CN1706941A - 高比活植酸酶的热稳定性改良及其高效表达 - Google Patents

高比活植酸酶的热稳定性改良及其高效表达 Download PDF

Info

Publication number
CN1706941A
CN1706941A CN 200410048728 CN200410048728A CN1706941A CN 1706941 A CN1706941 A CN 1706941A CN 200410048728 CN200410048728 CN 200410048728 CN 200410048728 A CN200410048728 A CN 200410048728A CN 1706941 A CN1706941 A CN 1706941A
Authority
CN
China
Prior art keywords
phytase
gene
improvement
expression
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200410048728
Other languages
English (en)
Inventor
孙跃军
孙齐军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guyuan Bioengineering Co ltd A
Original Assignee
Guyuan Bioengineering Co ltd A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guyuan Bioengineering Co ltd A filed Critical Guyuan Bioengineering Co ltd A
Priority to CN 200410048728 priority Critical patent/CN1706941A/zh
Publication of CN1706941A publication Critical patent/CN1706941A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明提供了一种经改良的高比活植酸酶及其编码基因,改良后的植酸酶较原植酸酶具有更好的热稳定性。本发明还提供了含有本发明的植酸酶基因的重组酵母细胞。本发明的重组酵母中植酸酶的表达量可达到6.5×106U/mL发酵液。本发明中的植酸酶可广泛应用于饲料和食品工业中。

Description

高比活植酸酶的热稳定性改良及其高效表达
技术领域
本发明涉及一种改良的植酸酶及其编码基因。本发明还涉及含有该植酸酶基因的、能高效表达植酸酶的重组酵母细胞。
背景技术
植酸酶(EC.3.1.3.8)是一种能水解植酸的酶类。它能将植酸磷降解为肌醇和磷酸。植酸酶广泛存在于微生物中,如真菌中的曲霉(Yamada K.et al.Agric.Biol.Chem.32:1275-1282,1986;Van Gorcom R.F.M.et al.,US Patent No.5436156,1995),酵母(Nayini N.R.et al.Lebensm Wiss.Technol.17:24-26,1984);细菌中的枯草芽孢杆菌(Paver,V.K.J.,Bacteriol.151:1102-1108,1982),假单孢杆菌(Cosgrove D.J.,Austral.J.Biol.Sci.23:1207-1220,1970),乳酸杆菌(Shirai K.,Letters Appl.Biol.Sci.19:366-369,1994),大肠杆菌(Greiner R.,Arch Biochem.Biophys.303:107-113,1993)等。
植酸酶可广泛应用于单胃动物饲料中(Ware J.H.et al.,US PatentNo.3297548,1967;Nelson T.S.et al.,J.Nutrition 101:1289-1294,1971;Nelson T.S.et al.,Poult Sci.47:1842-1848,1968)。它可使植物性饲料中磷的利用率提高60%,粪便中磷排泄量减少40%,还可降低植酸磷的抗营养作用。因此对提高畜牧业生产效益及降低植酸磷对环境的污染有重要意义。
通过基因工程手段使植酸酶基因在重组菌株中高效表达是植酸酶得以大规模廉价生产和实际应用的有效途径。1995年Van Gorcomd等(Van Gorcom R.F.M.et al.,1995)将酸性植酸酶基因phyA重组到黑曲霉中,使植酸酶在重组菌株中的表达量达到了2.8×105U/mL,与天然植酸酶产生菌株相比有了大幅度的提高,大大降低了植酸酶的生产成本。1997年姚斌等构建的基因工程酵母在小试水平上其酸性植酸酶的表达量达到5×105U/mL(相当于每毫升发酵液中表达5mg植酸酶蛋白)(姚斌等,中国发明专利97121731.9,2000),中试水平上将表达量提高到1×106U/mL发酵液,比原始的天然菌株Aspergillus niger 963中的植酸酶表达量高3000倍,比国外正在用于商品化生产酸性植酸酶的基因工程曲霉(Van Gorcom R.F.M.et al.,US Patent 5436156,1995)高一倍以上。最近姚斌等采用来源于大肠杆菌的高比活植酸酶基因构建了重组酵母,将植酸酶的表达水平提高到6×106以上(姚斌,生物工程学报,Vol20,No1,2004)。
植酸酶的热稳定性是其能在饲料中广泛应用的关键因素之一。在饲料生产上,饲料加工都需经过一个制粒工艺,在制粒过程中有一个持续时间为数分钟的高温,温度一般在75~93℃,饲料用酶制剂在此高温下活性大幅度地不可逆丧失。但另一方面,饲料用酶又必须在常温下具有较高的酶活性,因为饲料用酶最终的作用场所又是动物正常体温(37℃左右)的肠胃道中,这与工业上所使用的一些高温酶不同。目前,虽已报道从嗜温微生物中分离到几种高温植酸酶,如Myceliophthorathermophila、Aspergillus terreus等中植酸酶,其最适温度在70~80℃,具有很好的耐温性,但它在37℃下的酶活性极低,在饲料中没有使用价值,而相反,来源于A.niger等的植酸酶在37℃下具有高酶活性,但它又不能经受制粒时的高温。目前还未曾报道过同时具备了耐短暂的制粒高温、又能在动物正常体温下具有高酶活性这双重性质的优良植酸酶。目前生产上使用的植酸酶均是来源于A.niger的不耐热的植酸酶,在70℃以上制粒时,绝大部分酶活性不可逆地丧失,因而它只能应用于不需制粒的粉料饲料中而不能应用于颗粒饲料中。
来源于大肠杆菌的植酸酶APPA具有高比活性的优点,是目前最具应用潜力的植酸酶。1999年,Rodriguez等(Rodriguez E.Arch BiochemBiophys,365:262~267,1999)从猪粪中筛选的产植酸酶的大肠杆菌,并克隆到植酸酶基因appA,该基因全长1299bp,编码432个氨基酸。appA基因除了与Bacillus sp.DS11植酸酶基因有47%同源性外,与其它来源植酸酶基因基本没有同源性,酶学性质上也有较大差异。该植酸酶为6-植酸酶,是迄今所报道的比活最高的植酸酶(Golovan S.Can JMicrobiol,46:59~71,2000),比活可达3,000,000IU/mg左右。
APPA的最适温度为60℃,但它的热稳定性较差,在60℃下保温30分钟其剩余酶活性别仅为40%,在70℃和80℃下保温30分钟其剩余酶活性在15%以下,这样,它在动物饲料制粒过程中损失过大。
发明内容
本发明总的目的是通过DNA shuffing技术,对植酸酶基因appA进行突变,使突变后的植酸酶在热稳定性上得到改良,在高温下较原酶能维持更高的酶活性。进一步,利用生物反应器毕赤酵母(Pichiapastoris)高效表达此突变基因,使植酸酶得以廉价生产。
本发明的目的之一是对植酸酶APPA进行分子改良,使它在具有更好的热稳定性。改良的植酸酶(定名为APPA-t),与原植酸酶相比,有6个氨基酸的差异,分别由原来的+41V、+42R、+197S、+199L、+200C和+412M突变成+41E、+42C、+197T、+199K、+200Y和+412A。本发明中的植酸酶APPA-t具有更好的热稳定性。它在80℃保温30分钟,剩余酶活性为70%以上,而原酶仅有15%左右。本发明的植酸酶具有图4所示的氨基酸序列。
本发明的另一个目的是提供一种编码本发明的植酸酶的DNA分子。所述的DNA分子可以具有图3的核苷酸序列。
本发明的目的之三是提供改良后的appA-t基因在表达系统中高效表达的方法。包括整套重组表达载体的构建、受体菌的遗传转化方法、重组子的筛选与分子鉴定方法以及重组子中植酸酶表达方法。本发明采用毕赤酵母(P.pastoris)作为appA-t基因的表达受体,它为利用重组酵母工业化大规模、低成本发酵生产植酸酶奠定了基础。
技术解决方案
本发明的技术途径如下:
1.基因突变可采用的基因突变方法有定点突变、PCR致错突变和DNA shuffling等。本专利中应用DNA shuffling技术(周佳海等,生物化学与生物物理进展,27:655~657,2002)对植酸酶基因进行突变。将植酸酶基因appA经DNAase I消化成10~200bp的小片断,经无引物PCR、引物PCR扩增后得到大量的突变分子。
2.基因克隆  按常规方法克隆(Maniatis T.,et al.Molecular cloning.New York:Cold Spring harbor laboratory,1982)。将上述植酸酶突变分子克隆到大肠杆菌载体pET-22b(+)上,同样的方法也可克隆到大肠杆菌克隆载体或表达载体上,如pPUC18、pPGEM等,转化大肠杆菌,获得重组子。
3.改良植酸酶的筛选对重组大肠杆菌表达的植酸酶进行性质测定,筛选出在热稳定性上得到改良的植酸酶的编码基因,并进行序列测定。
4.重组高效表达体系的构建选择高效表达系统-P.pastoris作为表达植酸酶基因的生物反应器。通过体内重组使植酸酶基因整合到酵母的基因组上,筛选出阳性重组子。其它真核表达系统如杆状病毒的昆虫表达系统、霉菌表达系统、植物表达系统等也适应于此基因的高效表达。
附图说明
图1为大肠杆菌重组载体pWYR的物理图谱。
图2表示在80℃下植酸酶APPA-t与原植酸酶AppA的热稳定性。
图3表示appA-t基因DNA序列。
图4表示推导出的appA-t编码的氨基酸序列。
图5为重组酵母表达载体pFG-t的物理图谱。
图6为在5L发酵罐中表达植酸酶的发酵曲线。
具体实施方式
实验条件
1.菌株与载体  大肠杆菌菌株E.coli DH5a、质粒pET-22b(+)等购自Promega公司,酵母菌株Pichia pastoris GS115(His-Mut+)、质粒pFF01由加拿大Alberta大学D.Luo博士惠赠。
2.酶与试剂盒  限制性内切酶、连接酶、Taq酶、DNAaseI为Boehringer公司产品。PCR Kit均购于Promega公司。
3.生化试剂  DNA合成试剂为Milipore公司产品。引物合成用ABI公司Cyclone DNA合成仪。IPTG、X-Gal、SDS及植酸钠为Sigma公司产品。TEMED、过硫酸铵、丙烯酰胺及甲叉双丙烯酰胺为Promega公司产品。
4.培养基大肠杆菌培养基为LB(1%蛋白胨、0.5%酵母提取物、1%NaCl,pH7.0)。酵母完全培养基为YPD(1%酵母提取物、2%蛋白胨、2%葡萄糖);酵母转化培养基为RDB[18.6%山梨醇、2%葡萄糖、1.34%Yeast Nitrogen Base W/O amino acids(YNB)、0.00004%Biotin、0.005%谷氨酸、0.005%甲硫氨酸、0.005%赖氨酸、0.005%亮氨酸、0.005%异亮氨酸、2%琼脂糖];酵母选择培养基为MM(1.34%YNB、0.00004%Biotin、0.5%甲醇、1.5%琼脂糖)和MD(1.34%YNB、0.00004%Biotin、2%葡萄糖、1.5%琼脂糖);酵母诱导培养基BMGY[1%酵母提取物、2%蛋白胨、1.34%YNB、0.00004%Biotin、1%甘油(V/V)]和BMMY(除以0.5%甲醇代替甘油,其余成份相与BMGY相同)。重组酵母发酵培养基为10×Basal Salts(2.67%磷酸、0.093%硫酸钙、1.82%硫酸钾、1.49%硫酸镁、0.413%氢氧化钾、4%甘油或葡萄糖);发酵中所用的微量盐溶液PTM1(0.6%硫酸铜、0.008%碘化钠、0.3%硫酸锰、0.02%钼酸钠、0.002%硼酸、0.05%氯化钴、2%氯化锌、6.5%硫酸亚铁、0.025%生物素、0.5%硫酸)。
                       实验一
本实验说明进行植酸酶基因突变的程序。
取1mg植酸酶基因appA的DNA,用0.05U的DNAaseI在室温下处理5、10、15、20分钟,通过电泳观察DNA片断大小,确定最佳酶解时间,使酶解产物大小集中在20~100bp。利用DNA胶回收试剂盒从电泳凝胶中回收20~100bp的DNA片断。回收的片断在无引物的情况下,进行PCR扩增,电泳回收大于原appA基因长度的DNA片断,再进行引物PCR扩增。所使用引物根据appA基因的5’和3’端序列合成,2个引物序列分别为:5’GAATTCATGAAAGCGATCTTAATC 3’和5’GAATTCTTACAAACTGCACGC 3’(下划线部分为设计的EcoRI酶切位点),扩增后进行凝胶电泳,回收大小与原appA基因相同的DNA片断。这些DNA片断中就包含了大量的突变的植酸酶基因分子。
                       实验二
本实验说明进行突变植酸酶基因分子的克隆程序。
实验一中获得的DNA分子,用EcoRI酶切后,与经EcoRI酶切的载体pET-22b(+)于15℃连接过夜,转化大肠杆菌E.coli DH5a,LB培养基上涂板后挑选阳性重组子,提取质粒进行酶切鉴定,得到重组子。每个重组子中含有一种植酸酶基因分子。重组质粒pWYR图谱见图1。
                       实验三
本实验说明进行突变植酸酶的筛选程序。
实验二中得到的1200个重组子,分别接种到5mL LB培养液中,37℃培养至OD值0.6,加入IPTG至终浓度为0.5mmol/L,继续培养2小时,诱导表达植酸酶。离心收集菌体,菌体重悬于5mL 0.25mol/L醋酸缓冲液(pH5.0)中,超声波破碎菌体,15000rpm离心15分钟去细胞碎片,上清液用于进行植酸酶酶活性测定。测定方法为:0.2mL的酶稀释液加入0.8mL 1.25mmol/L的植酸钠,37℃保温30min,加入1mL 10%TCA终止酶活反应,然后加入2mL硫酸亚铁-钼酸铵显色液,700nm测定无机磷含量。对照为先在0.2mL的酶稀释液中加入1mL 10%TCA使酶灭活,再加入同体积的底物保温。一个酶活性单位(U)定义为:在一定条件下,每分钟释放出1nmol无机磷所需酶量为一个酶活性单位。首先直接测定培养液的酶活性(A),在此条件下有活性的重组子共有302个,进一步将培养液在80℃下保温30分钟,在冰水中冷却,再测定酶活性(B),筛选出在B/A值大于50%的重组子(原酶的B/A值约为15%),共得到重组子3个。其中一个重组子,其培养液B/A值为70%,定名为EappA-t,筛选到热稳定性更好的突变植酸酶。对EappA-t所产的植酸酶进行详细的热稳定性研究,在80℃下保温不同时间后在37℃下测定其酶活性,结果表明(图2),它比原酶APPA具有更好的热稳定性。
                       实验四
本实验说明突变植酸酶APPA-t的序列。
对重组子EappA-t中的植酸酶基因appA-t进行序列测定,图3为其核苷酸序列,图4为其氨基酸序列。结果表明,与原酶相比,有9个碱基得到了突变,其位置分别在+122、+124、+589、+594、+595、+596、+599、+1234和+1235,造成了6个氨基酸的突变,分别由原来的+41V、+42R、+197S、+199L、+200C和+412M突变成+41E、+42C、+197T、+199K、+200Y和+412A。正是由于这些突变,使其热稳定性得到改良。
                       实验五
本实验说明appA-t在酵母表达载体上的构建程序。
用于构建酵母表达载体的质粒是pFG(带有α-因子分泌信号)。首先将植酸酶基因插入到上述表达载体的信号肽序列的下游,与信号肽形成正确的阅读框架,然后通过载体与酵母P.pastoris染色体基因组之间的同源重组事件使目的基因稳定整合到酵母染色体上。具体的过程是:将去除信号肽编码序列的植酸酶基因appA-t用EcoRI从质粒pWYR上酶切下后,电泳回收约1.3Kb的DNA片段,再将它们插入到载体pFG上的EcoRI位点,通过序列测定判断appA-t的插入方向,得到了插入方向正确的用于酵母转化的重组表达载体-pFG-t(图5)。这样就将带有α-因子分泌信号的植酸酶基因克隆到了AOX1启动子下游。
                       实验六
本实验是说明酵母转化及筛选重组酵母株系的程序。
质粒pFG-t的DNA经DraI酶切后电击转化酵母细胞后,通过体内重组,目的基因将整合到受体酵母基因组中。在外源诱导物甲醇存在的条件下,AOXl启动子可以启动其下游基因的表达,并且信号肽可以指导表达产物进入酵母的分泌途径,经过切割,外源蛋白产物最终分泌至胞外,所产生的植酸酶氨基酸序列按设计应与天然存在的成熟植酸酶完全相同。外源蛋白经过这样的代谢途径,可以进行翻译后修饰,例如糖基化等,从而得到具有生物活性的蛋白产物。
首先用2~3倍过量的内切酶DraI消化质粒pFG-t的DNA,使之线性化,电泳检测酶切是否完全。用酚抽提,乙醇沉淀,70%乙醇洗两次,冷冻干燥,无菌水溶解,取1~5μg DNA转化毕赤酵母细胞,在RDB固体培养基上涂板,每板涂0.1mL,30℃下将培养皿倒置培养至转化子出现。
转化子可在基本培养基RDB(不含His)上生长,而非转化子不能生长,这是因为受体菌GS115为组氨酸缺陷型,而载体上虽然带有his4基因,但没有酵母复制子,所以载体上的his4基因必须整合进酵母基因组中才能表达。另外,由于重组的酵母细胞中AOX1基因受到破坏,所以它就不能再利用甲醇作为碳源。这样,在以甲醇作为唯一碳源的培养基上转化子就不会生长(或者生长极缓慢),表现为甲醇利用缺陷型(mut-)。
用无菌牙签从转化平板RDB上挑取his+重组子,首先接种到MM固体培养基上,再接种到MD固体培养基上,如此挑取his+重组子,30℃培养2天。筛选在MD平板上生长正常但在MM平板上有一点生长或完全不生长的克隆子(his+mut-)即为阳性克隆子。
为了筛选得到高表达的重组酵母菌株,直接检测诱导培养基中植酸酶的表达情况。将his+mut-转化子首先在BMGY培养基中培养,待其生长至饱和状态,离心弃BMGY,换入诱导培养基BMMY,在诱导培养36h后取上清液进行植酸酶酶活性分析。通过表达植酸酶的酶活性测定,从700株重组酵母中初步筛选到199株表达植酸酶的重组子,其中表达量最高的1株重组子,定名为P.pastoris appA-t-08。
                       实验七
本实施例是说明重组酵母在5升发酵罐中高密度发酵生产植酸酶的程序。
发酵过程分为三个阶段。具体如下:1)菌株培养阶段。发酵培养基10×Basal Salts接种前先加入28%氨水使培养基的pH达到5.0,再按每升培养基加入4.37mL PTM1,5-10%接种种子液,通气搅拌培养18~24h,在培养过程中随着菌株的生长,培养基中的溶氧量由100%逐渐降低,当碳源消耗完后溶氧量将再度升高至80%以上,此时菌体湿重达到90~110g/L。2)碳源饲喂阶段。流加25%葡萄糖(每升中含12mL PTM1),流加量为28mL/h/L,培养4h。调整通气量使溶氧量始终大于20%。此步结束时菌体湿重达到180~220g/L。3)诱导表达阶段。加入诱导剂甲醇(每升中含12mL PTM1),使甲醇终浓度维持在0.3%,溶氧量始终大于20%。在诱导过程中每12h取样一次测定表达的植酸酶的积累量。
随诱导时间增加发酵液中表达积累的植酸酶的SDS-PAGE分析见图6。结果表明,表达的植酸酶随诱导时间的增加而积累,在诱导120小时时达到高峰,酶活性达到6.5×106U/mL发酵液。表达的酶蛋白分子量大小约为45kD。以上结果证明植酸酶基因不仅得到了表达、有效分泌,且表达的植酸酶具有正常的生物学活性。
改良的植酸酶基因appA-t的碱基序列
atgaaagcga tcttaatccc atttttatct cttctgattc cgttaacccc gcaatctgca    60
ttcgctcaga gtgagccgga gctgaagctg gaaagtgtgg tgattgtcag tcgtcatggt    120
gagtgtgctc caaccaaggc cacgcaactg atgcaggatg tcaccccaga cgcatggcca    180
acctggccgg taaaactggg ttggctgaca ccgcgaggtg gtgagctaat cgcctatctc    240
ggacattacc aacgccagcg tctggtagcc gacggattgc tggcgaaaaa gggctgcccg    300
cagtctggtc aggtcgcgat tattgctgat gtcgacgagc gtacccgtaa aacaggcgaa    360
gccttcgccg ccgggctggc acctgactgt gcaataaccg tacataccca ggcagatacg    420
tccagtcccg atccgttatt taatcctcta aaaactggcg tttgccaact ggataacgcg    480
aacgtgactg acgcgatcct cagcagggca ggagggtcaa ttgctgactt taccgggcat    540
cggcaaacgg cgtttcgcga actggaacgg gtgcttaatt ttccgcaaac aaataagtac    600
cttaaacgtg agaaacagga cgaaagctgt tcattaacgc aggcattacc atcggaactc    660
aaggtgagcg ccgacaatgt ctcattaacc ggtgcggtaa gcctcgcatc aatgctgacg    720
gagatatttc tcctgcaaca agcacaggga atgccggagc cggggtgggg aaggatcacc    780
gattcacacc agtggaacac cttgctaagt ttgcataacg cgcaatttta tttgctacaa    840
cgcacgccag aggttgcccg cagccgcgcc accccgttat tagatttgat caagacagcg    900
ttgacgcccc atccaccgca aaaacaggcg tatggtgtga cattacccac ttcagtgctg    960
tttatcgccg gacacgatac taatctggca aatctcggcg gcgcactgga gctcaactgg    1020
acgcttcccg gtcagccgga taacacgccg ccaggtggtg aactggtgtt tgaacgctgg    1080
cgtcggctaa gcgataacag ccagtggatt caggtttcgc tggtcttcca gactttacag    1140
cagatgcgtg ataaaacgcc gctgtcatta aatacgccgc ccggagaggt gaaactgacc    1200
ctggcaggat gtgaagagcg aaatgcgcag ggcgcgtgtt cgttggcagg ttttacgcaa    1260
atcgtgaatg aagcacgcat accggcgtgc agtttgtaa                           1299
推导出的蛋白质的氨基酸序列
Met Lys Ala Ile Leu Ile Pro Phe Leu Ser Leu Leu Ile Pro Leu Thr
1               5                   10                  15
Pro Gln Ser Ala Phe Ala Gln Ser Glu Pro Glu Leu Lys Leu Glu Ser
            20                  25                  30
Val Val Ile Val Ser Arg His Gly Glu Cys Ala Pro Thr Lys Ala Thr
        35                  40                  45
Gln Leu Met Gln Asp Val Thr Pro Asp Ala Trp Pro Thr Trp Pro Val
    50                  55                  60
Lys Leu Gly Trp Leu Thr Pro Arg Gly Gly Glu Leu Ile Ala Tyr Leu
65                  70                  75                  80
Gly His Tyr Gln Arg Gln Arg Leu Val Ala Asp Gly Leu Leu Ala Lys
                85                  90                  95
Lys Gly Cys Pro Gln Ser Gly Gln Val Ala Ile Ile Ala Asp Val Asp
            100                 105                 110
Glu Arg Thr Arg Lys Thr Gly Glu Ala Phe Ala Ala Gly Leu Ala Pro
        115                 120                 125
Asp Cys Ala Ile Thr Val His Thr Gln Ala Asp Thr Ser Ser Pro Asp
    130                 135                 140
Pro Leu Phe Asn Pro Leu Lys Thr Gly Val Cys Gln Leu Asp Asn Ala
145                 150                 155                 160
Asn Val Thr Asp Ala Ile Leu Ser Arg Ala Gly Gly Ser Ile Ala Asp
                165                 170                 175
Phe Thr Gly His Arg Gln Thr Ala Phe Arg Glu Leu Glu Arg Val Leu
            180                 185                 190
Asn Phe Pro Gln Thr Asn Lys Tyr Leu Lys Arg Glu Lys Gln Asp Glu
        195                 200                 205
Ser Cys Ser Leu Thr Gln Ala Leu Pro Ser Glu Leu Lys Val Ser Ala
    210                 215                 220
Asp Asn Val Ser Leu Thr Gly Ala Val Ser Leu Ala Ser Met Leu Thr
225                 230                 235                 240
Glu Ile Phe Leu Leu Gln Gln Ala Gln Gly Met Pro Glu Pro Gly Trp
                245                 250                 255
Gly Arg Ile Thr Asp Ser His Gln Trp Asn Thr Leu Leu Ser Leu His
            260                 265                 270
Asn Ala Gln Phe Tyr Leu Leu Gln Arg Thr Pro Glu Val Ala Arg Ser
        275                 280                 285
Arg Ala Thr Pro Leu Leu Asp Leu Ile Lys Thr Ala Leu Thr Pro His
    290                 295                 300
Pro Pro Gln Lys Gln Ala Tyr Gly Val Thr Leu Pro Thr Ser Val Leu
305                 310                 315                 320
Phe Ile Ala Gly His Asp Thr Asn Leu Ala Asn Leu Gly Gly Ala Leu
                325                 330                 335
Glu Leu Ash Trp Thr Leu Pro Gly Gln Pro Asp Asn Thr Pro Pro Gly
            340                 345                 350
Gly Glu Leu Val Phe Glu Arg Trp Arg Arg Leu Ser Asp Asn Ser Gln
        355                 360                 365
Trp Ile Gln Val Ser Leu Val Phe Gln Thr Leu Gln Gln Met Arg Asp
    370                 375                 380
Lys Thr Pro Leu Ser Leu Asn Thr Pro Pro Gly Glu Val Lys Leu Thr
385                 390                 395                 400
Leu Ala Gly Cys Glu Glu Arg Ash Ala Gln Gly Ala Cys Ser Leu Ala
                405                 410                 415
Gly Phe Thr Gln Ile Val Asn Glu Ala Arg Ile Pro Ala Cys Ser Leu
            420                 425                 430

Claims (10)

1、一种改良的植酸酶,其特征在于,通过对植酸酶APPA的基因的突变,并表达该突变的植酸酶基因而获得,且该改良的植酸酶具有更好的热稳定性,在80℃保温30分钟,剩余酶活性在70%以上。
2、如权利要求1所述改良的植酸酶,其特征在于,在+41、+42、+197、+199、+200和+412位的氨基酸发生了突变。
3、如权利要求2所述的改良的植酸酶,其特征在于,所说的氨基酸的突变是由原来的+41V、+42R、+197S、+199L、+200C和+412M突变成+41E、+42C、+197T、+199K、+200Y和+412A。
4、如权利要求1所述的改良的植酸酶,其特征在于,该酶蛋白具有如图4所示的氨基酸序列。
5、一种编码改良的植酸酶的基因,其特征在于,该基因是通过对植酸酶基因appA进行突变获得的,其中在+122、+124、+589、+594、+595、+596、+599、+1234和+1235位的碱基发生了突变,使改良的植酸酶具有更好的热稳定性,在80℃保温30分钟,剩余酶活性在70%以上。
6、如权利要求5所述的改良植酸酶的基因,其特征在于,该改良植酸酶基因具有图3所示的核苷酸序列。
7、如权利要求5所述的改良植酸酶的基因,其特征在于,所说的基因突变是定点突变、PCR致错突变或DNA shuffing。
8、一种高效表达改良植酸酶的基因的方法,包括整套重组表达载体的构建、受体菌的遗传转化、重组子的筛选与分子鉴定方法及重组子中植酸酶基因的表达方法,其特征在于,如权利要求5所述的改良植酸酶的基因在高效表达系统毕赤酵母中表达。
9、如权利要求8所述的表达改良植酸酶的基因的高效表达方法,其特征在于,也可以利用杆状病毒的昆虫表达系统、霉菌表达系统、植物表达系统等其它的真核表达系统作为表达植酸酶基因的生物反应器
10、如权利要求8所述的表达改良植酸酶的基因的高效表达方法,其特征在于,大肠杆菌被用作克隆和表达该改良植酸酶基因的载体。
CN 200410048728 2004-06-10 2004-06-10 高比活植酸酶的热稳定性改良及其高效表达 Pending CN1706941A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410048728 CN1706941A (zh) 2004-06-10 2004-06-10 高比活植酸酶的热稳定性改良及其高效表达

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410048728 CN1706941A (zh) 2004-06-10 2004-06-10 高比活植酸酶的热稳定性改良及其高效表达

Publications (1)

Publication Number Publication Date
CN1706941A true CN1706941A (zh) 2005-12-14

Family

ID=35581051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410048728 Pending CN1706941A (zh) 2004-06-10 2004-06-10 高比活植酸酶的热稳定性改良及其高效表达

Country Status (1)

Country Link
CN (1) CN1706941A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2057178A2 (en) * 2006-09-21 2009-05-13 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
WO2015070372A1 (zh) * 2013-11-12 2015-05-21 中国农业科学院饲料研究所 一种产生热稳定性改良的植酸酶变体的方法、以及植酸酶变体及其应用
CN105624131A (zh) * 2014-11-21 2016-06-01 青岛蔚蓝生物集团有限公司 植酸酶突变体
US9695403B2 (en) 2009-05-21 2017-07-04 Syngenta Participations Ag Phytases, nucleic acids encoding them and methods for making and using them

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2617819A3 (en) * 2006-09-21 2013-10-16 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
CN104450754B (zh) * 2006-09-21 2021-10-01 巴斯夫酶有限责任公司 肌醇六磷酸酶、编码它们的核酸及制备和使用它们的方法
EP2057178A2 (en) * 2006-09-21 2009-05-13 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
EP2617822A2 (en) * 2006-09-21 2013-07-24 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
EP2617814A2 (en) * 2006-09-21 2013-07-24 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
EP2617818A2 (en) * 2006-09-21 2013-07-24 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
EP2617823A3 (en) * 2006-09-21 2013-09-18 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
EP2617822A3 (en) * 2006-09-21 2013-10-16 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
EP2617729A3 (en) * 2006-09-21 2013-10-16 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
EP2617820A3 (en) * 2006-09-21 2013-10-16 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
EP2617816A3 (en) * 2006-09-21 2013-10-16 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
EP2620495A3 (en) * 2006-09-21 2013-10-16 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
EP2617814A3 (en) * 2006-09-21 2013-10-16 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
EP2617821A3 (en) * 2006-09-21 2013-10-16 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
EP2397486A1 (en) * 2006-09-21 2011-12-21 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
EP2617817A3 (en) * 2006-09-21 2013-10-16 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
EP2057178A4 (en) * 2006-09-21 2010-09-22 Verenium Corp PHYTASES, NUCLEIC ACIDS ENCODING THEM AND THEIR METHODS OF PRODUCTION AND USE
EP2617815A3 (en) * 2006-09-21 2013-10-16 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
EP2617728A3 (en) * 2006-09-21 2013-10-16 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
AU2007299612B2 (en) * 2006-09-21 2013-11-14 Basf Enzymes Llc Phytases, nucleic acids encoding them and methods for making and using them
CN101541822B (zh) * 2006-09-21 2014-10-22 维莱尼姆公司 肌醇六磷酸酶、编码它们的核酸及制备和使用它们的方法
US8877478B2 (en) 2006-09-21 2014-11-04 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
US8936924B2 (en) 2006-09-21 2015-01-20 Verenium Corporation Methods for using a thermostable phytase in ethanol production
CN104450754A (zh) * 2006-09-21 2015-03-25 维莱尼姆公司 肌醇六磷酸酶、编码它们的核酸及制备和使用它们的方法
EP2617818A3 (en) * 2006-09-21 2013-10-16 Verenium Corporation Phytases, nucleic acids encoding them and methods for making and using them
US10196617B2 (en) 2006-09-21 2019-02-05 Basf Enzymes Llc Phytases, nucleic acids encoding them and methods for making and using them
US9695403B2 (en) 2009-05-21 2017-07-04 Syngenta Participations Ag Phytases, nucleic acids encoding them and methods for making and using them
US9969992B2 (en) 2009-05-21 2018-05-15 Syngenta Participations Ag Phytases, nucleic acids encoding them and methods for making and using them
US10428340B2 (en) 2009-05-21 2019-10-01 Syngenta Participations Ag Phytases, nucleic acids encoding them and methods for making and using them
WO2015070372A1 (zh) * 2013-11-12 2015-05-21 中国农业科学院饲料研究所 一种产生热稳定性改良的植酸酶变体的方法、以及植酸酶变体及其应用
CN105624131A (zh) * 2014-11-21 2016-06-01 青岛蔚蓝生物集团有限公司 植酸酶突变体

Similar Documents

Publication Publication Date Title
CN1231692A (zh) 新型肌醇六磷酸酶及其制造方法
CN105969750B (zh) 一种植酸酶突变体及其应用
CN105408492A (zh) 肌醇六磷酸酶
CN1793375A (zh) 重组人神经生长因子的酵母表达系统及制备重组人神经生长因子的方法
CN1192103C (zh) 生产植酸酶的方法
CN1106456A (zh) 重组△9脱氢酶以及编码该酶的基因
CN1205337C (zh) 培养有甲醇代谢途径的微生物的方法
CN1766098A (zh) 一种甘露聚糖酶及其编码基因与应用
CN1746302A (zh) 利用酵母生产非n-糖基化蛋白的方法
CN1706941A (zh) 高比活植酸酶的热稳定性改良及其高效表达
CN1873006A (zh) 一种重组人胰岛素原的生产方法
CN1405303A (zh) 一种广谱、耐高温的高比活植酸酶及其编码基因和表达
CN1847400A (zh) 改良的高比活木聚糖酶及其基因、包括该基因的表达载体和重组酵母细胞以及表达方法
CN1958797A (zh) 南极假丝酵母脂肪酶的核苷酸序列
CN114774396B (zh) 角蛋白酶突变体及与胆汁酸的复配制剂和在添加剂的应用
CN103898081B (zh) 一种角蛋白酶突变体及其应用
CN1302112C (zh) 利用毕赤酵母生产高比活耐高温植酸酶
CN100340662C (zh) 高比活植酸酶基因及其高效表达
CN1163606C (zh) 一种植酸酶基因序列及其在酵母中的应用
CN1831109A (zh) 一种编码高温植酸酶基因的重组菌和该基因及其合成、克隆和表达
CN1062309C (zh) 植酸酶及其基因的克隆和表达
CN100336906C (zh) 脂肪酶基因序列及其在酵母中的应用
Li et al. Lactose-induced production of human soluble B lymphocyte stimulator (hsBLyS) in E. coli with different culture strategies
CN1300310C (zh) 一种低温脂肪酶及其编码基因与生产方法
CN1236059C (zh) 一种石斑鱼胰岛素样生长因子ⅱ基因、含有该基因的载体、重组株及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication