CN1778269A - A non-invasive electronic blood pressure detection method and device - Google Patents
A non-invasive electronic blood pressure detection method and device Download PDFInfo
- Publication number
- CN1778269A CN1778269A CN 200410052464 CN200410052464A CN1778269A CN 1778269 A CN1778269 A CN 1778269A CN 200410052464 CN200410052464 CN 200410052464 CN 200410052464 A CN200410052464 A CN 200410052464A CN 1778269 A CN1778269 A CN 1778269A
- Authority
- CN
- China
- Prior art keywords
- cuff
- pressure
- circuit
- blood pressure
- pulse wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000036772 blood pressure Effects 0.000 title claims abstract description 65
- 238000001514 detection method Methods 0.000 title claims description 78
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims description 73
- 238000005070 sampling Methods 0.000 claims description 41
- 238000012545 processing Methods 0.000 claims description 25
- 230000010355 oscillation Effects 0.000 claims description 20
- 238000004891 communication Methods 0.000 claims description 15
- 238000009499 grossing Methods 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 238000012360 testing method Methods 0.000 claims description 7
- 230000005669 field effect Effects 0.000 claims description 6
- 230000002457 bidirectional effect Effects 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 4
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 241000143437 Aciculosporium take Species 0.000 claims description 2
- 230000002441 reversible effect Effects 0.000 claims description 2
- 238000009423 ventilation Methods 0.000 claims 3
- 238000004364 calculation method Methods 0.000 description 8
- 230000003534 oscillatory effect Effects 0.000 description 8
- 230000035487 diastolic blood pressure Effects 0.000 description 6
- 230000035488 systolic blood pressure Effects 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- 230000017531 blood circulation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000002555 auscultation Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000013215 result calculation Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000010356 wave oscillation Effects 0.000 description 1
Images
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
技术领域 本发明涉及用于诊断目的的检测血压、脉率的方法和装置,尤其涉及一种可准确校正零点压力检测血压的方法以及采用拟合恢复振荡脉搏波趋势包络算法,对电子血压检测过程中的数据进行处理的方法和装置。Technical Field The present invention relates to a method and device for detecting blood pressure and pulse rate for diagnostic purposes, and in particular to a method for accurately correcting zero-point pressure to detect blood pressure and adopting the algorithm of fitting and recovering the oscillation pulse wave trend envelope to electronic blood pressure detection Method and apparatus for processing data in a process.
背景技术 现有技术中无创血压检测方法都是采用基于袖带脉搏波的振荡方法。人体血压的无创检测方法主要有利用柯氏音的听诊法(简称柯氏音法)和利用袖带振荡波的比例系数法(简称振荡法)。Background Art The non-invasive blood pressure detection methods in the prior art all adopt the cuff pulse wave-based oscillation method. The non-invasive detection methods of human blood pressure mainly include the auscultation method using Korotkoff sounds (referred to as the Korotkoff sound method) and the proportional coefficient method using cuff oscillation waves (referred to as the oscillation method).
柯氏音法是有经验的医护人员采用医用听诊器、水银压力计及袖带、充/放气囊通过将袖带捆绑在受试者上臂的适当位置,以听诊器贴近肱动脉,以充/放气囊向袖带充气增加压力直到阻塞手臂的血液流动,然后通过充/放气囊逐步减低袖带压力以恢复手臂的血液流动,在这个过程中手臂的动脉血流脉动会产生一个由小到大,再由大到小的柯氏音变化,并可借助听诊器和水银压力计来听取柯氏音的变化以确定收缩压和舒张压。系统的软件在完成上述充、放气控制的同时,还把放气过程中各个台阶上检测到的袖带压和袖带内脉搏波与特征波识别,恢复基于这个特征脉搏波的袖带振荡波趋势包络曲线。不同的设备厂家采用的恢复方法不尽相同。因恢复方法对形成包络曲线有直接影响,从而很大程度上它将决定人体血压检测的准确度。目前主要被使用的方法是,先采用线性插值方法来恢复台阶之间的脉搏波振幅值,再采用多点滑动平均法来消除异常波动,由此线性拟合出脉搏波幅度包络曲线。The Korotkoff sound method is that experienced medical personnel use medical stethoscopes, mercury manometers and cuffs to inflate/deflate the airbag. Inflate the cuff to increase the pressure until the blood flow in the arm is blocked, and then gradually reduce the pressure of the cuff to restore the blood flow in the arm through the inflation/deflation of the air bag. The Korotkoff sound changes from large to small, and the changes of the Korotkoff sound can be heard with the help of a stethoscope and a mercury manometer to determine systolic and diastolic blood pressure. While completing the above-mentioned inflation and deflation control, the software of the system also recognizes the cuff pressure detected on each step in the deflation process and the pulse wave in the cuff and the characteristic wave, and restores the cuff oscillation based on this characteristic pulse wave. Wave trend envelope curve. Different equipment manufacturers adopt different recovery methods. Because the recovery method has a direct impact on the formation of the envelope curve, it will determine the accuracy of human blood pressure detection to a large extent. At present, the main method used is to first use the linear interpolation method to restore the pulse wave amplitude value between the steps, and then use the multi-point moving average method to eliminate abnormal fluctuations, thereby linearly fitting the pulse wave amplitude envelope curve.
目前在电子血压检测设备中绝大多数是使用了基于振荡法的血压检测方法,基本过程与听诊法极为类似,即也通过袖带充气升压以阻塞手臂的血液流动,然后逐渐使袖带放气降压以恢复手臂的血液流动,并监测袖带内的静态压力和因动脉血的脉动所产生的压力脉搏波,但计算方法是通过检测在放气过程手臂的动脉血流脉动变化传递到袖带内所产生的压力脉搏波及其对应的袖带压力,可以检测到一组幅度从小到大,再由大到小的压力脉搏波及对应的由大到小的袖带压力,并以压力脉搏波的最大值所对应袖带压力为平均压,再依据经验值的压力脉搏波的幅度比例系数(压力脉搏波的最大值乘以二个小于1的系数得到的二个幅度值所对应的袖带压力分别为收缩压和舒张压)来向袖带压高的方向推算出收缩压,而向袖带压低的方向推算出舒张压(简称基于袖带振荡脉搏幅度的比例系数法)。At present, the vast majority of electronic blood pressure detection devices use the blood pressure detection method based on the oscillation method. The basic process is very similar to the auscultation method, that is, the cuff is also inflated to increase the pressure to block the blood flow in the arm, and then the cuff is gradually released. In order to restore the blood flow in the arm, the static pressure in the cuff and the pressure pulse wave generated by the pulsation of arterial blood are monitored, but the calculation method is transmitted to the The pressure pulse waves generated in the cuff and the corresponding cuff pressure can detect a set of pressure pulse waves with amplitudes ranging from small to large, and then from large to small, and the corresponding cuff pressure from large to small, and the pressure pulse The cuff pressure corresponding to the maximum value of the wave is the average pressure, and then according to the amplitude proportional coefficient of the pressure pulse wave of the empirical value (the maximum value of the pressure pulse wave is multiplied by two coefficients less than 1 to obtain the cuff corresponding to the two amplitude values The systolic pressure and the diastolic pressure are used to calculate the systolic pressure in the direction of cuff pressure, and the diastolic pressure is calculated in the direction of cuff depression (referred to as the proportional coefficient method based on the cuff oscillation pulse amplitude).
电子血压检测设备的基本结构一般包含(一)检测袖带压力的压力传感器及处理电路,(二)基于袖带压力变化的压力脉搏波处理电路,(三)过压力检测传感器及放大、保护处理电路,(四)袖带、控制放气阀、充气泵与压力传感器连接的气路及充、放气控制,(五)模/数转换、单片机系统,(六)电源部分。其中检测过程中压力脉搏波和袖带压力的检测可以放在充气后的放气阶段或充气阶段,放气阶段的放气形式可以是连续均匀放气(即以3-5mmHg均匀压力递减,同时检测压力脉搏波),也可以是台阶放气(即以5-10mmHg的台阶逐次减低袖带压力,在每个压力台阶上检测压力脉搏波),每次台阶压力减低的大小将根据检测到的脉搏波幅度来确定。连续均匀放气形式将增加血压检测过程的时间,对手臂运动、体位变化的影响也难于克服,其应用受到一定限制,而台阶放气形式将减少血压检测时间,并能克服由于手臂运动、体位变化等引发的干扰,具备较好的抗干扰能力,所以很多公司在血压检测中大多采用台阶放气形式。The basic structure of electronic blood pressure detection equipment generally includes (1) pressure sensor and processing circuit for detecting cuff pressure, (2) pressure pulse wave processing circuit based on cuff pressure change, (3) overpressure detection sensor and amplification and protection processing Circuit, (4) cuff, control air release valve, gas path connected with air pump and pressure sensor and charge and deflate control, (5) analog/digital conversion, single-chip microcomputer system, (6) power supply part. The detection of pressure pulse wave and cuff pressure in the detection process can be placed in the deflation stage or inflation stage after inflation, and the deflation form of the deflation stage can be continuous and uniform deflation (that is, the uniform pressure of 3-5mmHg is gradually reduced, and at the same time Detect pressure pulse wave), or step deflation (that is, gradually reduce the cuff pressure in steps of 5-10mmHg, and detect pressure pulse wave on each pressure step), the size of each step pressure reduction will be based on the detected Determine the pulse wave amplitude. Continuous uniform deflation will increase the time of blood pressure detection process, and it is difficult to overcome the influence of arm movement and body position changes. Interference caused by changes, etc., has a good anti-interference ability, so many companies mostly use step deflation in blood pressure testing.
