CN1750892A - 图案化基板之百万赫超音波清洗方法与设备 - Google Patents
图案化基板之百万赫超音波清洗方法与设备 Download PDFInfo
- Publication number
- CN1750892A CN1750892A CN200480004602.9A CN200480004602A CN1750892A CN 1750892 A CN1750892 A CN 1750892A CN 200480004602 A CN200480004602 A CN 200480004602A CN 1750892 A CN1750892 A CN 1750892A
- Authority
- CN
- China
- Prior art keywords
- semiconductor substrate
- acoustic energy
- ultrasonic transducers
- fact
- megahertz ultrasonic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 218
- 238000004140 cleaning Methods 0.000 title claims abstract description 107
- 238000000034 method Methods 0.000 title claims abstract description 45
- 239000004065 semiconductor Substances 0.000 claims abstract description 86
- 239000012530 fluid Substances 0.000 claims description 48
- 239000002245 particle Substances 0.000 claims description 44
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims description 33
- 230000000694 effects Effects 0.000 claims description 25
- 239000011800 void material Substances 0.000 claims description 21
- 238000010926 purge Methods 0.000 claims description 16
- 238000007772 electroless plating Methods 0.000 abstract description 27
- 235000012431 wafers Nutrition 0.000 description 144
- 239000007788 liquid Substances 0.000 description 32
- 238000005516 engineering process Methods 0.000 description 30
- 238000004506 ultrasonic cleaning Methods 0.000 description 29
- 239000000126 substance Substances 0.000 description 23
- 238000010586 diagram Methods 0.000 description 22
- 230000032258 transport Effects 0.000 description 10
- 241001212149 Cathetus Species 0.000 description 9
- 239000000376 reactant Substances 0.000 description 8
- 239000006227 byproduct Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 239000006210 lotion Substances 0.000 description 3
- 230000007306 turnover Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000010010 raising Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
- H01L21/6704—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
- H01L21/67057—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/10—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
- B08B3/12—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S134/00—Cleaning and liquid contact with solids
- Y10S134/902—Semiconductor wafer
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Cleaning By Liquid Or Steam (AREA)
Abstract
本发明提供一种清洁半导体基板的方法。此方法是以产生声能的方式起始,而此声能是以实质上垂直于半导体基板表面的方向前进。而后,产生沿实质上平行于半导体基板表面的方向前进之声能。每一个方向的声能都能被同时产生或交替产生。本发明也提供清洁半导体基板的系统与设备。
Description
[发明之技术领域]
本发明大致关于表面清洗的方式,而更特别地,是关于一种伴随制造程序以百万赫超音波清洗半导体基板的方法与设备。
[先前技术]
百万赫超音波清洗法被广泛地使用在半导体制程操作上,且能用在一整批晶片或单一片晶片的清洗程序上。对于一整批晶片的清洗程序,百万赫超音波转换器的振动,在一置放有一整组半导体基板的清洗槽中的液体里,制造出声的压力波。单一晶片的百万赫超音波清洗程序则使用一相对较小的转换器置于一旋转的晶片上,其中此转换器会扫描过这片晶片,或在完全浸没的情况下,一单一晶片槽浸泡系统被使用到。在以百万赫超音波清洗的每一种状况里,其主要的粒子移除机构是由于产生空穴效应与声冲流之故。空穴效应是来自于,当对一液态介质施加声能时,从溶解的气体所产生之显微气泡的快速生成与崩解。由于显微气泡的崩解,释出了有助于移除粒子的能量,这些能量是透过破坏将粒子黏著到半导体基板的各种黏著力而帮助粒子的移除。声冲流是指,当对一压电转换器施加射频动力时,透过此流体,由声波引导出的流动的状态。
图1A是整批晶片之百万赫超音波清洗系统的示意图。清洗槽100以一清洗液填满。晶片支座102内置有一整组待清洗之晶片。转换器104以接近1MHz的频率透过声能制造出压力波。这些压力波会与适当的化学液协力控制粒子避免其再黏著,而提供清洗的动作。因为整批晶片之百万赫超音波清洗系统需耗费长的清洗时间,以及化学液的耗用,因此,为了与国际半导体技术蓝图(ITRS)的要求一致,以减少化学液的耗用、增加晶片对晶片的控制,及减少缺陷,研究者将努力集中在单一晶片之百万赫超音波清洗系统上。整批晶片之百万赫超音波清洗系统还需承受其他缺点,因为传递到清洗槽里的多片晶片的百万赫超音波能量不一致,因此会因相长干扰而产生「热点」,或因相消干扰而产生「冷点」,不论是哪一种情形都是由百万赫超音波的反射所引起的,而这些反射来自于多片晶片与百万赫超音波清洗槽。相长干扰会对晶片基板上的图案或敏感的特征部造成损伤,因此,其平均能量必须被降低以确保任何热点都低于会被损伤的门槛。对于冷点而言,由于会产生清洗不完全的情形,因此,必须施用一较高的百万赫超音波能量,使其能到达晶片支座102里的晶片的所有区域。由于存在上述的情形,因此必须有一折衷的做法,使能将损伤减到最低,而又同时能够提供够高的平均能量以达到完全清洗的效果。
