CN1765609A - 光学元件成形装置 - Google Patents

光学元件成形装置 Download PDF

Info

Publication number
CN1765609A
CN1765609A CN 200510119245 CN200510119245A CN1765609A CN 1765609 A CN1765609 A CN 1765609A CN 200510119245 CN200510119245 CN 200510119245 CN 200510119245 A CN200510119245 A CN 200510119245A CN 1765609 A CN1765609 A CN 1765609A
Authority
CN
China
Prior art keywords
runner
mould
optical
molding apparatus
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510119245
Other languages
English (en)
Other versions
CN100519133C (zh
Inventor
内藤笃
关原干司
奥村佳弘
松本朗彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Publication of CN1765609A publication Critical patent/CN1765609A/zh
Application granted granted Critical
Publication of CN100519133C publication Critical patent/CN100519133C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

提供一种成形小尺寸和高精度光学元件的具有良好的传递性能和缩短的生产周期的光学元件成形装置。该装置包括多个流道,流道被排列允许用于成形各自具有2mm到12mm的外部直径和20nm或更小的表面粗糙度Ra的塑料透镜的多腔成形的图形。整个流道的投影面积确定在1.0cm2到12cm2的范围之间。流道被排列为围绕主流道以垂直基模外表面的方向延伸。从与主流道接合处延伸到每个成形传递部分的流道的图形以两个交叉方向设置。当从压力接触表面侧看时型腔具有矩形的外部形状。