现有技术的缺点:Disadvantages of existing technology:
无创血压检测的振荡方法实现应依靠硬件和软件的综合来完成血压检测,其中硬件部分主要考虑一是对袖带压力和压力脉搏波信号的放大,二是袖带压另一路独立的过压保护电路,三是数字电路部分,目前所了解的硬件部分主要缺陷有:The oscillation method of non-invasive blood pressure detection should rely on the integration of hardware and software to complete blood pressure detection. The hardware part mainly considers the amplification of cuff pressure and pressure pulse wave signal, and the other independent overvoltage protection of cuff pressure. The circuit, the third is the digital circuit part. The main defects of the hardware part we know so far are:
A、带压力的检测需要定时的校零操作,目前大多是直接在袖带没有充气的条件下自动校零,但由于电路漂移存在和在多次血压检测过程中很难保证袖带内静压力能降低到接近“零”的压力值,这将导致一是可能的校零失败;二是校零成功但仍可能产生因零点偏移所引发的压力值偏差,总之会影响袖带压力检测的准确性。A. The detection with pressure requires regular zero calibration operation. At present, most of them are automatically zeroed directly when the cuff is not inflated. However, it is difficult to ensure the static pressure inside the cuff due to circuit drift and multiple blood pressure detection processes. It can be reduced to a pressure value close to "zero", which will lead to a possible zero calibration failure; second, a successful zero calibration may still produce a pressure value deviation caused by a zero point offset. In short, it will affect the cuff pressure detection. accuracy.
B、根据安全的要求,血压检测过程中需要具有两套独立的定时系统来确保检测时间的限制,目前血压检测模块通常是模决自身有一套定时系统,并提供一个接口与外部所提供一个定时触发端口相连,通过上位机的定时功能来实现另一套独立定时系统,也能完成独立计时的安全要求,但这个血压模块没有实现完整的安全独立定时系统,需要上位机的配合,这样将给血压模块的安全应用带来隐患。B. According to safety requirements, two independent timing systems are required in the blood pressure detection process to ensure the detection time limit. At present, the blood pressure detection module usually has a timing system of its own, and provides an interface with an external timing system. The trigger port is connected, and another set of independent timing system is realized through the timing function of the host computer, which can also meet the safety requirements of independent timing, but this blood pressure module does not realize a complete and safe independent timing system, which requires the cooperation of the host computer, which will give The safe application of the blood pressure module brings hidden dangers.
C、由于实际放气过程中所产生的袖带脉搏波的幅度改变趋势是由小到大,到达幅度极值后再由大到小,形成非对称并且非线性曲线包络趋势,所以用线性趋势来拟合存在一定的缺陷,不能准确恢复脉搏波幅度变化包络曲线,不利于准确计算后续的平均压、收缩压和舒张压。C. Since the amplitude change trend of the cuff pulse wave generated during the actual deflation process is from small to large, and then from large to small after reaching the extreme value of the amplitude, forming an asymmetric and nonlinear curve envelope trend, so the linear There are certain defects in trend fitting, which cannot accurately restore the envelope curve of pulse wave amplitude change, which is not conducive to accurate calculation of subsequent mean blood pressure, systolic blood pressure and diastolic blood pressure.
发明内容 本发明所要解决的技术问题是为了避免现有技术的不足之处而提出一种新的无创电子血压检测方法及装置。该方法和装置在袖带与第一压力传感器之间添设三通电磁阀,该阀一个常通气口通过延长气管与袖带连接,其常闭气口与空气相通,这样就实现了在进行血压检测时,第一压力传感器与整个气路联通,实时感应气路内的压力,亦使得定期能在每次进行血压检测过程中和血压检测的间期,通过对这个三通阀的加电切换,使得上述的第一压力传感器可以直接与外界大气联通,可以准确地得到“零压力”校准值,实现袖带压力检测的无内部气路参与的“零压力”的定期自动校准,完成袖带压力的准确检测。SUMMARY OF THE INVENTION The technical problem to be solved by the present invention is to propose a new non-invasive electronic blood pressure detection method and device in order to avoid the shortcomings of the prior art. In the method and device, a three-way solenoid valve is added between the cuff and the first pressure sensor. A normally vented port of the valve is connected to the cuff through an extended trachea, and its normally closed port communicates with the air. During the detection, the first pressure sensor communicates with the entire gas circuit to sense the pressure in the gas circuit in real time, which also makes it possible to periodically switch the three-way valve during each blood pressure detection process and between blood pressure detections. , so that the above-mentioned first pressure sensor can be directly communicated with the outside atmosphere, and the "zero pressure" calibration value can be accurately obtained, and the regular automatic calibration of the "zero pressure" without the participation of the internal air circuit in the cuff pressure detection can be realized, and the cuff can be completed Accurate detection of pressure.
同时,新增一路独立定时电路,由一微处理器或两个固定180秒±5秒的时限定时器电路串接组成,这个触发器的输入端与血压模块的主微处理器(MCU)的一个I/O口连接,其中当一个来自主MCU的启动脉冲时启动这个限时计时器工作,当再次接收一个中止脉冲时将终止上述限时计时器工作,另外在其输入端有一个延迟门电路,防止在上电时产生触发脉冲异常启动定时操作。At the same time, an independent timing circuit is added, which is composed of a microprocessor or two fixed 180 seconds ± 5 seconds time-limit timer circuits connected in series. The input terminal of this trigger is connected to the main microprocessor (MCU) of the blood pressure module. An I/O port connection of the main MCU, in which the time-limit timer is started when a start pulse from the main MCU is received, and the above-mentioned time-limit timer will be terminated when a stop pulse is received again, and there is a delay gate circuit at its input , to prevent the timing operation from being abnormally started when the trigger pulse is generated when the power is turned on.
由于每个采样点数据包括压力脉搏波幅值及其对应的袖带压力值,对于常用的台阶放气形式,系统软件根据检测到的脉搏波幅度来控制每次台阶压力的减低值,会使各相邻采样点的袖带压力差值不等。因此为了精确恢复包络和便于计算,本发明选择适当的步进差值,在各个采样点,利用逐点移动分段多次曲线拟合和非线性插值的方法,产生一系列相邻等压力差值的袖带压力所对应的脉搏波幅值,并存储之;再逐点令曲线平滑,产生恢复后的脉搏波振荡包络趋势;找出该趋势曲线的最大值点,即为平均压位置点。Since the data of each sampling point includes the pressure pulse wave amplitude and its corresponding cuff pressure value, for the commonly used step deflation form, the system software controls the reduction value of each step pressure according to the detected pulse wave amplitude, which will make The cuff pressure difference of each adjacent sampling point is not equal. Therefore, in order to accurately restore the envelope and facilitate calculation, the present invention selects an appropriate step difference, and at each sampling point, uses the method of point-by-point movement, segmented multiple curve fitting and nonlinear interpolation to generate a series of adjacent equal pressures The pulse wave amplitude corresponding to the cuff pressure of the difference is stored, and then the curve is smoothed point by point to generate the recovered pulse wave oscillation envelope trend; find the maximum point of the trend curve, which is the average pressure location point.
本发明解决所述技术问题通过采用以下技术方案来实现:The present invention solves described technical problem and realizes by adopting following technical scheme:
实施一种无创电子血压检测方法,基于包括袖带、充气泵、第一压力传感器、第二压力传感器、快放气电磁阀、主微处理器、显示屏、通讯接口以及上位机构成的系统,其特征在于,所述方法包括步骤:Implement a non-invasive electronic blood pressure detection method, based on a system consisting of a cuff, an air pump, a first pressure sensor, a second pressure sensor, a quick deflation solenoid valve, a main microprocessor, a display screen, a communication interface and a host computer, It is characterized in that the method comprises the steps of:
a.首先,在袖带和第一压力传感器之间添设三通电磁阀;a. First, add a three-way solenoid valve between the cuff and the first pressure sensor;
b.之后,系统通电开始工作时,先使电磁阀工作于第一压力传感器接通大气的状态,第一压力传感器进行零点校准检测;b. Afterwards, when the system is energized and starts to work, first make the solenoid valve work in the state where the first pressure sensor is connected to the atmosphere, and the first pressure sensor performs zero point calibration detection;
c.零点校准结束后,使电磁阀工作于第一压力传感器接通袖带的状态,进行血压检测时,启动充气泵开始向袖带加压,上位机通过通讯接口接收数据并显示显示袖带内压力或由显示屏显示袖带内压力,当袖带内压力达到设定值后,充气过程停止;c. After the zero point calibration is completed, make the solenoid valve work in the state where the first pressure sensor is connected to the cuff. When performing blood pressure detection, start the air pump to pressurize the cuff, and the host computer receives data through the communication interface and displays the cuff. The internal pressure or the internal pressure of the cuff is displayed on the display screen. When the internal pressure of the cuff reaches the set value, the inflation process stops;
d.系统打开/关闭放气电磁阀,根据设定的速率放气,并检测是否有脉搏信号出现;d. The system opens/closes the deflation solenoid valve, deflates according to the set rate, and detects whether there is a pulse signal;
e.检测到有脉搏信号出现;主微处理器根据固化软件所确定的非线性拟合恢复振荡脉搏波趋势包络的算法进行数据处理,并在显示屏或上位机上显示测得的血压值;e. A pulse signal is detected; the main microprocessor performs data processing according to the nonlinear fitting algorithm determined by the firmware to restore the trend envelope of the oscillating pulse wave, and displays the measured blood pressure value on the display screen or on the host computer;
f.在检测过程中,遇到超时或过压现象,系统立即打开放气电磁阀、关闭充气泵,将袖带压力泄放,保证使用安全,并使主微处理器重新复位;f. During the detection process, if overtime or overpressure occurs, the system immediately opens the deflation solenoid valve, closes the air pump, releases the cuff pressure, ensures safe use, and resets the main microprocessor;
g.一次检测正常结束后,打开放气电磁阀,将袖带压力泄放,关闭放气电磁阀;g. After a test is completed normally, open the deflation solenoid valve, release the cuff pressure, and close the deflation solenoid valve;
h.再次进行血压检测时,从步骤c开始循环,并定期从步骤b开始循环。h. When performing blood pressure detection again, start the cycle from step c, and periodically start the cycle from step b.