图1B是单一晶片之百万赫超音波清洗槽的示意图。在此,清洗槽106被一清洗液填满。由承载器108所支撑著的晶片109被浸泡在清洗槽106里的清洗液中。转换器104提供能量以清洗晶片109。此清洗液典型地被设计来修正晶片表面与粒子间的电动电位(ζ-potential),这些粒子是指透过转换器104所提供用来避免粒子再黏著的声能而被从晶片表面移除的粒子。为了维持表面间的适当的电动电位(ζ-potential),清洗液浓度应被维持在一相当严谨的范围里。然而,对于被限定出范围在晶片基板表面上的特征部,如线路、接点、空隙、通道等,因为在由特征部所限定出范围的区域里的粒子与晶片基板的界面处无法维持一特定清洗液浓度,即补充清洗液,因而使粒子会再沉积在晶片基板表面上。此外,对于使用垂直于晶片基板表面的方向上的转换器的情况来说(就单一晶片之百万赫超音波清洗系统而言),高纵横比特征部会遮盖住,或挡住,特征部的较低区域,使百万赫超音波能量无法进入,且空穴效应也无法发挥作用。对于使用平行于晶片表面的方向上的转换器的情况来说,空穴效应虽能在特征部里发挥作用,但声冲流却没有在大部分有利的方向上以帮助将从晶片基板剥离开的粒子移除。无论如何,这样的构造造成个别晶体间的间隙。此构造的另一项缺点是,因为由压电晶体所提供的声能具有准直的特性,晶体间的间隙导致有些区域无法被供给够位准的声能。结果,晶片109必然会有某些特定区域无法见到均一的声能,甚至产生没被清洗到的情形。
此外,电沉积操作,特别是无电电镀,也常被用来在晶片基板上沉积一层薄膜。譬如,一层铜薄膜能透过无电电镀被沉积在晶片基板上。无电电镀的缺点之一是,在一经历无电电镀而被图案化的晶片基板上的特征部处,任何气泡的生成都将导致后续电镀操作时的空洞。深入高纵横比特征部里的无电电镀的另一项缺点是,新生成之反应物会从清洗液中被输运进特征部里,而副产品会自相同的特征部中被输运出去。
鉴于上述所提及的情况,衍生出对于一种能提供单一晶片之百万赫超音波清洗系统理想构造的方法与设备的需求,此理想构造是指有能力将清洗用的化学液补充进由特征部所限定出范围的区域里,以避免被声能剥离开的粒子再度沉积到晶片上。此外,也衍生出对于以下二方面的需求:一是要能控制经历无电电镀之特征部附近所生成的气泡,二是要能改善反应物及副产品被输运进及输运出高纵横比的特征部里的情形。
[发明内容]
总而言之,本发明能藉由提供一种清洗方法与设备来满足上述所提之需求,此清洗方法与设备能提供声能进入晶片特征部以剥离粒子,并能将清洗用之化学液补充进晶片特征部区域以帮助移除被剥离的粒子。此外,本发明也提供一套用来控制气泡生成与改善无电电镀操作期间所发生的物质输运现象的系统与方法。吾人应了解到本发明能以很多方式,包括被当成一种方法、一套系统或一组设备,而被执行。本发明的一些发明实施例将在后续加以说明。
在一个实施例里,提供了一种半导体基板的清洗方法。此方法是以产生声能的方式起始,而此声能主要是以垂直于半导体基板表面的方向前进。而后,产生主要是以平行于半导体基板表面的方向前进之声能。每一个方向的声能都能被同时产生(同相)或交替产生(异相)。
在另一个实施例里,提供了一种半导体基板清洗设备。此设备包含一基座及至少一从此基座延伸出来的侧壁。此侧壁实质上垂直于此基座。此设备还包含一被固定到此基座上的第一百万赫超音波转换器。一被固定到此侧壁上的第二百万赫超音波转换器也被包含在此设备里。第一百万赫超音波转换器主要是位于与第二百万赫超音波转换器直交的方向上。
还有另一个实施例,提供了一种半导体基板的清洗系统。此系统包含一具有由基座所限定范围的内部空腔的清洗槽,及至少一从此清洗槽延伸出来的侧壁。此清洗槽被安装用来将清洗液盛装在其内部空腔里。此系统还包含一半导体基板支座,此半导体基板支座被安装用来支撑半导体基板并绕着半导体基板的轴线旋转此半导体基板。此半导体基板支座更被安装用来在此清洗槽的内部空腔里支撑及旋转此半导体基板。此系统并包含一连接到基座的第一百万赫超音波转换器。此第一百万赫超音波转换器的上表面实质上平行于半导体基板的底部表面。第二百万赫超音波转换器连接到至少一面的侧壁上。此第一百万赫超音波转换器被安装用来产生主要是以垂直于半导体基板之底部表面的方向前进的声能。而此第二百万赫超音波转换器则被安装用来产生主要是以平行于半导体基板之底部表面的方向前进的声能。
还有另一个实施例,提供了一种半导体基板的无电电镀方法。此方法一开始是将半导体基板浸入一电镀液里,然后使一层薄膜沉积到此半导体基板的表面上。并将声能传进此电镀液里。在一实施例里,使用被放置成实质上平行于晶片表面方向的一转换器来产生声能,此声能被导引到此半导体基板的表面上,以控制在此半导体基板表面上的气泡生成。在另一个实施例里,使用被放置成实质上垂直于晶片表面方向的一转换器来产生声能,此声能被导引到此半导体基板的表面上,以改善在此半导体基板表面上的反应物与副产品的输运。
在另一个实施例里,提供了一种半导体基板的无电电镀设备。此设备包含一被安装用来盛装电镀液的电镀槽,及一被安装用来将声能传进此电镀液里的转换器。
本发明之其他实施态样及优点将藉由后续的详细说明,连同所伴随之图式,使其具体显现,并以例证方式,详细说明本发明的原理。
附图说明
图1A是一整批晶片的百万赫超音波清洗系统的示意图;
图1B是一单一晶片的百万赫超音波清洗槽的示意图;
图2是依本发明的一实施例所得的一简化的百万赫超音波清洗设备的示意图;
图3是图2的另一实施例的百万赫超音波清洗设备的示意图;
图4是依本发明的一实施例所得的百万赫超音波清洗设备的放大横剖面图;
图5是对应于图4的百万赫超音波清洗槽的另一实施例的示意图;
图6是一流程图,用以说明依本发明的一实施例,透过百万赫超音波清洗设备来清洗一半导体基板的操作方式;
图7A是依本发明的一实施例所得的用于无电电镀操作上的一百万赫超音波转换器的简易示意图;
图7B是对应于图7A的无电电镀反应槽的另一实施例的示意图;
图8A是依本发明的一实施例所得的能产生用于清洗晶片基板的声能的百万赫超音波清洗设备的简易示意图;
图8B是对应于图8A的百万赫超音波清洗设备的另一实施例的示意图;
图8C是对应于图8A的百万赫超音波清洗设备的又另一实施例的示意图;
图8D是对应于图8A的百万赫超音波清洗设备的再另一实施例的示意图;
图9是依本发明的一实施例所得的具有两个声能产生器的一百万赫超音波清洗设备的简易示意图;
图10A是依本发明的一实施例所得的被安装用来清洗晶片基板的相反两面的百万赫超音波清洗设备的简易示意图;
图10B是对应于图10A的百万赫超音波清洗设备的另一实施例的简易示意图;
图11是一流程图,用以说明依本发明的一实施例,应用声能来清洗一半导体基板表面的操作方式。
[实施方式]
本发明提供一种百万赫超音波清洗系统、设备及方法,此百万赫超音波清洗架构是经最佳化成能将声能直接提供进入限定范围之图案化晶片基板的特征部,并能将清洁用的化学液补充进入被此特征部所限定范围的区域。无论如何,对于精于本项技术之人士而言,本发明很明显地能在缺乏部分或全部特定细节的情况下被实行。另一方面,在此并不详细叙述一般众人所熟知的操作方法,以免对本发明的内容造成不必要的混淆。图1A与图1B在图示说明先前技术的相关部分。此处所用到的数值其参考值为+/-10%。
本发明的实施例提供一种将图案化基板之百万赫超音波清洗效率达到最佳化的系统与方法。此处所用的基板(substrate)与晶片(wafer)可彼此互换。藉由提供两个被定位在相互直交方向上的百万赫超音波转换器,将空穴效应与声冲流效应都达到最佳化,其中一个百万赫超音波转换器主要与待清洗之基板表面平行,而另一个百万赫超音波转换器实质上垂直于待清洗之基板表面。也就是说,实质上平行于待清洗之基板表面的这一个百万赫超音波转换器能将声能直接提供进入图案化基板的特征部。被直接提供进入特征部的声能会引致空穴效应而剥除任何黏着在特征部里的粒子。另一方面,被定位在实质上垂直于待清洗之基板表面的这个百万赫超音波转换器能提供平行于晶片表面的声冲流。此声冲流会在特征部周围的区域及特征部内部引致涡流或扰流。结果,必然使化学物质被输运进出特征部的效果被强化而加强了对于特征部内部的化学物质的清洗效率。
