CN1779912A - 基片上形成的金属氧化物及其制造方法 - Google Patents

基片上形成的金属氧化物及其制造方法 Download PDF

Info

Publication number
CN1779912A
CN1779912A CNA2005101161270A CN200510116127A CN1779912A CN 1779912 A CN1779912 A CN 1779912A CN A2005101161270 A CNA2005101161270 A CN A2005101161270A CN 200510116127 A CN200510116127 A CN 200510116127A CN 1779912 A CN1779912 A CN 1779912A
Authority
CN
China
Prior art keywords
substrate
semiconductor
temperature
metallic plate
molybdenum oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005101161270A
Other languages
English (en)
Inventor
河东田隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1779912A publication Critical patent/CN1779912A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明涉及由在基片上生长的金属氧化物组成的新的半导体膜及其制造方法。该金属氧化物由氧化钼组成,所述氧化钼非常适用于制造具有高耐电压的电子器件以及光子和电子恶劣环境器件。本发明的重要方面在于,在由已在普通电子和光子器件中使用的材料制成的基片上形成氧化钼膜。最流行的材料是硅。本发明的另一个重要方面是用于在基片上形成氧化钼膜的新方法。

Description

基片上形成的金属氧化物及其制造方法
技术领域
本发明涉及由在基片上形成的具有大能带隙的金属氧化物制成的新的半导体膜。
所述新的半导体膜对于在电子和光子器件中使用是非常有用的。
本发明还涉及在基片上形成所述新的半导体膜的新方法,所述基片由已在普通电子和光子器件中使用的材料制成。
背景技术
近来,在诸如家用电子产品、汽车、机床以及照明之类的各种领域中使用了诸如双极晶体管、场效应晶体管以及晶闸管之类的所谓的功率器件。随着应用的增加,电功率的高效的和高速的转换与控制对于功率器件是所要求的。尽管长期使用硅(Si)来制造功率器件,但是硅器件的限制是预知的。该限制来自下述事实:硅的能带隙,大约为1电子伏(eV),是很小的。已广泛进行了研究以实现由具有大能带隙的半导体亦即所谓的宽隙半导体组成的功率器件,以克服该限制。具体地,已广泛进行了使用能带隙为大约3.43eV的氮化镓(GaN)或能带隙为大约3.2eV的碳化硅(SiC)的功率器件的开发。
另一方面,由来自宇宙射线或汽车的噪声以及热量引起的电子器件的误差或故障已是严重问题。已弄得很清楚,能抵抗具有噪声或热量的恶劣环境的所谓恶劣环境器件应当由具有大能带隙的半导体制成。已从这些要点进行了使用GaN或SiC的电子器件的开发。然而对于实现由GaN或SiC制成的电子器件存在许多待解决的问题。
最严重的问题在于,尚未获得GaN的大块晶体,因为氮的平衡蒸汽压相对于镓的平衡蒸汽压非常高。因此,使用了由蓝宝石或碳化硅(SiC)组成的基片。不能在蓝宝石基片上直接形成GaN,因为在蓝宝石和GaN之间存在16%的晶格失配。因此在生长GaN之前,在蓝宝石基片上形成氮化铝(AlN)的缓冲层。AlN是电阻性的,因为难以将杂质掺入到AlN中。在包括多层半导体的器件诸如双极晶体管和晶闸管中使用蓝宝石基片,对于它们的结构和制造过程是非常不利的。另一方面,SiC基片非常昂贵,因为SiC的大块晶体要在2200~2400℃的非常高的温度下生长。使用SiC基片的GaN器件或SiC器件非常昂贵。
第二个严重的问题是实现能够在比形成GaN或SiC层的温度低的温度下生长的新的器件。必须在高于1000℃的温度下形成GaN或SiC层。在高温下必须要有大的能量来形成半导体层。另外,存在下述可能性:原子在层之间移动并且组分被干扰,或者掺杂物在层之间的界面附近移动。
对于这样的器件,通过使用氧化钼能够解决上述问题。本发明的发明人发现,高质量氧化钼晶体具有大于3.2eV的大能带隙,并且对于在光子和电子器件中使用是非常有用的(美国专利申请No.10/848,145和No.10/863,288)。
然而,在上述专利申请中,氧化钼晶体通过氧化金属钼板形成。因为钼板不是晶体,所以不能使用诸如解理之类的一些制造技术。另外,将由氧化钼形成的器件与由硅形成的器件进行集成是不可能的。进而,当它通过氧化钼板形成时,氧化钼层的厚度的精确控制是困难的。
因此,需要在由普通器件中使用的材料制成的基片上形成能带隙大于3.2eV的半导体晶体层。该半导体层应当在相对低的温度下形成,以便在层的形成期间不破坏器件结构。在器件中目前使用的基片上将以相对低的温度制造具有高耐电压的电子器件以及光子和电子恶劣环境器件。
发明内容
本发明涉及由在基片上生长的金属氧化物组成的新的半导体膜及其制造方法。
该金属氧化物由氧化钼组成,所述氧化钼具有大于3.2eV的能带隙,并且非常适用于制造具有高耐电压的电子器件以及光子和电子恶劣环境器件。氧化钼同样适用于制造发射具有短于387nm的波长的光的发光二极管或激光二极管。
本发明的重要方面在于,在由已在普通电子和光子器件中使用的材料制成的基片上形成氧化钼膜。最流行的材料是硅。
本发明的另一个重要方面是提供用于在基片上形成氧化钼膜的新方法。该方法包含下面的步骤:第一步,在沉积室中设置基片和源材料。典型的源材料是钼板,而典型的基片为硅。第二步,在生长室中形成温度分布,以便源材料处的温度高于基片处的温度。第三步,在形成温度分布之后,流入氧气一段时间,这取决于形成特定器件所需的氧化钼的厚度。
附图说明
图1是根据本发明的方法用于形成金属氧化物层的设备的一个例子的示意图;
图2是显示根据本发明通过沉积在基片上形成金属氧化物层的步骤的流程图;
图3显示了炉中温度分布的一个例子,以及通过根据本发明的方法形成金属氧化物层期间的基片的位置;
图4显示了目标基片区域中的更加优选的炉中温度分布的一个例子;
图5是由普通器件中目前使用的材料制成的基片上形成的金属氧化物层的示意图。
具体实施方式
现在将对本发明的优选实施例进行更加详细地参考。
【第一实施例】
图1示意性显示了用于根据本发明的方法形成高纯度氧化钼的设备的一个例子。用于形成氧化钼的设备100包括:石英管101,在其中沉积氧化钼;源支架104;基片支架105;炉102;以及加热器103,其能够在炉102中形成温度分布。还包括监视源温度的温度计106以及监视基片温度的温度计107。温度计106和107在这种情况下是热电偶。包括了用于引进并控制氧气108和氮气的装置,尽管它们未在附图中显示。真空泵(附图中未显示)能够排空石英管101的内部。源支架104和基片支架105由石英制成,因为它在形成氧化钼的温度下不会改变,并且不会和基片、氧以及氧化钼起反应。尽管在典型的实施例中使用了图1中显示的设备,但这不是受限制的,只要形成包括源和基片地带的优选温度分布,并且能够在沉积室里面制造氧气氛就行。
参考图2中显示的流程图来说明根据本发明的形成氧化钼的新方法。在这个例子中使用钼(Mo)板作为源并且使用硅(Si)基片。首先,用丙酮、甲醇以及高纯度水顺序漂洗钼板和硅基片(步骤201)。在步骤201之后如果必要的话用硫酸和高纯度水漂洗钼板。如果必要的话用氢氟酸或具有氢或氢基的其他方法去除硅基片上的自然生长的氧化物。
下一步(步骤202),在源支架104上设置预处理过的源钼板或表面已被预先氧化的钼板(10mm×10mm×0.1mm),并且在基片支架105上设置硅基片(10mm×10mm×0.1mm),所述基片支架105被设置在从源支架104离开到下游20cm的位置。
下一步(步骤203),石英管的里面用旋转泵被排空到10-3托,并且用氮(或例如氩的惰性气体)填充。
在用氮或惰性气体替换石英管里面的空气之后,炉被加热,以便形成图3中显示的温度分布(步骤204)。在温度分布中,源地带处的温度为650℃,而基片地带处的温度为450℃。通过在温度控制器(附图中未显示)的控制下加热大约45分钟来形成温度分布。在本发明的实施例中,源地带的温度为550~850℃,优选地为650℃,而基片地带的温度为350~650℃,优选地为450℃。从源地带到基片地带形成了温度的倾斜。源地带处超过850℃的温度不是优选的,因为氧可能离开氧化钼,并且可能形成氮化钼。基片地带处的温度低于源地带处的温度是重要的。
在炉102中形成希望的温度分布之后,氧气108被引进到石英管101中(步骤206)。氧气在从源支架104到基片支架105的方向上流动。氧气108的流速为50到450 SCCM,优选地为250 SCCM。尽管氧气流用于在石英管的里面制造氧气氛,但是能够使用其他氧气氛、氧基或氧等离子体,只要在希望的温度下氧化钼板,并且氧化钼的分子脱附源就行。
将上面显示的温度分布和氧气流保持6个小时(步骤207)。在这之后,在保持氧气流的同时将炉冷却到室温(步骤208)。结果,高质量单晶氧化钼层在硅基片上沉积到6μm的厚度,如图5所示。尽管氧化钼的生长速率在实施例中大约为1μm/h,但是它可以通过选择钼源的尺寸、氧的流速以及温度分布而改变。另外,沉积速率还取决于许多因素,例如石英管的直径、源和基片之间的距离以及基片的尺寸。因此,希望对于一些组的生长参数预先测量生长速率。层的厚度能够用光学方法或直接的测量方法测量。
【第二实施例】
严格说来,在硅基片501和氧化钼层502之间可能形成氧化硅的薄层。这是因为在氧化钼生长的早期氧化了硅基片的表面。如果希望不形成氧化硅,则通过在图2中显示的流程图中的步骤204和206之间添加流动氢气5分钟的步骤205(其他步骤和上面显示的用于第一实施例的步骤类似),可以阻止氧化硅的生长。尽管在第二实施例中通过流动氢气来防止氧化硅的生长,但是也能通过使用还原剂的其他方法来防止。
如图3所示的炉中温度分布只是一个。然而优选地,基片地带的温度是平坦的,因为在同样的温度下能够设置更多基片。
在本发明的实施例中,使用了具有例如(100)和(111)的不同表面取向的硅基片。能够在任何这样的基片上形成氧化钼的高质量结晶层。根据本发明的沉积金属氧化物的高质量膜的方法,能够适用于在除了硅之外的基片上形成高质量金属氧化物膜,所述基片例如锗、砷化镓、磷化铟、磷化镓、氮化镓、碳化硅、有机半导体或其衍生物、塑料基片、聚酰亚胺以及诸如玻璃之类的绝缘体。类似地,本发明的方法能够适用于使用诸如锌、钛、钽、铝、钌、铟、锡、铱、钯、钨、铜以及铬之类的金属作为它们的源来形成金属氧化物膜。通过使用X射线和Raman光谱学的分析显示,相对于由已知方法CVD或溅射形成的氧化钼膜,由根据本发明的方法形成的氧化钼膜具有较高质量的晶体和更加一致的成分。认为原因是:氧化钼分子脱附源钼板而不打破它们的化学键,并且氧化钼在保持在相对较低的温度下的石英管中沉积。从使用X射线和Raman光谱学的分析中弄得很清楚,本方法形成的氧化钼膜的主要成分是MoO3。众所周知,MoO3的晶体结构具有取决于晶格方向的不同晶格常数。当在不同材料的基片上沉积氧化钼时,认为该事实有利于缓解由晶格常数的不同所引起的问题。本方法形成的氧化钼的能带隙,从反射光谱测量中被表征为大于大约3.2eV。通过改变诸如源温度、基片温度以及氧气流速之类的生长条件、源板或基片的预处理过程或生长室的预处理,可以使得氧化钼具有大于3.2eV的能带隙。氧化钼具有大于3.2eV的能带隙的事实意味着,该材料具有可以代替GaN或SiC在器件中使用的可能性。本方法形成的氧化钼是n型的,并且当源温度分别为650和750℃时,电阻率分别为1.5×107Ω·cm和2.0×105Ω·cm。
能够以半导体工业中使用其他半导体材料的普通方式使用由根据本发明的方法制造的氧化钼。当没有故意掺杂地制造并且源温度低于650℃时,本方法制造的氧化钼是高电阻性的。然而,通过掺杂施主(例如P、As、Sb、Se等等)或受主(例如Zn、Ga、Mg等等),可以改变氧化钼的电子特性。当氧化钼通过本方法形成而没有故意掺杂时,通过改变源温度可以改变其电阻率。例如,和通过将源温度设置在650℃生长的氧化钼的电阻率相比,通过将源温度设置在750℃生长的氧化钼的电阻率要小得多。认为原因是:氧化钼中的氧空位具有施主的作用,并且和通过将源温度设置在较低温度形成的氧化钼中的氧空位浓度相比,通过将源温度设置在较高温度形成的氧化钼中的氧空位浓度更大。该事实是本方法的显著要点。另外,通过用例如离子注入在局部区域中引进施主或受主,可以控制本方法形成的氧化钼的局部电子特性。
以例如将源温度设置在较低温度的方式根据本发明的方法形成的具有高电阻率的金属氧化物膜,能够用于分开基片上的器件。进而,根据本发明的形成金属氧化物膜的方法能够用于形成如目前在器件中用作绝缘体的那样的金属氧化物膜。

Claims (14)

1.一种用于制造半导体层的方法,所述方法包含以下步骤:
提供源金属板和基片;
清洁所述源金属板和所述基片的表面;
在沉积室中设置所述源金属板和所述基片;
在惰性气体的气氛中,将所述源金属板加热到500℃和850℃之间的温度,并且将所述基片加热到350℃和650℃之间的温度;以及
通过将所述气氛从惰性气体改变到氧化气氛,并且在所述沉积室中维持所述源和所述基片温度一段足以形成具有希望厚度的金属氧化物层的时间,在所述基片上形成所述金属氧化物层。
2.一种用于制造半导体层的方法,所述方法包含以下步骤:
提供基片和表面已被预先氧化的源金属板;
清洁所述基片和表面已被预先氧化的所述源金属板的表面;
在沉积室中设置所述基片和所述源金属板;
在惰性气体的气氛中,将表面已被预先氧化的所述源金属板加热到500℃和850℃之间的温度,并且将所述基片加热到350℃和650℃之间的温度;以及
通过将所述气氛从惰性气体改变到氧化气氛,并且在所述沉积室中维持所述源和所述基片温度一段足以形成具有希望厚度的金属氧化物层的时间,在所述基片上形成所述金属氧化物层。
3.如权利要求1所述的方法,其中,通过在从所述源金属板到所述基片的方向上以50-450SCCM的流速在所述沉积室中流动的氧气流,提供所述氧化气氛。
4.如权利要求1或2所述的方法,其进一步包含以下步骤:在加热所述源金属板和所述基片的所述步骤之后,并且在形成所述金属氧化物层的所述步骤之前,流动氢气一段预期时间。
5.如权利要求1或2所述的方法,其中,所述基片由硅、砷化镓、磷化镓、磷化铟、氮化镓、碳化硅、有机半导体或其衍生物或玻璃制成,所述源金属板由钼、氧化钼或其衍生物制成。
6.如权利要求1或2所述的方法,其中,形成所述金属氧化物层的所述步骤包括同时掺杂施主或受主的步骤。
7.一种半导体层,其由根据权利要求1-6中任何一个的方法制造。
8.一种半导体器件,包含:
基片,其由一种半导体、多种半导体或包含一种半导体或多种半导体的结构组成;以及
氧化钼层,其在所述基片上形成。
9.如权利要求8所述的半导体器件,其中,所述氧化钼是具有MoO3的化学成分的单晶体。
10.如权利要求8所述的半导体器件,其中,所述氧化钼具有等于或大于3.2eV的能带隙。
11.如权利要求8所述的半导体器件,其中,由一种半导体、多种半导体或包含一种半导体或多种半导体的结构组成的所述基片包含硅、砷化镓、磷化镓、磷化铟、氮化镓、碳化硅、有机半导体或其衍生物。
12.如权利要求8所述的半导体器件,其中,在所述氧化钼层中形成至少一个半导体电子器件和/或半导体光子器件。
13.如权利要求8所述的半导体器件,其中,所述氧化钼为n型半导体、p型半导体或绝缘材料。
14.一种沉积设备,用于实施根据权利要求1或2的制造半导体层的所述方法,所述沉积设备包含:
沉积室,其气氛能够用不同的气体改变;
源支架和设置在所述源支架附近基片支架;
用于加热所述源支架和所述基片支架以便单独控制设置所述源支架和所述基片支架的各个区域的温度的装置;以及
用于在从所述源支架到所述基片支架的方向上将氧气流引进到所述沉积室中的装置。
CNA2005101161270A 2004-10-26 2005-10-26 基片上形成的金属氧化物及其制造方法 Pending CN1779912A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004310331A JP4576201B2 (ja) 2004-10-26 2004-10-26 三酸化モリブデン層の作製方法
JP2004310331 2004-10-26

Publications (1)

Publication Number Publication Date
CN1779912A true CN1779912A (zh) 2006-05-31

Family

ID=35658999

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005101161270A Pending CN1779912A (zh) 2004-10-26 2005-10-26 基片上形成的金属氧化物及其制造方法

Country Status (7)

Country Link
US (1) US7476628B2 (zh)
EP (2) EP1983070B1 (zh)
JP (1) JP4576201B2 (zh)
KR (1) KR20060049322A (zh)
CN (1) CN1779912A (zh)
DE (2) DE05023406T1 (zh)
TW (1) TWI496195B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301459A (zh) * 2009-01-28 2011-12-28 应用材料公司 用于在半导体装置上形成共形氧化层的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5214194B2 (ja) * 2007-08-10 2013-06-19 住友化学株式会社 金属ドープモリブデン酸化物層を含む有機エレクトロルミネッセンス素子及び製造方法
JP6108858B2 (ja) * 2012-02-17 2017-04-05 株式会社半導体エネルギー研究所 p型半導体材料および半導体装置
JP5826094B2 (ja) * 2012-03-30 2015-12-02 株式会社半導体エネルギー研究所 p型半導体材料、および光電変換装置の作製方法
US8647943B2 (en) * 2012-06-12 2014-02-11 Intermolecular, Inc. Enhanced non-noble electrode layers for DRAM capacitor cell
US11087977B2 (en) * 2016-08-31 2021-08-10 Flosfia Inc P-type oxide semiconductor and method for manufacturing same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158900A (ja) * 1984-12-28 1986-07-18 Alps Electric Co Ltd 金属酸化物ウイスカ−の製造装置
JPS6287498A (ja) * 1985-10-14 1987-04-21 Alps Electric Co Ltd 酸化モリブデンウイスカ−の製造方法
FR2612946B1 (fr) * 1987-03-27 1993-02-19 Chimie Metal Procede et installation pour le depot chimique de revetements ultradurs a temperature moderee
JPH0541285A (ja) * 1991-08-07 1993-02-19 Ricoh Co Ltd 電界発光素子
JPH0897159A (ja) * 1994-09-29 1996-04-12 Handotai Process Kenkyusho:Kk エピタキシャル成長方法および成長装置
JPH09213818A (ja) * 1996-01-29 1997-08-15 Oki Electric Ind Co Ltd 強誘電体ゲートメモリ、これに用いる強誘電体薄膜の形成方法およびこの形成方法に用いる前駆体溶液
JPH11298021A (ja) * 1998-04-10 1999-10-29 Canon Inc 光起電力素子用基板、これを用いた光起電力素子及び集積型光起電力素子並びに集積型光起電力素子の製造方法
US6214712B1 (en) 1999-09-16 2001-04-10 Ut-Battelle, Llc Method of physical vapor deposition of metal oxides on semiconductors
US6624441B2 (en) * 2002-02-07 2003-09-23 Eagle-Picher Technologies, Llc Homoepitaxial layers of p-type zinc oxide and the fabrication thereof
JP4519423B2 (ja) 2003-05-30 2010-08-04 創世理工株式会社 半導体を用いた光デバイス
JP4351869B2 (ja) * 2003-06-10 2009-10-28 隆 河東田 半導体を用いた電子デバイス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301459A (zh) * 2009-01-28 2011-12-28 应用材料公司 用于在半导体装置上形成共形氧化层的方法
US8435906B2 (en) 2009-01-28 2013-05-07 Applied Materials, Inc. Methods for forming conformal oxide layers on semiconductor devices
CN102301459B (zh) * 2009-01-28 2014-11-05 应用材料公司 用于在半导体装置上形成共形氧化层的方法

Also Published As

Publication number Publication date
JP4576201B2 (ja) 2010-11-04
US20060089006A1 (en) 2006-04-27
EP1983070B1 (en) 2014-08-13
DE08014153T1 (de) 2009-05-20
US7476628B2 (en) 2009-01-13
EP1652957A2 (en) 2006-05-03
TWI496195B (zh) 2015-08-11
TW200629382A (en) 2006-08-16
DE05023406T1 (de) 2006-08-31
EP1652957A3 (en) 2006-12-06
KR20060049322A (ko) 2006-05-18
EP1983070A3 (en) 2009-04-15
EP1983070A2 (en) 2008-10-22
JP2006128154A (ja) 2006-05-18

Similar Documents

Publication Publication Date Title
US8278656B2 (en) Substrate for the epitaxial growth of gallium nitride
EP1313134B1 (en) Semiconductor polysilicon component and method of manufacture thereof
CN1779912A (zh) 基片上形成的金属氧化物及其制造方法
KR20020093922A (ko) Ⅲ족 질화물계 화합물 반도체 소자의 제조 방법
TW201207166A (en) Silicon wafer and production method thereof
TWI413250B (zh) 半導體電子裝置
WO2013122084A1 (ja) 酸化物半導体及びこれを含む半導体接合素子
WO2004104274A2 (en) Zinc oxide crystal growth substrate
JP7220257B2 (ja) 積層体、半導体装置、ミストcvd装置及び成膜方法
Waseem et al. A Review of Recent Progress in β‐Ga2O3 Epitaxial Growth: Effect of Substrate Orientation and Precursors in Metal–Organic Chemical Vapor Deposition
Yusof et al. Fabrication and characterization of copper doped zinc oxide by using Co-sputtering technique
CN1804115A (zh) n型CVD共掺杂金刚石薄膜的制备方法
CN115074825A (zh) 碳化硅外延结构、脉冲式生长方法及其应用
JP2017045974A (ja) ゲルマニウム層の製造方法、ゲルマニウム層、ゲルマニウム層付き基板、ゲルマニウムナノドット、ゲルマニウムナノワイヤ付き基板、積層体、薄膜トランジスタおよび半導体素子
Chalker et al. Formation of epitaxial diamond-silicon carbide heterojunctions
JP2650635B2 (ja) Ii−vi族化合物半導体薄膜の製法
Arya et al. Direct Synthesis of Silicon Wires on a Polymer Substrate without the Substrate Heating using Hot-Wire-Enabled VLS Method
JPS61232675A (ja) 多結晶薄膜トランジスタとその製造方法
Kim et al. The role of surface adsorbates on electrical properties of MOVPE grown HgCdTe onto (0 0 1) GaAs substrates
JP2024532452A (ja) 半導体基板及び半導体薄膜蒸着装置
CN118516761A (zh) 一种基于多点成核的快速、无污染制备外延硅片的方法
PL229260B1 (pl) Struktura półprzewodnikowa nanodrutów azotku galu z zagrzebanym kontaktem elektrycznym oraz sposób wykonania tej struktury
Milne et al. Amorphous carbon for use in thin film transistors
JP2004158731A (ja) Ii−vi族化合物半導体単結晶およびその製造方法
Liu et al. Si–Sn Codoped N-Gan Film Grown on an Amorphous Glass Substrate with Dc-Pulse Sputtering

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1089563

Country of ref document: HK

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1089563

Country of ref document: HK