上述方法步骤a在袖带和第一压力传感器之间添设三通电磁阀包括步骤:Step a of the above method, adding a three-way solenoid valve between the cuff and the first pressure sensor includes steps:
a.将三通电磁阀的公共通气口接第一压力传感器,常通气口接袖带,常闭气口与大气连通;a. Connect the public air port of the three-way solenoid valve to the first pressure sensor, the normal air port to the cuff, and the normally closed air port to communicate with the atmosphere;
b.设置三通阀驱动电路,该电路由主微处理器控制;b. Set the three-way valve drive circuit, which is controlled by the main microprocessor;
c.主微处理器对三通阀驱动电路控制的管脚通过输出高电平和低电平,使电磁阀工作于公共通气口与常通气口通路、与常闭气口阻塞的状态和公共通气口与常闭气口通路、与常通气口阻塞的状态。c. The pins controlled by the main microprocessor to the three-way valve drive circuit output high level and low level, so that the solenoid valve works in the state of the public vent and the normal vent passage, the state of blocking the normally closed port and the public vent The state of the passage between the normally closed air port and the normally closed air port.
无创方法步骤f所述检测过程中,遇到超时或过压现象,系统立即关闭充气泵、打开快放气电磁阀,是在系统中设置一独立定时电路,所述独立定时电路由主微处理器控制启动,计时时间一到便输出一控制信号到过压超时控制电路,该电路立即打开快放气电磁阀、关闭充气泵,将袖带压力泄放。In the detection process described in step f of the non-invasive method, if an overtime or overpressure phenomenon is encountered, the system immediately closes the air pump and opens the quick deflation solenoid valve. An independent timing circuit is set in the system, and the independent timing circuit is controlled by the main microprocessor. When the timer is up, a control signal is output to the overvoltage overtime control circuit, which immediately opens the quick deflation solenoid valve, closes the air pump, and releases the pressure of the cuff.
无创方法步骤e所述主微处理器100根据固化软件所确定的非线性拟合恢复振荡脉搏波趋势包络的算法进行数据处理,先是通过气路加压使袖带压力达到预定值;再通过软件控制其放气的同时采样各点的压力脉搏波幅值Y和袖带压力值X;随后的步骤包括:The
a.以所述采样的首个采样点X0、Y0为初始值,选择一个压力步长Δ,便于后续以所有采样点Xn、Yn为处理中间值进行趋势项拟合时,产生Xm、Ym插值点数据,其中n,m为自然数,Xm=X0-mΔ;a. Take the first sampling point X0, Y0 of the sampling as the initial value, select a pressure step Δ, which is convenient for subsequent trend item fitting with all sampling points Xn, Yn as the processing intermediate value, and generate Xm, Ym interpolation Point data, where n and m are natural numbers, Xm=X0-mΔ;
b.基于所述采样点,依次逐一移动选取至少3个相邻采样点的数据,分别进行如下处理,直至最后一个采样点被选择处理:b. Based on the sampling points, move and select the data of at least 3 adjacent sampling points one by one, and perform the following processing respectively until the last sampling point is selected for processing:
以所述至少3点构造多次曲线进行分段趋势项拟合,在选定顺序位置(第一和第二,或第二和第三,或其它)的两相邻采样点之间,产生趋势插值点Xm、Ym,并依次存储之,其中Xm介于该所述两采样点的袖带压力值区间,n、m在此过程中逐一递增;Construct multiple curves with said at least 3 points and carry out segmental trend item fitting, between two adjacent sampling points of selected sequence positions (first and second, or second and third, or others), generate Trend interpolation points Xm and Ym are stored in sequence, wherein Xm is between the cuff pressure value interval of the two sampling points, and n and m are incremented one by one during this process;
c.以所述存储的各点脉搏波幅值为中间值进行平滑处理:逐一移动对所述各点幅值,使之与至少2个相邻点的幅值一起加权平均,得到该点平滑后的幅值,并存储之。c. Perform smoothing with the stored pulse wave amplitudes of each point as the intermediate value: move the amplitudes of each point one by one to make it weighted and average with the amplitudes of at least 2 adjacent points to obtain smoothing of this point After the amplitude, and store it.
d.在所述存储的平滑后曲线数据中查询最大脉搏波幅值,以该位置为基准选取其左右分别1点及以上的数据,与之共同构造多次曲线,计算该多次曲线的最大值,作为振荡脉搏波趋势包络曲线的极值,所对应的袖带压力为平均压。d. Query the maximum pulse wave amplitude value in the stored smoothed curve data, select the data of 1 point or more on the left and right sides of the position based on this position, and construct multiple curves together with it, and calculate the maximum of the multiple curves Value, as the extreme value of the trend envelope curve of the oscillating pulse wave, the corresponding cuff pressure is the mean pressure.
所述非线性拟合恢复振荡脉搏波趋势包络的算法的步骤b中,是逐点移动分段采用3个相邻采样点的数据构造二次拟合曲线,在每第1点袖带压力值至第2点的袖带压力值止,产生所述范围内的预定袖带压力值X0-mΔ处的压力脉搏波幅度插值的。In the step b of the algorithm for recovering the trend envelope of the oscillatory pulse wave by nonlinear fitting, the data of three adjacent sampling points is used to construct a quadratic fitting curve point by point, and the cuff pressure at each point From the value up to the cuff pressure value at the second point, the interpolation of the pressure pulse wave amplitude at the predetermined cuff pressure value X0-mΔ within the range is generated.
所述非线性拟合恢复振荡脉搏波趋势包络的算法的步骤c中,对每个存储点的脉搏波幅值,是取其左右各2点脉搏波幅值数据,与之一起算数平均作平滑的。In the step c of the algorithm of the nonlinear fitting restoration of the oscillation pulse wave trend envelope, for the pulse wave amplitude of each storage point, the pulse wave amplitude data of 2 points on the left and right are taken, and the arithmetic mean is calculated together with it. smooth.
所述非线性拟合恢复振荡脉搏波趋势包络的算法的步骤d中,是以最大脉搏波幅值的位置为基准,选取压力递增方向相邻1个点数据,压力递减方向相邻2个点数据,与之以最小二乘法共同构造二次曲线,并求其极值的。In the step d of the algorithm for restoring the trend envelope of the oscillatory pulse wave by nonlinear fitting, the position of the maximum pulse wave amplitude is used as the reference, and the data of one point adjacent to the pressure increasing direction is selected, and two points adjacent to the pressure decreasing direction are selected. Point data, together with the least squares method to construct a quadratic curve, and find its extremum.
所述非线性拟合恢复振荡脉搏波趋势包络的算法的步骤d中,是以最大脉搏波幅值的位置为基准,选取左右相邻各1个点数据,与之共同构造二次曲线,并求其极值的。In the step d of the algorithm for restoring the trend envelope of the oscillatory pulse wave by nonlinear fitting, the position of the maximum pulse wave amplitude is used as a benchmark, and the data of one adjacent point on the left and right are selected, and a quadratic curve is constructed jointly with it, and find its extreme value.
本发明还可以通过以下的技术方案进一步实施:The present invention can also be further implemented through the following technical solutions:
根据上述方法设计制造一种无创电子血压检测装置,包括袖带、充气泵、第一压力传感器、第二压力传感器、快放气电磁阀、慢放气电磁阀、主微处理器、显示屏和通讯接口,尤其是还包括三通电磁阀,所述三通电磁阀接在袖带和第一压力传感器之间。Design and manufacture a non-invasive electronic blood pressure detection device according to the above method, including a cuff, an air pump, a first pressure sensor, a second pressure sensor, a quick deflation solenoid valve, a slow deflation solenoid valve, a main microprocessor, a display screen and The communication interface especially also includes a three-way solenoid valve connected between the cuff and the first pressure sensor.
所述快放气电磁阀接快阀驱动电路,所述快阀驱动电路的输入端接主微处理器和过压超时控制电路,所述过压超时控制电路的另一输入端接独立定时电路的输出。The fast deflation solenoid valve is connected to a fast valve drive circuit, the input terminal of the fast valve drive circuit is connected to the main microprocessor and the overvoltage timeout control circuit, and the other input terminal of the overvoltage timeout control circuit is connected to an independent timing circuit Output.
所述独立定时电路包括第二微处理器,所述第二微处理器的两个I/O引脚与主微处理器的两个I/O引脚连接,并通过软件方式实现定时、触发功能,接受主微处理器的延时启动、延时终止指令和成人/新生儿设置指令,第二微处理器还有一个引脚输出超时信号至过压超时控制电路。The independent timing circuit includes a second microprocessor, and two I/O pins of the second microprocessor are connected with two I/O pins of the main microprocessor, and realize timing and triggering by software function, accepting delay start, delay termination commands and adult/neonatal setting commands from the main microprocessor, and the second microprocessor also has a pin to output a timeout signal to the overvoltage timeout control circuit.
所述通讯接口是RS232接口,还可以是USB接口。The communication interface is an RS232 interface, and may also be a USB interface.