Description

光学元件成形装置
相关专利的交叉引用
本申请基于和要求在先的于2004年10月29日一起提出的第2004-316623号和第2004-316727号日本专利申请的各自的优先权,各自专利的整体内容通过引用包括在此。
技术领域
本发明涉及用于成形光学元件的光学元件成形装置,特别是,涉及成形具有小尺寸(外部直径为2mm到12mm)和高精度(表面粗糙度Ra为20nm或更小)的每一个光学元件的光学元件成形装置。
背景技术
近来诸如物镜的光学元件采用热塑塑料树脂以注模的方式成形(例如,参照专利文件1和2)。因为,通过使用塑料成形光学元件,可以很迅速的生产同样构造的产品,因此这种成形很适宜批量生产。使用塑料透镜的光学仪器逐年向小型化和更高性能的趋势发展。伴随这一趋势,塑料透镜更加小型化和具有更高性能的要求日益增加。
〔专利文件1〕第11(1999)-42685号已公开但未审查的日本专利申请
〔专利文件2〕第2001-272501号已公开但未审查的日本专利申请
此外,作为用于光学元件批量生产的技术,已研制出通常所说的用于在一次合模和树脂注射操作中成形多个模制产品(模制物品)的多腔成形技术。用于多腔成形的模具具有位于固定模具中心的一个主流道和排列在主流道周围的多个流道。即,透镜传递部分对称地安排在主流道周围。在此多腔成形技术中,在减少每个传递部分传递性能的变化的同时如何增加模制产品的数量对商业利润有着巨大影响。
然而,上面的多个具有小尺寸和高精度的光学元件的成形在以下几个方面存在问题。成形这样的小尺寸和高精度的光学元件要求良好的传递性能。为达到这一目的,在多腔成形机器中的流道具有大的厚度(直径)。然而,在这样的具有大直径的流道,在每个流道中凝固树脂需要很长时间。换言之,冷却时间(持续时间)的确定取决于凝固每一流道中的树脂所需要的时间。这样就很难缩短生产周期。
通常,在注模机器中,模制光学元件的光学特性很可能受到来自模具加工精度的很大影响,在模具开始受压接触在一起或彼此分离时会导致由模具变形引起的面移位(在垂直于透镜光轴的方向透镜表面的错位)和倾斜(相对于透镜的光轴透镜表面有角度的错位)。在生产光学元件的情形下,必须精确地评估模制产品的偏心率和传递部件的位置调节。当成形较小尺寸的模制产品时这些条件变得困难得多。
发明内容
本发明可以克服传统光学元件成形装置的上述问题中的至少一个,提供一种成形小尺寸和高精度光学元件并能获得具有良好传递性能和缩短生产周期的成形光学元件的装置。
本发明的其它目的和优点将在下面的描述中部分地提出和通过描述而变得明显,也可以从本发明的实践中认识到。本发明的目的和优点可以通过特别是附属权利要求中指出的工具及其组合来实现和认识到。
为达到本发明的目的,本发明提供了一种生产多个光学元件的光学元件成形装置,它包括:固定模具;能与固定模具接触且从固定模具分离的活动模具;其中受压时处于接触状态的固定模具和活动模具配有各自具有确定在1.0cm2到12cm2的范围之中的投影面积的流道和成形传递部分,通过流道树脂材料被注入成形传递部分以生产多个光学元件,每个光学元件具有2mm到12mm的外部直径和表面粗糙度为20nm或更小的光学表面,在一次夹模操作中成形至少四个光学元件。
具体地说,本发明的光学元件成形装置构制成成形具有小尺寸(外部直径为2mm到12mm)和高精度(表面粗糙度Ra为20nm或更小)的每一个光学元件。这是一种用于在一次夹模操作中成形至少四个物品的多腔成形机器。为提供良好的传递性能被成形产品的数量最好是16或更少。在本发明的光学元件成形装置中,用于成形上面光学元件的模具中每个流道的投影面积被确定在在1.0cm2到12cm2的范围之中。确定流道的直径和长度以获得投影面积。如果每个流道的投影面积为12cm2或更小,在每一流道中用于冷却和凝固树脂所需的时间变得更短。如果投影面积为1.0cm2或更大,可保证良好的传递性能。因此,投影面积必须被确定在上述范围内以获得良好的传递性能和缩短生产周期。此外,因为每个流道具有小容积,能够减少消耗材料的材料成本。
附图说明
包括在此并构成本说明书一部分的附图示出了本发明的实施例且与说明书一道用来解释本发明的目的,优点和原理。
在图中,
图1是在示意性地示出出较佳实施例中塑料透镜成形机器(模具处于分离状态)结构的视图;
图2是示意性地示出塑料透镜成形机器(模具在压力下处于接触状态)结构的视图;
图3是示意性地示出用于塑料透镜的模具结构的剖面侧视图;
图4是示出第一实施例中用于塑料透镜的模具的压力接触表面的视图;
图5是示出流道的冷却时间和流道投影面积之间的关系的曲线图;
图6是第一实施例中的模具中流道图形的一个例子(4腔成形)的剖面图;
图7A是第一实施例的模具中流道图形的另一个例子(8腔成形)的剖面图;
图7B是第一实施例的模具中流道图形的另一个例子(8腔成形)的剖面图;
图8A是第一实施例的模具中流道图形的另一个例子(16腔成形)的剖面图;
图8B是第一实施例的模具中流道图形的另一个例子(16腔成形)的剖面图;
图9是示出第一实施例中流道的树脂接受部分的说明性视图;
图10是示意性地示出第一实施例中型腔的位置调节机构(在调节之前)的视图;
图11是示意性地示出第一实施例中型腔的位置调节机构(在调节之后)的视图;
图12是示出第二个较佳实施例中用于塑料透镜的模具的压力接触表面的视图;
图13是第二实施例中的模具中流道图形的一个例子(4腔成形)的剖面图;
图14A是第二实施例的模具中流道图形的另一个例子(8腔成形)的剖面图;
图14B是第二实施例的模具中流道图形的另一个例子(8腔成形)的剖面图;
图15A是第二实施例的模具中流道图形的另一个例子(16腔成形)的剖面图;
图15B是第二实施例的模具中流道图形的另一个例子(16腔成形)的剖面图;