此外,此处所描述的实施例还提供一种透过应用百万赫超音波声能来改善无电电镀制程之沉积品质的系统与方法。应用百万赫超音波声能会引致空穴效应,此空穴效应会帮助在无电电镀制程期间所形成之气泡的崩解。在崩解之前,气泡会长成多大尺寸要看所用百万赫超音波声能的频率数。因此,经历无电电解制程而在晶片表面所生成之气泡能透过无电电解制程中对百万赫超音波声能的应用来控制。
图2系依本发明之一实施例所得之一简化的百万赫超音波清洗设备。百万赫超音波清洗设备110包含具有侧壁118及侧壁122的一清洗槽,这两个侧壁都是由基座120所延伸出来。此清洗槽含有清洗液112于槽里。清洗液112可以是任何适合用在百万赫超音波清洗设备的清洗液,所谓适合的清洗液是指具备帮助移除粒子及抑制粒子再度沉积到晶片基板116的表面上的特性。此处所使用的清洗液(cleaningsolution)与清洗化学液(cleaning chemistry)可彼此互换。正如图中所看到的,晶片基板116被浸入到清洗液112里并由承载器114支撑着。对于精于本项技术之人士而言,很明显地,任何能够支撑晶片基板116于百万赫超音波清洗槽中的清洗液112里的适当装置都能用在此处。此百万赫超音波清洗槽被连接到百万赫超音波转换器124与百万赫超音波转换器126。百万赫超音波转换器126被定位在垂直于晶片基板116的底部表面117的位置上。因此,百万赫超音波转换器126能提供平行于底部表面117的声冲流,如下列所述。百万赫超音波转换器124被定位在平行于晶片基板116的底部表面117的位置上。因此,百万赫超音波转换器124能提供能进入特征部,如通道、孔洞、沟槽等等,的声能以在特征部里引致空穴效应。也就是说,分别与晶片表面垂直及平行的两个百万赫超音波转换器,会提供声冲流交替地帮助输运被剥除的粒子并被补充上化学流体至晶片表面,且产生空穴效应以剥除与移去黏着在基板表面的粒子。
图3系图2之百万赫超音波清洗设备的另一实施例。在此,晶片基板116被放置在一垂直的位置上,而非图2中所放置的水平的位置。对于精于本项技术之人士而言,很明显地,晶片基板116能被任何适当的基板支撑工具,如基板承载器、滚轴等,所支撑。晶片基板116被浸入到由基座120与百万赫超音波清洗槽的侧壁118、122所限定出范围的空腔里的清洗液112里。精于本项技术之人士应了解到此百万赫超音波清洗槽可以是适合用来从百万赫超音波转换器提供声能转换的任何形状,其中,一百万赫超音波转换器能提供实质上垂直于基板表面方向的声能,而另一百万赫超音波转换器则提供实质上平行于基板表面方向的声能。在一实施例里,垂直方向的声能是在与标准值相差5度的范围里,亦即90±5度之间,此处的标准值是指相对于基板表面而言。在另一实施例里,平行方向的声能是在与平行相差5度的范围里,亦即0±5度之间,此处的平行方向是指与基板表面平行或相对于基板表面的平行面而言。因此,基座的形状可以是长方形、正方形,或甚至是圆形,只要其侧壁可被安装以允许配置能够产生与基座之百万赫超音波转换器所传递之声能方向直交的声能之百万赫超音波转换器。精于本项技术之人士应了解到清洗液112可以是任何商业上能够取得之清洗液,譬如可从杜邦电子科技公司(DUPONT ElectronicTechnologies)、EKC科技公司(EKC Technology,Inc.)或ASHLAND股份有限公司(ASHLAND Corporation)取得。
图4系依本发明之一实施例所得之百万赫超音波清洗设备的放大横剖面图。在此,图案化晶片基板116之底部表面117被加以更详细描绘,也就是说,图案化晶片基板之底部表面的特征部被图解出来。晶片基板116被浸入到由百万赫超音波清洗槽的侧壁118、122及基座120所限定出范围的空腔里的清洗液112里。精于本项技术之人士应了解到晶片基板116可以透过一适当的半导体基板支座而被沿着其轴线旋转。百万赫超音波转换器124与126分别包含有转换器元件124a与126a,以及共振器元件124b与126b。百万赫超音波转换器124与126可以是任何商业上能够取得之适当的百万赫超音波转换器。百万赫超音波转换器典型地可在500KHz至5MHz间的频率范围里产生超音波能量。对于精于本项技术之士而言,很明显地,对于百万赫超音波转换器的特殊材料的选择将决定其产生能量的频率范围。适当的材料包括压电材料及压电陶瓷材料,例如石英和蓝宝石等。
百万赫超音波转换器124相对于百万赫超音波转换器126被定位在允许得到最理想的声能与物质输运情形以改善图案化晶片基板116的清洗效果。百万赫超音波转换器124用来提供声能,此声能能到达图案化晶片基板116之底部表面117的特征部。在此,此声能将引致空穴效应以剥离黏着在底部表面117的特征部内部表面上的粒子132。为了避免粒子132再度附着到特征部内部表面上,百万赫超音波转换器126将提供声能以产生如图中之箭头130所示之声冲流。声冲流就是当流体受声能的支配时产生速度梯度因而引致的流体移动。声冲流是一种频率及所递送强度的函数,并提供一强的区域性清洗液流其剪力为移除粒子的主要原动力。由声冲流所产生的清洗液流,如箭头130所示,在晶片基板之底部表面117的特征部里造成涡流134。涡流134,也可说是扰流,可改善进出特征部的物质输运,以允许新的清洗液被导引进晶片基板之底部表面117的特征部里,并且将从特征部剥离开的任何粒子移除,这些粒子是透过从百万赫超音波转换器124所产生而被递送进入特征部的声能所引致的空穴效应而被剥离开来的。
图4的箭头128表示由百万赫超音波转换器124所产生而被递送进入晶片基板之底部表面117之特征部的声能。如前述所提及的,声能128会引致空穴效应以剥离粒子132。精于本项技术之人士应了解到扰流或涡流134有助于改善反应物/副产品的输运进出特征部,特别是高纵横比特征部。然而,直接能量被递送进入特征部以提供空穴放应并移除粒子,因此,百万赫超音波转换器被定位在平行以及垂直晶片表面的方向上,同时提供直接能量以清洗由基板表面所限定出范围的特征部以及进入特征部的化学物质输运。
图5系图4之百万赫超音波清洗槽的另一实施例。在此,晶片基板116被定位在垂直位置上而非水平位置上。据此,百万赫超音波转换器126提供直接能量,如图中之箭头128,以从晶片基板116的底部表面117所限定范围的特征部中剥离开粒子132。百万赫超音波转换器124提供声冲流,如图中之箭头130,产生涡流134以移除粒子132并导引新的清洗液进入晶片基板底部表面117的特征部里。当清洗液112是特别设计用于单一晶片的清洗操作上时,精于本项技术之人士应了解到当清洗液112的反应物/副产品浓度改变时,其清洗特性将同样地跟着改变。亦即,在高纵横比特征部,譬如晶片基板116的底部表面117上的特征部,里的清洗液112可清洗高纵横比特征部的内部。当清洗效果发生时,在特征部里的清洗液浓度可能会有所改变,因而改变了界面特性以及粒子与基板表面间的电动电位(ζ-potential)。这样的改变能允许粒子132再度黏着到晶片基板116的表面上,因为在粒子132与基板表面117间清洗液可能不再维持一适当的或一致的电动电位(ζ-potential)。所以,声冲流,或更精确地说,由声冲流所造成的涡流134藉由改善物质输运与补充清洗液进特征部里来避免粒子再度黏着到晶片基板表面上的情形发生。