所述第一压力传感器的输出连接仪表放大器电路,该仪表放大器电路的输出一路作为压力信号输入至A/D转换电路,另一路经前放大器、后放大器放大作为脉搏信号也输入至A/D转换电路。The output of the first pressure sensor is connected to the instrumentation amplifier circuit, and one output of the instrumentation amplifier circuit is input to the A/D conversion circuit as a pressure signal, and the other is amplified by the pre-amplifier and the post-amplifier and is also input to the A/D conversion circuit as a pulse signal circuit.
所述增益控制及参考电压电路可以由三2选1双向模拟开关数字电路4053为主构成。The gain control and reference voltage circuit can be mainly composed of a three-to-one bidirectional analog switch digital circuit 4053 .
所述前放大器有一输入电阻,另有一电阻通过增益控制及参考电压电路与输入电阻并联或不关联,以调节放大倍数,并联或不关联是由主微处理器输出的SETP、AN_MODE信号控制增益控制及参考电压电路的A、B、C引脚所决定的。The pre-amplifier has an input resistor, and another resistor is connected in parallel or not associated with the input resistor through the gain control and reference voltage circuit to adjust the magnification. The parallel connection or not associated is controlled by the SETP and AN_MODE signals output by the main microprocessor. And the A, B, C pins of the reference voltage circuit are determined.
所述后放大器也有一输入电阻,也另有一电阻通过增益控制及参考电压电路与该输入电阻并联或不关联,调节后放大器的放大倍数,并联或不关联也是由主微处理器输出的SETP、AN_MODE信号控制增益控制及参考电压电路的A、B、C引脚所决定的。Described rear amplifier also has an input resistance, also another resistance is connected in parallel with this input resistance through gain control and reference voltage circuit or not associated, the amplification factor of the adjusted rear amplifier, parallel connection or not associated is also SETP, The AN_MODE signal controls the gain control and is determined by the A, B, and C pins of the reference voltage circuit.
数字电路4053的控制引脚A、B、C接入主微处理器,数字电路4053一个输出引脚X通过一电阻连接输出放大器的反向输入端,其相应输入引脚X1接参考电压V1.25,引脚X0接参考电压V2.0,不同的参考电压使得输出放大器的门限阈值也不同。The control pins A, B, and C of the digital circuit 4053 are connected to the main microprocessor, and an output pin X of the digital circuit 4053 is connected to the reverse input terminal of the output amplifier through a resistor, and its corresponding input pin X1 is connected to the reference voltage V1. 25. Pin X0 is connected to the reference voltage V2.0. Different reference voltages make the thresholds of the output amplifiers different.
所述第二压力传感器的输出连接由上放大器、下放大器、输出放大器构成的组合仪表放大电路,该电路的输出经场效应晶体管驱动输出过压信号OP,过压信号OP接过压超时控制电路。The output of the second pressure sensor is connected to a combined instrument amplifying circuit composed of an upper amplifier, a lower amplifier, and an output amplifier. The output of the circuit is driven by a field effect transistor to output an overvoltage signal OP, and the overvoltage signal OP is connected to an overvoltage timeout control circuit. .
所述过压超时控制电路包括两只反向器和两只或非门数字电路,由独立定时电路输出的超时信号OT和由输出放大器输出的过压信号OP接入到过压超时控制电路的输入端,该电路的输出接快阀驱动电路以及慢阀驱动电路,一旦袖带压力超限,立即打开阀门卸压,保证安全。The overvoltage timeout control circuit includes two inverters and two NOR gate digital circuits, the overvoltage signal OT output by the independent timing circuit and the overvoltage signal OP output by the output amplifier are connected to the overvoltage timeout control circuit At the input end, the output of the circuit is connected to the fast valve drive circuit and the slow valve drive circuit. Once the cuff pressure exceeds the limit, the valve is immediately opened to release the pressure to ensure safety.
本发明与现有技术的电路设计相比较,第一个优点为:优化了气路连接结构,实现袖带压力自动、准确的“零压力点”的无气路残余压力影响的自动校准,增加袖带压力检测的准确性。Compared with the circuit design of the prior art, the present invention has the first advantage: it optimizes the connection structure of the gas circuit, realizes the automatic and accurate automatic calibration of the "zero pressure point" of the cuff pressure without the influence of the residual pressure of the gas circuit, and increases Accuracy of cuff pressure detection.
第二个优点是:采用了一套定时电路实现了血压检测过程中的独立时限定时功能,真正实现模块级的独立定时,增强了血压检测过程中的安全保证。The second advantage is: a set of timing circuit is used to realize the independent time-limited time function in the process of blood pressure detection, truly realize the independent timing of the module level, and enhance the safety guarantee in the process of blood pressure detection.
第三个优点:利用本发明方法,能准确恢复脉搏波幅度变化趋势包络,使取得的平均压更能符合临床的实际情况。The third advantage: by using the method of the present invention, the pulse wave amplitude variation trend envelope can be accurately recovered, so that the obtained average pressure can be more in line with the actual clinical situation.
附图说明 图1是本发明所述方法和装置的构成原理方框图;BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram of the composition principle of the method and device of the present invention;
图2、图3、图4是本发明所述方法的流程图;Fig. 2, Fig. 3, Fig. 4 are the flow charts of method of the present invention;
图5是本发明所述装置中独立定时电路的电原理图;Fig. 5 is the electric schematic diagram of independent timing circuit in the device of the present invention;
图6是本发明所述装置中传感器及其放大器电路的电原理图;Fig. 6 is the electric schematic diagram of sensor and amplifier circuit thereof in the device of the present invention;
图7是本发明脉搏波幅度变化趋势包络示意图;Fig. 7 is a schematic diagram of the pulse wave amplitude variation trend envelope of the present invention;
图8是本发明非线性拟合恢复振荡脉搏波趋势包络的算法数据处理流程图。Fig. 8 is a flow chart of the algorithm data processing of the non-linear fitting recovery oscillation pulse wave trend envelope of the present invention.
具体实施方式 下面结合附图和最佳实施例对本发明做进一步详尽的描述。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be further described in detail in conjunction with the accompanying drawings and preferred embodiments.
如图1~图4所示:实施一种无创电子血压检测方法,基于包括袖带10、充气泵50、第一压力传感器30、第二压力传感器40、快放气电磁阀60、慢放气电磁阀70、主微处理器100、显示屏110、通讯接口120以及上位机200构成的系统,所述方法包括步骤:As shown in Figures 1 to 4: implement a non-invasive electronic blood pressure detection method, based on the
a.首先,在袖带10和第一压力传感器30之间添设三通电磁阀20;a. First, add a three-way solenoid valve 20 between the
b.之后,系统通电开始工作时,先使电磁阀20工作于第一压力传感器30接通大气的状态,第一压力传感器30进行零点校准检测;b. Afterwards, when the system is energized and starts to work, the electromagnetic valve 20 is first operated in the state where the
c.零点校准结束后,使电磁阀20工作于第一压力传感器30接通袖带10的状态,进行血压检测时,启动充气泵50开始向袖带10加压,上位机200通过通讯接口120接收数据并显示袖带10内压力,或由显示屏110显示袖带内压力,当袖带10内压力达到设定值后,充气过程停止;c. After the zero point calibration is completed, make the electromagnetic valve 20 work in the state where the
d.系统打开/关闭快放气电磁阀60和慢放气电磁阀70,根据设定的速率放气,并检测是否有脉搏信号出现;d. The system opens/closes the fast deflation solenoid valve 60 and the slow deflation solenoid valve 70, deflates according to the set rate, and detects whether there is a pulse signal;
e.检测到有脉搏信号出现;主微处理器100根据固化软件所确定的非线性拟合恢复振荡脉搏波趋势包络的算法进行数据处理,并在显示屏110或上位机200上显示测得的血压值;e. Detect that a pulse signal occurs; the
f.在检测过程中,遇到超时或过压现象,系统立即关闭充气泵50,打开快放气电磁阀60,将袖带10内压力泄放,保证使用安全;并使得主微处理器100重新复位;f. During the detection process, if overtime or overpressure occurs, the system immediately closes the air pump 50, opens the quick deflation solenoid valve 60, and releases the pressure in the
g.一次检测结束,打开快放气电磁阀60,将袖带10压力泄放,关闭快放气电磁阀60;g. Once the detection is over, open the quick deflation solenoid valve 60, release the pressure of the
h.再次进行血压检测时,从步骤c开始循环,并定期从b开始循环。步骤a所述在袖带10和第一压力传感器30之间添设三通电磁阀20包括步骤:h. When performing blood pressure testing again, start the cycle from step c, and periodically start the cycle from b. Adding a three-way solenoid valve 20 between the
a.将三通电磁阀20的公共通气口接第一压力传感器30,常通气口接袖带10,常闭气口与大气连通;a. Connect the common air port of the three-way solenoid valve 20 to the
b.设置三通阀驱动电路21,该电路21由主微处理器100控制;b. a three-way valve driving circuit 21 is set, and the circuit 21 is controlled by the
c.主微处理器100对三通阀驱动电路21控制的管脚通过输出高电平和低电平,使电磁阀20工作于公共通气口与常通气口通路、与常闭气口阻塞的状态和公共通气口与常闭气口通路、与常通气口阻塞的状态。c. The pins controlled by the
参照图1、图5,无创方法步骤f所述检测过程中,遇到超时或过压现象,系统立即关闭充气泵50、打开快放气电磁阀60,是在系统中设置一独立定时电路45,所述独立定时电路45由主微处理器100控制启动,计时时间一到便输出一超时信号OT到过压超时控制电路46,该电路46立即打开快放气电磁阀60、关闭充气泵50,将袖带压力泄放。Referring to Fig. 1 and Fig. 5, in the detection process described in step f of the non-invasive method, if overtime or overpressure occurs, the system immediately closes the air pump 50 and opens the quick deflation solenoid valve 60, which is to set an
参照图7、图8,无创方法步骤e所述主微处理器100根据固化软件所确定的非线性拟合恢复振荡脉搏波趋势包络的算法进行数据处理,先是通过气路加压使袖带压力达到预定值;再通过软件控制其放气的同时采样各点的压力脉搏波幅值Y和袖带压力值X;随后的步骤包括:Referring to Fig. 7 and Fig. 8, the
a .以所述采样的首个采样点X0、Y0为初始值,选择一个压力步长Δ,便于后续以所有采样点Xn、Yn为处理中间值进行趋势项拟合时,产生Xm、Ym插值点数据,其中n,m为自然数,Xm=X-mΔ;a . With the first sampling point X0, Y0 of the sampling as the initial value, select a pressure step Δ, which is convenient for subsequent trend item fitting with all sampling points Xn, Yn as the intermediate value of processing, and generate Xm, Ym interpolation Point data, where n and m are natural numbers, Xm=X-mΔ;
b.基于所述采样点,依次逐一移动选取至少3个相邻采样点的数据,分别进行如下处理,直至最后一个采样点被选择处理:b. Based on the sampling points, move and select the data of at least 3 adjacent sampling points one by one, and perform the following processing respectively until the last sampling point is selected for processing:
以所述至少3点构造多次曲线进行分段趋势项拟合,在选定顺序位置(第一和第二,或第二和第三,或其它)的两相邻采样点之间,产生趋势插值点Xm、Ym,并依次存储之,其中Xm介于该所述两采样点的袖带压力值区间,n、m在此过程中逐一递增;Construct multiple curves with said at least 3 points and carry out segmental trend item fitting, between two adjacent sampling points of selected sequence positions (first and second, or second and third, or others), generate Trend interpolation points Xm and Ym are stored in sequence, wherein Xm is between the cuff pressure value interval of the two sampling points, and n and m are incremented one by one during this process;
c.以所述存储的各点脉搏波幅值为中间值进行平滑处理:逐一移动对所述各点幅值,使之与至少2个相邻点的幅值一起加权平均,得到该点平滑后的幅值,并存储之。c. Perform smoothing with the stored pulse wave amplitudes of each point as the intermediate value: move the amplitudes of each point one by one to make it weighted and average with the amplitudes of at least 2 adjacent points to obtain smoothing of this point After the amplitude, and store it.
