US7879276B2 (en) * 2007-11-08 2011-02-01 The Boeing Company Foam stiffened hollow composite stringer
DE102008013759B4 (de) * 2008-03-12 2012-12-13 Airbus Operations Gmbh Verfahren zur Herstellung eines integralen Faserverbundbauteils sowie Kernform zur Durchführung des Verfahrens
ES2371401B1 (es) * 2008-06-27 2012-11-07 Airbus Operations, S.L. Estructura de superficie sustentadora de aeronave.
US9238335B2 (en) * 2008-07-10 2016-01-19 The Boeing Company Mandrel for autoclave curing applications
US9327467B2 (en) * 2008-07-10 2016-05-03 The Boeing Company Composite mandrel for autoclave curing applications
US8540921B2 (en) * 2008-11-25 2013-09-24 The Boeing Company Method of forming a reinforced foam-filled composite stringer
GB0900494D0 (en) 2009-01-14 2009-02-11 Airbus Uk Ltd Aerofoil Structure
FR2943943A1 (fr) * 2009-04-02 2010-10-08 Coriolis Composites Procede et machine pour l'application d'une bande de fibres sur des surfaces convexes et/ou avec aretes
US8500066B2 (en) * 2009-06-12 2013-08-06 The Boeing Company Method and apparatus for wireless aircraft communications and power system using fuselage stringers
FR2948058B1 (fr) * 2009-07-17 2011-07-22 Coriolis Composites Machine d'application de fibres comprenant un rouleau de compactage souple avec systeme de regulation thermique
FR2948059B1 (fr) * 2009-07-17 2011-08-05 Coriolis Composites Machine d'application de fibres avec rouleau de compactage transparent au rayonnement du systeme de chauffage
US8570152B2 (en) 2009-07-23 2013-10-29 The Boeing Company Method and apparatus for wireless sensing with power harvesting of a wireless signal
US8617687B2 (en) * 2009-08-03 2013-12-31 The Boeing Company Multi-functional aircraft structures
US8424805B2 (en) * 2009-10-07 2013-04-23 Donald Smith Airfoil structure
US20110117231A1 (en) * 2009-11-19 2011-05-19 General Electric Company Fiber placement system and method with inline infusion and cooling
DE102009060693A1 (de) * 2009-12-29 2011-06-30 Airbus Operations GmbH, 21129 Versteifungselement für ein Luftfahrzeug und Flächengebilde mit einem derartigen Versteifungselement
ES2391102B1 (es) * 2010-01-14 2013-10-09 Airbus Operations, S.L. Disposicion de union de dos cajones de material compuesto con una pieza intermedia y procedimiento de fabricacion de dicha pieza intermedia
ITTO20100175A1 (it) * 2010-03-08 2011-09-09 Alenia Aeronautica Spa Procedimento per la fabbricazione di longheroni alari e travi di fusoliera a doppio t in materiale composito a sezione variabile
DE102010043850A1 (de) * 2010-11-12 2012-05-16 Airbus Operations Gmbh Strukturelement für ein Luft- und/oder Raumfahrzeug und Verfahren zum Herstellen eines derartigen Strukturelementes
FR2972387B1 (fr) * 2011-03-09 2013-04-26 Latecoere Procede de realisation d'une preforme comportant au moins deux troncons presentant des epaisseurs differentes.