图6系一流程图,用以说明依本发明之一实施例,透过百万赫超音波清洗设备来清洗一半导体基板的操作方法。本方法起始于步骤140,提供一与两个个别的超音波转换器相连接的清洗槽。例如,此处可提供参考如图2到图5中所描绘的清洗槽。接着看到本方法的步骤142,将晶片基板浸入清洗槽中的清洗液里。精于本项技术之人士应了解到被浸入的晶片基板被定位在一百万赫超音波转换器实质上平行于待清洗之基板表面,而另外第二百万赫超音波转换器实质上垂直于待清洗之基板表面的位置上。换句话说,百万赫超音波转换器是以每一个转换器所产生而传输到清洗液里的声能能适当地彼此直交的方式来加以定位,亦即百万赫超音波转换器是定位在彼此相交大约直角的方位上。如前述所提及的,清洗液能是商业上可获得的特别设计用在单一晶片的清洗上的清洗液,且甚至可以是去离子水。接着看到本方法的步骤144,旋转晶片基板。在此,晶片基板可透过任何精于本项技术之人士所熟知的适当工具被加以旋转。
在图6所解说的方法流程中接着看到步骤146,产生实质上垂直于晶片基板表面的方向上之声能。在此,当进行高纵横比特征部的清洗动作时,为了提供空穴效应以移除粒子,声能会直接撞进高纵横比特征部。接着看到本方法的步骤148,产生实质上平行于晶片基板表面的方向上之声能。在此,声能会产生涡流,此涡流能改善反应物/副产品的输运进出高纵横比特征部。换句话说,声冲流可帮助补充化学物质以避免粒子再度沉积到被清洗的晶片的表面上。因此,一旦粒子被剥离开来,声冲流强化了被剥离开来的粒子的输运。精于本项技术之人士应了解到被产生在主要是垂直方向上的声能以及被产生在主要是平行方向上的声能可被同时地施加或交替地施加或有些联合以这两种方式来施加。而更特别的是,百万赫超音波转换器可被同时或交替地施加动力,亦即百万赫超音波转换器可以是同相或异相。
图7A系依本发明之一实施例所得之用于无电电镀操作上的一百万赫超音波转换器之简易示意图。在此,无电电镀槽150里含有电镀液152。晶片基板154被支撑在无电电镀槽150里。一般熟知的是藉由将组件浸入到电镀液里来进行无电电镀。电镀液通常是由可溶性金属盐类及还原剂所组成。金属盐类被还原到无氧化物的表面上。所以,可在表面上沉积出一层金属薄膜,如铜、镍等。然而,当在金属沉积的过程中,任何在表面上或表面附近的气泡生成都可能造成结果之金属薄膜产生孔洞。因此,藉由连接百万赫超音波转换器156到无电电镀槽150,声能160便能透过将百万赫超音波转换器与晶片基板联系在一起的电镀液152被导引进晶片基板154的表面,以崩解任何可能出现的气泡。是故,一层更可靠且均匀的薄膜便能沉积在晶片基板154的表面155上。
图7B系图7A之无电电镀反应槽的另一实施例。在此,第二百万赫超音波转换器被引进装设在垂直于晶片基板154的位置上。所以,百万赫超音波转换器158允许声冲流在无电电镀过程中被用来清除晶片基板154表面上的任何粒子。也就是说,产生自百万赫超音波转换器158的声冲流可改善晶片基板154表面上的反应物与副产品的物质输运。精于本项技术之人士应了解到无电电镀槽150可包括有再循环或补充电镀液152的能力。此处的输入口164可将新的电镀液提供进无电电镀槽150里,而输出口166则被用来移除被取代掉的电镀液。精于本项技术之人士明显可知,电镀液亦可经由输入口164与输出口166而被循环使用,以取代一次通过系统之方式。于一实施例中,电镀液152以溢流方式排入至废液收集装置或排放装置。此外,输入口164与输出口166的位置以及电镀槽的形状,都可以是任何适当的位置或形状,以便顺利执行无电电镀程序。
总结来说,伴随参考图2至图7B,上述所描述的本发明在说明一种将图案化基板的清洗效率最佳化的方法与系统。相对于待清洗之晶片基板表面,其中一个百万赫超音波转换器被定位在水平方向上,而另一个百万赫超音波转换器则被定位在垂直方向上,藉由如此定位两个百万赫超音波转换器,以超音波声能将空穴效应与声冲流的特性连结并达到最佳化。被定位在水平方向上的百万赫超音波转换器,亦即,其实质上平行于基板表面,因与特征部在目视的同一直线上,故所产生的声能可被直接递送进特征部里以提供空穴效应。此空穴效应可剥离任何黏附在特征部内的粒子。
被定位在垂直方向上的百万赫超音波转换器,亦即,其实质上垂直于基板表面,会递送出以平行于晶片基板表面方向前进的声冲流。此声冲流会产生涡流及扰流以移除被剥离开的粒子,并且将清洗用的化学液补充进特征部里,譬如高纵横比特征部,以进一步确保被剥离开的粒子不会再度黏附到特征部里的表面上。本质上,藉由将清洗用的化学液补充进特征部里,声冲流允许在特征部里进行化学清洗动作。精于本项技术的人士应了解到此处所描述的实施例也可被用在其他应用上,因其适合用来加强化学反应。例如,关于此处所描述的实施例是有助于反应物的物质输运以移除反应后的物质。也就是说,上述所描述的声冲流将强化物质的输运。
图8A是依本发明的一实施例所得的能产生用于清洗晶片基板的声能的百万赫超音波清洗设备的简易示意图。清洗设备218由基座228与延伸自基座的侧壁232所组成。内部空腔220由基座228与侧壁232限定出范围。清洗设备218包括由附在共振器226上的百万赫超音波转换器224所组成的声能产生器223。在此实施例里,声能产生器223产生百万赫超音波声能,亦即,转换器224为一个百万赫超音波转换器。精于本项技术的人士应了解到此处所描述的实施例虽应用到百万赫超音波声能,然本发明也可应用到任何其他声能。声能产生器223被定位在清洗设备218的一个较低的角落处。精于本项技术的人士应了解到声能产生器223的共振器226有与清洗液接触。因此,可透过清洗液将声能传输到晶片基板,以帮助清洗程序的进行。
继续来看图8A,声能产生器223被安装用来产生主要在平行于晶片基板222的底部表面222a的方向前进的声波。此声波实质上平行于底部表面222a,由图中的直线234标示出来。延伸臂238从侧壁232延伸出来,并与基座228之间限定出一通道。延伸臂238可以是任何适当长度。反射面230是基座228一斜角的部分。在此,由声能产生器223所产生的声波会被反射面230反射出去而朝向晶片基板222的底部表面222a的前进。此被反射的声能由图中的直线236标示出来。反射面230因为具有角度因此能将实质上平行前进的声能波234反射出去成垂直朝向基板底部表面222a前进的声能波236。譬如,此角度是反射面230与基座228相交成大约45度。
持续来看图8A,精于本项技术的人士应了解到声波的方向与声能的来源并无关联。因此,清洗设备218的结构允许从外部进入声能产生器223的组件。在此实施例里,清洗设备218可以是一个薄型槽,亦即,晶片基板222可被放置在大约半英寸的基座228里。精于本项技术的人士亦应了解到基座228可以延伸越过反射面230,如图中228a所标示的部分。在此实施例里,由基座的228a部分与侧壁的232a部分所限定出范围的区域,是将基座228的一部份与反射面230提高后所围出的一个空洞。在另一个实施例里,反射面230是可调整的以控制反射面230与基座228之间所交的角度。因此,反射面230的移动能够产生被反射的声能以扫过晶片基板222的表面222b。结果,被反射的声能能被集中在晶片基板222的边缘区域,而非基板的中心区域,因此基板的边缘区域也能见到等量的声能。当然,此处的晶片基板222是可旋转的,如图所示。
图8B是图8A的百万赫超音波清洗设备的另一实施例。清洗设备218包括一清洗槽被安装用来清洗晶片基板222,而此晶片基板222被浸泡在内部空腔220所盛装的清洗液里。百万赫超音波转换器224被附在共振器226上用来产生朝向反射面230前进的声能。在此,反射面230具有凸状表面与清洗设备218中的清洗液相接触。所以,由百万赫超音波转换器224所产生的声能会被依不同于图8A的图案来反射。因此,反射面230的凸出形状会把百万赫超音波转换器224所产生的声能,图中直线234所标示者,反射成不同角度分散出去的声能,如图中直线236所标示者。所以,此被反射的声能,即图中直线236所标示者,以不同的角度撞击晶片基板222的表面。本质上,反射面230接收来源波/声波再将其散播到一限定区域里。此外,因压电晶体间的空间所产生的能量缺口会透过此声能的反射而被消弥。
图8C是图8A的百万赫超音波清洗设备的又另一实施例。如同图8A一般,清洗设备218包括一盛装有清洗液的清洗槽及有侧壁232延伸而出的基座228。然而,清洗设备218如所示包含有另一不同的反射面230,此反射面230上有数个凸状表面用以散射来自声能产生器223所产生的声能。所以,在由基座228与延伸臂238所限定出范围的通道里,以主要是平行方向前进的声能改变其方向以散开到晶片基板222的底部表面222a上。当然,晶片基板222可以延着其轴线旋转。精于本项技术的人士明显可知晶片基板222的旋转可以藉由任何适当可取得的旋转方式来提供。例如,一个被安装用来支撑晶片基板222的基板承载器可被用来提供旋转力道。或可选择支撑住晶片基板222边缘的转动器也可提供旋转力道。
接着仍继续看图8C,清洗设备218也包含输入口229与输出口231。输入口229能提供新的清洗液流入清洗设备中。而输出口231则被安装用来使过剩的清洗液流出清洗设备外。在另一个实施例里,输出口231可透过一个泵浦与输入口229连通在一起,以经过此清洗设备循环利用此清洗液。精于本项技术的人士明显可知此清洗液被设计用在清洗单一晶片基板的应用上。此外,用在单一晶片基板的清洗液一般可从像EKC Inc及Ashland Inc这类的公司取得。
图8D是图8A的百万赫超音波清洗设备的再另一实施例。在此,反射面230具有一凹面形状。精于本项技术的人士应了解到如此被反射的声能236会集中聚焦到晶片基板222的底部表面222a的特定一点上。所以,反射面230就是接收来自声能产生器223所产生的声能并将其聚焦。反射面230可以具有一抛物线形状以将被反射的声能236聚焦到单一点上。又或者是,反射面230可以被做成圆筒状以将被反射的声能236沿着一直线聚焦。另外在此再补充一点,反射面230是可动的以使声能能扫过旋转的基板整个表面。精于本项技术的人士应了解到可以使用多种其他形状将来自声能产生器223所产生的声能反射成与原来方向无关的不同方向前进的声能。也就是说,反射面230可被安装用来散射、聚焦或甚至分散配置来自声能产生器223所产生的声能。
图9是依本发明的一实施例所得的具有两个声能产生器的一百万赫超音波清洗设备的简易示意图。清洗设备218包括有声能产生器223及242,可以用来当作百万赫超音波转换器。声能产生器223及242被安装用来产生实质上平行于晶片基板而分别在晶片基板222的上表面222b及底部表面222a处平行前进的声能。也就是说,由声能产生器242所产生的声能,图中直线240a与240b所标示者,实质上平行于晶片基板222的上表面222b及底部表面222a。相仿地,声能产生器223所产生的声能也是实质上平行于晶片基板222的底部表面222a。
继续来看图9,此清洗设备包括百万赫超音波转换器223及242,都装设成实质上垂直于半导体晶片基板222的上表面222b及底部表面222a的方位上。透过反射面230,由声能产生器223所产生的声能234会被重新导引变成以实质上垂直于晶片基板222的底部表面222a的方向前进。所以,百万赫超音波转换器223所产生的声能234可被用来提供空穴效应以剥离底部表面222a所限定范围的特征部里的粒子。百万赫超音波转换器242则提供声冲流以移除被剥离开来的粒子,并且补充清洗液进此限定范围的特征部里。更详细的清洗动作已在前述图2至图7B的描述中说明了。当然,晶片基板222可以是旋转的,如图8C所述。并且,清洗设备218可包括溢流及再循环的能力,参考如图8C所述。
在另一实施例中,图9的反射面230可将声能以与基板底部表面222a的直角相差很小的角度反射出去。声能撞击在基板表面上的角度的变化允许减少与阻抗相关的摆荡。在一实施例中,相对于基板表面的直角,此相差很小的角度乃介于约3度到约6度之间。此被引用的角度会减少在旋转期间由于晶片的跑动(摇晃)所造成的阻抗变化。在另一实施例里,声能产生器223是可自动调节的。
图10A是依本发明的一实施例所得的被安装用来清洗晶片基板的相反两面的百万赫超音波清洗设备的简易示意图。清洗设备218包括有声能产生器223及242a,被安装用来提供声能到晶片基板222的相反两面。由声能产生器223所产生的声能被从反射面230反射而出以清洗晶片基板222的底部表面222a。声能产生器242a则被安装用来提供声能至晶片基板222的上表面222b以帮助清洗晶片基板222的上表面222b。在此,声能产生器242a被安装用来产生声能,如图中直线240b所标示者,此声能相对于晶片基板222的上表面222b之间只夹了一个小的角度。在一实施例里,由声能240b与上表面222b间所交夹出来的这个角度是介于约0度至约5度之间。精于本项技术的人士应了解到声能240b中有一部份会被从上表面222b所反射,如图中直线246所标示者。所以,反射面244a可被设置在能将被反射的声能246再次反射回上表面222b,如图中直线248所标示者,的位置上。当然,此被反射的声能每被反射一次就会损失掉一些动能,然而,所增加的声能将有助于晶片基板222的清洗。
图10B是图10A的百万赫超音波清洗设备的另一实施例的简易示意图。在此,清洗设备218提供了三个声能产生器223、242a及242b。声能产生器223提供声能给晶片基板222的底部表面222a,同样地,声能产生器242b也提供声能给晶片基板222的底部表面222a。声能产生器242a则被安装用来提供声能给晶片基板222的上表面222b,参考如前述图10A所讨论的。声能产生器242b产生声能240a,此声能以与晶片基板222的底部表面222a间夹了一个小角度的方向前进。在一实施例中,声能240a与底部表面222a间所交夹的这个角度是介于约0度至约5度之间。在此再补充一提,声能240a可被从基板底部表面222a反射而出,如图中直线250所标示者。因此,反射面244b可被设置在能将被反射的声能250再次反射回晶片基板222的底部表面222a,如图中直线252所标示者,的位置上。
精于本项技术的人士应了解到图中所示的反射面230具有一凸出形状,反射面230可具有任何适当的形状,包括前述所讨论到的形状。因此,在一实施例里声能产生器223、242a及242b也就是百万赫超音波转换器。在清洗过程中,晶片基板222也可以沿着其轴线旋转。清洗设备218可被安装用来提供溢流及再循环的能力,参考如图8C所讨论的。
图11是一流程图,用以说明依本发明的一实施例,应用声能来清洗一半导体基板表面的操作方式。此方式起始于步骤260,由第一转换器产生沿实质上平行于半导体基板表面的方向前进的声能。譬如,此处所产生的声能可以是图8A至图8D、图9、图10A及图10B中的声能产生器223所产生的声能。接着看到本方法的步骤262,由第一转换器所产生的声能其前进方向被改变成沿实质上垂直于晶片基板表面的方向前进。在此,一反射面,如图8A至图8D、图9、图10A及图10B中所讨论到的反射面,可用来改变声能的前进方向。吾人应了解声能可被聚焦、散射,或甚至是均匀配置。所以,反射面主要是用来将来自声能起源处的声能改变成无关的方向。此外,反射面可被调整或移动以使声能能扫过待清洗的晶片基板的表面。
接着继续看到图11本方法的步骤264,由第二转换器产生沿实质上平行于半导体基板表面的方向前进的声能。在此,此第二转换器可提供声冲流以更有效地清洗晶片基板表面。精于本项技术的人士应了解到由第二转换器所产生的声能可以与半导体基板表面交夹一小角度的方向前进,参考如前述图10A及图10B中所讨论到的。此外,可提供一个第三声能转换器以将声能导引向被第二转换器所产生的声能清洗的基板表面的相反表面。
总结来说,上述关于本发明的描述,参考图8A至图11,在描述将半导体基板的清洗效率最佳化的一种方法与系统。此清洗设备藉由将从声能产生器所产生的声波改变方向而减少死角区域。此改变方向的效应是由被设置来将声能反射向待清洗的晶片基板表面的反射面所提供。多个转换器可被含括进来以增加清洗效率。在一实施例中,提供了被设置在实质上垂直于晶片基板表面的两个转换器。这两个转换器都产生沿实质上平行于晶片基板表面的方向前进的声能,然而,其中的一声能流被反射面重新导引成沿实质上垂直于晶片基板表面的方向前进的声能。此反射面可以由任何能与此清洗液共存且能反射声能的材质所构成。譬如,此反射面的材质可以是不锈钢、石英、特氟龙、聚丙烯、碳化硅,或其他可用在此系统能与清洗用的化学液共存的材质。在另一实施例里,反射面被安装成可依反射面所连结的轴线而移动。因此,声能可扫过晶片基板的表面以散布声能,甚至当晶片基板旋转时,声能也能扫过整个基板表面。