d.在所述存储的平滑后曲线数据中查询最大脉搏波幅值,以该位置为基准选取其左右分别1点及以上的数据,与之共同构造多次曲线,计算该多次曲线的最大值,作为振荡脉搏波趋势包络曲线的极值,所对应的袖带压力为平均压。d. Query the maximum pulse wave amplitude value in the stored smoothed curve data, select the data of 1 point or more on the left and right sides of the position based on this position, and construct multiple curves together with it, and calculate the maximum of the multiple curves Value, as the extreme value of the trend envelope curve of the oscillating pulse wave, the corresponding cuff pressure is the mean pressure.
所述非线性拟合恢复振荡脉搏波趋势包络的算法的步骤b中,是逐点移动分段采用3个相邻采样点的数据构造二次拟合曲线,在每第1点袖带压力值至第2点的袖带压力值止,产生所述范围内的预定袖带压力值X0-mΔ处的压力脉搏波幅度插值的。In the step b of the algorithm for recovering the trend envelope of the oscillatory pulse wave by nonlinear fitting, the data of three adjacent sampling points is used to construct a quadratic fitting curve point by point, and the cuff pressure at each point From the value up to the cuff pressure value at the second point, the interpolation of the pressure pulse wave amplitude at the predetermined cuff pressure value X0-mΔ within the range is generated.
所述非线性拟合恢复振荡脉搏波趋势包络的算法的步骤c中,对每个存储点的脉搏波幅值,是取其左右各2点脉搏波幅值数据,与之一起算数平均作平滑的。In the step c of the algorithm of the nonlinear fitting restoration of the oscillation pulse wave trend envelope, for the pulse wave amplitude of each storage point, the pulse wave amplitude data of 2 points on the left and right are taken, and the arithmetic mean is calculated together with it. smooth.
所述非线性拟合恢复振荡脉搏波趋势包络的算法的步骤d中,是以最大脉搏波幅值的位置为基准,选取压力递增方向相邻1个点数据,压力递减方向相邻2个点数据,与之以最小二乘法共同构造二次曲线,并求其极值的。In the step d of the algorithm for restoring the trend envelope of the oscillatory pulse wave by nonlinear fitting, the position of the maximum pulse wave amplitude is used as the reference, and the data of one point adjacent to the pressure increasing direction is selected, and two points adjacent to the pressure decreasing direction are selected. Point data, together with the least squares method to construct a quadratic curve, and find its extremum.
所述非线性拟合恢复振荡脉搏波趋势包络的算法的步骤d中,是以最大脉搏波幅值的位置为基准,选取左右相邻各1个点数据,与之共同构造二次曲线,并求其极值的。In the step d of the algorithm for restoring the trend envelope of the oscillatory pulse wave by nonlinear fitting, the position of the maximum pulse wave amplitude is used as a benchmark, and the data of one adjacent point on the left and right are selected, and a quadratic curve is constructed jointly with it, and find its extreme value.
如图1所示,根据上述方法设计制造一种无创电子血压检测装置的最佳实施例,包括袖带10、充气泵50、第一压力传感器30、第二压力传感器40、快放气电磁阀60、慢放气电磁阀70、主微处理器100、显示屏110和通讯接口120,尤其是:还包括三通电磁阀20,所述三通电磁阀20接在袖带10和第一压力传感器30之间。As shown in Figure 1, the best embodiment of a non-invasive electronic blood pressure detection device is designed and manufactured according to the above method, including a
所述三通电磁阀20的公共通气口接第一压力传感器30,常通气口接袖带10,常闭气口与大气连通。The common air port of the three-way solenoid valve 20 is connected to the
还如图1所示,在最佳实施例中,所述快放气电磁阀60接快阀驱动电路61,所述快阀驱动电路61的输入端接主微处理器100和过压超时控制电路46输出端,所述过压超时控制电路46的一输入端接独立定时电路45的输出。Also as shown in Figure 1, in the preferred embodiment, the fast deflation solenoid valve 60 is connected to the fast valve drive circuit 61, and the input terminal of the fast valve drive circuit 61 is connected to the
如图5所示,在最佳实施例中,所述独立定时电路45包括第二微处理器U2,U2选用MSP430微处理器,U2通过软件方式实现定时、触发功能,所述第二微处理器U2的两个I/O引脚与主微处理器100的两个I/O引脚连接,接受主微处理器100的延时启动、延时终止指令和成人/新生儿设置指令,第二微处理器U2还有一个引脚输出超时信号OT至过压超时控制电路46。As shown in Figure 5, in the preferred embodiment, described
所述通讯接口120在最佳实施例中选用RS232接口,当然也可以选用USB接口。The communication interface 120 is an RS232 interface in a preferred embodiment, and of course a USB interface can also be selected.
如图6和图1所示,所述第一压力传感器30的输出连接仪表放大器电路31,该仪表放大器电路31的输出一路作为压力信号(CUFFPRESS)输入至A/D转换电路35,另一路经前放大器32、后放大器33放大后作为脉搏信号(PULSEWAVE)也输入至A/D转换电路35。As shown in Figure 6 and Figure 1, the output of the
第一压力传感器30的输出接入仪表放大器31的端口2、端口3,第一压力传感器30的输入引线4接入运算放大器U3A的端口7,第一压力传感器30的引线2与引线5并联接入运算放大器U3A的端口3,运算放大器U3A引脚2接地,引脚6接电源Vcc并通过电容C1接地AGND,第一压力传感器30的引脚6接地,仪表放大器31的引脚1接电阻R1后接入仪表放大器31的引脚8,仪表放大器31的引脚7接电源Vcc,并通过电容C2接地,仪表放大器31的引脚4接地,仪表放大器31的引脚5接在电阻R2和R3之间,其中R2的另一端接Vcc,R3的另一端接地,仪表放大器31的输出脚6分两路,一路通过电位器TR1与电阻R4串连分压输出到电阻R12,并接电容C22到地,同时输出压力信号CuffPress,另一路通过隔直电容E1连接电阻R5,并通过R5输入到前放大器32。同时在前放大器32上还实现了程控的增益选择,确保在不同应用模式下(成人/新生儿)设置有不同的增益。在最佳实施例中的做法是:The output of the
前放大器32有输入电阻R5,另有一电阻R6通过增益控制及参考电压电路44与电阻R5并联或不关联,并联或不关联是由主微处理器100的SETP、AN_MODE信号控制增益控制及参考电压电路44的A、B、C引脚所决定的。The
后放大器33也有输入电阻R8,另有一电阻R9通过增益控制及参考电压电路44与电阻R8并联或不关联,并联或不关联也是由主微处理器100的SETP、AN_MODE信号控制增益控制及参考电压电路44的A、B、C引脚所决定的。输入电阻阻值的大小决定放大器发达倍数的大小,主微处理器100在工作过程中根据需要控制电阻R6、R9是否并联在输入电阻上。The
所述增益控制及参考电压电路44由三2选1双向模拟开关数字电路4053为主构成,其控制引脚A、B、C接入主微处理器100,其输出引脚X通过电阻R28连接输出放大器43的反向输入端,其输入引脚X1接参考电压V1.25,引脚X0接参考电压V2.0,不同的引入电压使得输出放大器43的门限阈值也不同。模拟开关数字电路4053的引脚7、8和6接地AGND,引脚9接STEP是来自CPU的一个端口,以完成对引脚4与引脚3或5的连接和断开,引脚10和11并联后连接到AN_MODE是来自CPU的一个端口,以完成引脚15连接到引脚1或2,引脚14连接到引脚13或12的同步切换。The gain control and
如图1、图6和图5所示,所述第二压力传感器40的输出连接由上放大器41构成的电压跟随器和由下放大器42构成的前置放大器,下放大器42的输出和增益控制及参考电压电路44的一个输出“X”分别接入到输出放大器43的两个输入端,该输出放大器43的输出经场效应晶体管Q7驱动输出过压信号OP,过压信号OP接过压超时控制电路46。达到检测袖带压力是否超过预定的保护压力点,确保受试者安全的目的。As shown in Fig. 1, Fig. 6 and Fig. 5, the output of the
过压保护的过程是由第二压力传感器40的引脚1通过R18与电源输入VI连接,稳压管D1与电容C5并联接入地AGND,第二压力传感器40的引脚3也接入地AGND,第二压力传感器40的引脚4接到上放大器41的引脚3,引脚4通过电阻R26接到引脚5,这个引脚4同时还通过电阻R24与电位器TR2串连后连接到下放大器42的引脚8,第二压力传感器40的引脚2接到的下放大器42的引脚1,其引脚8通过电阻R25接到引脚7,该引脚7通过电阻R27连接到输出放大器43的引脚4,该引脚4又通过电阻R28连接到三2选1双向模拟开关数字电路4053的引脚14,并进一步通过三2选1双向模拟开关数字电路4053的引脚13或12分别连接到参考电压V1.25和V2.5,下放大器42的引脚5通过R29与输出放大器43的引脚3连接,同时输出放大器43的引脚3又通过电阻R30和电阻R31分别与地GND和引脚5相连接,输出放大器43的引脚3和4之间通过电容C49相连,输出放大器43的引脚5与场效应管Q7的引脚1连接,场效应管Q7的引脚1又通过电阻R35与引脚2连接,并与地AGND接通,场效应管Q7的引脚3通过电阻R54与电源Vcc连接,这个引脚3同时也是过压信号OP的输出。The process of overvoltage protection is that the pin 1 of the second pressure sensor 40 is connected to the power input VI through R18, the regulator tube D1 and the capacitor C5 are connected in parallel to the ground AGND, and the pin 3 of the second pressure sensor 40 is also connected to the ground AGND, the pin 4 of the second pressure sensor 40 is connected to the pin 3 of the upper amplifier 41, and the pin 4 is connected to the pin 5 through the resistor R26, and this pin 4 is also connected in series with the potentiometer TR2 through the resistor R24 To the pin 8 of the lower amplifier 42, the pin 2 of the second pressure sensor 40 is connected to the pin 1 of the lower amplifier 42, and its pin 8 is connected to the pin 7 through the resistor R25, and the pin 7 is connected through the resistor R27 To the pin 4 of the output amplifier 43, the pin 4 is connected to the pin 14 of the three 2 selection 1 bidirectional analog switch digital circuit 4053 through the resistor R28, and further passes through the pin 4053 of the three 2 selection 1 bidirectional analog switch digital circuit 4053 13 or 12 are respectively connected to the reference voltage V1.25 and V2.5, the pin 5 of the lower amplifier 42 is connected with the pin 3 of the output amplifier 43 through R29, and the pin 3 of the output amplifier 43 is passed through the resistor R30 and the resistor R31 Connect to ground GND and pin 5 respectively, connect between pins 3 and 4 of the output amplifier 43 through capacitor C49, pin 5 of the output amplifier 43 is connected to pin 1 of the field effect transistor Q7, and the pin 1 of the field effect transistor Q7 Pin 1 is connected to pin 2 through resistor R35 and connected to ground AGND.
第二压力传感器40的输出一路接由上放大器41构成的电压跟随器,电压跟随器的输出接入下放大器42的反相输入端,下放大器42的同相输入端接第二压力传感器40的另一路输出,完成静态袖带压力的前置放大,这个放大电路的输出端连接到输出放大器43的同相输入端,同时在这个输出放大器43的反相输入端接入可调的参考电压,这样就可以实现过压点保护的准确状态翻转,以适应不用应用模式下期望设置不同过压保护点的需求。The output of the
如图5和图1所示,所述过压超时控制电路46包括反向器U4-1、U4-2和或非门数字电路U3-1、U3-2,由独立定时电路45输出的超时信号OT和由输出放大器43输出的过压信号OP接入到过压超时控制电路46的输入端,该电路46的输出接快阀驱动电路61以及慢阀驱动电路71。As shown in Fig. 5 and Fig. 1, described overvoltage
所述通讯接口120在最佳实施例中采用RS232接口,在其他实施例中还可以选用USB接口。The communication interface 120 adopts RS232 interface in the best embodiment, and can also choose USB interface in other embodiments.
如图5所示的最佳实施例:所述独立定时电路45的启动计时输入端接主微处理器100的P02接口。图中的第二微处理器U2由TI的MSP430型单片机构成,由MSP430的系统软件完成计时,当U2检测到启动定时器信号时,即启动软件计时器;当U2检测到终止定时器信号时,即终止软件计时器;这个软件计时器的限制将依赖于应用模式设置:即成人/新生儿模式设置,成人模式为180±1秒,新生儿模式为90±1秒。The preferred embodiment shown in FIG. 5 : the starting timing input terminal of the
当然上述计时器还可以采用模拟器件或数字电路实现同样的功能。Of course, the above-mentioned timer can also use an analog device or a digital circuit to realize the same function.
在本发明的最佳实施例中,微处理器U2的一个I/O口P1.0连接超时控制电路46的输入端,当系统处在除检测状态以外的其它待命状态时,这个端口保持低电平,而当系统处在正常检测工作状态时这个端口将输出一个高电平,并保持一直到本次检测过程结束,这个端口再次回到低电平继续保持待命状态。当超时控制电路46的一输入端处在低电平时,计时器处在停止计时状态,只有当计时器的计时超过限时(如180±1秒(成人)或90±1秒(新生儿))时这个端口才有输出,启动放气电磁阀70、终止充气泵50,并通知主微处理器100。In the preferred embodiment of the present invention, an I/O port P1.0 of the microprocessor U2 is connected to the input end of the
主微处理器100中固化的系统软件负责检测过程中的监控,数据处理,结果计算,以及对上位控制系统的通讯。检测时,系统先通过气路加压使袖带压力达到预定值,再通过软件控制其放气,同时采样各点的压力脉搏波幅值和相应的袖带压力值,放气形式为台阶放气或连续放气,如图7所示,采样到的数据以袖带压力为横轴,振荡脉搏波幅度为纵轴,这样有离散点数据A(X,Y)、B(X,Y)、C(X,Y)......,图中所示XA、XB、XC......为非等差袖带压力采样值。在拟合恢复曲线包络时,为了便于计算和精细拟合,本方法通过非线性插值,使得到代表曲线包络的一系列等压力间隔的数据点(X0,Y0),(X1,Y1),(X2,Y2),(X3,Y3)......其中X1-X0=X2-X1=X3-X2=......=Δ,再行计算处理。The system software solidified in the
如图8所示,具体处理流程包括以下步骤As shown in Figure 8, the specific processing flow includes the following steps
a.以首个采样点的袖带压力X0、Y0为初始值,选择一个压力步长Δ,便于后续以所有采样点Xn、Yn为处理中间值进行趋势项拟合时,产生Xm、Ym插值点数据,其中n,m为自然数,Xm=X0-mΔ;a. With the cuff pressure X0, Y0 of the first sampling point as the initial value, select a pressure step Δ, which is convenient for subsequent trend fitting with all sampling points Xn, Yn as the intermediate value of processing, and generate Xm, Ym interpolation Point data, where n and m are natural numbers, Xm=X0-mΔ;
b.基于所述采样点,依次逐一移动选取3个相邻采样点的数据,以之构造二次曲线进行分段趋势项拟合,在每第1点袖带压力值至第2点的袖带压力值止,产生该范围内的各预定袖带压力插值X0-mΔ处的压力脉搏波幅度插值Ym,并依次存储之;m在此过程中逐一递增;b. Based on the sampling points, move one by one to select the data of 3 adjacent sampling points one by one, and use them to construct a quadratic curve for segmental trend fitting. With the pressure value, the pressure pulse wave amplitude interpolation value Ym at each predetermined cuff pressure interpolation value X0-mΔ within the range is generated, and stored in sequence; m is incremented one by one during this process;
c.以所述存储的各点脉搏波幅值为中间值进行平滑处理:逐一移动对所述各点幅值Yn,使之与相邻左右各2个点的幅值一起加权平均进行平滑,得到该点平滑后的幅值,并存储之;c. Perform smoothing with the stored pulse wave amplitude at each point as the intermediate value: move the amplitude Y n of each point one by one to make it smooth with the weighted average of the amplitudes of the two adjacent left and right points , get the smoothed amplitude of the point, and store it;
d.在所述存储的平滑后数据中查询最大脉搏波幅值,以该位置为基准选取其左右分别1点以上的数据,与之共同构造多次曲线,计算该多次曲线的最大值,作为振荡脉搏波趋势包络曲线的极值,所对应的袖带压力为平均压。d. Query the maximum pulse wave amplitude in the stored smoothed data, select the data of more than 1 point respectively on the left and right with this position as the benchmark, construct a multiple curve together with it, and calculate the maximum value of the multiple curve, As the extremum of the trend envelope curve of the oscillating pulse wave, the corresponding cuff pressure is the mean pressure.