图16A是第二实施例的模具中流道图形的一个例子(弯曲)的剖面图;
图16B是第二实施例的模具中流道图形的另一个例子(弯曲)的剖面图;
图16C是第二实施例的模具中流道图形的另一个例子(弯曲)的剖面图;
图17是示出第二实施例中流道的树脂接受部分的说明性视图;
图18是示意性地示出第二实施例中型腔的位置调节机构的视图(部分1);
图19是示意性地示出第二实施例中型腔的位置调节机构的视图(部分2);
图20是示意性地示出第二实施例中型腔的位置调节机构的视图(部分3);
图21是说明衍射透镜的传递性能的视图,示出差的传递性能;
图22是说明衍射透镜的传递性能的视图,示出好的传递性能;及
图23是示出模具整个结构的剖视图。
具体实施方式
现参照附图对本发明的较佳实施例作出详细说明。在本实施例中,本发明被应用于塑料透镜的成形机器上。要成形的产品(物品)是外部直径在2mm到12mm之间和具有表面粗糙度Ra为20nm或更小的光学表面的塑料透镜。塑料透镜包括透镜部分和形成在透镜部分周围的凸缘部分。凸缘部分是由透镜托架或类似物支撑的部分。此类塑料透镜可应用在光学摄像管设备的光学摄像管光学系统中、带有内置式相机的蜂窝电话的成像光学系统中及其它一些产品。对于光学摄像管光学系统,特别是,各自具有2mm到7mm外径的光学透镜需要高精度和大批量的生产。因此,本发明适合于成形此类塑料透镜。
[第一实施例]
图1和图2示意地示出了本实施例中的成形机器100的结构。具体是,图1示出了模具的分开状态;图2示出了模具的压力接触状态。图3和图4,图22示意地示出了模具的结构。具体地,图3和图23示出了模具压力接触状态的剖面侧视图和图4示出了固定的模具的压力接触表面。应注意的是图3是图23虚线所表示部分的放大图。
更具体地说,如图1和图2中所示,在本实施例中的塑料透镜成形机器100包括配置有固定模具1的固定模板10和配置有能够与固定模具1分开的及在压力下与固定模具1接触的活动模具2的活动模板20。在本实施例中的成形机器100是能够产生约为15吨(150kN)合模力的小型成形机器。
固定模板10设有入口,通过入口熔化的树脂从注射部件80被注射入模具1。注射部件80可以是预塑化类型或直列螺杆型。
成形机器100的构成如图3所示。型腔11插入固定模具1的基模13中,型芯12插入型腔11。类似的,型腔21插入活动模具2的基模23中,型芯22插入型腔21中。即,型腔和型芯构成了基模中的插入物。在本说明书中,用于形成塑料透镜的透镜部分的传递部分的组成的部件被称为“型芯”,用于形成安排在透镜周围的凸缘部分的传递部分组成的部件被称为“型腔”。此外,支撑传递部分(型芯和型腔)的模具被成为“基模”。
从压力接触面(PL表面)一侧看去,基模13的外部形状为矩形。此外,如图4所示,从压力接触面一侧看去,型腔11的外部形状也为矩形。型腔被布置成型腔11的每一个外表面与每一个对应的基模13的外表面平行。从压力接触面一侧看去,型芯12的外部形状为圆形。活动模具2在结构上与基模13相同。
具体是,基模13设有凹腔(凹口)以接受型腔11。这个凹腔的宽度比型腔11的宽度略大。型腔11插入基模13时在型腔11和基模13之间产生的间隙由垫块来填充。垫块可调节型腔11的位置及固定型腔11。型腔11位置的调节将在下文中详细描述。
当活动模具2与固定模具1压力接触时,在组合的模具1和2中产生空穴(见图3和23)。这个空穴提供了成形传递部分50,浇口51,流道52和主流道53形成流动通道,熔化的树脂通过流动通道从入口流入流道52。
传递部件(型芯和型腔)的传递部分的表面最好采用金属电镀。金属电镀层具有预先确定的厚度,其厚度范围从10微米到100微米。为在传递表面上提供光路差异保持结构(例如衍射透镜),最好对电镀层机加工(切削)。为提高模具的分离性能和保护模具,可以使用氮化铬,氮化钛,类金刚石碳(DLC)等等进行表面处理。这可以提高在成形和传递期间的树脂在模具中的流动性能,提高模制产品从模具中的脱离性能(模具的分离性能)。
在本说明书中,“光路差异保持结构”意指由包括光轴的中心区域和中心区域之外以微小台阶分割的环形区域构成的结构,它具有如下特性。即,在预定温度,在相邻的环形区域之间,会产生入射光束的累积的多个波长的光路差异,和当温度从预定的温度变化时,伴随折射系数的变化,在相邻环形区域之间产生的光路差异从入射光束的多个累积波长偏移。“光路差异保持结构”的详细结构是下面所描述的结构。即,例如,形成的邻接中心区域之外的环形区域置于光轴的方向以致光路长度相对中心区域被延长;在最大有效直径位置之内形成的环形区域被置于光轴的方向以致光路长度相对邻接此环形区域之外的环形区域被延长;及在最大有效直径的75%位置之内形成的环形区域置于光轴的方向以致光路长度相对邻接此环形区域之内和之外的环形区域被缩短。
下面对本实施例中由成形机器100生产塑料透镜的过程加以说明。应注意的是在本实施例中中成形机器100采用的是可以同时生产出多个塑料透镜的多腔成形机器,但为了便于说明将仅对一个要成形的塑料透镜加以描述。在此成形机器100处于两个模具受压彼此接触在一起的状态,熔化的树脂依次通过主流道,流道52和浇口51被注射入成形传递部分50。在注入模具的树脂分布在成形传递部分50周围然后冷却和凝固之后,活动模具2从固定模具1处分离开来。模制产品被喷射器或类似物射出。射出的模制产品由塑料透镜本体,设置在塑料透镜本体光学表面的外围的凸缘部分、与主流道53,流道52和浇口51相对应的其它部分整体构成。与浇口51相对应的部分在随后的切割过程中被切除。这样生产出了塑料透镜。
关于塑料透镜的成形条件,例如,在采用无定形的聚烯氢树脂作为熔化树脂的情况下,模具的温度是120℃;树脂的温度是280℃;注射速度是50mm/秒;保压压力是100Mpa。无定形的聚烯氢树脂可以包括Zeonex品牌商品(Zeon公司)和Apel品牌商品(Mitsui化工)。
关于在本实施例中用于成形机器100中的塑料树脂,可采用通常用于光学材料的透明树脂材料。例如,最好使用在第2004-144951号,第2004-144953号,第2004-144954号日本专利申请中提出的合适的树脂。特别是,树脂可包括聚丙烯树脂,环烯树脂,聚碳酸酯树脂,聚酯类树脂,聚醚类树脂,聚酰氨树脂,聚亚酰氨树脂等等。
当温度上升时树脂的折射率会下降,而大多数无机物在温度上升时折射率会增加。此处,有一种已知技术通过让上面两种特性起作用互相否定以使折射率免于变化。为达到上述目的,30nm或更小的无机物,较好的,20nm或更小的无机物,最好的,在10到15nm范围内的无机物作为基材分散于树脂中。
下面将描述塑料透镜的多腔成形。在本实施例中的塑料透镜成形机器100配置成在一次合模操作中成形4到16个模制产品。此外,在此成形机器100中,整个流道52的投影面积确定为在1.0cm2到12.0cm2之间。流道的直径和长度被确定以实现在以上范围内的投影面积。
本申请人根据试验发现了流道中的树脂冷却时间和流道的投影面积之间的关系。
图5是展示这一关系的曲线图。应注意的是产品部分的冷却时间随模制产品(塑料透镜)的厚度而变化。在本实施例中的成形机器是针对用于蜂窝电话的光学照相光学系统和光学摄像管光学系统的透镜。此类透镜的厚度大约为1mm。因此,在这个例子中的产品部分厚度为1mm。
如图5所示,在流道的投影面积是12cm2或更小时流道的冷却时间比产品部分的冷却时间短。于是流道冷却得比产品部分快。因此,在流道中的树脂的冷却和凝固时间对生产周期没有影响。反之,在流道的投影面积是比12cm2更大时,流道的冷却时间比产品部分的冷却时间长。因此需要提供流道冷却等待时间,导致更长的生产周期。
申请人还评估了成形传递部分的传递性能和流道的投影面积之间的关系。表1示出了流道的每个投影面积(单位:cm2)的产品有效百分比的评估结果。
表1
  流道投影面积(cm2) 0.1 0.5 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.5 2.0
  评估结果   ×   ×   ×   △   △   ○   ○   ○   ○   ○   ○
如表1所示,在流道的投影面积为1.0cm2或更大时,有效百分比为高和得到好的结果(评估结果:○)。对流道的投影面积分别为0.8cm2或0.9cm2时,有效百分比为低和没有得到好的结果(评估结果:△)。对流道的投影面积分别为0.7cm2或更小时,有效百分比为非常低和产量也为低(评估结果:×)。
当流道52的投影面积小于1.0cm2时,流道直径不可避免地变得更小。这将导致成形传递部分50的传递性能变差。另一方面,当流道52的投影面积大于12.0cm2时,流道直径不可避免地变得更大。这将使得在流道52中的树脂冷却和凝固时间更长,导致生产周期更长。从而,为在缩短生产周期的同时获得传递性能最好确定流道52的投影面积在1.0cm2到12cm2的范围之间。
在本实施例中的模具中心包含一个主流道。围绕主流道配有多个沿着平行/垂直于基模外表面的方向延伸的流道52。每个流道52在主流道和成形传递部分50之间分岔一次,两次,或者三次。流道52在每个分岔点形成象字母T的形状以在分岔点均匀地分配熔化的树脂。具体地,流道52配置成两个垂直交叉方向。每个流道从与主流道的接合处以几乎相同的长度向每个成形传递部分50延伸。
用于多腔成形的流道52的图形下面将分别参照图6(4-腔),图7A和图7B(8-腔),及图8A和图8B(16-腔)举例说明。这些图形仅作为例子,及型芯和型腔的构造并不局限于以下的图形。
例如,在如图6所示的4-腔模具的情况下,两个流量通道(流道52)从主流道53延伸。每个流道52从分岔点以直角分岔成沿相反方向延伸的两个流量通道,象字母T。每个分岔通道的末端形成有成形传递部分50。换言之,当分岔一次,每个流道52到达了成形传递部分50。
在图7A示出的8-腔模具的情况下,两个流量通道(流道52)从主流道53延伸。每个流道52从分岔点以直角分岔成沿相反方向延伸的两个流量通道,每个分岔流量通道进一步从分岔点以直角分岔成沿相反方向延伸的两个流量通道。每个分岔通道的末端形成有成形传递部分50。换言之,当分岔两次,每个流道52到达了成形传递部分50。此外,在图7B示出的8-腔模具的情况下,四个流量通道(流道52)从主流道53延伸。每个流道52从分岔点以直角分岔成沿相反方向延伸的两个流量通道。每个分岔通道的末端形成成形传递部分50。换言之,当分岔一次,每个流道52到达成形传递部分50。
在图8A示出的16-腔模具的情况下,两个流量通道(流道52)从主流道53延伸。每个流道52以直角分岔三次和到达成形传递部分50。在图8B示出的16-腔模具的情况下,四个流量通道(流道52)从主流道53延伸。每个流道52以直角分岔两次和到达成形传递部分50。
在每种图形中,在与主流道53的接合处和每个相应的成形传递部分50之间的每个流道52的长度几乎相同。最佳的是分岔流道52一次,两次,或三次,在每个分岔点设有接受部分。这是基于以下原因。具体地,流入流道52的熔化树脂的温度非常之高,达到200℃到300℃。另一方面,模具的温度低到70℃到150℃。于是,在流体前端的熔化树脂的温度可能会降低。在流道直径较小时温度降低表现得十分显著。如图9所示,当流道52在流道的某些中间点分岔,并且在分岔点设有树脂接受部分54,从而,温度已经降低的树脂被允许留在接受部分54。这使得保留在高温时流入成形传递部分50的树脂成为可能。传递性能能够因此而改善。树脂接受部分54能取代流道52中分岔点设在任何位置。例如,在流道52在其某些中间点弯曲的情况下可以在弯曲部分设置树脂接受部分。