此外,此处所描述的实施例允许在无电电镀操作时沉积一层较高品质的薄膜。在无电电镀操作期间,透过应用百万赫超音波声能,可控制在经历无电电镀操作的目标物表面的气泡生成。透过因被传递到电镀液的超音波声能而产生的空穴效应的特性,可有效地移开目标物表面附近的气泡,因此可大量减低沉积薄膜里的空洞。
虽然,为了能够达到清楚了解的目的,本发明在前述已做了一些详细的描述,然而,精于本项技术的人士明显可知在不脱离所宣告的权利要求的领域里仍可实行某些改变与修正。因此,此处所举的实施例被视为例证说明之用,而非用来限制本发明仅能以这些方式呈现,本发明不以此处所给予的细节来加以限制,但在不脱离所宣告的权利要求的领域里可做修正。在权利要求里,组件和/或步骤不暗示任何特别的操作顺序,除非已明白宣告在权利要求里。
元件符号说明:
100-清洗槽
102-晶片支座
104-转换器
106-清洗槽
108-承载器
109-晶片
110-百万赫超音波清洗设备
112-清洗液
114-承载器
116-晶片基板
117-晶片基板的底部表面
118-清洗槽的侧壁
120-基座
122-清洗槽的侧壁
124-百万赫超音波转换器
124a-转换器元件
124b-共振器元件
126-百万赫超音波转换器
126a-转换器元件
126b-共振器元件
128-声能
130-声冲流
132-粒子
134-扰流或涡流
150-无电电镀槽
152-电镀液
154-晶片基板
155-晶片基板表面
156-百万赫超音波转换器
158-百万赫超音波转换器
160-声能
162-声冲流
164-输入口
166-输出口
218-百万赫超音波清洗设备
220-内部空腔
222-晶片基板
222a-晶片基板底部表面
222b-晶片基板上表面
223-声能产生器
224-百万赫超音波转换器
226-共振器
228-基座
228a-基座的延伸部分
229-输入口
230-反射面
231-输出口
232-侧壁
232a-侧壁
232b-侧壁
234-声能
236-被反射的声能
238-延伸臂
240a-声能
240b-声能
242-声能产生器
242a-声能产生器
242b-声能产生器
244a-反射面
244b-反射面
246-被反射的声能
248-被再次反射的声能
250-被反射的声能
252-被再次反射的声能
Claims (20)
1.一种半导体基板的清洗方法,包含下列操作:
a)产生沿实质上垂直于半导体基板表面的方向前进的声能;及
b)产生沿实质上平行于半导体基板表面的方向前进的声能。
2.如权利要求第1项的半导体基板的清洗方法,其中,该声能是透过一百万赫超音波转换器所产生的百万赫超音波能量。
3.如权利要求第1项的半导体基板的清洗方法,更包含下列操作:
a)将一半导体基板浸入一清洗槽中所盛装的清洗液里;及
b)旋转该被浸泡的半导体基板。
4.如权利要求第1项的半导体基板的清洗方法,其中,产生沿实质上垂直方向前进的声能的操作及产生沿实质上平行方向前进的声能的操作是同时执行。
5.如权利要求第1项的半导体基板的清洗方法,其中,产生沿实质上垂直方向前进的声能的操作及产生沿实质上平行方向前进的声能的操作是交替地执行。
6.如权利要求第1项的半导体基板的清洗方法,其中,产生沿实质上平行于半导体基板表面的方向前进的声能的操作,包含:将一部份该声能从一反射面反射向一半导体基板表面。
7.如权利要求第6项的半导体基板的清洗方法,更包含下列操作:
调整该反射面相对于该声能的起源处的角度。
8.一种半导体基板清洗设备,包含:
a)一基座;
b)至少一侧壁,从该基座延伸出来,该侧壁实质上垂直于该基座;
c)一第一百万赫超音波转换器,固定在该基座上;及
d)一第二百万赫超音波转换器,固定在该侧壁上;
其中,该第一百万赫超音波转换器实质上垂直于该第二百万赫超音波转换器。
9.如权利要求第8项的半导体基板清洗设备,其中,该基座具有由正方形、圆形及长方形所组成的群组里选定的一形状。
10.如权利要求第8项的半导体基板清洗设备,设计成在由该基座和至少一侧壁所限定出范围的空腔里盛装有清洗液。
11.如权利要求第10项的半导体基板清洗设备,更包含:
一半导体基板,被浸泡在该清洗液里,且该半导体基板由一基板支座所支撑;该半导体基板的一表面实质上平行于该第一百万赫超音波转换器的一表面而定位,且该半导体基板的该一表面更被定位在实质上垂直于该第二百万赫超音波转换器的一表面的方位上。
12.如权利要求第11项的半导体基板清洗设备,其中,该第一百万赫超音波转换器用以将基于空穴效应目的的声能提供给该半导体基板的表面上所形成的特征部,且该第二百万赫超音波转换器用以将基于声冲流目的的声能提供给该半导体基板的表面上所形成的特征部。
13.如权利要求第8项的半导体基板清洗设备,其中,该第一百万赫超音波转换器及该第二百万赫超音波转换器其中之一用以将所产生的一对应的声能相关的方向改变成与该对应声能的来源不相干。
14.一种半导体基板的清洗系统,包含:
a)一清洗槽,具有由一基座与从该基座延伸出来的至少一面侧壁所限定出范围的内部空腔,该清洗槽用以盛装一定量的液体于该内部空腔里;
b)一半导体基板支座,用以支撑并沿着该半导体基板的轴线旋转该半导体基板,该半导体基板支座更用以在该清洗槽的内部空腔里支撑并旋转该半导体基板;
c)一第一百万超音波转换器,与该基座相连接,该百万赫超音波转换器的上表面实质上平行于该半导体基板的底部表面;及
d)一第二百万赫超音波转换器,与该至少一面的侧壁相连接;
其中,该第一百万赫超音波转换器用以产生声能,该声能是以实质上垂直于该半导体基板底部表面的方向前进;而该第二百万赫超音波转换器用以产生声能,该声能是以实质上平行于该半导体基板底部表面的方向前进。
15.如权利要求第14项的半导体基板的清洗系统,其中,以实质上垂直于该半导体基板底部表面的方向前进的该声能提供空穴效应能量,用以剥离沉积在形成于该半导体基板底部表面上的特征部里的粒子。
16.如权利要求第14项的半导体基板的清洗系统,其中,以实质上平行于该半导体基板底部表面的方向前进的该声能提供声冲流能量,用以补充形成于该半导体基板底部表面上的特征部里的该液体浓度。
17.如权利要求第14项的半导体基板的清洗系统,其中,该第一百万赫超音波转换器与该第二百万赫超音波转换器同相操作。
18.如权利要求第14项的半导体基板的清洗系统,其中,该第一百万赫超音波转换器与该第二百万赫超音波转换器异相操作。
19.如权利要求第14项的半导体基板的清洗系统,其中,由该第二百万赫超音波转换器所产生的声能的一部份朝向与该基座相关的一反射面而产生,该反射面用以朝向该半导体基板的一表面导引该声能。
20.如权利要求第19项的半导体基板的清洗系统,其中,该反射面具有选自于由大致上平坦面、凹面及凸面所组成的群组里的一形状。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/371,603 | 2003-02-20 | ||
US10/371,603 US7040330B2 (en) | 2003-02-20 | 2003-02-20 | Method and apparatus for megasonic cleaning of patterned substrates |
US10/377,943 US7040332B2 (en) | 2003-02-28 | 2003-02-28 | Method and apparatus for megasonic cleaning with reflected acoustic waves |
US10/377,943 | 2003-02-28 | ||
PCT/US2004/003179 WO2004074931A2 (en) | 2003-02-20 | 2004-02-04 | Method and apparatus for megasonic cleaning of patterned substrates |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1750892A true CN1750892A (zh) | 2006-03-22 |
CN1750892B CN1750892B (zh) | 2010-04-28 |
Family
ID=32868373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200480004602.9A Expired - Fee Related CN1750892B (zh) | 2003-02-20 | 2004-02-04 | 半导体基板清洗设备和系统 |
Country Status (2)
Country | Link |
---|---|
US (1) | US7040330B2 (zh) |
CN (1) | CN1750892B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101884986A (zh) * | 2010-07-16 | 2010-11-17 | 上海集成电路研发中心有限公司 | 半导体器件清洗装置及方法 |
CN101516534B (zh) * | 2006-10-20 | 2010-12-01 | 韩国机械研究院 | 超声波清洗组件 |
CN103492092A (zh) * | 2011-04-28 | 2014-01-01 | 朗姆研究公司 | 改进的超声处理方法和装置 |
CN107993964A (zh) * | 2017-11-23 | 2018-05-04 | 上海华力微电子有限公司 | 槽式湿法清洗机台 |
CN108369932A (zh) * | 2015-09-25 | 2018-08-03 | 英特尔公司 | 包括无空隙孔的电子组件 |
WO2023069610A1 (en) * | 2021-10-21 | 2023-04-27 | Applied Materials, Inc. | Megasonic clean with cavity property monitoring |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200714379A (en) * | 2005-06-30 | 2007-04-16 | Fico Bv | Method and device for cleaning electronic components processed with a laser beam |
US9070722B2 (en) * | 2006-10-17 | 2015-06-30 | Akrion Systems, Llc | System and method for the sonic-assisted cleaning of substrates utilizing a sonic-treated liquid |
US8327861B2 (en) * | 2006-12-19 | 2012-12-11 | Lam Research Corporation | Megasonic precision cleaning of semiconductor process equipment components and parts |
US20080163890A1 (en) * | 2007-01-10 | 2008-07-10 | Applied Materials, Inc. | Tunable megasonics cavitation process using multiple transducers for cleaning nanometer particles without structure damage |
US20090173358A1 (en) * | 2008-01-09 | 2009-07-09 | Micron Technology, Inc. | Megasonic cleaning with controlled boundary layer thickness and associated systems and methods |
US8226772B2 (en) | 2009-01-08 | 2012-07-24 | Micron Technology, Inc. | Methods of removing particles from over semiconductor substrates |
CN103828032B (zh) * | 2011-09-22 | 2016-08-17 | Ev集团E·索尔纳有限责任公司 | 用于处理衬底表面的装置以及方法 |
CN103887151B (zh) * | 2014-03-07 | 2017-02-01 | 京东方科技集团股份有限公司 | 一种构图装置和构图方法 |
US10589321B2 (en) | 2014-04-24 | 2020-03-17 | Struers ApS | Method of, and an apparatus for, rinsing materialographic samples |
EP3174642A1 (en) * | 2014-07-30 | 2017-06-07 | Corning Incorporated | Ultrasonic tank and methods for uniform glass substrate etching |
WO2017173588A1 (en) | 2016-04-06 | 2017-10-12 | Acm Research (Shanghai) Inc. | Methods and apparatus for cleaning semiconductor wafers |
CN107636799B (zh) | 2015-05-20 | 2021-12-03 | 盛美半导体设备(上海)股份有限公司 | 清洗半导体衬底的方法和装置 |
US10512946B2 (en) * | 2015-09-03 | 2019-12-24 | Taiwan Semiconductor Manufacturing Co., Ltd. | Gigasonic cleaning techniques |
JP7032816B2 (ja) * | 2016-09-19 | 2022-03-09 | エーシーエム リサーチ (シャンハイ) インコーポレーテッド | 基板の洗浄方法及び洗浄装置 |
US11581205B2 (en) | 2017-11-20 | 2023-02-14 | Acm Research, Inc. | Methods and system for cleaning semiconductor wafers |
KR102399869B1 (ko) * | 2019-09-12 | 2022-05-20 | 키오시아 가부시키가이샤 | 기판 처리 장치 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000164888A (ja) | 1992-07-21 | 2000-06-16 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
JPH08332465A (ja) * | 1995-06-07 | 1996-12-17 | Supiide Fuamu Clean Syst Kk | 洗浄方法及び洗浄装置 |
JPH10223585A (ja) * | 1997-02-04 | 1998-08-21 | Canon Inc | ウェハ処理装置及びその方法並びにsoiウェハの製造方法 |
FR2762240B1 (fr) * | 1997-04-18 | 1999-07-09 | George Lucien Michel | Procede et dispositif de nettoyage d'elements electroniques par moyennes ou hautes frequences |
JPH10323635A (ja) * | 1997-05-26 | 1998-12-08 | Sony Corp | 超音波洗浄装置 |
US5849091A (en) * | 1997-06-02 | 1998-12-15 | Micron Technology, Inc. | Megasonic cleaning methods and apparatus |
US5909741A (en) * | 1997-06-20 | 1999-06-08 | Ferrell; Gary W. | Chemical bath apparatus |
JP3847935B2 (ja) * | 1998-01-09 | 2006-11-22 | キヤノン株式会社 | 多孔質領域の除去方法及び半導体基体の製造方法 |
JP3218564B2 (ja) * | 1998-01-14 | 2001-10-15 | キヤノン株式会社 | 多孔質領域の除去方法及び半導体基体の製造方法 |
JP2000183012A (ja) * | 1998-12-21 | 2000-06-30 | Sony Corp | 基板の洗浄方法及びその洗浄装置 |
US6276370B1 (en) * | 1999-06-30 | 2001-08-21 | International Business Machines Corporation | Sonic cleaning with an interference signal |
US6468362B1 (en) * | 1999-08-25 | 2002-10-22 | Applied Materials, Inc. | Method and apparatus for cleaning/drying hydrophobic wafers |
US6748961B2 (en) * | 2001-03-30 | 2004-06-15 | Lam Research Corporation | Angular spin, rinse, and dry module and methods for making and implementing the same |
US6796315B2 (en) * | 2003-01-10 | 2004-09-28 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method to remove particulate contamination from a solution bath |
-
2003
- 2003-02-20 US US10/371,603 patent/US7040330B2/en not_active Expired - Lifetime
-
2004
- 2004-02-04 CN CN200480004602.9A patent/CN1750892B/zh not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101516534B (zh) * | 2006-10-20 | 2010-12-01 | 韩国机械研究院 | 超声波清洗组件 |
CN101884986A (zh) * | 2010-07-16 | 2010-11-17 | 上海集成电路研发中心有限公司 | 半导体器件清洗装置及方法 |
CN103492092A (zh) * | 2011-04-28 | 2014-01-01 | 朗姆研究公司 | 改进的超声处理方法和装置 |
CN103492092B (zh) * | 2011-04-28 | 2016-09-21 | 朗姆研究公司 | 改进的超声处理方法和装置 |
CN108369932A (zh) * | 2015-09-25 | 2018-08-03 | 英特尔公司 | 包括无空隙孔的电子组件 |
CN107993964A (zh) * | 2017-11-23 | 2018-05-04 | 上海华力微电子有限公司 | 槽式湿法清洗机台 |
CN107993964B (zh) * | 2017-11-23 | 2020-06-30 | 上海华力微电子有限公司 | 槽式湿法清洗机台 |
WO2023069610A1 (en) * | 2021-10-21 | 2023-04-27 | Applied Materials, Inc. | Megasonic clean with cavity property monitoring |
Also Published As
Publication number | Publication date |
---|---|
CN1750892B (zh) | 2010-04-28 |
US20040163682A1 (en) | 2004-08-26 |
US7040330B2 (en) | 2006-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1750892A (zh) | 图案化基板之百万赫超音波清洗方法与设备 | |
TWI778007B (zh) | 晶圓生成方法 | |
CN1199242C (zh) | 衬底处理装置和衬底处理方法 | |
CN1920105A (zh) | 用于对工件进行流体处理的方法和设备 | |
CN1712144A (zh) | 超声波清洗装置 | |
JP2020088097A (ja) | ウエーハの生成方法 | |
CN1639840A (zh) | 无电淀积设备和方法 | |
CN1222989C (zh) | 多层柔性布线板及其制造方法 | |
CN1435732A (zh) | 化学处理装置 | |
WO2002059398A3 (en) | Plating apparatus and method | |
CN1104040C (zh) | 晶片处理装置和晶片传送装置以及晶片处理方法 | |
CN1681965A (zh) | 无电解镀装置及无电解镀方法 | |
KR101062255B1 (ko) | 기판 세정 방법, 기판 세정 장치 및 프로그램 기록 매체 | |
CN1515362A (zh) | 表面处理设备和方法及用该设备进行接线的设备和方法 | |
JPH01143224A (ja) | 半導体基板の表面処理方法 | |
CN1271683C (zh) | 一种基板镀膜方法 | |
CN1302155C (zh) | 用于电解处理相互分开的板材块和箔材块的可导电表面的方法和装置以及该方法的应用 | |
US6460551B1 (en) | Megasonic resonator for disk cleaning and method for use thereof | |
JP4733012B2 (ja) | 処理方法及び処理装置 | |
CN1131733C (zh) | 药液处理装置 | |
JP3513130B2 (ja) | メッキ装置及びメッキ方法 | |
CN1579005A (zh) | 利用接近晶片表面的多个入口和出口干燥半导体晶片表面的方法和设备 | |
TW201139754A (en) | Method of processing substrate and substrate processor | |
CN1301635C (zh) | 电路基片的制造方法及其制造装置 | |
CN1191003C (zh) | 使用脉冲激励处理电路载体的装置和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100428 Termination date: 20170204 |