其中,步骤a中步差Δ可以依测试人体的不同在3-5mmHg压差范围内选值。Wherein, the step difference Δ in step a can be selected in the range of 3-5 mmHg pressure difference according to the difference of the test human body.
步骤b中的二次曲线用3点拟合,可表示为Y=anX2+bnX+cn并满足The quadratic curve in step b is fitted with 3 points, which can be expressed as Y=a n X 2 +b n X+c n and satisfies
Yn=Y(Xn),Yn+1=Y(Xn+1),Yn-1=Y(Xn-1)Y n =Y(X n ), Y n+1 =Y(X n+1 ), Y n-1 =Y(X n-1 )
由此确定an、bn、cn并进一步推算出X0-mΔ≤Xn压力处的Ym数据。如果系统有足够的资源和运算速度,可以用3点以上的数据构造多次拟合曲线,进行非线性插值。From this, a n , bn , c n are determined, and the Y m data at the pressure of X0-mΔ≤X n is further calculated. If the system has sufficient resources and computing speed, more than 3 points of data can be used to construct multiple fitting curves for nonlinear interpolation.
除了示例采用的在每一分段的首两个采样点之间插值,也可以采用在后两个采样点之间插值;在以所有采样点Xn、Yn为处理中间值进行分段趋势项拟合时,一般因为采样点足够多,从而可以允许放弃在最后两个采样点间或最先两个采样点间进行插值。In addition to the interpolation between the first two sampling points of each segment used in the example, interpolation between the last two sampling points can also be used; when all sampling points Xn, Yn are used as the intermediate values of the processing, the segmentation trend item is simulated Generally, because there are enough sampling points, it is allowed to give up interpolation between the last two sampling points or between the first two sampling points.
步骤c中平滑滤波处理,采用相邻点的滚动加权平均方法,以5点为例,实践中不排除3点或4点的加权平均。所述加权平均也可以简化为算术平均。In the smoothing and filtering process in step c, the rolling weighted average method of adjacent points is adopted. Taking 5 points as an example, the weighted average of 3 points or 4 points is not ruled out in practice. The weighted average can also be simplified as an arithmetic average.
为使数据更准确,上述步骤d可以进一步处理,如图7所示:依据查询到的极大值位置,往压力递增方向选相邻1个数据点,压力递减方向选相邻2个数据点,使趋势较陡一端的数据点较多,以确保上升沿的趋势权重;再依据上述的4个数据点,用最小二乘法构造二次曲线,该曲线的顶点确认为脉搏波幅度趋势包络的极值,对应着平均压;依此幅度极值还可以进一步计算收缩压和舒张压对应的幅度,从而依此包络推算收缩压和舒张压。In order to make the data more accurate, the above step d can be further processed, as shown in Figure 7: according to the position of the maximum value found in the query, select one adjacent data point in the direction of increasing pressure, and select two adjacent data points in the direction of decreasing pressure , so that there are more data points at the steeper end of the trend, so as to ensure the trend weight of the rising edge; then according to the above four data points, use the least square method to construct a quadratic curve, and the apex of the curve is confirmed as the pulse wave amplitude trend envelope The extreme value of the corresponding mean pressure; according to the extreme value of the range, the range corresponding to the systolic blood pressure and the diastolic blood pressure can be further calculated, so that the systolic blood pressure and the diastolic blood pressure can be calculated according to this envelope.
系统软件的数据采集与预处理程序模块在使用本发明方法时,还结合对脉搏波进行基准波的识别和幅度的计算和判断,只有在出现正常的趋势性脉搏时,才可以进行后续的脉搏拟合和插值运算,以及进一步的血压计算,而未能发现正常的趋势性的脉搏时,将继续寻找脉搏波或报异常,并产生相应的错误信息,该处理过程不在本发明目的之内,未加阐述。When using the method of the present invention, the data acquisition and preprocessing program modules of the system software are also combined with the recognition of the pulse wave and the calculation and judgment of the amplitude. Only when a normal trend pulse occurs, can the follow-up pulse Fitting and interpolation calculations, and further blood pressure calculations, when failing to find a normal trending pulse, will continue to search for pulse waves or report abnormalities, and generate corresponding error messages. This processing process is not within the purpose of the present invention. Not elaborated.
实践证明,本发明优化了气路连接结构,实现袖带压力自动、准确的的无残余压力影响的“零压力点”自动校准,增加了袖带压力检测的准确性。Practice has proved that the present invention optimizes the gas circuit connection structure, realizes automatic and accurate "zero pressure point" automatic calibration of cuff pressure without residual pressure influence, and increases the accuracy of cuff pressure detection.
同时,本发明采用了一套定时电路实现了血压检测过程中的独立时限定时功能,真正实现了模块级的独立定时,增强了血压检测过程中的安全保证。At the same time, the present invention adopts a set of timing circuits to realize the independent time-limiting function in the blood pressure detection process, truly realizes the independent timing of the module level, and enhances the safety guarantee in the blood pressure detection process.
本发明中采用非线性拟合来恢复振荡波的趋势包络,可以准确地实现极值脉搏波的获取以及对平均压的定位;临床验证,取得的平均压更能符合测试的实际情况,特别是能有效处理台阶放气获得的数据,从而缩短测试过程,有利于安全。In the present invention, non-linear fitting is used to restore the trend envelope of the oscillatory wave, which can accurately realize the acquisition of extreme pulse waves and the positioning of the average pressure; clinical verification, the obtained average pressure is more in line with the actual situation of the test, especially It can effectively process the data obtained by step deflation, thereby shortening the test process and being beneficial to safety.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100524643A CN100407986C (en) | 2004-11-23 | 2004-11-23 | A non-invasive electronic blood pressure detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100524643A CN100407986C (en) | 2004-11-23 | 2004-11-23 | A non-invasive electronic blood pressure detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1778269A true CN1778269A (en) | 2006-05-31 |
CN100407986C CN100407986C (en) | 2008-08-06 |
Family
ID=36768810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100524643A Expired - Lifetime CN100407986C (en) | 2004-11-23 | 2004-11-23 | A non-invasive electronic blood pressure detection device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100407986C (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7594892B2 (en) | 2006-07-11 | 2009-09-29 | Shenzhen Mindray Bio-Medical Electronics Co., Ltd. | Non-invasive blood pressure measurement apparatus and safety protection method |
CN101953680A (en) * | 2010-10-22 | 2011-01-26 | 滨州学院 | Household health index analyzer |
CN101589948B (en) * | 2008-05-29 | 2012-01-25 | 普立思胜医疗技术(丹阳)有限公司 | Blood pressure measurement calibration method by oscillography and electronic sphygmomanometer |
WO2012016421A1 (en) * | 2010-08-06 | 2012-02-09 | 深圳瑞光康泰科技有限公司 | Non-invasive blood pressure measuring apparatus and measuring method thereof |
CN101589949B (en) * | 2008-05-30 | 2012-05-30 | 普立思胜医疗技术(丹阳)有限公司 | Calibrating method for automatic blood pressure measurement and electric blood pressure meter |
CN102772201A (en) * | 2012-07-27 | 2012-11-14 | 深圳市理邦精密仪器股份有限公司 | Dust removing device and dust removing method of blood pressure monitor |
CN102894964A (en) * | 2011-07-26 | 2013-01-30 | 深圳大学 | Method and device for non-invasively measuring blood pressure |
CN103750832A (en) * | 2014-01-14 | 2014-04-30 | 上海交通大学 | Real-time wireless blood pressure monitoring system, blood pressure measuring device and blood pressure analysis method |
CN104000573A (en) * | 2014-05-29 | 2014-08-27 | 东北大学 | Body surface two point pulse wave based central arterial pulse monitoring system and method |
CN104055503A (en) * | 2014-06-27 | 2014-09-24 | 广州视源电子科技股份有限公司 | Data processing method of noninvasive sphygmomanometer |
CN104720775A (en) * | 2013-12-22 | 2015-06-24 | 江苏鹿得医疗电子股份有限公司 | Electronic hematomanometer with automatic correcting function |
CN105326488A (en) * | 2015-11-25 | 2016-02-17 | 西安交通大学 | Overpressure and overtime integrated protection device and method for blood pressure measurement |
CN110032236A (en) * | 2019-04-30 | 2019-07-19 | 成都新欣神风电子科技有限公司 | A kind of direct current transducer circuit of any bias voltage output |
CN110200613A (en) * | 2019-04-08 | 2019-09-06 | 深圳市贝斯曼精密仪器有限公司 | A kind of blood flow blood pressure detector |
CN110522434A (en) * | 2019-04-08 | 2019-12-03 | 深圳市贝斯曼精密仪器有限公司 | A kind of pressure-releasing control circuit of blood pressure detector |
CN110944578A (en) * | 2018-05-22 | 2020-03-31 | 深圳市得道健康管理有限公司 | Pulse condition instrument and pulse condition instrument system |
CN111616692A (en) * | 2020-05-14 | 2020-09-04 | 李永生 | Extrusion type execution system of noninvasive blood pressure simulator and control method thereof |
CN112057063A (en) * | 2019-06-10 | 2020-12-11 | 苹果公司 | Predicting blood pressure measurements with limited pressurization |
CN112914531A (en) * | 2021-01-19 | 2021-06-08 | 深圳市杰纳瑞医疗仪器股份有限公司 | Method for determining blood pressure envelope wave, electronic device and storage medium |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2138475Y (en) * | 1992-09-23 | 1993-07-21 | 庄自立 | Electronic sphygmomanometer |
US5931790A (en) * | 1997-06-06 | 1999-08-03 | Southwest Research Institute | System and method for accurately monitoring the cardiovascular state of a living subject |
JP2003299627A (en) * | 2002-04-10 | 2003-10-21 | Omron Corp | Electronic sphygmomanometer |
US20040225224A1 (en) * | 2003-05-05 | 2004-11-11 | Tseng Daniel C.M. | Integrated inflating and quick releasing device for electronic sphygmomanometer |
CN1237936C (en) * | 2003-07-07 | 2006-01-25 | 深圳迈瑞生物医疗电子股份有限公司 | Electronic device for measuring blood-pressure |
-
2004
- 2004-11-23 CN CNB2004100524643A patent/CN100407986C/en not_active Expired - Lifetime
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100546537C (en) * | 2006-07-11 | 2009-10-07 | 深圳迈瑞生物医疗电子股份有限公司 | A kind of Woundless blood pressure measuring device and method for security protection thereof |
US7846105B2 (en) | 2006-07-11 | 2010-12-07 | Shenzhen Mindray Bio-Medical Electronics Co., Ltd. | Non-invasive blood pressure measurement safety protection method and apparatus |
US7594892B2 (en) | 2006-07-11 | 2009-09-29 | Shenzhen Mindray Bio-Medical Electronics Co., Ltd. | Non-invasive blood pressure measurement apparatus and safety protection method |
CN101589948B (en) * | 2008-05-29 | 2012-01-25 | 普立思胜医疗技术(丹阳)有限公司 | Blood pressure measurement calibration method by oscillography and electronic sphygmomanometer |
CN101589949B (en) * | 2008-05-30 | 2012-05-30 | 普立思胜医疗技术(丹阳)有限公司 | Calibrating method for automatic blood pressure measurement and electric blood pressure meter |
US11064896B2 (en) | 2010-08-06 | 2021-07-20 | Shenzhen Raycome Health Technology Co., Ltd. | Non-invasive blood pressure measuring apparatus and measuring method thereof |
WO2012016421A1 (en) * | 2010-08-06 | 2012-02-09 | 深圳瑞光康泰科技有限公司 | Non-invasive blood pressure measuring apparatus and measuring method thereof |
RU2546918C2 (en) * | 2010-08-06 | 2015-04-10 | Шэньчжэнь Рейком Хелс Текнолоджи Ко., Лтд. | Device for non-invasive blood pressure measurement and method for measuring it |
CN101953680B (en) * | 2010-10-22 | 2012-03-28 | 滨州学院 | A household health index analyzer |
CN101953680A (en) * | 2010-10-22 | 2011-01-26 | 滨州学院 | Household health index analyzer |
CN102894964A (en) * | 2011-07-26 | 2013-01-30 | 深圳大学 | Method and device for non-invasively measuring blood pressure |
CN102894964B (en) * | 2011-07-26 | 2014-08-20 | 深圳大学 | Method and device for non-invasively measuring blood pressure |
CN102772201B (en) * | 2012-07-27 | 2014-04-09 | 深圳市理邦精密仪器股份有限公司 | Dust removing device and dust removing method of blood pressure monitor |
CN102772201A (en) * | 2012-07-27 | 2012-11-14 | 深圳市理邦精密仪器股份有限公司 | Dust removing device and dust removing method of blood pressure monitor |
CN104720775A (en) * | 2013-12-22 | 2015-06-24 | 江苏鹿得医疗电子股份有限公司 | Electronic hematomanometer with automatic correcting function |
CN103750832A (en) * | 2014-01-14 | 2014-04-30 | 上海交通大学 | Real-time wireless blood pressure monitoring system, blood pressure measuring device and blood pressure analysis method |
CN104000573A (en) * | 2014-05-29 | 2014-08-27 | 东北大学 | Body surface two point pulse wave based central arterial pulse monitoring system and method |
CN104000573B (en) * | 2014-05-29 | 2016-01-13 | 东北大学 | Central artery pulse wave monitoring system and method based on body surface two-point pulse wave |
CN104055503B (en) * | 2014-06-27 | 2016-09-14 | 广州视源电子科技股份有限公司 | Data processing method of noninvasive sphygmomanometer |
CN104055503A (en) * | 2014-06-27 | 2014-09-24 | 广州视源电子科技股份有限公司 | Data processing method of noninvasive sphygmomanometer |
CN105326488A (en) * | 2015-11-25 | 2016-02-17 | 西安交通大学 | Overpressure and overtime integrated protection device and method for blood pressure measurement |
CN110944578A (en) * | 2018-05-22 | 2020-03-31 | 深圳市得道健康管理有限公司 | Pulse condition instrument and pulse condition instrument system |
US11950888B2 (en) | 2018-05-22 | 2024-04-09 | Shenzhen Tatfook Wisdom Health Technology Co., Ltd. | Pulse diagnostic device and system of pulse diagnosis |
CN110200613A (en) * | 2019-04-08 | 2019-09-06 | 深圳市贝斯曼精密仪器有限公司 | A kind of blood flow blood pressure detector |
CN110522434A (en) * | 2019-04-08 | 2019-12-03 | 深圳市贝斯曼精密仪器有限公司 | A kind of pressure-releasing control circuit of blood pressure detector |
CN110522434B (en) * | 2019-04-08 | 2024-05-14 | 深圳市贝斯曼精密仪器有限公司 | Deflation control circuit of blood pressure detection device |
CN110200613B (en) * | 2019-04-08 | 2024-02-20 | 深圳市贝斯曼精密仪器有限公司 | Blood flow and blood pressure detection device |
CN110032236B (en) * | 2019-04-30 | 2024-01-23 | 成都新欣神风电子科技有限公司 | DC sensor circuit with arbitrary bias voltage output |
CN110032236A (en) * | 2019-04-30 | 2019-07-19 | 成都新欣神风电子科技有限公司 | A kind of direct current transducer circuit of any bias voltage output |
CN112057063A (en) * | 2019-06-10 | 2020-12-11 | 苹果公司 | Predicting blood pressure measurements with limited pressurization |
CN111616692A (en) * | 2020-05-14 | 2020-09-04 | 李永生 | Extrusion type execution system of noninvasive blood pressure simulator and control method thereof |
CN112914531B (en) * | 2021-01-19 | 2022-09-30 | 深圳市杰纳瑞医疗仪器股份有限公司 | Method for determining blood pressure envelope wave, electronic device and storage medium |
CN112914531A (en) * | 2021-01-19 | 2021-06-08 | 深圳市杰纳瑞医疗仪器股份有限公司 | Method for determining blood pressure envelope wave, electronic device and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN100407986C (en) | 2008-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1778269A (en) | A non-invasive electronic blood pressure detection method and device | |
US7988636B2 (en) | Non-invasive electronic apparatus for measuring blood pressure | |
JP5471337B2 (en) | Blood pressure measuring device and blood pressure measuring method | |
CN1698536A (en) | Cuffless continuous blood pressure measurement method with automatic compensation | |
WO2012016421A1 (en) | Non-invasive blood pressure measuring apparatus and measuring method thereof | |
CN1323178A (en) | Non-invasive blood pressure sensor with motion artifact reduction | |
CN105286838A (en) | Automatic pump speed adjusting method for pressure increasing type blood pressure measurement and device | |
CN101032395A (en) | Blood pressure measurement method based on characteristic parameters of photoplethysmography signal in period domain | |
JPH0458973B2 (en) | ||
CN1608583A (en) | Improved electronic blood pressure-detecting method and device | |
CN114431840A (en) | Pulse acquisition device, pulse acquisition method and system | |
CN103961079B (en) | Inflation and deflation method and system for blood pressure measurement | |
CN106092379A (en) | A kind of ectoskeleton disabled aiding robot inflated type pressure transducer | |
CN86102378A (en) | Measure the method and apparatus of circulatory function | |
CN1762300A (en) | Human physiological parameter monitoring device based on high-frequency photoplethysmography signal | |
CN108451541A (en) | A kind of Dynamic CT test body mould | |
CN113080912A (en) | Electronic sphygmomanometer and blood pressure measuring method | |
US8647282B2 (en) | Apparatus and method for measuring blood pressure with motion artifacts elimination | |
CN102247130A (en) | Piezoelectric blood pressure transducer | |
CN102894964B (en) | Method and device for non-invasively measuring blood pressure | |
CN100346741C (en) | Blood pressure measurement device based on heart sound signal | |
CN205054204U (en) | Blood pressure measuring device | |
CN205964031U (en) | Blood pressure measuring instrument | |
CN210811009U (en) | Dynamic blood pressure simulator for measuring electronic sphygmomanometer | |
CN205041388U (en) | Sphygmomanometry apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180808 Address after: 518057 the 1-4 floor of MINDRAY building, science and technology south twelve Road, Nanshan District high tech Industrial Park, Shenzhen, Guangdong. Co-patentee after: SHENZHEN MINDRAY SCIENTIFIC Co.,Ltd. Patentee after: SHENZHEN MINDRAY BIO-MEDICAL ELECTRONICS Co.,Ltd. Address before: 518057 MINDRAY science and technology south twelve road MINDRAY high tech Industrial Park, Shenzhen, Guangdong Patentee before: SHENZHEN MINDRAY BIO-MEDICAL ELECTRONICS Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
CX01 | Expiry of patent term |
Granted publication date: 20080806 |
|
CX01 | Expiry of patent term |