当分岔或弯曲每个流道52的数量为四个或更多,流动通道中的阻力会增加。当阻力增加时,在分岔或弯曲部分的压力损失开始变大,这将妨碍成形传递部分50的保压,导致传递性能的降低。为避免此类缺陷,最佳的分岔或流道弯曲的数量为3个或更少。
下面将说明型腔11的位置调节的例子。如图10所示,在模具中,型腔和基模之间的间隙由垫块14和24来填充。图10示出了固定模具1和活动模具2,包括各自透镜部分的光轴是错位的。图10中示出的模具中,固定模具1中的型腔11的宽度比活动模具2中的型腔21的宽度宽出对应于图10网状线区域的量。因此,在各自的光轴上产生了偏移。因为这个原因,固定模具中的型腔11的一部分以对应于偏移的数量(即图10中的网状线部分)通过切削方法或类似的方法被切去。然后,一个新垫块15被插入如图11中所示出的切削后产生的间隔中以补偿位置偏移。
本实施例中的模具中,流道52的图形设计为使用两个垂直交叉方向且布置了矩形形状的型腔11以使得流道52的外表面平行于基模13的外表面。据此,基模13的水平和垂直方向可以匹配用于轴偏差调节的方向。模制产品的每个表面的偏心度(固定模具1中透镜部分的光轴和活动模具之间的轴向偏差)的评估仅在相对于两个交叉轴的测量上做出。因此,可能很容易地确定调节量(距离)和型腔11的位置方向。
如上面说明的在第一实施例中的成形机器100中,流道52的投影面积确定为在1.0cm2到12cm2的范围之间且流道52的图形设计为允许成形四个或更多的模制产品。此外,确定流道的直径和长度以实现在上述范围内的投影面积。这使得流道52的直径更小和流道52的冷却时间更短。同样,流道52的长度变短了,这提供了良好的传递性能给成形传递部分50。从而,用于成形多个小尺寸和高精度光学元件的光学元件成形装置能够获得良好的传递性能和缩短生产周期。
流道52的图形配置成在两个垂直交叉方向。此外,从压力接触表面一侧看去型腔11的外部形状是矩形,型腔11的外部形状布置成以致它的外表面平行于基模13的外表面。因此,基模13的水平和垂直方向能够与轴偏移的调节方向匹配。对模制产品的偏心度的评估只要求相对于两个交叉轴。传递部件的位置调节只要求相对两个交叉轴。从而,易于评估模制产品的偏心度和调节传递部件的位置。
成形机器100是能够产生15吨(150kN)或更小合模力的所谓小型成形机器。因为流道的面积如1.0cm2到12cm2一样小。由此最大合模力为15吨是足够的。这样的成形机器100能达到节省空间和节约能源的目的。
此外,在成形机器100中,每个流道52在主流道53和浇口51之间被弯曲1到3次。在每个弯曲部分设有树脂接受部分54。换言之,提供树脂接受部分54使得允许熔化的树脂的前端(低温部分)停留在树脂接受部分成为可能。从而有可能保留高温时流入成形传递部分的树脂和提供良好的传递性能。
[第二实施例]
如同第一个实施例中的成形机器,在第二个实施例中的成形机器包括设有固定模具的固定模板和设有活动模具的活动模板。在本实施例中的成形机器是能够产生15吨(150kN)等级的合模力的小型成形机器。这种成形机器布置成在一次合模操作中成形四到十六个产品。
如同第一个实施例一样,每个模具包括基模,型腔和型芯。这些型腔和型芯被构制成在基模中的插入物(见图3)。此外,如同第一个实施例中以同样的方式,整个流道的投影面积被确定为在1.0cm2到12cm2的范围之间。确定流道的直径和长度以实现上述范围的投影面积。
本实施例中的成形机器在型腔形状上与第一实施例中的成形机器不同。具体地,当从压力接触表面一侧看时,如图12所示每个型腔11和型芯12的外部形状是圆形的。
具体地说,基模13设有凹腔(凹口)以接受型腔11。这个型腔11设有凹腔(凹口)以接受型芯12。因此,型腔11装配在基模13的凹口中及,此外,型芯12装在型腔11的凹口中。从压力接触表面看去是圆形的每个型腔11和型芯12被布置为可旋转的。此旋转得以调节型芯12的位置。型芯12位置的调节将在下文中详细描述。
本实施例中的成形机器的流道图形与第一实施例中的成形机器不同。每个模具配置成多个流道52围绕主流道53径向延伸。从与主流道53的接合处延伸到成形传递部分50的每个流道52具有几乎相同的长度。每个流道52可在与主流道的接合处和每个成形传递部分50之间分岔或弯曲一至三次。
在图13(4-腔),图14A和14B(8-腔),和图15A和15B(16-腔)中示出了用于多腔成形的流道52的图形。此外,图16A,16B和16C示出了流道52的弯曲图形的例子。应当理解的这些图形仅仅例子,型芯和型腔的构造并不局限于此。
例如,在图13中示出的4-腔模具例子的情况下,形成了4个流量通道(流道52)从主流道53延伸。具体地,流道52布置成径向地从主流道53延伸。在每个流道52的末端设有成形传递部分50。
在图14A中示出的8-腔模具例子的情况下,形成了8个流量通道(流道52)从主流道53延伸。此外,在图14B中示出的另一个8-腔模具例子的情况下,形成了4个流量通道(流道52)从主流道53延伸。每个流道52分岔成两个分岔通道和在每个分岔通道的末端设有成形传递部分50。换言之,当分岔一次,流道52到达相应的成形传递部分50。
在图15A中示出的16-腔模具例子的情况下,形成了16个流量通道(流道52)从主流道53径向延伸。在图15B中示出的另一个16-腔模具例子的情况下,形成了8个流量通道(流道52)从主流道53延伸,此外,每个流道52分岔一次以到达各自的成形传递部分50。