US20130048134A1 (en) * 2011-08-25 2013-02-28 The Boeing Company Stagnant Fuel Thermal Insulation System
WO2013078646A1 (en) * 2011-11-30 2013-06-06 Airbus S.A.S. Airplane component having a box structure
GB201120707D0 (en) * 2011-12-01 2012-01-11 Airbus Operations Ltd Leading edge structure
EP2791003A4 (en) * 2011-12-12 2016-01-06 Saab Ab PLANE STRUCTURE WITH STRUCTURAL FIBER-FREE REINFORCING BINDEHARZSCHICHT
EP2814732B1 (en) * 2012-02-17 2017-04-05 Saab Ab Method and mould system for net moulding of a co-cured, integrated structure
FR2992890B1 (fr) * 2012-07-04 2015-04-10 Heol Composites Procede de fabrication d'une piece creuse en materiaux composites et piece creuse mettant en oeuvre ledit procede
US9415858B2 (en) 2012-08-28 2016-08-16 The Boeing Company Bonded and tailorable composite assembly
ES2799904T3 (es) * 2012-10-03 2020-12-22 Airbus Operations Sl Carena de extremo de una superficie sustentadora horizontal
US9333713B2 (en) 2012-10-04 2016-05-10 The Boeing Company Method for co-curing composite skins and stiffeners in an autoclave
ES2623044T3 (es) 2012-11-22 2017-07-10 Airbus Operations S.L. Método de fabricación de una estructura altamente integrada incluyendo costillas de borde de ataque y de salida para una superficie de elevación de una aeronave
US9145197B2 (en) * 2012-11-26 2015-09-29 The Boeing Company Vertically integrated stringers
US9527575B2 (en) * 2012-11-26 2016-12-27 The Boeing Company Multi-box wing spar and skin
RU2522725C1 (ru) * 2012-12-07 2014-07-20 Российская Федерация от имени которой выступает Министерство промышленности и торговли Российской Федерации Способ изготовления полых конструкций с внутренними стенками
ES2776025T3 (es) * 2013-05-17 2020-07-28 Leonardo Spa Un método para fabricar un cajón multilarguero de una sola pieza de material compuesto dentro de un molde cerrado
GB2515044A (en) * 2013-06-12 2014-12-17 Airbus Operations Ltd Aircraft wing arrangement
ES2674659T3 (es) * 2013-09-23 2018-07-03 Airbus Operations S.L. Método para fabricar una caja de torsión aeronáutica, caja de torsión y herramienta para fabricar una caja de torsión aeronáutica
US9738375B2 (en) 2013-12-05 2017-08-22 The Boeing Company One-piece composite bifurcated winglet
EP2910365B1 (en) * 2014-02-21 2017-04-26 Airbus Operations GmbH Composite structural element and torsion box
US9981735B2 (en) * 2014-04-01 2018-05-29 The Boeing Company Structural arrangement and method of fabricating a composite trailing edge control surface
BR112017007404B1 (pt) * 2014-10-08 2022-05-17 Salver S.P.A. Processo para montagem de superfícies de controle de aeronave
RU2582506C1 (ru) * 2014-12-15 2016-04-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" (КНИТУ-КАИ) Консоль складной аэродинамической поверхности из полимерного композиционного материала
ES2727473T3 (es) * 2014-12-22 2019-10-16 Magna Steyr Fahrzeugtechnik Ag & Co Kg Procedimiento para fabricar componentes de vehículo/componentes estructurales a base de un material plástico y componente de vehículo o componente estructural fabricado de esa manera
FR3034338B1 (fr) 2015-04-01 2017-04-21 Coriolis Composites Tete d'application de fibres avec rouleau d'application particulier
GB201509142D0 (en) 2015-05-28 2015-07-15 Blade Dynamics Ltd A wind turbine blade and a method of moulding a wind turbine blade tip section
FR3037315B1 (fr) * 2015-06-15 2017-07-07 Critt Materiaux Polymeres Composites Procede de realisation d'une aile d'aeronef en materiau composite, aile d'aeronef obtenue a partir de ce procede
FR3043010B1 (fr) 2015-10-28 2017-10-27 Coriolis Composites Machine d'application de fibres avec systemes de coupe particuliers
GB201522327D0 (en) * 2015-12-17 2016-02-03 Airbus Operations Ltd Wing structure
FR3048373B1 (fr) 2016-03-07 2018-05-18 Coriolis Group Procede de realisation de preformes avec application d'un liant sur fibre seche et machine correspondante
EP3219458B1 (en) * 2016-03-14 2019-05-08 Airbus Operations, S.L. Method and injection moulding tool for manufacturing a leading edge section with hybrid laminar flow control for an aircraft
GB2550403A (en) * 2016-05-19 2017-11-22 Airbus Operations Ltd Aerofoil body with integral curved spar-cover
GB201611788D0 (en) * 2016-07-06 2016-08-17 Williams Grand Prix Eng Ltd Manufacturing fibre-reinforced composite structures
FR3056438B1 (fr) 2016-09-27 2019-11-01 Coriolis Group Procede de realisation de pieces en materiau composite par impregnation d'une preforme particuliere.
