CN1745285A - 液化气态、富含甲烷的进料以获得液化天然气的方法 - Google Patents

液化气态、富含甲烷的进料以获得液化天然气的方法 Download PDF

Info

Publication number
CN1745285A
CN1745285A CNA2004800031112A CN200480003111A CN1745285A CN 1745285 A CN1745285 A CN 1745285A CN A2004800031112 A CNA2004800031112 A CN A2004800031112A CN 200480003111 A CN200480003111 A CN 200480003111A CN 1745285 A CN1745285 A CN 1745285A
Authority
CN
China
Prior art keywords
refrigerant
heat exchanger
main heat
cold
producing medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800031112A
Other languages
English (en)
Other versions
CN100465560C (zh
Inventor
W·赫普克斯
林佩蓉
R·P·斯利夫
K·J·文克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN1745285A publication Critical patent/CN1745285A/zh
Application granted granted Critical
Publication of CN100465560C publication Critical patent/CN100465560C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0252Control strategy, e.g. advanced process control or dynamic modeling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0287Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings including an electrical motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0298Safety aspects and control of the refrigerant compression system, e.g. anti-surge control

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

在主要热交换器(1)中利用蒸发制冷剂冷却和液化气态、富含甲烷的进料(20)以获得液化产品(23),并将液化物流(23)经导管(80)储存为液化产品。所述方法包括调整制冷剂的组成与数量并控制液化方法,其使用一种基于模型预测控制的先进处理控制器来测定一组操作变量的同步控制行为,以当控制一组控制变量中的至少一个时,使一组参数中的至少一个最优化,其中该组操作变量包括重质制冷剂馏分(52)的质量流量、轻质制冷剂馏分(59)的质量流量、制冷剂成分(26)的补充数量、所移除的制冷剂(54)数量、制冷剂压缩机的容量(30,32)以及富含甲烷进料(20)的质量流量,其中该组控制变量包括位于主要热交换器(1)温热端(3)的温度差、与液化天然气(23)温度有关的变量、进入分离器(45)的制冷剂组成、主要热交换器(1)的壳内的压力、分离器(45)内的压力以及分离器(45)内的液体高度,以及其中一组欲最优化的变量包括液化产品(80)的产量。

Description

液化气态、富含甲烷的进料以获得液化天然气的方法
技术领域
本发明涉及一种液化气态、富含甲烷的进料以获得液化产品的方法。液化产物通常是液化天然气。尤其本发明涉及控制此液化方法。
背景技术
液化方法包含以下步骤:
(a)提供高压下的气态、富含甲烷的进料至位于主要热交换器温热端的主要热交换器的第一管侧,以蒸发制冷剂冷却、液化及过冷却此气态、富含甲烷的进料,以获得液化物流,从主要热交换器的冷端将液化物流移出主要热交换器,并将液化物流当作液化产品输送而储存;
(b)从位于主要热交换器温热端的主要热交换器的壳侧移出蒸发制冷剂;
(c)于至少一个制冷剂压缩机中压缩蒸发制冷剂,以获得高压制冷剂;
(d)部分冷凝高压制冷剂,并于分离器中将部分冷凝的制冷剂分离成液态重质制冷剂馏分与气态轻质制冷剂馏分;
(e)在主要热交换器的第二管侧过冷却重质制冷剂馏分,以获得经过冷却重质制冷剂物流,于减压下将重质制冷剂物流导入位于主要热交换器中点的主要热交换器的壳侧,并使重质制冷剂物流于壳侧内蒸发;以及
(f)于主要热交换器的第三管侧冷却、液化及过冷却至少部分的轻质制冷剂馏分,以获得经过冷却的轻质制冷剂物流,于减压下将轻质制冷剂物流导入位于主要热交换器冷端的主要热交换器的壳侧,并使轻质制冷剂物流于壳侧内蒸发。
专利国际申请公开号第99/31448号揭露控制液化的方法。在习知控制方法中,是使用一种基于模型预测控制的先进处理控制器来测定一组操作变量的同步控制行为,以当控制一组控制变量中的至少一个时,使一组参数中的至少一个最优化;其中该组操作变量包括重质制冷剂馏分的质量流量、轻质制冷剂馏分的质量流量,以及富含甲烷进料的质量流量;其中该组控制变量包括于主要热交换器温热端的温度差以及于主要热交换器中点的温度差;以及其中一组欲适化的变量包括液化产品的产量。
该习知方法被认为是有利的,因为混合制冷剂的整体组成没有被操作来最优化液化产品的产量。然而,申请人现已发现到个别地控制混合制冷剂的整体组成是很麻烦的。
发明内容
本发明的一目的是提供一种替换方法,其中包含对混合制冷剂的整体组成的控制。
为此目的,液化气态、富含甲烷的进料以获得液化产物的方法的特征在于该方法还包括调整制冷剂的组成与数量并控制液化方法,其使用一种基于模型预测控制的先进处理控制器来测定一组操作变量的同步控制行为,以当控制一组控制变量中的至少一个时,使一组参数中的至少一个最优化;其中该组操作变量包括重质制冷剂馏分的质量流量、轻质制冷剂馏分的质量流量、制冷剂成份的补充数量、所移除的制冷剂数量、制冷剂压缩机的容量以及富含甲烷进料的质量流量;其中该组控制变量包括位于主要热交换器温热端的温度差、与液化天然气温度有关的变量、进入步骤(d)分离器的制冷剂组成、主要热交换器的壳内的压力、步骤(d)分离器内的压力以及步骤(d)分离器内的液体高度;以及其中一组欲最优化的变量包括液化产品的产量。
在说明书与申请专利范围中,术语“操作变量”是指可被先进处理控制器操作的变量,而术语“控制变量”是用指必须被先进处理控制器保持在预设值(设定值)或预设范围(设定范围)内的变量。措词“最优化变量”是指最大化或最小化变量,并将变量维持在预设值。
模型预测控制或基于预测控制的模型是一种习知技术,例如请见Perry’s Chemical Engineers’Handbook,第七版,第8-25至8-27页。模型预测控制的重要特征在于使用模型与控制变量的可得的量测来预测未来的处理行为。计算控制器的输出以使性能指数最优化,该性能指数为所预测的误差与所计算的未来控制变动(future control move)的线性或二次函数。于每一次取样瞬间,会重复控制计算,且预测值是基于目前的量测值来更新。适当的模型为一种包含一组可表达操作变量对控制变量的阶跃响应的结果的经验阶跃响应模型(empiricalstep-response model)。
可由个别的最优化步骤得到欲最优化的参数的最优值,或者可将欲最优化的变量包含于性能函数中。
在应用模型预测控制之前,首先测定操作变量的阶跃变化对欲最优化的变量及对控制变量的影响。此产生一组阶跃响应系数。此组阶跃响应系数形成液化方法的模型预测控制的基础。
在正常操作过程中,控制变量的预测值则会为了一些未来控制而经常计算。对于这些未来控制变动,计算性能指数。性能指数包括二项,第一项表示每一控制变动中预测误差的未来控制变动的总和,而第二项表示每一控制变动中操作变量变化的未来控制变动的总和。对每一控制变量而言,预测误差为控制变量的预测值与控制变量的参考值间的差异。将预测误差乘以加权因子,并将控制变动的操作变量变化皆乘以变动抑制因子。此处所讨论的性能指数即为线性。
或者,这些项可为平方项的加总,于此例中,性能指数为二次方的。
此外,可对操作变量、操作变量的变化以及控制变量作限制。其可产生一个别的方程组,该方程组可在性能指数最小化的同时被解出。
可以两种方式进行最优化,一种方式是在性能指数的最小化之外个别地最优化,第二种方式是于性能指数中最优化。
当个别地进行最优化时,欲最优化的变量被包括在每一控制变动中的预测误差的控制变量中,而此最优化可得到控制变量的参考值。
或者,于性能指数的计算中进行最优化,而此可得到具有适当加权因子的性能指数的第三项。于此例中,控制变量的参考值是预先设定为稳态值,其维持为常数。
考虑到为获得未来控制变动的操作变量值所作的限制,将性能指数最小化。然而,仅执行下一个控制变动。然后,再重新开始未来控制变动的性能指数的计算。
具有阶跃响应系数的模型与模型预测控制中所需方程序为控制液化方法所执行的电脑程序的一部分。装载有这样一种可处理模型预测控制的程序的电脑程序被称为先进处理控制器。因为电脑程序是商业可得的,我们将不详细讨论此种程序。本发明更与选择变量有关。
附图说明
图1为显示液化天然气工厂的流程图。
具体实施方式
现将参照所附的显示液化天然气工厂的流程图来说明本发明。
液化天然气的工厂包含具有温热端3、冷端5及中点7的主要热交换器1。主要热交换器1的器壁8界定出壳侧10。于壳侧10中,设置有从温热端3延伸至冷端5的第一管侧13、从温热端3延伸至中点7的第二管侧15,及从温热端3延伸至冷端5的第三管侧16。
在正常操作过程中,于提升压力下将气态、富含甲烷的进料是经由在主要热交换器温热端3的供应导管20供应至主要热交换器1的第一管侧13。流经第一管侧13的进料则被在壳侧10内蒸发的制冷剂所冷却、液化与过冷却。所得液化物流于主要热交换器1的冷端5经由导管23移出。将液化物流送至储槽(未显示),在此,液化物流于大气压力下以液化产品储存。
蒸发的制冷剂从温热端3经由导管25移出主要热交换器1的壳侧10。为调整制冷剂的整体组成,成份像是氮气、甲烷、乙烷与丙烷可分别经由导管26a,26b,26c与26d加入导管25的制冷剂中。导管26a至26d装有适当可控制进入导管25的成份流动的阀件(未显示)。制冷剂亦称为混合制冷剂或多成份制冷剂。
于制冷剂压缩机30中,压缩蒸发的制冷剂以得到从导管32移出的高压制冷剂。制冷剂压缩机30是由适当马达驱动,例如装有起动一辅助马达(未显示)的气体涡轮35。
导管32内的高压制冷剂于空气冷却器42内冷却,并于热交换器43中部分冷凝,以得部分冷凝的制冷剂。空气冷却器42可用热交换器取代,于热交换器中制冷剂以海水冷却。
高压制冷剂经由入口装置46导入为分离容器45形式的分离器。于分离容器45中,部分冷凝的制冷剂被分成液态重质制冷剂馏分以及气态轻质制冷剂馏分。液态重质制冷剂馏分从分离容器45的底部经由导管47移出,而气态轻质制冷剂馏分经由导管48移出。
为调节制冷剂的数量,重质制冷剂可经由装有阀49a的导管49排出。
重质制冷剂馏分于主要热交换器1的第二管侧15过冷却,以得到过冷却的重质制冷剂物流。过冷却的重质制冷剂物流经由导管50移出主要热交换器1,并得以在为膨胀阀51形式的膨胀装置中膨胀。于减压下,其于主要热交换器1的中点7经由导管52与喷嘴53导入主要热交换器1的壳侧10。重质制冷剂物流得以于减压下于壳侧10蒸发,借此冷却管侧13,15与16内的流体。
为调节制冷剂的数量,气态轻质制冷剂可经由装有阀54a的导管54排出。
经由导管48移出的气态轻质制冷剂馏分流至主要热交换器1的第三管侧16,并于此冷却、液化与过冷却,以获得过冷却的轻质制冷剂物流。过冷却的轻质制冷剂物流经由导管57移出主要热交换器1,并得以于膨胀阀58形式的膨胀装置中膨胀。于减压下,其于主要热交换器1的冷端5经由导管59与喷嘴60导入主要热交换器1的壳侧10。轻质制冷剂物流得以于减压下于壳侧10内蒸发,借此冷却管侧13,15与16内的流体。
所得液化物流从导管23移出主要热交换器1,并流至闪蒸器70。导管23上装有为膨胀阀71形式的膨胀装置,以容许压力的减低,以致于减压下经由闪蒸器70内的入口装置72导入所得液化物流。此减压适当地大致等于大气压。膨胀阀71亦调节总流量。
废气从闪蒸器70顶部经由导管75移出。废气可于终端闪蒸压缩器(未显示)中压缩,以得到高压燃料气体。
液化产物从闪蒸器70底部经由导管80移出,并流至储槽(未显示)。
第一个目的是使流经导管80的液化产物的生产量最大化,其是借由膨胀阀71来操控。
为达成此目的,使用基于模型预测控制的先进处理控制器来控制液化方法,以测定一组操作变量的同步控制行为,以当控制至少一组控制变量中的至少一个时,使液化产物的产量最优化。
该组操作变量包括流经导管52(膨胀阀51)的重质制冷剂馏分的质量流量、流经导管57(膨胀阀58)的轻质制冷剂馏分的质量流量、制冷剂成份补充的数量(经由导管26a至26d提供)、从导管49流出和/或从导管54排出的制冷剂数量、制冷剂压缩机30的容量以及流经导管20(由膨胀阀71操控)的富含甲烷进料的质量流量。于另一具体实例中,膨胀涡轮(未显示)可置于膨胀阀71上游的导管23中。
这些操作变量中,重质制冷剂馏分的质量流量、轻质制冷剂馏分的质量流量、制冷剂成份补充的数量,及流出和/或排出的制冷剂数量是有关于存货或混合制冷剂数量的操作变量。
制冷剂压缩机30(或数个压缩机,其当使用超过一个压缩机时)的容量是以制冷剂压缩机的速度、制冷剂压缩机入口导引叶片的角度、或是制冷剂压缩机的速度与入口导引叶片的角度两者来决定。因此,制冷剂压缩机的操作变量容量为制冷剂压缩机的速度、制冷剂压缩机入口导引叶片的角度、或是制冷剂压缩机的速度与入口导引叶片的角度两者。
该组控制变量包括主要热交换器1的温热端3的温度差(即在导管20内的流体的温度与导管25内的温度的差异)。
适当地,控制另外的变量,其为中点7的温度差,亦即为位于中点7的第一管侧13内液化的气体温度与于位于中点7的主要热交换器1的壳侧10内的流体温度的差异。于说明书与申请专利范围中,此温度差是指第一中点温度差。
适当地,控制另外的变量,其为中点7的温度差,亦即为位于中点7的第一管侧13内液化的气体温度与经由导管52导入的重质混合制冷剂物流温度的差异。于说明书与申请专利范围中,此温度差异是称为第二中点温度差。
适当地,又一控制变量为位于中点7的第一管侧13内液化的气体温度。
该组控制变量亦包含一个关于液化天然气的温度。此外,该组控制变量包含进入分离容器45的制冷剂的组成、主要热交换器1的壳侧10内的压力、以及分离容器45内的液体高度。
该组欲最优化的变量包含液化产物的产量。
借由选择这些变量,可使用此基于模型预测控制的先进处理控制来达成主要热交换器1的控制。
申请人已经发现可达成一种有效且快速的控制,其容许最优化液化产物的产量、控制主要热交换器内的温度分布,以及控制制冷剂的组成与制冷剂的数量或存货。
本发明的本质在于领悟到混合制冷剂的组成与存货是无法与液化产物的产量的最优化分离的。
控制变量之一为主要热交换器1的温热端3的温度差,其为导管20内的流体温度与导管25内的温度间的差异。将温热端3的温度保持在预定极限之内(最小极限值与最大极限值),以确保没有液态制冷剂可经由导管25从壳侧10排出。
适当地,控制另一变量,其为中点7的温度差,即位于中点7的第一管侧13内液化的气体温度与位于中点7的主要热交换器1的壳侧10内的流体温度的差异。第一中点温度差应维持于预定范围内。
适当地,控制另一变量,其为中点7的温度差,即位于中点7的第一管侧13内液化的气体温度与经由导管53导入的重质混合制冷剂物流温度的差异。第二中点温度差应维持于预定范围内。
适当地,又一控制变量为位于中点7的第一管侧13内液化的气体温度,且此温度应保持在预定值以下。
控制变量的一为与液化天然气温度有关的变量。适当地,此为经由导管23移出主要热交换器1的液化天然气温度。或者,与液化天然气温度有关的变量为流经导管75的废气量。
适当地,除了液化产物的产量之外,该组欲最优化的变量包括制冷剂的氮含量与制冷剂的丙烷含量,其中氮含量被最小化,而丙烷含量被最大化。
如前所述,最优化可分别进行,或于性能指数的计算中进行。在后者例子中,以预定加权因子加权欲最优化的变量。两种方法皆容许操作员作选择以使产量最大化或最优化制冷剂组成。
本发明的另一目的为使压缩机的利用最大化。为此目的,液化天然气的产量被最大化直到达到压缩机限制。因此,该组控制变量更包括驱动制冷剂压缩机30(或多个制冷剂压缩机,假使使用一个以上的制冷剂压缩机)所需动力。
另外,制冷剂压缩机的速度亦为控制变量,因为其可被降低直到位于温热端3的温度差的最大值达到最大极限值。
在热交换器中,高压制冷剂被部分冷凝。于此或一些其他的(未显示)热交换器中,热是借由辅助制冷剂(例如丙烷)的间接热交换而移除,辅助制冷剂于热交换器的壳侧中于适当压力下蒸发。
蒸发的辅助制冷剂是在适当马达,像是气体涡轮92所驱动的辅助压缩机90中压缩。辅助制冷剂于空气冷却机95中冷凝,其中空气为外部冷却剂。在提升压力下所冷凝的辅助制冷剂是经由具有膨胀阀99的导管97流通至热交换器43的壳侧。经冷凝的辅助制冷剂得以于低压下蒸发,而蒸发的辅助制冷剂再经由导管100回到辅助压缩机92中。应了解可利用超过一个的辅助压缩机,其可以平行或串联方式配置。
空气冷却机95可以热交换器取代,其中制冷剂以海水冷却。
为整合辅助制冷剂的循环控制与主要热交换器1的控制,该组操作变量还包括辅助制冷剂压缩机90或多个压缩机的容量,而该组控制变量还包括驱动辅助制冷剂压缩机90或多个压缩机的动力。以此方式,可最大化丙烷压缩机的利用。
辅助制冷剂压缩机90(或多个压缩机,假使使用一个以上的辅助制冷剂压缩机时)的容量是由辅助制冷剂压缩机的速度、辅助制冷剂压缩机入口导引叶片的角度、或是制冷剂压缩机的速度与入口导引叶片的角度两者所决定。因此,辅助制冷剂压缩机的操作变量容量为辅助制冷剂压缩机的速度、辅助制冷剂压缩机入口导引叶片的角度、或是制冷剂压缩机的速度与入口导引叶片的角度两者。
在图式所显示的具体实施例中,重质制冷剂可经由设有阀49a的导管49排出,而气态轻质制冷剂可由设有阀54a的导管54排出。或者,混合制冷剂可从位于制冷剂压缩机30下游的导管32移出。在此方式中,亦可调节制冷剂的数量。

Claims (13)

1.一种液化气态、富含甲烷的进料以获得液化产品的方法,该液化方法包括以下步骤:
(a)提供高压的气态、富含甲烷的进料至位于主要热交换器温热端的主要热交换器的第一管侧,以蒸发制冷剂来冷却、液化及过冷却该气态、富含甲烷的进料,以获得液化物流,从主要热交换器的冷端将液化物流移出主要热交换器,并将液化物流储存为液化产品;
(b)从位于主要热交换器温热端的主要热交换器的壳侧移出蒸发制冷剂;
(c)于至少一个制冷剂压缩机中压缩蒸发制冷剂,以获得高压制冷剂;
(d)部分冷凝高压制冷剂,并于分离器中将部分冷凝的制冷剂分离成液态重质制冷剂馏分与气态轻质制冷剂馏分;
(e)于主要热交换器的第二管侧过冷却重质制冷剂馏分,以获得过冷却的重质制冷剂物流,于减压下将重质制冷剂物流导入位于主要热交换器中点的主要热交换器的壳侧,并使重质制冷剂物流于壳侧内蒸发;以及
(f)于主要热交换器的第三管侧冷却、液化及过冷却至少部分的轻质制冷剂馏分,以获得过冷却的轻质制冷剂物流,于减压下将轻质制冷剂物流导入位于主要热交换器冷端的主要热交换器的壳侧,并使轻质制冷剂物流于壳侧内蒸发,其特征在于:
该方法还包括调整制冷剂的组成与数量并控制液化方法,其使用一种基于模型预测控制的先进处理控制器来测定一组操作变量的同步控制行为,以当控制一组控制变量中的至少一个时,使一组参数中的至少一个最优化,其中该组操作变量包括重质制冷剂馏分的质量流量、轻质制冷剂馏分的质量流量、制冷剂成份的补充数量、所移除的制冷剂数量、制冷剂压缩机的容量以及富含甲烷进料的质量流量,其中该组控制变量包括位于主要热交换器温热端的温度差、与液化天然气温度有关的变量、进入步骤(d)分离器的制冷剂组成、主要热交换器的壳内的压力,步骤(d)分离器内的压力以及步骤(d)分离器内的液体高度,以及其中该组欲最优化的变量包括液化产品的产量。
2.如权利要求1所述的方法,其特征在于该组控制变量还包括第一中点温度差。
3.如权利要求1或2所述的方法,其特征在于该组控制变量还包括第二中点温度差。
4.如权利要求1至3中任一项所述的方法,其特征在于该组控制变量还包括在中点的第一管侧中所液化的气体的温度。
5.如权利要求1至4中任一项所述的方法,其特征在于与液化天然气的温度有关的变量为从主要热交换器移出的液化天然气的温度。
6.如权利要求1至4中任一项所述的方法,其特征在于还包括降低液化物流的压力以获得送至储槽的液化产品与废气,与液化天然气温度有关的变量为废气的数量。
7.如权利要求1至6中任一项所述的方法,其特征在于调节制冷剂的数量包括排出气态制冷剂。
8.如权利要求1至6中任一项所述的方法,其特征在于调节制冷剂的数量包括排出液态制冷剂。
9.如权利要求1至8中任一项所述的方法,其特征在于该制冷剂包括氮气与丙烷,其特征在于该组欲最优化的变量还包括制冷剂的氮气含量与制冷剂的丙烷含量,其中氮气含量被最小化,而丙烷含量被最大化。
10.如权利要求1至8中任一项所述的方法,其特征在于该组控制变量还包括驱动制冷剂压缩机所需的动力。
11.如权利要求1至10中任一项所述的方法,其特征在于制冷剂压缩机的操作变量容量为制冷剂压缩机的速度、制冷剂压缩机的入口导引叶片角度,或二者。
12.如权利要求1至10中任一项所述的方法,其特征在于在至少一个热交换器中,通过与在适当压力下蒸发的辅助制冷剂的间接热交换来对高压制冷剂进行部分冷凝,而其中蒸发的辅助制冷剂是在至少一个辅助制冷剂压缩机中被压缩,并通过与外部冷却剂热交换而冷凝,该组操作变量还包括辅助制冷剂压缩机的容量,以及该组控制变量还包括驱动该辅助制冷剂压缩机所需的动力。
13.如权利要求1至10中任一项所述的方法,其特征在于辅助制冷剂压缩机的操作变量容量为辅助制冷剂压缩机的速度,辅助制冷剂压缩机的入口导引叶片角度,或二者。
CNB2004800031112A 2003-01-31 2004-01-30 液化气态的富含甲烷的进料以获得液化天然气的方法 Expired - Fee Related CN100465560C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03250608 2003-01-31
EP03250608.1 2003-01-31

Publications (2)

Publication Number Publication Date
CN1745285A true CN1745285A (zh) 2006-03-08
CN100465560C CN100465560C (zh) 2009-03-04

Family

ID=32799038

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800031112A Expired - Fee Related CN100465560C (zh) 2003-01-31 2004-01-30 液化气态的富含甲烷的进料以获得液化天然气的方法

Country Status (16)

Country Link
US (1) US7266975B2 (zh)
EP (1) EP1595101B1 (zh)
JP (1) JP4879730B2 (zh)
KR (1) KR101059398B1 (zh)
CN (1) CN100465560C (zh)
AT (1) ATE340347T1 (zh)
AU (1) AU2004207185B2 (zh)
DE (1) DE602004002460D1 (zh)
EA (1) EA007356B1 (zh)
EG (1) EG23799A (zh)
ES (1) ES2273214T3 (zh)
MY (1) MY137003A (zh)
NO (1) NO337653B1 (zh)
PT (1) PT1595101E (zh)
TW (1) TWI314637B (zh)
WO (1) WO2004068049A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986790A (zh) * 2007-06-12 2011-03-16 霍尼韦尔国际公司 优化具有氮冷却回路的天然气液化系统的设备和方法
CN102265104A (zh) * 2008-09-19 2011-11-30 国际壳牌研究有限公司 冷却烃物流的方法及其设备
CN102954668A (zh) * 2011-08-19 2013-03-06 李志远 一种利用多组分制冷剂双级压缩生产液化天然气的方法
CN103124886A (zh) * 2010-03-31 2013-05-29 林德股份公司 在管侧流的液化过程中使主热交换器再平衡的方法
CN103225942A (zh) * 2013-05-16 2013-07-31 北京安珂罗工程技术有限公司 单循环混合冷剂三级节流制冷系统及其运行控制方法
CN103415752A (zh) * 2010-03-25 2013-11-27 曼彻斯特大学 制冷方法
CN103620329A (zh) * 2010-06-30 2014-03-05 国际壳牌研究有限公司 处理包括甲烷的烃流的方法及其设备
US10215485B2 (en) 2010-06-30 2019-02-26 Shell Oil Company Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060260330A1 (en) 2005-05-19 2006-11-23 Rosetta Martin J Air vaporizor
US20070012072A1 (en) * 2005-07-12 2007-01-18 Wesley Qualls Lng facility with integrated ngl extraction technology for enhanced ngl recovery and product flexibility
US20070245770A1 (en) * 2006-04-19 2007-10-25 Saudi Arabian Oil Company Optimization of a dual refrigeration system natural gas liquid plant via empirical experimental method
US8571688B2 (en) * 2006-05-25 2013-10-29 Honeywell International Inc. System and method for optimization of gas lift rates on multiple wells
US8005575B2 (en) 2006-06-01 2011-08-23 General Electric Company Methods and apparatus for model predictive control in a real time controller
EP1921406A1 (en) * 2006-11-08 2008-05-14 Honeywell Control Systems Ltd. A process of liquefying a gaseous methane-rich feed for obtaining liquid natural gas
US7946127B2 (en) 2007-02-21 2011-05-24 Honeywell International Inc. Apparatus and method for optimizing a liquefied natural gas facility
US8650906B2 (en) * 2007-04-25 2014-02-18 Black & Veatch Corporation System and method for recovering and liquefying boil-off gas
WO2008139527A1 (ja) * 2007-04-27 2008-11-20 Hitachi, Ltd. 天然ガス液化プラント用動力供給設備、その制御装置及び制御方法、並びに天然ガス液化プラント
WO2008139528A1 (ja) * 2007-04-27 2008-11-20 Hitachi, Ltd. 冷却サイクル系統、天然ガス液化設備、冷却サイクル系統の運転方法及び改造方法
NO329177B1 (no) * 2007-06-22 2010-09-06 Kanfa Aragon As Fremgangsmåte og system til dannelse av flytende LNG
DE102007032536B4 (de) * 2007-07-12 2013-04-18 Biogas Süd Entwicklungsgesellschaft OHG Verfahren und Vorrichtung zur Herstellung von flüssigem und/oder gasförmigem Methan
AU2008274179B2 (en) * 2007-07-12 2011-03-31 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling a hydrocarbon stream
US20090025422A1 (en) * 2007-07-25 2009-01-29 Air Products And Chemicals, Inc. Controlling Liquefaction of Natural Gas
US20090090131A1 (en) * 2007-10-09 2009-04-09 Chevron U.S.A. Inc. Process and system for removing total heat from base load liquefied natural gas facility
RU2010124432A (ru) * 2007-11-16 2011-12-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. (NL) Способ и устройство для сжижения потока углеводородов и плавучее основание или морская платформа, содержащая указанное устройство и на которой осуществляют такой способ
JP2011506895A (ja) * 2007-12-07 2011-03-03 ドレッサー ランド カンパニー ガス液化システム用のコンプレッサ装置及びその方法
WO2009098278A2 (en) * 2008-02-08 2009-08-13 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling down a cryogenic heat exchanger and method of liquefying a hydrocarbon stream
US9243842B2 (en) * 2008-02-15 2016-01-26 Black & Veatch Corporation Combined synthesis gas separation and LNG production method and system
WO2010091020A2 (en) * 2009-02-04 2010-08-12 Datalogic Scanning, Inc. Systems and methods for selectively masking a scan volume of a data reader
BR112012000045B1 (pt) * 2009-07-03 2020-09-08 Shell Internationale Research Maatschappij B.V. Método e aparelho para produzir uma corrente de hidrocarboneto resfriada
KR101843819B1 (ko) * 2010-03-31 2018-05-14 린데 악티엔게젤샤프트 튜브 측류 냉각용 주 열교환기 및 튜브 측류 냉각 방법
US10113127B2 (en) 2010-04-16 2018-10-30 Black & Veatch Holding Company Process for separating nitrogen from a natural gas stream with nitrogen stripping in the production of liquefied natural gas
CN103038714B (zh) * 2010-06-30 2016-10-05 维美德自动化有限公司 模拟工业过程的方法、跟踪模拟器和自动化系统
WO2012075266A2 (en) 2010-12-01 2012-06-07 Black & Veatch Corporation Ngl recovery from natural gas using a mixed refrigerant
MY163848A (en) * 2011-03-15 2017-10-31 Petroliam Nasional Berhad (Petronas) A method and system for controlling the temperature of liquefied natural gas in a liquefaction process
US10139157B2 (en) 2012-02-22 2018-11-27 Black & Veatch Holding Company NGL recovery from natural gas using a mixed refrigerant
US20130269386A1 (en) * 2012-04-11 2013-10-17 Air Products And Chemicals, Inc. Natural Gas Liquefaction With Feed Water Removal
EP2851544B1 (en) * 2012-05-14 2019-03-27 Hyundai Heavy Industries Co., Ltd. System and method for processing liquefied gas
CN103542692B (zh) * 2012-07-09 2015-10-28 中国海洋石油总公司 基于缠绕管式换热器的非常规天然气液化系统
DE102012021637A1 (de) * 2012-11-02 2014-05-08 Linde Aktiengesellschaft Verfahren zum Abkühlen einer Kohlenwasserstoff-reichen Fraktion
US10563913B2 (en) 2013-11-15 2020-02-18 Black & Veatch Holding Company Systems and methods for hydrocarbon refrigeration with a mixed refrigerant cycle
US9574822B2 (en) 2014-03-17 2017-02-21 Black & Veatch Corporation Liquefied natural gas facility employing an optimized mixed refrigerant system
KR101620183B1 (ko) 2014-08-01 2016-05-12 한국가스공사 천연가스 액화공정
US9759480B2 (en) * 2014-10-10 2017-09-12 Air Products And Chemicals, Inc. Refrigerant recovery in natural gas liquefaction processes
EP3032204A1 (en) * 2014-12-11 2016-06-15 Shell Internationale Research Maatschappij B.V. Method and system for producing a cooled hydrocarbons stream
PE20181434A1 (es) * 2015-12-08 2018-09-12 Shell Int Research Control de la potencia de compresion del refrigerante en un proceso de licuefaccion de gas natural
WO2017154181A1 (ja) * 2016-03-10 2017-09-14 日揮株式会社 天然ガス液化装置の混合冷媒組成の決定方法
US10393429B2 (en) * 2016-04-06 2019-08-27 Air Products And Chemicals, Inc. Method of operating natural gas liquefaction facility
US10584918B2 (en) * 2017-01-24 2020-03-10 GE Oil & Gas, LLC Continuous mixed refrigerant optimization system for the production of liquefied natural gas (LNG)
GB2563021A (en) * 2017-05-30 2018-12-05 Linde Ag Refrigeration circuit system and method of maintaining a gas seal of a compressor system
RU2706093C1 (ru) * 2018-07-13 2019-11-13 Компания "Сахалин Энерджи Инвестмент Компани Лтд." Способ регулирования состава хладагента в цикле предварительного смешанного хладагента при производстве сжиженного природного газа
US10957919B2 (en) * 2018-10-03 2021-03-23 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for heat exchange between gaseous fuel tank and heat transfer medium
FR3099818B1 (fr) * 2019-08-05 2022-11-04 Air Liquide Dispositif de réfrigération et installation et procédé de refroidissement et/ou de liquéfaction
WO2021170525A1 (en) 2020-02-25 2021-09-02 Shell Internationale Research Maatschappij B.V. Method and system for production optimization
CN112617516B (zh) * 2020-12-07 2022-02-11 珠海格力电器股份有限公司 灯光组件控制方法、陈列柜系统及设备
US11994135B2 (en) 2021-06-14 2024-05-28 Air Products And Chemicals, Inc. Method and apparatus for compressing a gas feed with a variable flow rate
IT202200009698A1 (it) * 2022-05-11 2023-11-11 Nuovo Pignone Tecnologie Srl Method for determining the quantity of refrigerant fluid which has to be inject-ed into a thermodynamic system of a liquefied natural gas plant
US11873460B2 (en) * 2022-05-17 2024-01-16 Simak Behramand Apparatus, compositions, and methods for making solid methane gas

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2074594B1 (zh) 1970-01-08 1973-02-02 Technip Cie
US3668882A (en) * 1970-04-29 1972-06-13 Exxon Research Engineering Co Refrigeration inventory control
US3889485A (en) * 1973-12-10 1975-06-17 Judson S Swearingen Process and apparatus for low temperature refrigeration
US4901533A (en) * 1986-03-21 1990-02-20 Linde Aktiengesellschaft Process and apparatus for the liquefaction of a natural gas stream utilizing a single mixed refrigerant
SU1458663A1 (ru) 1986-04-07 1989-02-15 Valentin F Gurin Устройство управления установкой сжижения природного газа
US4809154A (en) 1986-07-10 1989-02-28 Air Products And Chemicals, Inc. Automated control system for a multicomponent refrigeration system
US4755200A (en) 1987-02-27 1988-07-05 Air Products And Chemicals, Inc. Feed gas drier precooling in mixed refrigerant natural gas liquefaction processes
US5139548A (en) * 1991-07-31 1992-08-18 Air Products And Chemicals, Inc. Gas liquefaction process control system
FR2714722B1 (fr) 1993-12-30 1997-11-21 Inst Francais Du Petrole Procédé et appareil de liquéfaction d'un gaz naturel.
US5486995A (en) 1994-03-17 1996-01-23 Dow Benelux N.V. System for real time optimization
US5522224A (en) 1994-08-15 1996-06-04 Praxair Technology, Inc. Model predictive control method for an air-separation system
MY117899A (en) 1995-06-23 2004-08-30 Shell Int Research Method of liquefying and treating a natural gas.
US5611216A (en) * 1995-12-20 1997-03-18 Low; William R. Method of load distribution in a cascaded refrigeration process
US5651270A (en) 1996-07-17 1997-07-29 Phillips Petroleum Company Core-in-shell heat exchangers for multistage compressors
US5791160A (en) * 1997-07-24 1998-08-11 Air Products And Chemicals, Inc. Method and apparatus for regulatory control of production and temperature in a mixed refrigerant liquefied natural gas facility
EG22293A (en) * 1997-12-12 2002-12-31 Shell Int Research Process ofliquefying a gaseous methane-rich feed to obtain liquefied natural gas
US6158240A (en) * 1998-10-23 2000-12-12 Phillips Petroleum Company Conversion of normally gaseous material to liquefied product
EG23193A (en) * 2000-04-25 2001-07-31 Shell Int Research Controlling the production of a liquefied natural gas product stream.
US6722157B1 (en) * 2003-03-20 2004-04-20 Conocophillips Company Non-volatile natural gas liquefaction system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986790A (zh) * 2007-06-12 2011-03-16 霍尼韦尔国际公司 优化具有氮冷却回路的天然气液化系统的设备和方法
CN102265104A (zh) * 2008-09-19 2011-11-30 国际壳牌研究有限公司 冷却烃物流的方法及其设备
CN102265104B (zh) * 2008-09-19 2013-11-06 国际壳牌研究有限公司 冷却烃物流的方法及其设备
CN103415752A (zh) * 2010-03-25 2013-11-27 曼彻斯特大学 制冷方法
CN103124886A (zh) * 2010-03-31 2013-05-29 林德股份公司 在管侧流的液化过程中使主热交换器再平衡的方法
CN103124886B (zh) * 2010-03-31 2016-02-24 林德股份公司 在管侧流的液化过程中使主热交换器再平衡的方法
CN103620329A (zh) * 2010-06-30 2014-03-05 国际壳牌研究有限公司 处理包括甲烷的烃流的方法及其设备
CN103620329B (zh) * 2010-06-30 2016-01-27 国际壳牌研究有限公司 处理包括甲烷的烃流的方法及其设备
US10215485B2 (en) 2010-06-30 2019-02-26 Shell Oil Company Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor
CN102954668A (zh) * 2011-08-19 2013-03-06 李志远 一种利用多组分制冷剂双级压缩生产液化天然气的方法
CN103225942A (zh) * 2013-05-16 2013-07-31 北京安珂罗工程技术有限公司 单循环混合冷剂三级节流制冷系统及其运行控制方法
CN103225942B (zh) * 2013-05-16 2016-06-22 北京安珂罗工程技术有限公司 单循环混合冷剂三级节流制冷系统及其运行控制方法

Also Published As

Publication number Publication date
US20040255615A1 (en) 2004-12-23
KR101059398B1 (ko) 2011-08-25
EP1595101A1 (en) 2005-11-16
MY137003A (en) 2008-12-31
WO2004068049A1 (en) 2004-08-12
NO337653B1 (no) 2016-05-23
JP4879730B2 (ja) 2012-02-22
DE602004002460D1 (de) 2006-11-02
EP1595101B1 (en) 2006-09-20
KR20050095635A (ko) 2005-09-29
ATE340347T1 (de) 2006-10-15
JP2006516715A (ja) 2006-07-06
EG23799A (en) 2007-08-21
EA200501207A1 (ru) 2006-02-24
ES2273214T3 (es) 2007-05-01
TWI314637B (en) 2009-09-11
EA007356B1 (ru) 2006-10-27
AU2004207185B2 (en) 2007-04-19
CN100465560C (zh) 2009-03-04
TW200422573A (en) 2004-11-01
PT1595101E (pt) 2007-01-31
US7266975B2 (en) 2007-09-11
NO20053643L (no) 2005-08-31
AU2004207185A1 (en) 2004-08-12

Similar Documents

Publication Publication Date Title
CN1745285A (zh) 液化气态、富含甲烷的进料以获得液化天然气的方法
CN1135350C (zh) 制取液化天然气的气态富甲烷给料的液化方法
EP2229567B1 (en) Method for regulation of cooling capacity of a cooling system based on a gas expansion process.
US5953937A (en) Process and apparatus for the variable production of a gaseous pressurized product
CN1164890A (zh) 在深冷天然气加工厂中生产液体天然气
CN1030638A (zh) 在通常条件下为气态的烃类混合物的深度冷却方法
AU2014371867A1 (en) System and method for liquefaction of natural gas
CN1261952A (zh) 用于液化天然气的改进的多组分致冷方法
JP5726184B2 (ja) 冷却された炭化水素流を製造する方法及び装置
US9121636B2 (en) Contaminant removal system for closed-loop refrigeration cycles of an LNG facility
CN102428332A (zh) 用于冷却气态烃流的方法和设备
CN107683397B (zh) 工业气体和烃类气体的液化
AU2007318930B2 (en) A process of liquefying a gaseous methane-rich feed for obtaining liquid natural gas
CN85101713A (zh) 两种混合致冷剂液化天然气
US20090031755A1 (en) Natural gas liquefaction process to extend lifetime of gas wells
CN1134187A (zh) 改进的热力学分离方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090304

Termination date: 20160130

EXPY Termination of patent right or utility model