如图16A,16B和16C所示,流道52可布置成弯曲图形以致每个流道52以直角弯曲。每个流道52的弯曲部分的末端设有树脂接受部分。将要流入每个流道52的熔化树脂的温度非常高,要达到200℃到300℃。另一方面,模具的温度低到75℃到150℃。因此,在流体前端的熔化树脂的温度很可能降低。在流道直径较小时温度降低表现得十分显著。如图17所示,当流道52在流道的某些中间点弯曲,并且在弯曲部分的末端设有树脂接受部分54,这使得温度已经降低的树脂被允许保留在接受部分54。这使得保留在高温时流入成形传递部分50的树脂成为可能。传递性能能够因此而改善。树脂接受部分54能取代流道52中分岔部分设在任何位置。例如,在流道在某些中间点分岔的情况下可以在分岔点设置树脂接受部分。
下面将说明型腔12位置调节的一个例子。如图18所示,本实施例的模具中,圆柱形(断面为圆形)型腔11被插入基模13。在这个型腔11中,插入偏心的圆柱形衬套14。此外,圆柱形的型芯12插入偏心衬套14。偏心衬套14以预定的距离相对于型芯12和型腔11偏心。图18示出了型芯12的中心与型腔11的中心相重合的状态。
在本实施例中的模具中,型芯12的位置可以由偏心衬套14的旋转而变化。图19示出了偏心衬套14从图18所示的状态转过180°的状态。具体地,随着偏心衬套14的180°旋转,型芯12的中心已经从型腔11的中心移开。在本实施例的模具中,型芯12的位置可以由型腔11的旋转而变化。图20示出了型腔11从图19所示的状态转过90°的状态。更为具体地,型芯12的中心也能够通过型腔11的旋转而移动。通过型腔11和偏心衬套14的简单旋转,能够补偿位置的偏移。
如果具有第一实施例中示出的矩形外形的传递部件被插入包含有以径向延伸图形排列的流道52的模具,会形成不需要的间隔,导致大尺寸的基模。这也会导致流道长度的增加。从而,在流道52配置成如本实施例示出的径向延伸图形的情况下,最好插入具有从压力接触表面看去为圆形外形的传递部件。
如上面详细说明第二实施例的模具成形机器中,流道52的投影面积确定为在1.0cm2到12cm2的范围之间且流道52的图形被设计为允许成形四个或更多的模制产品。此外,确定流道的直径和长度以实现在上述范围内的投影面积。这使得流道52的直径更小和流道52的冷却时间更短。同样,流道52的长度变短了,这提供了良好的传递性能给成形传递部分50。从而,用于成形多个小尺寸和高精度光学元件的光学元件成形装置能够获得良好的传递性能和缩短生产周期。
流道52的图形配置成从主流道53径向延伸流道52。此外,型腔11具有当从压力接触表面看去为圆形的外形。因此型腔11能够得到同时加工和周向加工,从而提供提高的加工精度诸如粗糙度和同轴度。具有圆形外形的型腔11,有可能同时和周向加工型腔11的外部周边及同样的用于型芯12插入的内部周边。在透镜凸缘部分的传递表面将要成形于型腔11中的情况下,可以与传递面一起周向加工型腔11的内部和外部周边。据此,能够以高精度生产型腔11。这样的同时和周向处理包括例如车削。另一方面,对具有矩形外形的型腔11而言,不能获得这样的同轴的和同时的加工。从而需要为每次加工替换部件。此外,几个微米到亚微米的加工很困难。
当型腔11为圆形外形时,它能够得到高精度的偏心加工。因此,能够使传递部件预先偏心。通过这个传递部件的旋转,可以实现高精度位置调节。此外,因为型腔11能得到同时加工,它对成形具有精细结构(例如,光路差异保持结构)光学表面的透镜特别有效。
第一和第二实施例当中在多个小的光学元件要被成形的情况下,每个流道52的投影面积构成总得投影面积的大多数。确定每个流道52的投影面积在上述的范围之内以减小总的投影面积,从而降低成形需要的合模力。从而可以实现成形机器的减小。还可以改善能源节约和空间节省。此外还可以减少每个流道中需要的树脂的容积,从而降低消耗材料的成本。
在成形具有光路差异结构光学表面的透镜的情况下,诸如衍射透镜,传递性能对生产量具有巨大影响。换言之,如果传递性能低,如图21所示,树脂不能充分地填充到形成在传递表面中的槽的每个末端。这会损害模制透镜的光学特性。如上面实施例中构成的成形机器100具有良好的传递性能。因此,如图22所示,树脂能充分地填充到形成在传递表面中的槽的每个末端。它对成形传递表面上具有光路差异结构的光学元件特别有效。
应当理解的是上述实施例仅仅作为例子且本方面不局限于此。在不背离本发明的本质特征的情况下本发明可以以其它具体形式体现。例如,注射部件不局限于预塑型和直列螺杆型,可以是例如一字式柱塞型。
在本实施例的成形机器100中,成形塑料透镜的模具以分开的型芯和型腔购置,但不局限于此。即,模具可以型芯和型腔的集成组合来配置(透镜部分的传递部分和凸缘部分的传递部分以集成提供)。
至于作为要成形产品的光学元件,当作为基材的塑料树脂与微粒相混合,对混合方法没有特别限制。可使用任何一种下面的方法。即,将塑料树脂和微粒单独制备再将二者相互混合的方法;在包含已制备好的微粒的条件下制备塑料树脂的方法;在制备好的塑料树脂是存在的条件下制备微粒的方法;同时制备塑料树脂和微粒的方法等等。特别是一种合适的方法,例如,塑料树脂溶解于其中的一种溶液和微粒分散于其中的另一种溶液均匀地分散且均匀地混合在一起;从而通过混合溶解度很差的塑料树脂和溶液,以获得了期望的成份的物质。然而,混合的方法并不局限于以上所述。
此外,并不特别限制光学元件中塑料树脂和微粒之间的混合程度。但是,最好是均匀地混合二者。在混合水平不充分的情况下,光学性能特别是折射率,阿贝数和光的传递都会受到影响。再者,树脂的加工性能如热塑性,熔化塑性及类似性能会受到影响。因为混合程度会受到制备方法的影响,在考虑塑料树脂和微粒的性能时应选择合适的方法。为均匀地混合塑料树脂和微粒,可以适当地使用直接将塑料树脂和微粒组合在一起的方法。
从上述说明中显而易见,依据本发明可以提供一种具有良好传递性能和缩短的生产周期的生产小尺寸和高精度的光学元件的光学元件成形装置。

Claims (9)

1.一种生产多个光学元件的光学元件成形装置,它包括:固定模具;和
能与固定模具接触和从固定模具分离的活动模具;
其中受压时处于接触状态的固定模具和活动模具配有各自具有确定在1cm2到12cm2的范围之中投影面积的流道和成形传递部分,通过流道树脂材料被注入成形传递部分以生产多个光学元件,每个光学元件具有2mm到12mm的外部直径和表面粗糙度为20nm或更小的光学表面,和
在一次夹模操作中成形至少四个光学元件。
2.如权利要求所述1的光学元件成形装置,其特征在于:流道以配置为两个垂直交叉方向的图形排列。
3.如权利要求所述1的光学元件成形装置,还包括插入活动模具和固定模具中的至少一个并且当从压力接触表面侧看时具有矩形的外部形状的传递部件,其特征在于:
在传递部件中配有成形传递部分。
4.如权利要求所述1的光学元件成形装置,其特征在于:
流道以从主流道径向延伸的图形排列。
5.如权利要求4所述的光学元件成形装置,还包括插入活动模具和固定模具中的至少一个并且当从压力接触表面侧看时具有矩形的外部形状的传递部件,其特征在于:
在传递部件中配有成形传递部分。
6.如权利要求所述1的光学元件成形装置,其特征在于:
活动模具在合模力为150kN或更小的压力时与固定模具接触。
7.如权利要求所述1的光学元件成形装置,其特征在于:
每个流道被成形为在主流道和浇口之间具有一到三个弯曲部分,且树脂接受部分成形在每个弯曲部分。
8.如权利要求所述1的光学元件成形装置,其特征在于:
传递部件的成形传递部分在围绕要成形的光学元件的光轴的环形区域中成台阶状。
9.如权利要求所述1的光学元件成形装置,其特征在于:要成形的光学元件具有确定在2mm到7mm范围中的外部直径。
CNB2005101192457A 2004-10-29 2005-10-28 光学元件成形装置 Active CN100519133C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004316623 2004-10-29
JP2004316623 2004-10-29
JP2004316727 2004-10-29