US10766595B2 (en) * 2016-11-03 2020-09-08 Continuous Composites Inc. Composite vehicle body
JP6949474B2 (ja) * 2016-11-24 2021-10-13 三菱重工業株式会社 複合材及び複合材の成形方法
US11273899B2 (en) * 2018-01-25 2022-03-15 The Boeing Company Wing rib, wing having wing rib, and method for manufacturing the same
US10933595B2 (en) * 2018-02-15 2021-03-02 The Boeing Company Laminated composite structures with interlaminar corrugations to improve impact damage resistance, and system and method of forming the same
US10759516B2 (en) * 2018-03-30 2020-09-01 The Boeing Company Wing flap with torque member and method for forming thereof
US10647407B2 (en) * 2018-03-30 2020-05-12 The Boeing Company Wing flap with torque member and method for forming thereof
WO2019212587A1 (en) * 2018-05-04 2019-11-07 Tpi Composites, Inc. Perimeter plates for wind turbine blade manufacturing
GB2575102A (en) * 2018-06-29 2020-01-01 Airbus Operations Ltd Duct stringer with bulkhead
RU186272U1 (ru) * 2018-08-08 2019-01-15 Михаил Борисович Жуков Кессон крыла летательного аппарата
CN109353024B (zh) * 2018-09-03 2020-11-13 西安飞机工业(集团)有限责任公司 一种飞机副翼j型肋的复材成型方法
US11180238B2 (en) * 2018-11-19 2021-11-23 The Boeing Company Shear ties for aircraft wing
CN109532059A (zh) * 2018-12-03 2019-03-29 江西洪都航空工业集团有限责任公司 一种中空薄壁翼型结构复合材料件的制作方法
US10913548B2 (en) 2019-01-14 2021-02-09 The Boeing Company Metallic fittings for coupling composite ribs to skin panels of aircraft wings
US11038334B2 (en) * 2019-01-14 2021-06-15 The Boeing Company Aircraft wing composite ribs having electrical grounding paths
US11279474B2 (en) 2019-05-30 2022-03-22 Ctlp, Llc Composite twin beam main landing gear for an aircraft
US11046420B2 (en) * 2019-10-23 2021-06-29 The Boeing Company Trailing edge flap having a waffle grid interior structure
JP7318112B2 (ja) * 2020-03-23 2023-07-31 三菱重工業株式会社 繊維強化複合材成形方法および繊維強化複合材成形装置
CN112537435B (zh) * 2020-11-20 2023-03-17 上海复合材料科技有限公司 具有高精度曲面大长径比的复合材料翼梁及其制备方法
GB2604141A (en) * 2021-02-25 2022-08-31 Airbus Operations Ltd Aircraft wing with tubular fuel tanks
US20230242243A1 (en) * 2022-02-02 2023-08-03 Rohr, Inc. Resin pressure molded aerostructure with integrated metal coupling
WO2023198267A1 (en) * 2022-04-11 2023-10-19 Dufour Aerospace Ag Method for manufacturing an aerodynamic profile

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1814556A (en) * 1929-04-15 1931-07-14 Jr John Brown Jewett Airplane construction and method therefor
FR1085142A (fr) 1953-06-19 1955-01-27 Sncase Perfectionnements aux surfaces aérodynamiques et plus particulièrement aux pales d'hélicoptères
US3641230A (en) * 1969-01-21 1972-02-08 Dura Fiber Method for making prestressed laminated fiber glass structures
US3764641A (en) * 1971-01-08 1973-10-09 A Ash Method of forming irregularly shaped hollow articles using a variable stiffness mandrel
US4126659A (en) * 1976-07-09 1978-11-21 Lockheed Aircraft Corporation Method of making a hollow article
US4084029A (en) * 1977-07-25 1978-04-11 The Boeing Company Sine wave beam web and method of manufacture
US4198018A (en) 1978-03-13 1980-04-15 The Boeing Company Blended wing-fuselage frame made of fiber reinforced resin composites
US4357193A (en) 1979-05-21 1982-11-02 Rockwell International Corporation Method of fabricating a composite structure
GB2102036B (en) 1981-07-01 1984-12-05 Rolls Royce Method of manufacturing composite materials
DE3428282C1 (de) * 1984-08-01 1986-01-16 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn Entfernbarer Kern zur Herstellung rohrfoermiger Strukturen aus Faserverbundwerkstoffen
US4622091A (en) 1984-11-29 1986-11-11 The Boeing Company Resin film infusion process and apparatus
US4760493A (en) * 1985-09-30 1988-07-26 The Boeing Company Lightning protection system for composite material aircraft structures
US4681724A (en) 1986-04-28 1987-07-21 United Technologies Corporation Removable irreversibly shrinking male mandrel
US4938824A (en) 1987-01-23 1990-07-03 Thiokol Corporation Method for making a composite component using a transverse tape
DE3707634C1 (en) 1987-03-10 1988-07-07 Messerschmitt Boelkow Blohm Device for producing a plastic body
US4808362A (en) 1987-06-04 1989-02-28 The Budd Company Hollow reinforced fiber structure formed by resin transfer molding
US5641366A (en) 1988-01-20 1997-06-24 Loral Vought Systems Corporation Method for forming fiber-reinforced composite
DE3923416A1 (de) 1989-07-12 1991-01-24 Mecron Med Prod Gmbh Verfahren zur herstellung eines ein hohlprofil aufweisenden koerpers
JP2935722B2 (ja) 1990-02-28 1999-08-16 富士重工業株式会社 航空機の胴体構造およびその成形方法
US5106568A (en) 1991-11-15 1992-04-21 Mcdonnell Douglas Corporation Method and apparatus for vacuum bag molding of composite materials
US5266249A (en) 1992-01-02 1993-11-30 Fusion Composites, Inc. Method of forming a fiber reinforced plastic structure
US5242523A (en) 1992-05-14 1993-09-07 The Boeing Company Caul and method for bonding and curing intricate composite structures
GB9211263D0 (en) * 1992-05-28 1992-07-15 British Aerospace Manufacture of articles from composite material
US5332178A (en) * 1992-06-05 1994-07-26 Williams International Corporation Composite wing and manufacturing process thereof
JPH06255587A (ja) 1993-03-09 1994-09-13 Honda Motor Co Ltd 航空機
DE4329744C1 (de) 1993-09-03 1994-09-08 Deutsche Forsch Luft Raumfahrt Flügel mit Flügelschalen aus Faserverbundwerkstoffen, insbesondere CFK, für Luftfahrzeuge
US5534203A (en) * 1994-02-09 1996-07-09 Radius Engineering, Inc. Composite pole manufacturing process for varying non-circular cross-sections and curved center lines
US5939007A (en) 1994-08-31 1999-08-17 Sikorsky Aircraft Corporation Method for manufacture of a fiber reinforced composite spar for rotary wing aircraft
US5683646A (en) * 1995-05-10 1997-11-04 Mcdonnell Douglas Corporation Fabrication of large hollow composite structure with precisely defined outer surface
US5958325A (en) 1995-06-07 1999-09-28 Tpi Technology, Inc. Large composite structures and a method for production of large composite structures incorporating a resin distribution network
US5655883A (en) * 1995-09-25 1997-08-12 General Electric Company Hybrid blade for a gas turbine
US5848765A (en) * 1996-06-20 1998-12-15 The Boeing Company Reduced amplitude corrugated web spar
US6217000B1 (en) * 1996-10-25 2001-04-17 The Boeing Company Composite fabrication method and tooling to improve part consolidation
AU6137798A (en) 1997-01-29 1998-08-18 Raytheon Aircraft Company Method and apparatus for manufacturing composite structures
US5875732A (en) 1997-04-18 1999-03-02 Husky Airboats Method for production of boat hulls and boat hull construction
FR2766407B1 (fr) 1997-07-22 1999-10-15 Aerospatiale Procede de fabrication de pieces de grandes dimensions en materiau composite a matrice thermoplastique, telles que des troncons de fuselage d'aeronefs
US6458309B1 (en) * 1998-06-01 2002-10-01 Rohr, Inc. Method for fabricating an advanced composite aerostructure article having an integral co-cured fly away hollow mandrel
JP2000006893A (ja) * 1998-06-23 2000-01-11 Fuji Heavy Ind Ltd 複合材翼構造
JP2000043796A (ja) * 1998-07-30 2000-02-15 Japan Aircraft Development Corp 複合材の翼形構造およびその成形方法
DE19836629C1 (de) * 1998-08-13 1999-10-14 Deutsch Zentr Luft & Raumfahrt Aerodynamisches Flächentragwerk und Verfahren zu seiner Herstellung
EP1134069A4 (en) 1998-09-30 2006-01-04 Toray Industries FIBER-REINFORCED RESIN HOLLOW STRUCTURE AND METHOD FOR MANUFACTURING SAME
AU1540600A (en) * 1998-12-03 2000-06-19 Atoma International Corp. Power actuator having an electromagnetic clutch assembly
US6179945B1 (en) 1998-12-30 2001-01-30 Owens Corning Fiberglas Technology, Inc. Process for filament winding composite workpieces
US6190484B1 (en) * 1999-02-19 2001-02-20 Kari Appa Monolithic composite wing manufacturing process
US6510961B1 (en) * 1999-04-14 2003-01-28 A&P Technology Integrally-reinforced braided tubular structure and method of producing the same
US6513757B1 (en) * 1999-07-19 2003-02-04 Fuji Jukogyo Kabushiki Kaisha Wing of composite material and method of fabricating the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102112297B (zh) * 2008-06-18 2013-11-06 Gkn航天服务有限公司 用于利用微波制造纤维加强复合材料的部件的方法和模具
CN102112297A (zh) * 2008-06-18 2011-06-29 Gkn航天服务有限公司 用于利用微波制造纤维加强复合材料的部件的方法和模具
CN102458992A (zh) * 2009-04-16 2012-05-16 空中客车德国运营有限责任公司 用于防止气体和/或液体从机翼盒流入飞机机身的装置
CN102458992B (zh) * 2009-04-16 2015-01-07 空中客车德国运营有限责任公司 用于防止气体和/或液体从机翼盒流入飞机机身的装置
US9415879B2 (en) 2009-04-16 2016-08-16 Airbus Operations Gmbh Device for preventing the passage of gases and/or fluids from a wingbox into a fuselage of an aircraft
CN102656085A (zh) * 2009-12-18 2012-09-05 洛林航空工程公司 用于生产飞行器元件的复合后缘板的方法
CN102844563A (zh) * 2010-03-10 2012-12-26 乌本普罗帕蒂斯有限公司 风能设备转子叶片
CN104058097A (zh) * 2013-03-19 2014-09-24 波音公司 形成密封流动导管的接头组件
CN104058097B (zh) * 2013-03-19 2017-12-22 波音公司 形成密封流动导管的接头组件
CN104192292B (zh) * 2014-09-17 2017-01-18 中航通飞华南飞机工业有限公司 一种复合材料整体共固化机身及加工方法
CN104192292A (zh) * 2014-09-17 2014-12-10 中航通飞华南飞机工业有限公司 一种复合材料整体共固化机身及加工方法
CN105035359A (zh) * 2015-07-28 2015-11-11 中国运载火箭技术研究院 一种刚度递减的复合材料一体成型舵面结构及加工方法
CN105035359B (zh) * 2015-07-28 2017-03-08 中国运载火箭技术研究院 一种刚度递减的复合材料一体成型舵面结构及加工方法
CN106182801A (zh) * 2016-07-15 2016-12-07 西北工业大学 一种飞行器泡沫夹芯复合材料舵面成型方法
CN109229373A (zh) * 2018-09-29 2019-01-18 中船重工(海南)飞船发展有限公司 一种全复合材料地效翼船的连接结构
CN109229373B (zh) * 2018-09-29 2020-07-03 中船重工(海南)飞船发展有限公司 一种全复合材料地效翼船的连接结构
CN110510145A (zh) * 2019-08-30 2019-11-29 中国民用航空飞行学院 一种三梁式复合材料机翼整体结构及其成型工艺方法
CN113602477A (zh) * 2021-07-26 2021-11-05 成都飞机工业(集团)有限责任公司 一种全复合材料的尾翼结构及其成型方法

Also Published As

Publication number Publication date
EP1585664A2 (en) 2005-10-19
WO2004000643A3 (en) 2005-12-08
CN100575189C (zh) 2009-12-30
ATE493333T1 (de) 2011-01-15
EP1585664B1 (en) 2010-12-29
WO2004000643A8 (en) 2004-06-10
US7445744B2 (en) 2008-11-04
JP2006512240A (ja) 2006-04-13
US6889937B2 (en) 2005-05-10
EP1585664A4 (en) 2007-09-12
JP4607583B2 (ja) 2011-01-05
DE60335576D1 (de) 2011-02-10
US20030192990A1 (en) 2003-10-16
AU2003245544A1 (en) 2004-01-06
US20040079838A1 (en) 2004-04-29
WO2004000643A2 (en) 2003-12-31

Similar Documents

Publication Publication Date Title
CN1819947A (zh) 单件共同固化复合翼
RU2636494C2 (ru) Композитные радиусные заполнители и способы их изготовления
US7681835B2 (en) Single piece co-cure composite wing
JP6971080B2 (ja) 翼及び製造方法
EP2336021B1 (en) High pull-off capability hat stringer
JP6247048B2 (ja) 航空機の接合式複合材翼
US10046525B2 (en) Advanced variable radius laminated composite radius filler
US8915471B2 (en) Bonded splice joint
US8079549B2 (en) Monolithic integrated structural panels especially useful for aircraft structures
EP2406071B1 (en) Composite structures employing quasi-isotropic laminates
CN103303459B (zh) 立体框架结构
CN1665673A (zh) 装配单件共同固化结构的方法
CN101573268B (zh) 肋柱
CN105636773B (zh) 粘结且可调节的复合组件
EP3293104B1 (en) Open-channel stiffener
CN103832575A (zh) 垂直地一体形成的纵梁
KR20140061237A (ko) 복합재 날개용 조인트
CN102712144A (zh) 双蒙皮结构
JP2014104975A (ja) マルチボックス翼スパーおよび外板
JP2014534924A (ja) 高さが先細になる湾曲複合ストリンガーおよび対応するパネル
JP5319538B2 (ja) 翼パネル構造
JP5731392B2 (ja) 航空機の平面部材およびその製造方法
US20120132752A1 (en) Interface arrangement between two components of an aircraft structure using a sealing part
EP4361025A1 (en) Aircraft wing structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091230

Termination date: 20190619

CF01 Termination of patent right due to non-payment of annual fee