CN1706068A - 移动无线基站 - Google Patents

移动无线基站 Download PDF

Info

Publication number
CN1706068A
CN1706068A CNA2003801015856A CN200380101585A CN1706068A CN 1706068 A CN1706068 A CN 1706068A CN A2003801015856 A CNA2003801015856 A CN A2003801015856A CN 200380101585 A CN200380101585 A CN 200380101585A CN 1706068 A CN1706068 A CN 1706068A
Authority
CN
China
Prior art keywords
base station
component signal
signal
antenna
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2003801015856A
Other languages
English (en)
Other versions
CN1706068B (zh
Inventor
P·E·哈斯克尔
P·A·希克林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quintel Technology Ltd
Original Assignee
Quintel Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quintel Technology Ltd filed Critical Quintel Technology Ltd
Publication of CN1706068A publication Critical patent/CN1706068A/zh
Application granted granted Critical
Publication of CN1706068B publication Critical patent/CN1706068B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

一种用于电信系统的移动无线基站,包括矢量调制器装置,用于独立地控制表示要发送或接收的信号的多个分量信号的相位和/或幅度,以便当这些信号经过多个天线单元时,在根据分量信号的相位关系的方向上形成射束。本发明还包括接口装置,允许其它基站被连接到同一天线,每个基站具有其射束方向的独立控制。措施包括信号的相位补偿,以修正由基站和天线之间不等且可变的分量信号路径长度所引进的误差。矢量调制器装置配置为操作在低功率电平,在这个电平它能更有效地操作。

Description

移动无线基站
本发明涉及一种用在电信系统中的移动无线基站。更具体地说,它涉及一种用在由配置为与一组移动设备通信的多个基站组成的移动电信系统中的移动无线基站,其中多个基站组成小区网络。本发明找出这种蜂窝移动网络(通常称作移动电话网)中的特定应用。
蜂窝移动无线网络的运营商通常使用独自的基站,每个基站通常包括一个或多个天线。在蜂窝移动无线网络中,在设置通常被分成多个交叠小区的覆盖区域中,天线方向性是首要因素,每个小区与各自的天线和基站相关联。每个小区包含与那个小区中的移动无线通信的基站。基站本身通过其它通信装置互连,通常为以栅格或网状结构配置的固定陆线或微波链路,允许移动无线遍布小区覆盖区域以彼此通信,以及与蜂窝移动无线网络之外的公共电话网通信。
通常与每个基站相联系的是在其上安装天线的天线杆。这种杆的设置是有问题的,因为对于每个杆都需要规划许可,并且土地租用或购买增加了安装的成本。因此有一个提议在运营商之间共享天线和天线位置。
甚至在这种情况下,这可能导致问题。每个运营商经常具有几个与每个基站相联系的天线,每个天线提供单一小区的覆盖。通常可以有3或6个不同的小区由单一基站服务。由于运营商数量增加了,在这些小区中每个都提供其自己的覆盖,这迅速导致安装在单一杆上的分开的天线的无法接受的数量。此外,为了避免相互干扰,天线要求适当的分离,并且可要求增加杆的高度,或可要求使用更强壮的结构,以使杆能够抵挡大风,由此加重了问题并导致更大的开支。
这个的一个解决方案是运营商共享杆和天线。由于技术和后勤问题,这已经没有出现的倾向。这能导致信号引起运营商之间的干扰,并因此对系统性能产生有害的影响。
进一步地,需要运营商能够调整天线瞄准线的仰角,通常称为“倾斜”,目的是改变天线的覆盖区域。在例如通过增加小区中的其它基站或天线改变网络结构的情况下,这是有用的。这个倾斜可以机械地和/或电学地实现。“机械倾斜”包括物理地移动天线屏蔽器,而“电倾斜”是通过创建发送到或接收来自天线的不同单元的电信号之间的相移或时间延迟而实现的。
不同的运营商通常具有不同的倾斜要求,这又使天线共享更有问题。显然,如果两个运营商要求不同的机械倾斜设置,则他们将不能共享天线。
解决方案在于包括安装在天线屏蔽器内的机械地操作的相移器的组,其连接到配置为多个独立天线的天线单元的阵列,其中每个运营商控制天线屏蔽器内的一个天线。通过这种方式,运营商可在不影响另一个运营商的信号的情况下控制其信号的相位。这些遭受了有关机械系统的共同问题——它们能减慢操作且不可靠。由于它们操作在天线罩本身中,所以它们必须也工作在高功率(发送时)或在很低的功率(接收时)。在高功率使用这种系统能导致能使基站接收器不敏感的相互调制产品的不必要的产生。
进一步的解决方案在于在天线罩中使用电相移器,这些相移器可远程控制,并且因此便于调整射束图案。这个方法的另一个问题是任何相移都将施于所有通过天线发送的信号,以及所有通过天线接收的信号。因此电倾斜的独立控制是不可能的。
产生电倾斜的可变角的上述方法可应用于改变水平面中的射束图案,例如当运营商希望稍微改变射束方向以调整小区覆盖时可被要求。再者,有关相移器的同样问题也会出现。
本发明的目的就是提供能够提供天线参数的独立控制的天线接口,其至少减轻了先有技术中的某些问题。
根据本发明提供了一种用于通过具有多个辐射单元的天线系统在运营商和一个或多个移动设备之间传送信号的基站,其特征在于:
系统配置为将信号处理为多个分量信号,每个分量信号与天线系统内的一个或多个辐射单元相关联,以及
调制装置配置为将复加权应用到分量信号,以便分量信号的总和使得天线射束方向的产生取决于复加权的值,以及
其中在将复加权应用到分量信号与分量信号经过其相关辐射单元之间提供分裂、组合和分量信号放大装置,配置分裂和组合装置,以便允许其它运营商被连接到同一天线系统。
本发明特别适合于组合来自不同运营商的独立信号,由于为了控制其射束图案,每个运营商除了它自己的不需要任何信号的知识。运营商能控制其射束图案——其接收射束或其发送射束——通过控制分量信号的复幅度(即相位和/或幅度)。
最好通过矢量控制器(VC)来控制分量信号的复幅度。这是一个通过将它自己的同相和正交版本的量(每个量由基带或低频乘法器信号确定的数量,其可能具有负值)求和来处理信号的设备。通过这种方式,完全控制VC输出相对于VC输入的幅度和相位是可能的。然而,配置为只控制或调制信号相位的VC可用在本发明的某些实现中。
如果分量信号被提供到在垂直轴具有空间分集的天线系统,则用这种方式控制分量信号允许射束的电倾斜在发送或接收时符合运营商的要求。
同样,如果分量信号配置为被提供到在水平轴具有空间分集的天线系统,则本发明也允许在水平轴控制辐射图。
用本发明避免了如上所述的先有技术的问题,由于在适宜的低功率进行相位和幅度控制及调整,并在基站内而不是在独立设备或天线屏蔽器中执行的。然而这样做意味着从天线接口到天线屏蔽器有可能多于一个连接,这将需要多个电缆或其它波导。
适合用在本发明的天线系统通常会包括单元阵列,这些单元可分别或以子组方式由基站访问。
本发明提供多个基站到单一天线系统的连接,以使每个基站可在水平或垂直轴或两个轴控制其信号的辐射图。对于要发送的信号这通过使用功率组合器装置将来自每个基站与特定天线辐射单元或单元子组相关联的分量信号结合在一起,以提供合成的分量信号。
对于已经通过每个基本的天线单元或单元子组接收的信号,通过分裂装置分离信号,以便给每个基站提供从天线单元接收的信号。每个基站然后以通常的方式滤出与它有关的信号。
分裂和组合装置最好放置在分量信号放大装置与天线系统之间。
依据分量信号的VC的操作控制射束的特性。从天线单元或单元子组发送的信号的矢量和形成发送时的射束,并且天线单元的间隔和单元上信号的相对相移是定义将在仰角和方位角形成的射束图案的因素。一般的专业技术人员会清楚定义射束图案的其它因素,诸如被发送信号的频率。
由于发送和接收信号的相位是在基站而不是如先有技术在天线被控制,因此重要的是,相位控制装置知道在天线其相位控制的影响。本发明实施例的天线可定位在与基站有一段距离的位置,并可通过电缆、波导或类似结构来连接二者。这些可对分量信号相位产生不可预测的影响。例如,一个电缆相对于另一个的任何伸长都会增加那个电缆的路径长度,并且会移动在电缆输出的信号的相位。许多原因都可能引起这种伸长,诸如热膨胀等。
用于本发明的天线最好结合校准装置,用于测量由基站发送给它的信号的相对相位。校准装置会与基站通信,然后其会具有分量信号的期望相位性质和在天线的信号的实际相位性质的知识。这然后当在VC中设置相位时允许将天线与基站之间的连接装置的影响纳入考虑。最好天线还包括作为校准装置一部分的信号发生装置,用于将可在基站内测量的信号注入到系统的接收路径。采用的测量可用于补偿每个接收侧分量信号采用的路径中的差异。
校准装置最好与连接到天线的所有基站通信,以便它能够通过基站切换以对由那个基站产生或接收的信号敏感。
根据本发明的另一方面,提供一种控制由连接到至少两个基站的天线产生的发送射束的方向的方法,所述方法包括:
在第一基站中,将要发送的第一信号分成多个分量信号;
将复加权或多个加权应用到至少一个分量信号,由此相对于至少一个其它的分量信号改变分量信号的相位和/或幅度;
将分量信号传到放大和组合装置,其中信号被带到适合发送的功率电平,并将所述分量信号与来自第二基站的分量信号组合;
将组合的分量信号传到天线单元或单元组,以便通过单元的发送使在由复加权或多个加权控制的方向上形成表示第一信号的能量的射束。
根据本发明的又一方面,提供一种控制由连接到至少两个基站的天线产生的接收射束的方向的方法,所述方法包括:
在天线中接收多个分量信号,每个涉及接收单元或接收单元组;
使用分裂和滤波装置分离打算送到第一基站的分量信号,并使用放大装置放大所述分量信号;
将复加权或多个加权应用到第一基站中的至少一个分量信号,由此相对于至少一个另外的分量信号改变所述分量信号的相位和/或幅度;
在第一基站中的射束形成器中组合分量信号,以产生在由复加权或多个加权控制的方向上形成的接收射束。
现在将参考附图仅通过示例更详细地描述本发明,附图中:
图1以图解形式说明控制电倾斜角的先有技术的一种方法;
图2以图解形式说明本发明的一个实施例,用于在基站内使用矢量控制器控制射束方向;
图3说明将相移应用到馈送阵列的信号以便控制射束特性的概念;
图4以图解形式说明本发明用于将两个运营商连接到单一天线;
图5以图解形式说明结合如用在本发明的基带发送侧电路中的矢量控制器的基站调制器的细节;
图6以图解形式说明结合如用在本发明的基带接收侧电路中的矢量控制器的基站解调器的细节,;
图7以图解形式说明如用在本发明另一实施例中的矢量控制器的细节,其中在RF频率进行处理;
图8以图解形式说明本发明一个实施例的细节,其中对于发送射束的产生在RF频率进行处理;
图9以图解形式说明本发明一个实施例的细节,其中对于接收射束的发生在RF频率进行处理。
图1示出了控制移动无线基站系统的辐射射束方向的先有技术的一种方法。该方法实现天线屏蔽器中的可变延迟系统。这里示出了4个信道,每个信道具有连接到装置2的天线单元1,装置2用于控制到每个单元1的馈送的电长度。电长度控制器2实现各信号路径中的可变时间延迟,以便经过每个路径的信号都在时间上移动了可变量。路径长度由提供倾斜控制信号4的倾斜控制部分(未示出)来设置。对于分布网络3中的单一运营商A,信号被分裂(在发送的情况下)或组合(在接收的情况下)。单一、集合的输入/输出5被从基站(未示出)提供给分布网络3。如果天线单元1被垂直堆叠,则使用延迟结构2适当改变天线单元1上的信号的相对延迟将导致射束图案的倾斜。这个倾斜会发生在所有信号上,因此如果天线在两个或两个以上用户之间共享,则不可能各自控制倾斜。
图2示出了本发明一个实施例的框图。示出的根据本发明的移动无线基站系统6连接到天线系统7。连接包括4个电缆8a、8b、8c、8d。4个电缆8中的每个都以发送模式和接收模式携带信号。发送信号由发送器9产生。发送器的输出被分成4个相等的分量信号,并且每个被馈送到各自的矢量控制器或相位调制器10。调制器10能调整它们输入信号的相对相位,以使调制器的每个输出都可在不同的相位。来自相位调制器10的分量信号然后在功率放大器级11被放大,并通过双工器12和电缆8发送到天线系统7。基站系统6包括分裂器/组合器网络(未示出),用于允许其它运营商将它们的基站连接到同一天线系统。
基站系统6具有包括一组低噪声放大器(LNA)13的接收设备,每个低噪声放大器经由电缆结构8和双工器12接收来自天线7的分量信号。LNA然后将信号传到矢量控制器或调制器电路14,电路14的输出到加法器15,以遵循已知的相位阵列原则产生单一的射束形成的输出。这个进入接收器19,在那里它被以常规方式处理。注意到,在这个实施例中接收器19和发送器9是现有技术项,且不需要来自当前用在基站应用中的那些的重大改变。也注意到,在本实施例中示出的分量信号连同用于发送和接收的它们的相关放大器和调制器的数量为清晰起见已经限制为4——实际上可以多于或少于这个数。
就辐射单元布局而言,天线7类似于先有技术系统中所用的天线。然而,现有天线会将来自各辐射单元的信号组合成单一出口(或对于特定极化有时是单一端口),本发明所用的天线将提供访问各自辐射单元或辐射单元的小组,以便通过将不同相位的信号应用到各自单元或单元子组,将控制射束图案。
在发送中,图2的实施例按如下方式操作。发送所需的数据配置为进入发送器9的输入信号,发送器9将信号向上变换到发送频率。发送器的输出是低功率信号。向上变换的信号然后由分裂器16分成(在本例中)4个分量信号。来自分裂器16的每个信号输出被馈送到矢量调制器电路10。调制器10能够相对于其它分量信号调整该分量信号的相位和幅度。调制器10a和10b配置为合作,以便它们控制从天线的堆栈#1发送的信号的电倾斜角,并且调制器10c和10d配置为合作,以便它们控制从天线的堆栈#2发送的信号的电倾斜角。实际上,这些角通常是一样的。同样地,可以通过设置10a与10d之间以及10b与10c之间的适当相位角可控制发送的信号的瞄准线的角。在这一点上,分量信号在相对低的功率电平,并因此有可能相对便宜且容易地制造高性能矢量调制器电路10。矢量调制器10在射束方向控制器17的控制下。矢量调制器10的输出被馈送到功率放大器电路11,其将分量信号放大到用于发送的正确电平。放大的分量信号然后经由双工器12和电缆结构8被馈送到天线7中的各天线单元,其将信号能量辐射到自由空间中。分量信号的相对相位控制作为结果的合成射束的射束图案。双工器防止发送的信号干扰基站的接收侧。
图2的接收侧以同样的方式工作。由天线7内的天线单元接收的分量信号经由电缆结构8各自从天线7传到移动基站系统6,在电缆结构8中它们被馈送到双工器12,其滤出在发送频率的信号并留下刚好在接收频率的信号。分量信号然后在低噪声放大器13中各自被放大。由此LNA 9之后的分量就它们的噪声性能而言不必是关键的,因为系统的噪声图将由LNA 13、天线7和有关的电缆8主要控制。来自每个LNA 13的输出被传到矢量调制器14,如上所述,其相对于彼此控制分量信号的相位和幅度,其自身在射束方向控制器17的控制下。然后使用组合器15将相位和幅度调整的信号矢量地加到一起,其具有定义接收射束的影响。组合的接收信号然后被传到接收器19,然后在那里以常规方式处理。
图2的天线7已经安装了矢量测量接收器(VMR)18,其能够选择地将其输入切换到任何正被发送的发送信号,并测量那个信号的特性。在这个实施例中这是所希望的,因为天线7经常安装在与基站6有一段距离的地方,并且电缆结构8会长得足以使在天线7与基站6之间传送的信号的相位失真。例如,电缆之间的小温度差异会使它们的相对长度由于热膨胀而改变,并且因此会在分量信号之间产生相位误差。因此VMRl7的目的是测量在天线处的各相位,并将测量的结果传递到基站。在射束方向控制器(BDC)17接收结果,在BDC 17中,在天线处的实际相位与由BDC 17设置的相位相比较。然后可消除由通过电缆8向上发送所引起的相位中的任何误差。
这可被进一步加强以便能校准接收路径。为了这样做,信号被注入天线罩中的每个接收路径,以使它产生一组具有已知相位关系的分量信号。使用接收器19或使用基站内的分开、专用接收器可以测量这些信号的性质,并且结果用于使用矢量调制器14补偿任何相位误差。对于这个使用专用接收器意味着其它接收器的正常操作不受影响。
注意到,图2的实施例示出了以由天线单元的布置控制的单一极化来控制射束图案的实施例。然而,该实施例并不局限于以单一极化操作,而是可改为适于具有正交极化的射束图案的独立控制。这会包含具有到正交天线的分开馈送,按照图2的每个实施例,这些馈送由适当加权的分量信号驱动。因此通过增加分量信号的数量可增加系统的多功能性,并使用这些来控制射束的不同方面。
射束方向控制器计算在发送和接收时得到特定射束图案所需的分量信号的相位。这有发送频率以及天线物理特性的知识。图3a示出了各自被驱动的基本天线e1、e2、e3的垂直堆栈。如果供给每个基本天线e的分量信号都具有零相对相位差,则将从具有无偏斜的阵列发送结果射束——即它将在垂直于天线阵列平面的方向被发送。如果随着穿过阵列的总相移累积地增加,在提供天线单元e的连续对的分量信号之间施加θ弧度的相对相移,则射束将指向与法线成角φ弧度的方向,由下式给出:
公式1
其中λ是被发送的信号的波长,以及d是天线单元之间的间距。图3b中示出了这种歪斜的射束。
公式1适用于天线单元不论是水平还是垂直安装,并且因此适用于瞄准线和电倾斜角。
图4示出了本发明的一个实施例,配置为将多于一个的基站连接到单一天线,而就电倾斜角和射束瞄准线而言仍允许每个基站具有其射束图案的独立控制。示出的两个基站20、21通过天线组合器单元(ACU)22连接到单一天线23。基站20、21的每个都是上面图2中所示的类型,且每个都操作在不同频率。运营商A的基站20具有多个发送线24,每个对应于一个分量信号,并且设计每个从单一天线单元或单元组发送。线24上的分量信号已经在相位和幅度上被适当调制,以获得希望的电倾斜角。运营商B的基站具有类似的一组线25,其又被调制以获得其希望的电倾斜角——不必等于运营商A所需的。来自两个运营商的每组线24、25然后在ACU 22中组合在一起。这是在具有允许其信号通过但阻止其它运营商的信号的特性的滤波器28、29中通过第一带通滤波每个单独的分量线24、25来实现的。来自打算送给同一天线单元或单元组26的每个运营商的分量信号,然后可在不引起彼此信号的相互干扰的情况下连接在一起。组合的分量信号然后被传到双工器27,它使用滤波器以防止发送信号干扰接收信号(假设它们在不同频率上)。组合的分量信号然后经由电缆30发送到天线单元26,并被发送。
反过来,对于运营商A和B的接收信号,类似的过程发生,其中来自天线单元26的多个分量信号经由电缆30传到双工器27,并各自地被滤波以将一个运营商的信号从其它运营商的信号中分离出来。滤波的分量信号然后被传到适当的基站,在那里使用如关于上面图2所描述的矢量控制器组合它们。
组合的分量信号30也到矢量测量接收器(VMR)31,它能够测量对于每个运营商的每个分量信号的相位和幅度。在任一时间,VMR31都在VMR数据Hub34的控制下,VMR数据Hub34它自己在基站20、21的其中之一的控制下,它告诉接收器31测量哪个分量信号。来自这个测量的数据然后被发送到基站,在那里它可被用于将复加权校正应用到分量信号。同样,通过使用可切换的信号发生器33将信号插入到每个分量信号路径,并在基站20或21中测量信号,可校准包括电缆30、双工器27、滤波器32以及相关电缆的接收路径。再者,这些测量可被用于对接收的分量信号应用复加权校正。信号发生器33也在VMR数据Hub34的控制下。
由于分量信号的调制由每个运营商在ACU 22的基站侧上独立地完成,因此每个都能在对其它运营商形成的射束没有任何不利影响的情况下控制其自己的射束图案。当然,一般的专业技术人员会认识到可以使用其它分裂/组合装置,诸如使用适当通过无源分裂器/组合器和滤波器的网络。某些方法可能比其它方法更适合,取决于诸如从连接的基站发送的信号之间的频率上的差异的因素。
图5详细示出了一种用于控制分量信号以便可以控制射束的方法。这个特定实现示出了发送矢量控制器,用于控制在低频的分量信号的相位。该图示出了两个分量信号调制器100、101的细节。第二信道101是结合了矢量控制器的普通调制器,并能被重复供随后的信道使用。
调制器100包括连接到一对低通滤波器107的串行到并行转换器,每个低通滤波器107馈送到数模转换器(DAC)200。每个DAC200的模拟输出进入混频器电路201。每个混频器201的其它输入来自本机振荡器202。-90°的相移应用于从本机振荡器202到一个混频器201一个信号。混频器201的输出被求和以产生调制的RF输出203。这个RF输出203可在发送频率,在这种情况下信号然后被传到RF放大器,或者它可以在中频频率(IF),在这种情况下它将经历另一混频级以使它达到发送频率。
注意到,调制器100没有用于相移其分量输出的设备。这个调制器100的输出因此是参考输出。调制器101类似于调制器100,只是它具有结合的矢量控制器106以控制输出的相位。
现在将描述调制器100的操作。要发送的数据作为串行二进制流102进入调制器。这被输入到串行到并行转换器103,它产生两个信号V1、V2,每个表示二进制流102的一部分。V1和V2都在二进制流102的一半比特率。在被转换为模拟信号V1′、V2′之前,使用根升余弦低通滤波器107对每个信号进行滤波以提高频谱效率。注意到,这个滤波的存在及确切类型取决于基站被用于的特定应用。
滤波的信号然后被转换为模拟信号,以便它们能被混频到RF频率。这是在I-Q调制器中完成的,第一信号V1′正弦波混频,并且信号V2′与在相位上与第一相隔90°的正弦波混频。然后两个结果信号被求和以创建单一调制的分量信号。
调制器101以同样方式工作,只是它结合了矢量控制器106。这个矢量控制器106工作在数字域,并且其输入采用与调制器100所用的相同的信息,即信号V1和V2。它也采用两个控制信号,这些是相位控制108和幅度控制109。矢量控制器106的输出是两个信号V3和V4,这两个信号由下式给出:
V3=K[V1cosφ-V2sinφ]             公式2
V4=K[V1sinφ+V2cosφ]             公式3
矢量控制器调整V3和V4的相位,以便当两个信号在I-Q调制器中组合时,组合的信号具有适当调整的相位用于形成期望的射束。
调制器101被复制为对每个剩余分量信号必需的。尽管组成要被发送的整个信号的分量信号的最小数量是2,但是多于这个数能实现射束图案的更精细控制,但增加了成本和系统复杂性。实际上可能使用2到5之间的数。所有调制器100、101等都用来自同一参考源的本机振荡器(LO)信号202馈送,并且从LO到每个I-Q调制器的路径最好是相位匹配的。然而,如果路径不是相位匹配的,则可通过在每个矢量控制器106中应用适当的相位校正加权来校正相位。
输入到矢量控制器106的相位控制信号108和幅度控制信号109每个都是是来自两个主要输入信号。根据所需的相位计算相位控制信号108,如通过射束方向控制器确定的,但这是通过馈送器相位校正信号的补偿,该馈送器相位校正信号来自于安装在天线系统自身的矢量测量接收器(VMR)。通过这种方式校正了由改变到天线的线长度而引进的误差。这个机制也可用于校正在到每个I-Q调制器的LO馈送信号中的任何相位误差。同样,幅度控制信号109来源于来自射束方向控制器的幅度信号和来自VMR的校正信号。
图6示出了在低频实现的接收侧射束形成器的实施例。示出了3个信道110、111、112。这些信道中的每个都接收来分开的接收器(未示出)的I和Q数据。每个接收器处理来自单一天线单元或单元组的信号,并因此处理单一分量信号。在使用抗混淆滤波器113、113′滤波之后,使用模数转换器(ADC)114、114′数字化接收器的I和Q信道。信道110为参考信道,并且因此没有相位或幅度调制需要应用到其I和Q信号。数字化之后,因此在被输入到加法器116、116′之前在根升余弦滤波器115、115′中对I和Q信号进行滤波。
信道111类似于信道110,只是增加了矢量控制器117,它能够调制输入给它的I和Q信道的相位和/或幅度。相位和幅度由输入204控制,该输入204包括源于上面讨论的理论的所需相位值和由不等的路径长度等引起的任何所需的校正。矢量控制器117的输出,即一个分量信号的适当相移的I和Q信道,然后在作为另一个输入馈送到加法器116、116′之前使用根升余弦滤波器118、118′进行滤波。
提供了另外的信道112,用于处理其余的分量信号。实际上,有可能接收时的信道数量会等于发送时的调制器数量。
加法器116、116′的输出分别是接收信号的I和Q部分的接收射束。这些然后在解码器119中以正常方式解码。
图7示出了上述实施例的备选,其中在RF频率而不是在低频进行相移和射束形成。特别地,图7示出了分量信号矢量控制器,它可用在基站的发送或接收路径中。观察发送侧,已经用要被发送的信息适当调制的RF信号120输入到正交混合器121。这将输入120分成两个有用的分量——“同相”信号122和“正交”信号123。这两个信号122、123中的每个然后施加到乘法器124、125。到每个乘法器124、125的其它输入是源于分量信号的所需相位和幅度的信号S1、S2。这些信号S1、S2是双极信号,并且通过S1和S2的适当选择,在组合器127的输出的分量信号S(t)126可被设置为任意相位和幅度。图7的调制器实现下式:
S(t)=S1cos(2πft)+S2sin(2πft)            公式4
其中S(t)是输出信号,并且输入信号具有频率fHz。S(t)因此可具有任意相位,取决于S1和S2的值。基于与图5中所示的矢量控制器中使用的一样的输入,微控制器128计算S1和S2。两个DAC用于将微控制器128的数字输出转换为适合由乘法器124、125使用的模拟形式。
图8示出了在本发明基站的发送部分中怎样具体化图7的矢量控制器。发送器调制器129、振荡器130和功率控制衰减器131以与普通基站相同的方式产生RF信号。RF信号然后在分裂器132中分裂以产生分量信号。示出了的是2路分裂器132,但实际上可以有更多,以便提供射束图案的更精细控制。然后在使用功率放大器134放大到适合发送的电平之前,使用如关于图7详述的矢量控制器133来调制每个分量信号。每个分量信号然后将相对于彼此适当地相移,以便当它们馈送到适当天线单元并发送时,形成具有期望特性的射束。
图9示出了在本发明基站的接收部分中怎样具体化图7的矢量控制器。这个特定实施例适合于用在CDMA“第三代”系统中。示出了两个输入135、136,其中的每个都来自于天线单元或单元组(经由用于将其它运营商连接到天线的任何分裂配置,以及用于将发送信号和接收信号分开的双工器)。在与去相关码相乘(作用为减小输入带宽)之前,每个输入135、136首先在低噪声放大器137中放大。在射束形成之前进行去相关,改进了系统噪声图,并因此给相位调制器提供了更好的信号。每个去相关信号然后被传到矢量控制器138,它调整分量信号的相位,如关于图7所描述的那样。矢量控制器138的输出然后在组合器139中矢量地求和,这个求和过程形成接收射束。结果信号然后由IF和解调器电路140以通常方式处理。
专业技术人员会认识到在本发明范围内可以想出其它实施例,并且由此本发明不应局限于这里所述的实施例。

Claims (15)

1.一种基站,用于通过具有多个辐射单元的天线系统在运营商与一个或多个移动设备之间传送信号,其特征在于:
所述系统配置为将所述信号处理为多个分量信号,每个分量信号与所述天线系统内的一个或多个辐射单元相关联,以及
调制装置配置为将复加权应用到所述分量信号,以便所述分量信号的总和导致天线射束方向的产生取决于所述复加权的值,以及
其中在将所述复加权应用到所述分量信号与所述分量信号经过其相关辐射单元或多个单元之间提供分裂、组合和分量信号放大装置,配置所述分裂和组合装置,以使它允许其它运营商连接到同一天线系统。
2.如权利要求1所述的基站,其中结合校准装置,目的是测量离开所述基站的点的分量信号的特性。
3.如权利要求2所述的基站,其中所述校准装置安装在所述天线的附近,并能被切换以便测量由连接到所述天线的任何运营商产生的分量信号的特性。
4.如权利要求1至3中任一项所述的基站,配置为以低于传到所述天线的分量信号频率的分量信号频率将所述复加权应用到所述分量信号。
5.如权利要求1至3中任一项所述的基站,其中所述基站配置为以基本与传到所述天线的分量信号频率相同的分量信号频率将所述复加权应用到所述分量信号。
6.如权利要求1至5中任一项所述的基站,其中所述调制装置包括矢量控制器。
7.如权利要求6所述的基站,其中所述矢量控制器配置为控制每个分量信号的相对相位。
8.如权利要求6或7所述的基站,其中所述矢量控制器配置为控制所述分量信号的幅度。
9.如以上权利要求中任一项所述的基站,其中提供能够补偿所述基站与所述天线系统之间的信号路径差异的校准装置。
10.一种基站系统,包括多个单独的基站,其特征在于,每个单独基站是如权利要求1所述的基站,并且所述多个基站经由接口装置连接到公共天线系统,所述接口装置本身包括放大、分裂和组合装置。
11.一种基站,用于通过具有多个辐射单元的天线系统在运营商与一个或多个移动设备之间传送信号,其特征在于:
所述系统配置为将信号处理为多个分量信号,每个分量信号与所述天线系统内的一个或多个辐射单元相关联,以及
调制装置配置为将复加权应用到所述分量信号,以便所述分量信号的总和使射束的产生取决于所述复加权的值,以及
其中所述分量信号适合于连接到如权利要求1所述的基站的分裂和组合装置。
12.一种控制由连接到至少两个基站的天线所产生的发送射束的方向的方法,所述方法包括:
在第一基站中,将要发送的第一信号分成多个分量信号;
将复加权或多个加权应用到至少一个所述分量信号,由此相对于至少一个其它的所述分量信号改变所述分量信号的相位和/或幅度;
将所述分量信号传到放大和组合装置,其中所述信号被带到适合发送的功率电平,并且所述分量信号与来自第二基站的分量信号组合;
将组合的分量信号传到天线单元或单元组,以便通过所述单元的发送使在由所述复加权或多个加权控制的方向上形成表示第一信号的能量的射束。
13.如权利要求12所述的方法,其中使用组合和滤波装置将来自第二基站的分量信号与来自第一基站的分量信号组合。
14.如权利要求13所述的方法,其中由第二基站产生的信号独立于由第一基站产生的信号。
15.一种控制由连接到至少两个基站的天线所产生的接收射束的方向的方法,所述方法包括:
在所述天线中接收多个分量信号,每个涉及接收单元或接收单元组;
使用分裂和滤波装置分离打算送给第一基站的分量信号,并使用放大装置放大所述分量信号;
将复加权或多个加权应用到第一基站中的至少一个分量信号,由此相对于至少一个其它的分量信号改变所述分量信号的相位和/或幅度;
在第一基站中的射束形成器中组合所述分量信号,以产生在由所述复加权或多个加权控制的方向上形成的接收射束。
CN2003801015856A 2002-10-19 2003-10-15 移动无线基站 Expired - Fee Related CN1706068B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB0224341.8A GB0224341D0 (en) 2002-10-19 2002-10-19 Mobile radio base station
GB0224341.8 2002-10-19
PCT/GB2003/004447 WO2004036785A2 (en) 2002-10-19 2003-10-15 Mobile radio base station

Publications (2)

Publication Number Publication Date
CN1706068A true CN1706068A (zh) 2005-12-07
CN1706068B CN1706068B (zh) 2013-02-06

Family

ID=9946193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2003801015856A Expired - Fee Related CN1706068B (zh) 2002-10-19 2003-10-15 移动无线基站

Country Status (12)

Country Link
US (2) US7433713B2 (zh)
EP (1) EP1552578B1 (zh)
JP (1) JP4468816B2 (zh)
KR (1) KR20050083785A (zh)
CN (1) CN1706068B (zh)
AT (1) ATE456870T1 (zh)
AU (1) AU2003271952A1 (zh)
DE (1) DE60331159D1 (zh)
ES (1) ES2342770T3 (zh)
GB (1) GB0224341D0 (zh)
HK (1) HK1086391A1 (zh)
WO (1) WO2004036785A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101606332B (zh) * 2006-11-10 2013-02-13 昆特尔科技有限公司 具有极化分集的电倾斜天线系统
CN103985965A (zh) * 2014-05-28 2014-08-13 成都雷电微力科技有限公司 一种模拟矢量调制器在相控阵天线中的应用系统
CN102273097B (zh) * 2008-12-30 2015-07-22 阿斯特里姆有限公司 校准设备和方法
CN111869005A (zh) * 2018-03-27 2020-10-30 维尔塞特公司 用于相控阵天线的分布式复用控制信号与元件信号的电路架构
CN112929037A (zh) * 2021-01-29 2021-06-08 中国铁塔股份有限公司 信号合路系统及电子设备

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0224341D0 (en) * 2002-10-19 2002-11-27 Qinetiq Ltd Mobile radio base station
GB0325987D0 (en) * 2003-11-07 2003-12-10 Qinetiq Ltd Phased array antenna system with controllable electrical tilt
CA2545517C (en) * 2004-03-11 2014-05-06 Telefonaktiebolaget Lm Ericsson (Publ) An antenna diversity system
CA2559955C (en) 2004-03-15 2016-02-16 City Of Hope Methods and compositions for the specific inhibition of gene expression by double-stranded rna
US7729726B2 (en) * 2004-03-26 2010-06-01 Nortel Networks Limited Feeder cable reduction
US7181243B1 (en) * 2004-06-15 2007-02-20 Nortel Networks Limited Frequency translation
JP4491654B2 (ja) 2004-06-15 2010-06-30 テレフオンアクチーボラゲット エル エム エリクソン(パブル) アンテナダイバシティ装置とその方法
GB0415811D0 (en) * 2004-07-15 2004-08-18 Quintel Technology Ltd Antenna system for shared operation
US8135086B1 (en) 2004-08-09 2012-03-13 Rockstar Bidco, LP Cable reduction
US7098849B2 (en) * 2004-09-23 2006-08-29 Interdigital Technology Corporation Blind signal separation using array deflection
US7190308B2 (en) * 2004-09-23 2007-03-13 Interdigital Technology Corporation Blind signal separation using signal path selection
EP1949559B1 (en) * 2005-10-27 2011-08-24 Telecom Italia S.p.A. Method and system for multiple antenna communications using multiple transmission modes, related apparatus and computer program product
US8452333B2 (en) * 2005-12-12 2013-05-28 Apple Inc. Feeder cable reduction
GB0602530D0 (en) * 2006-02-09 2006-03-22 Quintel Technology Ltd Phased array antenna system with multiple beams
US7420508B2 (en) * 2006-02-14 2008-09-02 The Aerospace Corporation Higher-order intermodulation reduction using phase and angle smearing
US7714780B2 (en) * 2006-03-10 2010-05-11 Broadcom Corporation Beamforming RF circuit and applications thereof
GB0611379D0 (en) 2006-06-09 2006-07-19 Qinetiq Ltd Phased array antenna system with two-dimensional scanning
EP2030284A4 (en) * 2006-06-16 2009-06-10 At & T Mobility Ii Llc MULTIBAND ANTENNA
US7630696B2 (en) 2006-06-16 2009-12-08 At&T Mobility Ii Llc Multi-band RF combiner
US7764245B2 (en) 2006-06-16 2010-07-27 Cingular Wireless Ii, Llc Multi-band antenna
US7277062B1 (en) 2006-06-16 2007-10-02 At&T Mobility Ii Llc Multi-resonant microstrip dipole antenna
GB0616449D0 (en) 2006-08-18 2006-09-27 Quintel Technology Ltd Diversity antenna system with electrical tilt
EP2113145B1 (en) * 2006-11-29 2011-01-19 Telecom Italia S.p.A. Switched beam antenna system and method with digitally controlled weighted radio frequency combining
GB2444980B (en) 2006-12-22 2012-02-22 Deltenna Ltd Antenna system
WO2008136003A2 (en) * 2007-05-08 2008-11-13 Bon Networks Inc. Method and devices for phased array beam scanning
EP2186165A4 (en) * 2007-08-30 2013-07-03 Commscope Inc ANTENNA WITH CELLULAR COMMUNICATION CAPABILITY AND POINT TO DOT COMMUNICATION
EP2232637B1 (en) * 2007-12-19 2017-05-03 Telecom Italia S.p.A. Method and system for switched beam antenna communications
US20090233644A1 (en) * 2008-03-11 2009-09-17 Matsushita Electric Industrial Co., Ltd. Multiple carrier radio systems and methods employing polar active antenna elements
US8577296B2 (en) * 2008-08-29 2013-11-05 Empire Technology Development, Llc Weighting factor adjustment in adaptive antenna arrays
JP5386721B2 (ja) * 2009-03-03 2014-01-15 日立金属株式会社 移動通信用基地局アンテナ
EP2226890A1 (en) * 2009-03-03 2010-09-08 Hitachi Cable, Ltd. Mobile communication base station antenna
KR101118919B1 (ko) * 2009-07-27 2012-02-27 주식회사 에이스테크놀로지 송수신모듈을 내장한 기지국 안테나장치
US20110074646A1 (en) * 2009-09-30 2011-03-31 Snow Jeffrey M Antenna array
US8891647B2 (en) * 2009-10-30 2014-11-18 Futurewei Technologies, Inc. System and method for user specific antenna down tilt in wireless cellular networks
US8373612B2 (en) 2010-06-03 2013-02-12 Qwest Communications International Inc. Antenna installation apparatus and method
CN103891152B (zh) * 2011-08-19 2016-04-27 昆特尔科技有限公司 用于提供垂直平面空间波束成形的方法和装置
WO2012162985A1 (zh) * 2011-09-22 2012-12-06 华为技术有限公司 天线以及信号发射方法
US9450659B2 (en) * 2011-11-04 2016-09-20 Alcatel Lucent Method and apparatus to generate virtual sector wide static beams using phase shift transmit diversity
JP5866701B2 (ja) * 2012-03-20 2016-02-17 華為技術有限公司Huawei Technologies Co.,Ltd. アンテナシステム、基地局システム、及び通信システム
US8564497B1 (en) 2012-08-31 2013-10-22 Redline Communications Inc. System and method for payload enclosure
US9054810B2 (en) * 2013-02-11 2015-06-09 Centurylink Intellectual Property Llc Distributed outdoor network apparatus and methods
WO2014137132A1 (ko) 2013-03-04 2014-09-12 주식회사 케이엠더블유 무선통신 네트워크에서 무선 접속 노드 시스템의 안테나 공용화 장치
EP3024153A4 (en) * 2013-08-09 2016-07-13 Huawei Tech Co Ltd METHOD AND SYSTEM FOR THE COMMON USE OF AN ANTENNA THROUGH SEVERAL OPERATORS AND DIGITAL RADIO FREQUENCY TRANSMITTER
WO2015077938A1 (zh) * 2013-11-27 2015-06-04 华为技术有限公司 同频段合分路器和多系统合路平台
JP6276097B2 (ja) * 2014-04-04 2018-02-07 株式会社デンソー 測定システム
US10064145B2 (en) 2015-01-26 2018-08-28 Electronics And Telecommunications Research Institute Method of receiving downlink signal of high speed moving terminal, adaptive communication method and adaptive communication apparatus in mobile wireless backhaul network
JP6687454B2 (ja) * 2015-04-17 2020-04-22 住友商事株式会社 無線基地局構造
US10854967B2 (en) 2017-03-30 2020-12-01 Commscope Technologies Llc Base station antennas that are configurable for either independent or common down tilt control and related methods
GB2571709B (en) * 2018-02-28 2020-09-09 Cambium Networks Ltd Interference mitigation apparatus and method for a wireless terminal
US11201388B2 (en) 2018-03-22 2021-12-14 Commscope Technologies Llc Base station antennas that utilize amplitude-weighted and phase-weighted linear superposition to support high effective isotropic radiated power (EIRP) with high boresight coverage
US10797773B2 (en) 2019-02-13 2020-10-06 University Of Utah Research Foundation Apparatuses and methods for transmission beamforming
US11184044B2 (en) * 2019-09-18 2021-11-23 Rf Venue, Inc. Antenna distribution unit
CN118117288B (zh) * 2024-03-28 2024-09-20 河北宇天通信器材有限公司 一种通信基站用天线

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI88660C (fi) 1991-01-09 1993-06-10 Nokia Telecommunications Oy Radiosaendarmottagarsystem
US5546090A (en) * 1991-12-12 1996-08-13 Arraycomm, Inc. Method and apparatus for calibrating antenna arrays
FI105430B (fi) * 1995-05-24 2000-08-15 Nokia Networks Oy Tukiasemalaitteisto sekä menetelmä antennikeilan suuntaamiseksi
JP3204111B2 (ja) 1996-08-28 2001-09-04 松下電器産業株式会社 指向性制御アンテナ装置
US6812824B1 (en) * 1996-10-17 2004-11-02 Rf Technologies, Inc. Method and apparatus combining a tracking system and a wireless communication system
US6144652A (en) * 1996-11-08 2000-11-07 Lucent Technologies Inc. TDM-based fixed wireless loop system
US5784031A (en) * 1997-02-28 1998-07-21 Wireless Online, Inc. Versatile anttenna array for multiple pencil beams and efficient beam combinations
JP3545933B2 (ja) 1998-02-26 2004-07-21 日本電信電話株式会社 移動通信基地局用アレーアンテナ装置及びその制御方法
JP3374750B2 (ja) 1998-06-16 2003-02-10 日本電信電話株式会社 移動通信用基地局アンテナ
GB2339078B (en) 1998-07-02 2003-07-02 Secr Defence Adaptive sensor array apparatus
JP2000209017A (ja) 1999-01-20 2000-07-28 Fujitsu Ltd 無線基地局
JP4624517B2 (ja) 1999-03-12 2011-02-02 ヤマザキ・ホールディングス,リミテッド・ライアビリティ・カンパニー アクティブアンテナを適用した基地局
GB2349045A (en) 1999-04-16 2000-10-18 Fujitsu Ltd Base station transmission beam pattern forming; interference reduction
CN1118146C (zh) * 1999-08-10 2003-08-13 信息产业部电信科学技术研究院 一种校准智能天线阵的方法和装置
KR100376298B1 (ko) 1999-09-13 2003-03-17 가부시끼가이샤 도시바 무선통신시스템
AU1312801A (en) 1999-10-20 2001-04-30 Andrew Corporation Telecommunication antenna system
US6792289B1 (en) 1999-11-08 2004-09-14 Qualcomm Incorporated Non-bandlimiting antenna sharing method and apparatus for base stations
JP2001168789A (ja) 1999-12-14 2001-06-22 Hitachi Ltd 指向性可変型移動体通信基地局
US6658263B1 (en) * 1999-12-21 2003-12-02 Lucent Technologies Inc. Wireless system combining arrangement and method thereof
CA2327761A1 (en) 1999-12-21 2001-06-21 Lucent Technologies Inc. Wireless systems combining arrangement and method thereof
JP2001203620A (ja) 2000-01-19 2001-07-27 Matsushita Electric Ind Co Ltd 無線基地局装置及び無線通信方法
GB2362295A (en) 2000-05-12 2001-11-14 Motorola Inc Applying downlink weights to an adaptive antenna array
KR100452536B1 (ko) * 2000-10-02 2004-10-12 가부시키가이샤 엔.티.티.도코모 이동통신기지국 장치
US20020077154A1 (en) 2000-12-19 2002-06-20 Judson Bruce A. Base station antenna sharing
GB2374251A (en) 2001-04-04 2002-10-09 Secr Defence Base station transmitter
GB2376567B (en) 2001-06-12 2005-07-20 Mobisphere Ltd Improvements in or relating to smart antenna arrays
GB0224341D0 (en) * 2002-10-19 2002-11-27 Qinetiq Ltd Mobile radio base station
US6856284B1 (en) * 2003-10-22 2005-02-15 Itt Manufacturing Enterprises, Inc. Methods and apparatus for multi-beam, multi-signal transmission for active phased array antenna

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101606332B (zh) * 2006-11-10 2013-02-13 昆特尔科技有限公司 具有极化分集的电倾斜天线系统
CN102273097B (zh) * 2008-12-30 2015-07-22 阿斯特里姆有限公司 校准设备和方法
CN103985965A (zh) * 2014-05-28 2014-08-13 成都雷电微力科技有限公司 一种模拟矢量调制器在相控阵天线中的应用系统
CN103985965B (zh) * 2014-05-28 2016-08-24 成都雷电微力科技有限公司 一种模拟矢量调制器在相控阵天线中的应用系统
CN111869005A (zh) * 2018-03-27 2020-10-30 维尔塞特公司 用于相控阵天线的分布式复用控制信号与元件信号的电路架构
US11831077B2 (en) 2018-03-27 2023-11-28 Viasat, Inc. Circuit architecture for distributed multiplexed control and element signals for phased array antenna
CN112929037A (zh) * 2021-01-29 2021-06-08 中国铁塔股份有限公司 信号合路系统及电子设备

Also Published As

Publication number Publication date
GB0224341D0 (en) 2002-11-27
US20060003808A1 (en) 2006-01-05
US8185161B2 (en) 2012-05-22
HK1086391A1 (en) 2006-09-15
WO2004036785A2 (en) 2004-04-29
US7433713B2 (en) 2008-10-07
KR20050083785A (ko) 2005-08-26
JP2006503465A (ja) 2006-01-26
EP1552578B1 (en) 2010-01-27
JP4468816B2 (ja) 2010-05-26
DE60331159D1 (de) 2010-03-18
WO2004036785A3 (en) 2004-06-24
EP1552578A2 (en) 2005-07-13
ATE456870T1 (de) 2010-02-15
US20090075701A1 (en) 2009-03-19
ES2342770T3 (es) 2010-07-14
CN1706068B (zh) 2013-02-06
AU2003271952A8 (en) 2004-05-04
AU2003271952A1 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
CN1706068A (zh) 移动无线基站
CN108432153B (zh) 用于控制等效全向辐射功率的方法和设备
US9030363B2 (en) Method and apparatus for tilting beams in a mobile communications network
JP4796595B2 (ja) アンテナ・システム
JP6174574B2 (ja) アンテナ制御
JP4384658B2 (ja) 可変電気的傾斜を有する位相アレイアンテナシステム
US7714776B2 (en) Antenna array calibration
US6463301B1 (en) Base stations for use in cellular communications systems
JPH104392A (ja) 複数ビーム無線遠隔通信システム
US20040219950A1 (en) Antenna arrangement and base transceiver station
US20080293451A1 (en) Sectorisation of Cellular Radio
KR20060109892A (ko) 제어가능 전기적 틸트를 구비한 위상 어레이 안테나 시스템
US20100188289A1 (en) Communication system and method using an active phased array antenna
US6661374B2 (en) Base transceiver station having multibeam controllable antenna system
CA2908826A1 (en) Low cost active antenna system
RU2475958C2 (ru) Автоматизированная приемопередающая система коротковолновой связи
CN1282389C (zh) 产生定向天线波束的方法以及无线电发射机
EP3791442A1 (en) Multi-band cellular antenna system
KR101971781B1 (ko) 상호 커플링 기반의 편파 안테나를 이용한 전이중 방식 송수신 장치 및 동작 방법 그리고 안테나
WO2002033998A2 (en) Method and system for reducing cell interference
WO2016076054A1 (ja) アンテナシステム
WO2002033997A2 (en) Method and system for calibrating antenna towers to reduce cell interference

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1086391

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1086391

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130206

Termination date: 20161015

CF01 Termination of patent right due to non-payment of annual fee