Publications (2)

Publication Number Publication Date
CN1765609A true CN1765609A (zh) 2006-05-03
CN100519133C CN100519133C (zh) 2009-07-29

Family

ID=36741817

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101192457A Active CN100519133C (zh) 2004-10-29 2005-10-28 光学元件成形装置

Country Status (1)

Country Link
CN (1) CN100519133C (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102189639A (zh) * 2010-03-09 2011-09-21 鸿富锦精密工业(深圳)有限公司 多模穴模具
CN102357996A (zh) * 2011-08-04 2012-02-22 苏州腾行精密模具有限公司 一种用于多型腔的流道结构
CN102814933A (zh) * 2012-09-03 2012-12-12 晟扬精密模具(昆山)有限公司 一种sd卡成型模具
CN101664983B (zh) * 2008-09-04 2013-06-05 鸿富锦精密工业(深圳)有限公司 成型模具
CN105050792A (zh) * 2013-03-21 2015-11-11 柯尼卡美能达株式会社 光学元件以及光学元件的制造方法
CN105599249A (zh) * 2016-01-22 2016-05-25 苏州艾力光电科技有限公司 一种用于生产光学镜片的可快速冷却陶瓷模具
CN107081873A (zh) * 2016-02-12 2017-08-22 日本电产三协株式会社 透镜成型模具用的活块及具有该活块的透镜成型用模具
CN107081872A (zh) * 2016-02-12 2017-08-22 日本电产三协株式会社 模具用活块的固定结构及具有该固定结构的透镜成型用模具
CN109262981A (zh) * 2018-11-09 2019-01-25 深圳明智超精密科技有限公司 一种一模512穴光学透镜模具以及成型加工工艺
WO2020024121A1 (zh) * 2018-08-01 2020-02-06 深圳明智超精密科技有限公司 一种新型一模256穴背光源透镜模具
CN110815731A (zh) * 2019-11-04 2020-02-21 宁波帅特龙集团有限公司 一种眼镜盒生产模具及生产工艺
CN112969572A (zh) * 2018-11-02 2021-06-15 ams传感器新加坡私人有限公司 制造光学元件模块的方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101664983B (zh) * 2008-09-04 2013-06-05 鸿富锦精密工业(深圳)有限公司 成型模具
CN102189639A (zh) * 2010-03-09 2011-09-21 鸿富锦精密工业(深圳)有限公司 多模穴模具
CN102357996A (zh) * 2011-08-04 2012-02-22 苏州腾行精密模具有限公司 一种用于多型腔的流道结构
CN102814933A (zh) * 2012-09-03 2012-12-12 晟扬精密模具(昆山)有限公司 一种sd卡成型模具
CN105050792B (zh) * 2013-03-21 2017-04-12 柯尼卡美能达株式会社 光学元件以及光学元件的制造方法
CN105050792A (zh) * 2013-03-21 2015-11-11 柯尼卡美能达株式会社 光学元件以及光学元件的制造方法
CN105599249A (zh) * 2016-01-22 2016-05-25 苏州艾力光电科技有限公司 一种用于生产光学镜片的可快速冷却陶瓷模具
CN107081873A (zh) * 2016-02-12 2017-08-22 日本电产三协株式会社 透镜成型模具用的活块及具有该活块的透镜成型用模具
CN107081872A (zh) * 2016-02-12 2017-08-22 日本电产三协株式会社 模具用活块的固定结构及具有该固定结构的透镜成型用模具
CN107081873B (zh) * 2016-02-12 2019-04-05 日本电产三协(东莞)工机有限公司 透镜成型模具用的活块及具有该活块的透镜成型用模具
CN107081872B (zh) * 2016-02-12 2019-05-07 日本电产三协(东莞)工机有限公司 模具用活块的固定结构及具有该固定结构的透镜成型用模具
WO2020024121A1 (zh) * 2018-08-01 2020-02-06 深圳明智超精密科技有限公司 一种新型一模256穴背光源透镜模具
CN112969572A (zh) * 2018-11-02 2021-06-15 ams传感器新加坡私人有限公司 制造光学元件模块的方法
CN109262981A (zh) * 2018-11-09 2019-01-25 深圳明智超精密科技有限公司 一种一模512穴光学透镜模具以及成型加工工艺
CN110815731A (zh) * 2019-11-04 2020-02-21 宁波帅特龙集团有限公司 一种眼镜盒生产模具及生产工艺

Also Published As

Publication number Publication date
CN100519133C (zh) 2009-07-29

Similar Documents

Publication Publication Date Title
CN1765609A (zh) 光学元件成形装置
CN1765608A (zh) 光学元件成形装置
US6841114B2 (en) Molding method and apparatus for resin long body
JP2002205310A (ja) マイクロレンズアレー用モールド型を製造する方法
CN1201152A (zh) 光连接器套管用套筒及其制造方法
EP1986967A1 (de) Verfahren und vorrichtung zur herstellung technischer glasteile für optische anwendungen
CN1951669A (zh) 模具
JP2002200648A (ja) 両面型のマイクロレンズを製造する方法
JP4797989B2 (ja) 光学部品の製造装置
JP2004339039A (ja) 光学素子製造方法
JP4331424B2 (ja) 精密モールド型を製造する方法
TW523459B (en) Method of manufacturing a microlens and a microlens array
CN101050052A (zh) 大规模生产精密模压预制件的方法、预制件成形装置及光学元件生产工艺
CN102216812A (zh) 非球面透镜的制造方法
CN1962230B (zh) 模制塑料透镜的模具
JP2004038005A (ja) フェルール及びフェルールの製造方法
CN1939850A (zh) 玻璃块的制造方法、其制造装置以及光学元件的制造方法
US7402032B2 (en) Mold apparatus and manufacturing method for the mold apparatus
CN102371647A (zh) 镜片成型方法
CN115138848A (zh) 一种新型注射一体成型刀具的制备工装
CN1713971A (zh) 成形用金属模、成形方法、盘基板以及成形机
JP2002160223A (ja) マイクロレンズアレイ金型を成形する装置
JP2002144349A (ja) 精密モールド型を形成する装置
GB2216065A (en) Contact lens production
JP2001270724A (ja) 光学レンズ及びその成形金型

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant