CN1809518A - 碳化硅基陶瓷材料在腐蚀性环境中的应用 - Google Patents

碳化硅基陶瓷材料在腐蚀性环境中的应用 Download PDF

Info

Publication number
CN1809518A
CN1809518A CN200480016936.8A CN200480016936A CN1809518A CN 1809518 A CN1809518 A CN 1809518A CN 200480016936 A CN200480016936 A CN 200480016936A CN 1809518 A CN1809518 A CN 1809518A
Authority
CN
China
Prior art keywords
sic
mixture
inclusion
resin
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200480016936.8A
Other languages
English (en)
Other versions
CN100376509C (zh
Inventor
C·法姆-于
P·阮
C·法姆
M·J·勒杜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Louis Pasteur Strasbourg I
SICAT Societe Industrielle de Creations et d'Applications Textiles SARL
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Louis Pasteur Strasbourg I
SICAT Societe Industrielle de Creations et d'Applications Textiles SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Louis Pasteur Strasbourg I, SICAT Societe Industrielle de Creations et d'Applications Textiles SARL filed Critical Centre National de la Recherche Scientifique CNRS
Publication of CN1809518A publication Critical patent/CN1809518A/zh
Application granted granted Critical
Publication of CN100376509C publication Critical patent/CN100376509C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/085Cell construction, e.g. bottoms, walls, cathodes characterised by its non electrically conducting heat insulating parts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/383Alpha silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/3834Beta silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及SiC-基复合耐火材料作为铝熔炼炉内涂层或者作为熔盐电解池涂层的应用。所述材料含有夹杂物,该夹杂物含至少一种在β-SiC基质中的α-SiC部分。

Description

碳化硅基陶瓷材料在腐蚀性环境中的应用
技术领域
本发明涉及用于特别是在化学和电冶金工程中的腐蚀性环境的陶瓷材料,更特别地,涉及用于熔炼炉或电解池的耐火砖。
背景技术
液体金属和熔盐属于已知的最具有腐蚀性的化学试剂。由于很多冶金和电冶金工业工艺涉及金属和/或盐的熔融,需要能够耐受这种环境的耐火材料。用于熔融金属或熔盐的装置,特别是熔炼炉或熔盐电解池,需要由大量耐火砖或耐火板构成的内层,更换所述耐火材料,或称为换衬,使装置停止一段时间。因此,在这种环境中具有改进的使用寿命的材料具有至少三个优点:1)耐火材料消耗较低,2)所述耐火环境对熔融环境的污染较低,以及3)用于维护的装置停止期(或停工期)减少。
另外,这些材料必须经受它们在这些装置中使用时容易产生的热冲击和机械冲击。
由于其对于腐蚀性试剂,主要是碱具有高的化学耐受性,与其它无机稳定剂结合、结晶为六方晶系的α结构的碳化硅已成为各种工业,如涂层陶瓷中最常使用的材料。通常要求用于熔盐电解池中的由α-SiC制得的耐火砖具有尽可能低的开孔率,这样可以使腐蚀性环境向耐火材料内的渗透减到最少(参见专利US 5 560 809(Saint-Gobain))。
该材料可以以各种宏观形式得到,如砖、圆柱或单片,这是根据应用目的进行选择的。通常碳化硅的形状一方面与碳化硅基粉末或聚集体有关,另一方面与无机粘合剂有关。例如,生产用于电冶金电解池的耐火砖时,使用对应于式Si3-xAlxN4-x的氧化铝在Si3N4中的固溶体、氧氮化硅Si2ON2或者氮化硅Si3N4来作为粘合剂。接着使用可以使包含在最终复合物中的化合物紧密结合的过程,如热烧结来进行成形。
该复合材料的物理和化学性质有益地结合在一起,如高机械耐磨性(特别是断裂强度和硬度),高耐热性(特别是低膨胀系数和高热稳定性),以及高抗氧化性,因此该材料可以在露天超过1000℃的温度下使用。该材料还可以耐受弱碱溶液。
但它也有一些缺点。其相对高的成本与合成中使用高温有关。至于其在腐蚀性环境中的耐受性,对于某些类型的粘合剂,对于某些在操作环境中一开始就存在、或者在操作环境中形成的高腐蚀性化学药剂,观察到其耐受性变弱。实际上,在该材料的某些应用中,观察到腐蚀性产品如酸或氟化物或强碱性产品的存在导致包含在粘合剂中的材料的逐步破坏。这最终导致所述粘合剂全部溶解,结果是该材料的宏观形状遭到破坏。由α-SiC制成的元件,如耐火砖,通过这种方式转变成粉末和/或聚集体,失去了其形状和最初的机械特性。
现有技术中已经研究出了两种保护SiC基组合物使其免受腐蚀的方法:用具有较高耐腐蚀性的保护层涂覆SiC-基的陶瓷元件,以及使用具有高耐腐蚀性的粘合剂。
在专利申请FR 2 806 406 A1(法国原子能委员会(French AtomicEnergy Commission))中描述了第一种方法。它描述了一种在SiC-基复合物,如非加压烧结的SiC、Si渗透的SiC、多孔再结晶SiC的表面沉积一层的方法,当在高达1600℃的温度下使用时,该层可以保护它们使其免受腐蚀并增强其化学耐受性。实施该方法包括通过将沉积层的不同组分,如金属或硅化物、Si、SiC和/或碳分散在液体粘合剂中制备混合物,用所述混合物涂覆要保护的元件的表面。接着将其整体加热至1200至1850℃之间的温度。通过将所述混合物熔化在要处理的元件的表面来涂覆将要处理的SiC元件的表面。通过这种方式形成的沉积层平均厚度在1至50μm范围内。沉积层的性质和耐受性根据所述金属的性质和所使用涂层组成而变化。然而,给出的例子仅涉及到沉积层的组分,以及用电子显微镜观察后者,而没有对所述复合物在对氧化或腐蚀性环境的耐受性方面的增强提供更多的信息,而这是要达到的最终目的。
该方法的一个特殊缺点是在以这种方式涂覆的元件的生产或使用过程中,由于热膨胀系数的不同,可能会在保护层和组合物之间出现微小的裂缝。
第二种方法基于下述概念,即在SiC-基陶瓷材料中使用的粘合剂的化学性质决定其对于由腐蚀性化学药剂,如氟化衍生物或浓酸或浓碱引起的腐蚀的耐受性。根据现有技术的描述,特别使用可烧结的基于氧化物、氮化物或氧氮化物的粘合剂。
在根据现有技术的方法中,使用根据反应(1)的常规碳还原合成直接得到粉末状的α结构的碳化硅:
         (1)
反应(1)可以拆分成如下两个基本反应:
                        (2)
                       (3)
然而,在反应(3)进行完全之前,SiO很快从反应环境中逸出,并且,由于这个原因,导致起始的硅产生不可忽略的损失,在最终材料中留下了大量未反应的碳。专利US 4 368 181(Hiroshige Suzuki)提出通过使由平均直径在60μm级别的碳和平均直径在150μm级别的二氧化硅组成的细颗粒在一个能够连续循环的装置中反应,从而降低由SiO损失引起的硅损失并增加SiC收率的改进方法。然而,使用这种方法形成的SiC总是极细的粉末状,在使用之前需要用粘合剂进行另外的预成形步骤。这些粘合剂易于被强酸或碱溶液腐蚀,导致该材料宏观结构被破坏。
另外,从专利EP 511 919得知一种通过聚合接着渗碳从硅粉和有机树脂的混合物生产以棒状或挤条颗粒形式存在的多孔SiC催化剂基质的方法。
专利申请或专利US 5 474 587(Forschungszentrum JulichGmbh),US2002/011683A1(Corning Inc),EP 0 356 800A(Shinetsu化学公司),US 4 455 385(通用电气公司),US 4 562 040(Sumitomo),US 4 514 346(Kernforschungsanlage Julich),US 6 245 424(Saint-Gobain Industrial Ceramics)和US 3 205 043(Carborundum Company)也提出了这种SiC-基材料的生产和使用。
问题陈述
本发明试图克服上述根据现有技术方法的缺陷。其目标在于提出用于用碳化硅基陶瓷材料制成的工业炉和电解池的内涂层产品,其对于来自腐蚀性环境,特别是氟化环境、浓酸和碱性环境的攻击具有改进的耐受性,但是保持SiC已知的优越的物理性质。
附图说明
图1表示复合物在动态真空中1300℃下渗碳2小时之后的扫描电镜图像。β-SiC基质对α-SiC颗粒的润湿在图1B所示的显微图像中可以看出。
图2表示由与Al2O3-基和Si3N4-基粘合剂结合的α-SiC-基聚集体组成的复合物在40%体积的HF溶液中淬火之前(A),以及淬火之后(B)的光学图像。HF对粘合剂的溶解导致最初材料的宏观结构被彻底破坏。
图像(C,D)对应于经受了与图像(A)和(B)中同样处理的由存在于β-SiC基质中的α-SiC聚集体组成的复合物。观察到这种材料对于由高腐蚀性溶液带来的攻击具有高耐受性。
发明主题
本发明涉及SiC-基复合材料作为铝熔炼炉内涂层或者作为熔盐电解池内涂层的应用,其特征在于所述复合材料含有其中至少一部分由在β-SiC基质中的α-SiC组成的夹杂物。
发明详述
根据本发明,通过将现有技术方法中使用的氧化物基的粘结剂替换成由β结构碳化硅(在面心立方系统中结晶)组成的基质并加入夹杂物来解决问题。
可以使用包括下述步骤的方法方便地生产这种材料:
(a)制备一种包含至少一种特别是可以以不同尺寸的粉末、颗粒和纤维形式存在的β-SiC前体和至少一种特别是硬塑料型的含碳树脂的所谓的“前体混合物”,
(b)将所述前体混合物成形为特别是板或是砖;
(c)聚合所述树脂,
(d)在1100至1500℃之间的温度下热处理来从树脂中除去有机组分,形成最终的元件。
术语“β-SiC前体”是指在热处理条件下(步骤(d)),用β-SiC树脂组分形成的化合物。优选硅,更特别地以粉末状存在的硅作为β-SiC前体。该硅粉可以是已知颗粒尺寸和纯度的、商业上可以得到的粉末。出于均一性的原因,硅粉的颗粒尺寸优选在0.1至20μm之间,更优选在2至20μm之间,更特别地,在5和20μm之间。
术语“含碳树脂”是指任何含有碳原子的树脂。含有硅原子既不是必须的也不是有用的。有利地,硅仅由β-SiC前体提供。树脂有利地选自含碳的硬塑料树脂,特别是酚醛树脂、丙烯酸树脂或糠基树脂(furfurylic resin)。优选酚醛型树脂。
在前体混合物中,调节树脂和β-SiC前体各自的量使得β-SiC前体定量转化为β-SiC。为此,计算树脂中的含碳量。还可以通过向含碳树脂和β-SiC前体的混合物中直接加入碳粉来提供部分碳。该碳粉可以是已知颗粒尺寸和纯度的商业上可以得到的粉末,如炭黑。出于使混合物均匀的原因,优选粒径小于50μm。对混合物组分的选择是综合考虑粘度、原料成本和预期的最终孔隙度的结果。为了确保β-SiC前体完全转化为β-SiC,并使得到的最终材料中不含SiC结构中未使用的硅,优选在前体混合物中碳稍稍过量。接着将过量的碳在空气中烧去。然而,过量不能太多,从而避免在烧去残余的碳之后在材料内产生过高的孔隙度,从而导致最终复合物机械强度降低。可以用树脂/Si混合物对用这种方式合成的复合物进行二次渗透,从而降低复合物中心的孔隙度。这在绝对要求孔隙度最小的某些应用中是有用的。
可以使用任何已知的方法,如模塑、压制、挤出对前体混合物成形,得到诸如砖、板或瓦块状的三维形状。所选择的方法应当适应前体混合物的粘度,该粘度取决于树脂和前体混合物组分的粘度。例如,可以得到1至几分米长和宽、1mm厚的板。还可以产生几厘米到几分米或更大尺寸的砖。还可以特别是通过模制得到具有更复杂形状的元件。
接着在空气中100℃至300℃之间、优选150℃至300℃之间、更优选150℃至250℃之间、甚至更优选150℃至210℃之间的温度下加热所述前体混合物。在该项处理中进行树脂的聚合和元件的硬化,在所述温度范围内,处理的时间典型地在0.5小时至10小时之间,优选在1小时和5小时之间,更优选在2和3小时之间。在此步骤中,该材料释放出挥发性的有机化合物,这产生不同的残留孔隙度,该孔隙度是前体混合物组分中碳含量和聚合所用条件的函数。优选使此孔隙度最小化,特别对于生产厚板(典型地至少2mm厚)和砖而言。这产生具有特殊机械耐磨性并因此易于处理的中间元件。
接着将以这种方式得到的所述中间元件在惰性气氛(如氦气或氩气)或动态真空中1100℃至1500℃之间加热1至10小时、优选1至5小时之间、更优选1至3小时之间的时间来进行树脂的碳化以及随后基质的渗碳反应。最佳的温度范围优选在1200℃至1500℃之间,更优选在1250℃和1450℃之间。最优选的范围在1250℃和1400℃之间。从由树脂和β-SiC前体得到的碳形成的SiC是β-SiC。
当在惰性气体中进行渗碳处理时,优选在痕量氧气的存在下进行,特别是在树脂包含过量的碳时。在这种情况下,渗碳可以在例如含有痕量氧的气氛中进行。在某些情况下,从商业可得到的氩气杂质中得到的氧就够了。如果渗碳处理后的产品具有较高的残余碳含量,可以通过在空气中,在600℃至900℃之间、优选700℃至825℃之间的温度下加热有利地10分钟至5小时的时间容易地除去。
申请人发现,聚合速率影响最终材料中的残留孔隙度,因为聚合过快促使气泡生成。然而,树脂中出现的气泡会导致陶瓷复合物中形成微小裂缝,在使用中易于使该材料元件变弱。特别是在生产至少1mm厚的板和砖时会出现该问题。因此,相对缓慢地,即在中温下进行聚合是有用的。
在第一个渗透步骤中,优选的方法涉及到碳化的树脂,但并不要求使用硅基有机树脂,如用于已知的含有SiC纤维的陶瓷的生产方法中的聚羧基硅烷或聚甲基硅烷;参见EP 1 063 210A1(Ishikawajima-Harima Heavy Industries,Ltd.);这些硅基有机树脂相对较贵,并且在高温分解之后观察到明显的碳损失。
上述方法用于生产没有夹杂物的β-SiC基耐火砖或耐火板。如果不加入任何夹杂物(如α-SiC形式的),所述耐火砖或耐火板典型地具有1.5g/cm3数量级的密度。对于在腐蚀性环境,特别是氟化环境中的某些应用,该值太低。
在一个有利的实施方案中,生产至少1mm厚,优选至少3mm厚,更优选至少5mm厚的板。有利地,所述板的最小截面为至少15mm2,优选至少50mm2,长或宽与厚度之比为至少10,优选至少15。在另一个有利的实施方案中,生产砖。有利地,所述砖的最小尺寸为至少10mm,优选至少50mm或者甚至100mm。有利地,所述砖的最小截面积为至少20cm2,优选至少75cm2,更有利地至少150cm2,长或宽与厚度之比为至少3。
在上述两种情况下,有必要限制过量的碳并缓慢聚合,来阻止在渗碳过程中易于削弱该材料的大气泡的生成。对于该材料作为工业炉内涂层的应用,该材料可能具有平行管的形状或者任何其它合适的形状,特别地,将该材料制成板或砖的形式。
申请人观察到,对于该材料在工业炉或电解池中的应用,特别有利地向前体混合物中加入其中至少一部分由α-SiC组成的夹杂物。在这种情况下,用步骤(aa)代替上述步骤(a):
(aa)制备含有其中至少一部分由α-SiC组成的夹杂物、以不同尺寸的粉末、颗粒、纤维或夹杂物形式存在的β-SiC前体,以及优选硬塑料型的含碳树脂的前体混合物。
典型地,将颗粒尺寸在0.1至几毫米之间变化的α-SiC用作夹杂物。该α形式的SiC可包括到目前为止所知的任何碳化硅。夹杂物以至少80%(以重量计,相对于前体混合物总质量)的比例加入前体混合物中。低于80%,最终元件的密度太低,其开孔率太高并且未烧结的元件(烧结前的成形元件)太软。高于95%,β-SiC粘合剂不再能够完全润湿夹杂物,这导致最终元件不能充分结合。对于在氟化腐蚀性环境中的大部分应用来说,约90%夹杂物的比例是合适的。
可以用在最终的复合物合成温度下不分解、不升华的氧化铝、二氧化硅、TiN、Si3N4或其它无机固体来代替部分α-SiC。有利地,至少50%优选至少70重量%的夹杂物由α-SiC组成。根据申请人的观察,该材料用作铝电解槽的内涂层或用作铝熔炉的内涂层时,用其它无机夹杂物代替α-SiC不会带来显著的技术优点。
形成夹杂物的固体并不限于特定的宏观形状,还可以以不同的形状,如粉末、颗粒、纤维来使用。例如,为了改善最终复合物的机械性质,优选以α-SiC基纤维作为夹杂物。这些纤维可以具有大于100μm的长度。
这些其中至少部分必须由α-SiC组成的夹杂物与优选硬塑料型的含碳树脂混合,该树脂中含有给定数量的β-SiC前体,优选以颗粒尺寸在0.1至几微米之间的粉末形式存在。
这得到一种α-SiC/β-SiC型复合材料,包括β-SiC基质中的α-SiC颗粒,无需包含其它粘合剂或添加剂。
可以根据与下述同样的步骤进行第二渗透处理:在含有树脂的模具中将所述材料淬火,聚合以及最后的渗碳处理。所述树脂必须含有足够量的例如以硅粉形式存在的β-SiC前体。该第二处理可以改善机械耐磨性和/或消除由于存在不希望的孔隙所带来的问题,以及改进的对于来自腐蚀性环境,特别是氟化环境、浓缩的酸或碱环境的攻击的抵抗力。
由于该复合物通常可以在动态真空或者惰性气氛,即氩气、氦气中独立形成,而无需精确控制所述气氛的纯度,即所使用的气体中作为杂质存在的痕量的氧气或水蒸气,因此,热处理也可以简化。另外,渗碳反应通过碳/硅基质内部的成核来进行,因此,与要形成的复合物的尺寸完全无关。
在该方法另一个优选的可供选择的实施方案中,碳和硅最初按如下方式混合:将硅粉(平均粒径约10μm)与聚合之后能够提供β-SiC形成反应所需碳源的酚醛树脂混合。接着将夹杂物与树脂混合并整体投入一个具有最终复合物所需形状的模具中。聚合之后,将所形成的固体转移到一个用于进行所述基质最终渗碳反应的炉中。在升温期间,基质中的结构或捕集氧与硅和碳在固体基质内部反应形成SiO(反应式(4))和CO(反应式(5))。接着通过根据如下反应式的SiO和碳之间的反应(6)或者CO与Si之间的反应(7)进行渗碳:
                 (4)
                   (5)
               (6)
             (7)
所有组分在一开始混合的事实显著增加最终的SiC收率,并且在气相中硅的损失很低。该合成方法也使生产具有预定宏观形状而不是像现有技术那样得到的粉末状的SiC成为可能。
上述方法使生产具有β-SiC-基基质的材料或复合物成为可能,该β-SiC-基基质可含有基于碳化硅或其它用于腐蚀性、强酸性或碱性环境,或者高温应力时具有抵抗力的材料的夹杂物。
在β-SiC基质内含有其中至少部分由α-SiC组成的夹杂物的SiC-基复合材料具有很多优点:
(i)可以由上述方法来生产,考虑到原料成本(提供碳源的树脂,硅粉)以及由于该方法涉及相对较低的温度,即≤1400℃,不可忽略地节约了能量,与其它方法相比该方法成本相对较低。原料的数目有限也从根本上降低了成本。
(ii)可以优选在聚合之前通过挤出、模塑或冲压来使所述混合物成形。很容易给出起始材料,即粘性树脂基基质、硅粉和以分散的α-SiC粉和/或颗粒形式存在的夹杂物的性质。这使得将该材料预成形为相对复杂的形状成为可能。另外,可以通过在树脂聚合后,优选热处理(步骤(d))之前进行机械加工来使所述元件成形。
(iii)该复合物不同组分之间强烈的化学和物理亲和性使得β-SiC基质对α-SiC颗粒或者夹杂物的润湿性提高。这是因为尽管其具有不同的晶体学结构,即α-SiC(六角形)和β-SiC(立方形),其化学和物理学性质相似。这些相似性基本上是由于Si-C化学键的特殊性,而化学键的特殊性决定了其主要的机械和热性质以及对于腐蚀性药剂具有较高的抵抗力。而这也使得两相(β-SiC基质和夹杂物)之间生成可阻止在应力下使用时排斥和剥离问题的强化学建。此外,α-SiC夹杂物具有与β-SiC基质非常相似的热膨胀系数,能够阻止在热处理和冷却过程中复合物内容易出现的残余应力的生成;这用于阻止成品元件特别是在其用于铝熔炉或者熔盐电解池过程中时生成有害的裂缝,而这些裂缝在成品元件中是很难探测到的。
(iv)申请人已经观察到,所述复合材料对腐蚀性环境,特别是氟化的环境,浓缩的酸或碱性的环境具有极高的耐受性。这可能是由于不存在对所述腐蚀性环境耐受力较低的粘合剂。因此,由这种材料或复合物制得的元件可以使操作所节约的费用增加。更特别地,在给定的腐蚀性环境中,所述复合物元件的使用寿命比使用对这些腐蚀性环境耐受性较低的粘合剂的SiC-基元件的要长。这也提高了SiC元件的操作安全性,特别是它们的坚固性,并可使其用于粘合剂不是化学惰性的Si-基材料的其它应用。
(v)通过改变所述夹杂物的化学和物理性质,所述方法也可用于制备其它类型的不仅含有碳化硅而且含有其他材料,如氧化铝、二氧化硅或其它化合物的复合物,只要它们能够分散在树脂里,并且在合成中不发生改变。以不同的比例加入这些不同于α-SiC的夹杂物,可以改变最终复合物的机械和热性能,即,在热传递、抗氧化性或孔堵塞等方面的改进。按照这种方式,该材料可以适于所设计用途的特殊要求。
(vi)根据目标用途,通过改变夹杂物的比例,特别是α-SiC的质量百分比,可以改变该材料的热和机械耐受性。
申请人已经发现这种含有其中至少部分由在β-SiC基质中的α-SiC组成的夹杂物的SiC-基材料可以,特别是以耐火板或耐火砖形式在经受高机械和热应力,和/或存在腐蚀性液体或气体的涉及热工程、化学工程和/或电冶金工程的各种应用中用作涂层材料。特别地,它可用在热交换器、燃烧器、熔炉、反应器或热电阻器的构成部分里,特别是在中或高温下的氧化性气氛中,或者在同腐蚀性化学试剂接触的装置里。它还可以在某些用于航空学或空间和地面运输技术领域的元件中作为组件。它还可以作为用于生产用作坩锅垫的装置的材料来使用,所述坩锅垫用于高温应用,如单晶硅棒合成。该材料可以用作熔炉,如铝熔炉的内涂层,以及如用于通过使用氧化铝和冰晶石的混合物电解来生产铝的熔盐电解池的衬里。它还可以用作宇宙飞船挡热板的组件。
这些材料的另一个用途是用作焚烧炉,如生活垃圾焚烧炉的衬里(内涂层)。在焚烧中会形成腐蚀性气体(HF、HCl、Cl2、NO、NO2、SO2、SO3等);这些气体腐蚀炉子的内涂层。
所述材料的密度优选大于2.4g/cm3。对于特定的用途,2.45和2.75g/cm3之间的密度特别合适。
实施例
实施例1:生产没有夹杂物的β-SiC
在混和器中将1500g硅粉(颗粒尺寸集中在7μm)、560g炭黑(颗粒尺寸集中在20nm)以及1000g酚醛树脂混合。
接着在两个平面之间将以这种方式得到的膏状物压制成3mm厚的板。在200℃下加热3小时使该板硬化。在该步骤中,观察到相应于混合物初始重量10%的重量损失。得到的元件易于处理,并具有光滑的表面外观。
接着使所述元件在大气压和高达1360℃的氩气流中经受逐步加热,接着在此温度下保持1小时。接着将该元件冷却至环境温度。在该步骤中,观察到相应于硬化元件13.5%的重量损失。由于其仍然含有7%的单体碳,该材料的外观是黑色的。接着通过在700℃的空气中加热3小时来除去这些碳。这样板具有纯β-SiC的灰色特征。该板的密度为1.2g/cm3。没有任何裂缝。
使用非常类似的方法,生产没有裂缝、具有大于或等于15cm的小尺寸的β-SiC耐火砖。
实施例2:生产具有α-SiC夹杂物的β-SiC板(α-SiC/β-SiC复合 物)
可选的实施方案(a):
将4.5g硅粉(平均颗粒直径:约7μm)与5.5g酚醛树脂混合,所述酚醛树脂提供渗碳所需的碳源以形成用于在最终混合物中作为粘合剂的β-SiC。将7g粉末状的α-SiC作为夹杂物的来源加入该混合物中。通过模塑将该混合物成形。
将其整体置于150℃的空气中聚合2小时。在此聚合中的重量损失为2克。使以这种方式得到的固体在1300℃、升温速率为5℃min-1的动态真空中经受热处理。在升温过程中,聚合的树脂碳化,在高温下得到与硅颗粒密切接触的碳网,促进SiC的合成。将复合物在此温度下保持2小时,使由含碳树脂和硅得到的碳混合物转变为β-SiC。接着,得到的复合物在炉子的自然热惯性下冷却至环境温度。在这个热处理步骤中,重量损失是1克。
以这种方式得到的产品由50% α-SiC和50% β-SiC的混合物组成,其中,α-SiC聚集体均匀分散在β-SiC-基的基质中。它具有与那些分散在氧化铝和Si3N4基质中基于α-SiC聚集体的复合物接近或类似的物理化学性质。由聚合之后以及渗碳之后的复合物得到的扫描电子显微镜图像在图1中给出。低分辨率的图像(图1A)清楚地表示出α-SiC颗粒均匀地分散在由通过树脂中的碳和硅在1300℃的反应得到的β-SiC组成的基质中。
在最终复合物中也观察到残留孔隙度的存在。该残留孔隙度可能是由于在聚合步骤中树脂中心发生的收缩而造成的。可以通过在聚合步骤中调整升温速率或者通过使用不同的树脂来除去该残留孔隙度。可以在图1B中给出的具有更高放大系数的显微照片中更清楚地看到两相之间的润湿。这种润湿可以解释为两种材料之间具有非常类似的物理化学性质,这可以抑制对于其它与要保护的碳化硅不具有相同热膨胀系数的粘合剂来说在热处理中存在的排斥问题。
该制备复合物的方法可以在很宽的范围内改变最初α-SiC的质量分数,以使复合物的性质,如机械耐磨性及其孔隙度,适应目标应用。
可选的实施方案(b):
在另一个可选的实施方案中,生产4.5g硅粉、5.5g酚醛树脂和73克α-SiC颗粒的混合物。通过压制使得树脂和硅粉填充α-SiC颗粒之间大多数的自由体积将该混合物成形。
接着进行实施例2(a)中同样的步骤。
得到的产品由与9% β-SiC结合的91%的α-SiC的混合物组成,密度为2.5g/cm3,自由孔隙度小于20%。
实施例3:在腐蚀性环境中使用β-SiC/α-SiC复合物板
本实施例对于具有夹杂物的β-SiC-基复合材料(参见实施例2)相对于具有氧化物和/或氮化物基粘合剂的α-SiC-基复合材料具有优异的耐受性给出了一个更为清晰的概念。为此,使用40体积%的HF溶液作为腐蚀性环境。已知含有氢氟酸的蒸汽或溶液对于陶瓷的氧化物基粘合剂具有极强的腐蚀性,导致严重的基质破坏问题。结果在图2中示出。
在导致基质彻底破坏的HF溶液中的处理之后,α-SiC/氧化物和/或氮化物基粘合剂复合物(图2A)被彻底破坏,只有最初的α-SiC粉末(图2B)被回收。根据实施例2(可选实施方案(a))制备的α-SiC/β-SiC复合物仍保持稳定,在HF中处理之后,没有观察到明显的改变(图2C和D)。这表明β-SiC-基基质对于HF溶液是化学惰性的。
用类似的试验,申请人观察到具有夹杂物的β-SiC-基复合物还能经受在碱性环境,如热浓氢氧化钠中的处理。在类似的处理之后,由于浓氢氧化钠溶解了粘合剂,α-SiC/氧化物和/或氮化物基粘合剂基复合物被破坏。
对于由实施例2中可选的实施方案(b)得到的材料重复进行这个试验。对于HF的耐受性很好。

Claims (7)

1、一种SiC-基复合材料作为铝熔炼炉内涂层或者作为熔盐电解池内涂层的应用,其特征在于所述复合材料由含有至少一种β-SiC前体和至少一种含碳树脂的所谓“前体混合物”制得,在所述复合材料中含有夹杂物,其中夹杂物的至少一部分由在β-SiC基质中的α-SiC组成。
2、如权利要求1所述的应用,其中所述夹杂物相对于前体混合物总质量的的重量分数在80%和95%之间。
3、如权利要求1或2所述的应用,其中部分夹杂物由氧化铝、二氧化硅、TiN、Si3N4或这些化合物的混合物组成。
4、如权利要求1至3中任一项所述的应用,其中所述夹杂物的至少50%重量,优选所述夹杂物的至少70%重量由α-SiC组成。
5、如权利要求1至4中任一项所述的应用,其中所述材料的密度为至少2.4g/cm3,优选密度在2.45至2.75g/cm3之间。
6、如权利要求1至5中任一项所述的应用,其中所述材料以砖或板的形式使用。
7、如权利要求1至6中任一项所述的应用,用作由氧化铝和冰晶石的混合物生产铝的电解池的衬里。
CNB2004800169368A 2003-04-16 2004-04-15 碳化硅基陶瓷材料在腐蚀性环境中的应用 Expired - Fee Related CN100376509C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0304749A FR2857009A1 (fr) 2003-04-16 2003-04-16 Materiau ceramique a base de carbure de silicium pour utilisation dans des milieux agressifs
FR03/04749 2003-04-16

Publications (2)

Publication Number Publication Date
CN1809518A true CN1809518A (zh) 2006-07-26
CN100376509C CN100376509C (zh) 2008-03-26

Family

ID=33306148

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800169368A Expired - Fee Related CN100376509C (zh) 2003-04-16 2004-04-15 碳化硅基陶瓷材料在腐蚀性环境中的应用

Country Status (9)

Country Link
US (1) US20070086937A1 (zh)
EP (1) EP1618079B1 (zh)
CN (1) CN100376509C (zh)
AT (1) ATE366231T1 (zh)
AU (1) AU2004232516B2 (zh)
CA (1) CA2522554A1 (zh)
DE (1) DE602004007369T2 (zh)
FR (1) FR2857009A1 (zh)
WO (1) WO2004094339A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056862A (zh) * 2008-06-13 2011-05-11 圣戈本陶瓷及塑料股份有限公司 耐体积变化的氮氧化硅或氮氧化硅以及氮化硅粘结的碳化硅耐火材料
CN102471170A (zh) * 2009-07-15 2012-05-23 纳幕尔杜邦公司 钛酸铝镁复合陶瓷

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2870233B1 (fr) * 2004-05-14 2006-12-01 Sicat Sarl PROCEDE DE FABRICATION DE PIECES DE FORME A BASE DE BETA-SiC POUR UTILISATION DANS DES MILIEUX AGRESSIFS

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3205043A (en) * 1962-04-04 1965-09-07 Carborundum Co Cold molded dense silicon carbide articles and method of making the same
US4455385A (en) * 1975-06-30 1984-06-19 General Electric Company Silicon carbide sintered body
DE3005587A1 (de) * 1980-02-15 1981-08-20 Kernforschungsanlage Jülich GmbH, 5170 Jülich Verfahren zur herstellung von formkoerpern
JPS60221365A (ja) * 1984-04-13 1985-11-06 住友化学工業株式会社 高強度炭化珪素焼結体の製造法
EP0356800B1 (en) * 1988-08-15 1992-05-06 Shin-Etsu Chemical Co., Ltd. Silicon carbide ceramics bonding compositions
FR2675713B1 (fr) * 1991-04-29 1993-07-02 Pechiney Electrometallurgie Systeme catalytique, notamment pour la postcombustion de gaz d'echappement et procede pour le fabriquer.
DE4130630C2 (de) * 1991-09-14 1994-12-08 Forschungszentrum Juelich Gmbh Verfahren zur Herstellung poröser, durchströmbarer Formkörper aus Siliciumcarbid und Dieselruß-Filterelement
US5560809A (en) * 1995-05-26 1996-10-01 Saint-Gobain/Norton Industrial Ceramics Corporation Improved lining for aluminum production furnace
US5840221A (en) * 1996-12-02 1998-11-24 Saint-Gobain/Norton Industrial Ceramics Corporation Process for making silicon carbide reinforced silicon carbide composite
CN1212269A (zh) * 1997-09-24 1999-03-31 曲树蓁 一种耐磨耐腐蚀涂料
JP4389128B2 (ja) * 1999-06-25 2009-12-24 株式会社Ihi セラミックス基複合材料の製造方法
US6555031B2 (en) * 2000-06-19 2003-04-29 Corning Incorporated Process for producing silicon carbide bodies

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056862A (zh) * 2008-06-13 2011-05-11 圣戈本陶瓷及塑料股份有限公司 耐体积变化的氮氧化硅或氮氧化硅以及氮化硅粘结的碳化硅耐火材料
CN102056862B (zh) * 2008-06-13 2013-06-26 圣戈本陶瓷及塑料股份有限公司 耐体积变化的氮氧化硅或氮氧化硅以及氮化硅粘结的碳化硅耐火材料
CN102471170A (zh) * 2009-07-15 2012-05-23 纳幕尔杜邦公司 钛酸铝镁复合陶瓷

Also Published As

Publication number Publication date
AU2004232516B2 (en) 2007-06-07
DE602004007369T2 (de) 2008-03-06
US20070086937A1 (en) 2007-04-19
DE602004007369D1 (de) 2007-08-16
CN100376509C (zh) 2008-03-26
EP1618079B1 (fr) 2007-07-04
EP1618079A1 (fr) 2006-01-25
CA2522554A1 (fr) 2004-11-04
ATE366231T1 (de) 2007-07-15
FR2857009A1 (fr) 2005-01-07
WO2004094339A1 (fr) 2004-11-04
AU2004232516A1 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
US11795112B2 (en) 3-D printing of a ceramic component
CN1034229C (zh) 具有致密表面的多孔陶瓷复合材料
RU1830056C (ru) Способ получени композиционного материала
AU2005251983B2 (en) Method for producing fabricated parts based on $G(B)-SiC for using in aggressive media
AU777124B2 (en) Silicon carbide composites and methods for making same
JPS6313955B2 (zh)
CN1239468A (zh) 碳化硅增强的碳化硅复合物
CN102219536B (zh) 一种B4C/SiC晶须/SiC复相陶瓷基复合材料及其制备方法
CN1676644A (zh) 陶瓷颗粒增强铝基复合材料及其制备方法
CN1275904C (zh) 含碳耐火材料及其制造方法
CN101054303A (zh) 用于低熔点金属铸造设备的耐热材料
CN1042495A (zh) 用于形成金属基质复合体的悬浮方法
CN1223550C (zh) 一种塞隆结合耐火材料
CN1208285C (zh) 冲天炉用耐火材料
CN100376509C (zh) 碳化硅基陶瓷材料在腐蚀性环境中的应用
JPS6311589A (ja) 耐熱性治具及びその製造方法
CN1070537C (zh) 利用控制件生产金属基质复合体的方法
CN1152843C (zh) 用煤矸石制备β-赛隆结合碳化硅复相粉体的方法
JP2004059346A (ja) 窒化珪素質セラミックス焼結体及びその製造方法
CN1044803A (zh) 陶瓷复合体的制备方法
JP6412646B2 (ja) 溶銑製造炉の炉床用れんが
KR101865571B1 (ko) 카본 함유 블록 수리용 세라믹 조이닝재
JPH06211574A (ja) 半導体製造用炭化珪素焼結体の製造方法
CN116813316B (zh) 一种微孔刚玉-纳米碳化硅-碳复合材料、转炉挡渣滑板砖及它们的制备方法
JPH079045B2 (ja) アルミニウム基複合材の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080326

Termination date: 20110415