CN1681384A - 种子蛋白和油含量增加的高产大豆植物 - Google Patents
种子蛋白和油含量增加的高产大豆植物 Download PDFInfo
- Publication number
- CN1681384A CN1681384A CNA03821573XA CN03821573A CN1681384A CN 1681384 A CN1681384 A CN 1681384A CN A03821573X A CNA03821573X A CN A03821573XA CN 03821573 A CN03821573 A CN 03821573A CN 1681384 A CN1681384 A CN 1681384A
- Authority
- CN
- China
- Prior art keywords
- plant
- soybean
- seed
- strain
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H6/00—Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
- A01H6/54—Leguminosae or Fabaceae, e.g. soybean, alfalfa or peanut
- A01H6/542—Glycine max [soybean]
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H1/00—Processes for modifying genotypes ; Plants characterised by associated natural traits
- A01H1/02—Methods or apparatus for hybridisation; Artificial pollination ; Fertility
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H1/00—Processes for modifying genotypes ; Plants characterised by associated natural traits
- A01H1/04—Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H4/00—Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
- A01H4/005—Methods for micropropagation; Vegetative plant propagation using cell or tissue culture techniques
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H4/00—Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
- A01H4/008—Methods for regeneration to complete plants
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H5/00—Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
- A01H5/10—Seeds
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/30—Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L11/00—Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Developmental Biology & Embryology (AREA)
- Botany (AREA)
- Environmental Sciences (AREA)
- Physiology (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Chemical & Material Sciences (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Animal Husbandry (AREA)
- Mycology (AREA)
- Agronomy & Crop Science (AREA)
- Nutrition Science (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Peptides Or Proteins (AREA)
- Beans For Foods Or Fodder (AREA)
- Edible Oils And Fats (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明通过提供具有高种子蛋白含量,高蛋白油含量和高产量特性的大豆品种植株克服了先前该领域的缺陷。本发明提供了这些植株的衍生物或植株部分。本发明还提供了这些植株的应用方法。本发明的重要意义在于油和蛋白含量是很重要的农学特性,但是当产量减少时这些特性的价值相应减少或消失。
Description
发明背景
本申请享有2002年7月11日递交的美国临时专利申请Ser.No.60/396287的优先权,该申请的全部内容在此处引入作为参考。
1.发明领域
本发明主要涉及大豆培育领域。尤其涉及高产量和高种子蛋白和油含量的大豆品种。
2.相关背景描述
大豆是很好的蛋白来源(Mounts等,Fulmer,1988),随着世界产量的不断增长,大豆可能成为充足的营养食品和饲料。目前的大豆品种平均蛋白含量约占种子干重的41%,平均油含量约占种子干重的21%(Leffel和Rhodes,1993)。
大多数商用大豆加工制成食用油和一种或多种蛋白产品。最初的蛋白部分是大豆粗粉,其中或者含有来自豆荚的纤维(含大豆蛋白44%)或与豆荚纤维分离(含大豆蛋白48.5%)。最初的豆粉再进一步加工制成高度精制的蛋白产品,主要是大豆蛋白的浓缩物或分离物。这些蛋白部分中的任何一种-豆粉,浓缩或分离物-蛋白组分都具有经济和营养价值。大豆蛋白的价值在于它对于人和牲畜具有很高的营养价值以及形成凝胶和泡沫的功能特性。替代的加工方法可以生产基于蛋白的大豆食品,例如豆腐或豆浆。鉴于大豆蛋白的经济价值,富含高浓度蛋白的大豆受到青睐。然而,要获得经济利益,高蛋白含量就不能伴随有每英亩低油含量或低种子产量。
提高大豆种子蛋白含量的培育计划已经进行了许多年(Burton,J.W.1985;Hartwig,E.E.1969;Hartwig,E.E.1979;Johnson,H.W.1961;和Leffel,R.C.1988)。然而,除个别例外以外,至今高蛋白大豆的产量不如商用品种的高。研究显示大豆种子产量和蛋白含量之间具有负遗传相关性(Caldwell等,1966;Hinson等,1972;Kwon和Torrie,1964;Thorne和Fehr,1970;Burton,1988;Leffel和Rhodes,1993;Serretti等,1994;Pantalone等,1996;Simpson和Wilcox,1983;Shannon等,1972)。特性间的高度负相关性使得Hartwig(1973)认为不可能同时保持高油和高蛋白含量。Openshaw和Hadley(1984)认为设计用来提高蛋白和油含量的培育方法能获得有限的成功。Orf(1988)认为从培育的立脚点出发,培育高蛋白、高油和高产量的大豆品种是困难的,可能不是一个真实常规的培育目标。Hymowitz(1976)暗示从长远来看如果一直强调大豆的产量,有可能生产出低蛋白含量的大豆。
负关联有坚实的遗传学基础(紧密连锁,多效性,或二者皆有),对蛋白百分比的选择会导致减产。对于包括产量和蛋白百分比的选择指数的研究普遍的确证了这种负关联关系。Caldwell等(1966)预测当蛋白百分比作为唯一的选择标准时会导致减产。Burton(1984)总结了多个培育研究的结果,报告认为种子产量和种子蛋白百分比的遗传型相关系数介于-0.12至-0.74之间。只有在一个品种上这两个特性之间才显示正相关。由Sebern和Lambert(1984),Simpson和Wilcox(1983),和Wehrmann等(1987)做的其它研究报道了种子产量和种子蛋白之间中等至强的逆相关关系,相关系数介于-0.23至-0.86。
过去,采用种系和回交的方法筛选蛋白百分比高的大豆系列获得了有限的成功。Cianzio和Fehr(1982)评测了F2代F2来源的种系和F3代BC1F1和BC2F1来源的种系的种子蛋白和油含量,F3代是高蛋白种系Pando和PI153.269与高产量品种Well和Woodworth的杂交。杂交种系的蛋白浓度均没有高蛋白供给母体的高。每一次和高产母体回交,种群的蛋白百分含量和遗传方差都减少了。结果显示很难将蛋白水平极高的品种的基因转移至低蛋白水平品种中。本研究评测的培育种系的产量数据未见报道。
Wehrmann等(1987)评测了三个种群的95BC2后代,其中轮回母体是高产量种系,供给母体是Pando,其种子蛋白平均含量是480g/kg。在这些种群中,没有发现集特别高的种子蛋白和轮回母体的产量于一体的回交种系。两种种群蛋白含量最高的种系的蛋白平均含量只有422和433g/kg,并且产量和种子油含量与轮回母体没有显著不同。在第三种群中,蛋白含量最高的种系的蛋白平均含量是462g/kg,但其产量和种子油浓度比轮回母体低很多。
有多家报道种子产量和种子蛋白百分含量之间的遗传相关性并不像文献所描述的那样强(Byth等,1969;Wilcox和Cavins,1995)。然而,没有回交研究对BC3代以前的后代进行评估。通过回交将高种子蛋白品种转为高产量品种缺乏成功的例子,这使得人们对于将这两种特性集中于适合的种子根或品种的可能性产生了怀疑。
种植所有的农作物品种都是为了获取具有很好的商业价值的产品。提高产品的生产率和产量是大多数植物培育计划的主要目标。在大多数大豆品种培育计划中,最优先的一点是提高种子的产量。种子产量是受多种基因控制并受环境强烈影响的定量特性。考虑到品种发育,产量的遗传率是主要农学特性中最低和最不恒定的,其估计介于3至58%之间。产量是一种定量特性,种植者期望在当前品种产量的基础上进一步提高它。为了保持某个品种的可能产量,大多数情况需要抑制疾病的发生。
由于蛋白、油含量和产量之间存在负相关性,将高蛋白或高油品种和高产量品种结合具有很大的挑战性。如果种植者设法使一个品种在不减少油含量的同时显著增加整体蛋白含量,那么使其具有商业价值的难度将增加好几倍。可能是这些困难的缘故,并没有高产量的获得保持种子油的同时又富含种子蛋白的大豆品种。然而,在该领域对于这种大豆品种具有很大的需求量。增加种子蛋白含量能显著提高大豆产量的商业价值。由于增加种子蛋白含量具有很高的商业价值,产量和/或油含量不许受到显著影响。因此,生产既有高产量又有高蛋白和油的大豆品种代表了该领域重要前沿,对于种植者和消费者等都有好处。
发明简述
一方面,发明提供了一种农学上精良的大豆品种,它的平均种子蛋白含量介于44%至50%之间,平均种子蛋白和油含量介于64%至70%之间,而且具有能够商品化的高产量。本发明还提供了该植物的以下部分,包括花粉、胚珠、细胞和种子,但不限于此。此外本发明还提供了该植物轮回细胞的组织培养,其中组织培养再生的大豆植物能够表达该植物所有的生理学和形态学上的特性。在本发明的一个实施方案中,轮回细胞包括胚、分生组织细胞、花粉、叶子、根、根尖或花或者由其衍生出来的原生质或愈合组织。本发明还提供了一种由组织培养再生的大豆品种,它能够表达本发明中植物的所有生理和形态学上的特性。
具体的讲,本发明中的植物可能还包括单一基因位点转换。这种单一基因位点转换的例子包括显性等位基因、隐性等位基因、通过转化稳定插入大豆基因组的单一基因位点和单一基因。
另一方面,本发明提供了一种农学上精良的大豆品种,它的种子蛋白的平均含量介于44%和50%之间,种子蛋白和油的含量介于64%和70%之间,而且具有能够商品化的高产量,其中制备植物的方法包括以下步骤:(a)将大豆品种SN30003与第二个品种杂交,其中第二个品种具有能够商品化的高产量;(b)从杂交结果中选出一个后代;(c)将这个后代与其自己或第三个品种杂交产生下一代植物;(d)重复步骤(b)和(c)再进行3-10代产生一种农学上精良的大豆品种,它的种子蛋白平均含量介于44%至50%,种子蛋白和油的平均含量介于64%和70%之间,而且具有能够商品化的高产量。在本发明的一个实施方案中,第二个品种作物选自A2552,AGW26703,AG3003和AG3302。
再一方面,本发明提供了生产大豆种子的方法,包括将本发明的作物与其自己或第二种大豆作物杂交。具体的讲,方法可以进一步定义为制备杂交大豆种子的方法,包括将作物与第二个不同的大豆作物进行杂交。杂交包括以下步骤:(a)培育本发明中的起始作物的种子和第二个不同作物的种子;(b)从种子开始种植作物直至开花;(c)将起始作物的花与第二个大豆作物的花粉交叉授粉或者将第二个大豆作物的花与起始作物的花粉交叉授粉;(d)交叉授粉之后收获种子。
再一方面,本发明提供了按照大豆栽培程序种植大豆作物的方法,包括:(a)得到本发明提供的大豆作物或它的植株部分;(b)用植物栽培技术将该作物或它的植株部分作为栽培物的来源。在本发明的一个实施方案中,植物栽培技术可以从下列技术中选择,包括轮回筛选,混合选择,群体筛选,回交,纯种栽培,基因标记辅助筛选和基因转化。在该方法中,本发明中的作物可以用作雄性或雌性母体。
还有一方面,本发明提供了由起始植株开始生产大豆植株的方法,该方法包括以下步骤:(a)通过将植株与第二个大豆植株杂交由起始植株生产后代植株;(b)将后代植株与它本身或第二个植株杂交产生下一代的后代植株,该后代植株来源于起始作物。在本发明的一个实施方案中,该方法还包括:(c)将下一代的后代与它自己或第二个作物植株杂交;(d)再重复步骤(b)和(c)至少另外2-10代产生来源于起始植株的大豆植株。在本发明的实施方案中,该方法可以进一步定义为生产种子蛋白和油含量增加的大豆植株的方法,其中大豆植株的种子蛋白和油含量相对于第二个大豆植株有所增加;该方法可以进一步定义为生产蛋白含量增加的大豆植株,其中大豆植株的种子蛋白含量相对于第二个大豆作物有所增加;该方法可以进一步定义为生产种子油含量和蛋白与油总含量都增加的大豆植株,其中大豆植株的种子蛋白含量和蛋白与油总含量相对于第二个大豆植株都有所增加。此外,该方法还包含:(a)将源自发明中起始作物的植株与它自己或另一个大豆植株进行杂交产生源自起始作物的其它后代的种子;(b)在适于作物生长条件下种植种子产生源自起始作物的其它作物;(c)重复杂交和种植步骤(a)和(b)0至7次产生源自起始植株的植株。本发明还提供了由本方法生产的植株或它的植株部分,其中植株的种子蛋白平均含量介于44%和50%之间,平均整体种子总蛋白和油平均含量介于64%和70%之间,而且具有可以商品化的高产量。
还有一个方面,本发明提供了一种生产具有高种子蛋白含量和高蛋白与油含量与高产量相组合的大豆植株,包括:(a)将大豆品种SN30003植株与第二个品种植株杂交,其中第二品种植株具有可以商业化的高产量;(b)从杂交结果中选择后代大豆植株;(c)将后代大豆植株与其自己或第三个植株杂交产生下一代植株的后代植株;(e)重复步骤(b)和(c)另外3-10代,产生具有高种子蛋白和高蛋白与油含量与高产量相组合的大豆作物,其中筛选包括在一代或多代中对种子蛋白含量,种子油含量和/或种子产量进行筛选,其中大豆作物平均整体种子总蛋白平均含量介于44%和50%之间,平均整体种子总蛋白和油平均含量介于64%和70%之间,并且具有可以商业化的高产量。该方法中,在种子蛋白含量,种子油含量和/或种子产量的基础上筛选每一代的后代作物进行杂交。本发明还提供了按照本方法生产的作物,其平均整体种子总蛋白含量介于44%和50%之间,平均整体种子总蛋白与油含量介于64%和70%之间,具有能够商品化的高产量。
本发明的另一方面是为人或动物消耗提供食品制品的方法,包括:(a)收获本发明中的植株;(b)栽培植株直至其成熟;(c)由植株制备食品制品。具体的讲,食品产品可以是蛋白浓缩物,蛋白分离物,粗粉,油,精粉或豆荚。
发明详述
本发明通过提供拥有商品化高产量和保持种子油含量同时具有高种子蛋白含量的大豆品种克服了现有技术上的缺点(例如,高蛋白与油)。特别是本发明第一次提供了高产量的农学上精良的大豆品种,它的平均整体种子总蛋白含量超过44%,平均整体种子总蛋白与油含量超过64%。例如这种农学上精良植株可能有商品化的高产量。可能是由于这些特性之间的负相关性(Hartwig,1973),以前的技术没有能够提供这样品种的作物。尽管具有诸如高蛋白,高蛋白与油或高产量特性中的一个或两个特性品种的作物已经制备出来,但是这些特性并没有成功的组合到一起。通过描述这种作物的生产和提供这些作物,本发明现在能够制备数量上可能没有限制的新型大豆品种,这些品种表现出可以商品化的高产量,高种子蛋白含量和高蛋白与油含量。正如下面所述,这是由于一旦生产这种精良品种和/或生产这种品种的母体作物得到鉴定,通过合适的回交和筛选技术可以将蛋白与油的特性转移到其它品种上以保持期望的特性。
种植任何新型的期望的作物的植物胚质需要许多步骤,例如此处描述的种系或通过本发明中的方法衍生出来的品种。植物栽培从对当前植物胚质的问题和弱点的分析和定义,计划目标的建立和特定栽培目标的定义开始。下一步是对拥有符合计划目标的特性的植物胚质的筛选。目标是将母体植物胚质所期望的特性集中到单一品种上。除了可以商品化的高产量和高蛋白及油含量以外,这些特性还包括,例如,对疾病和害虫的抵抗力,更好的茎和根,抗干旱和抗热能力,更好的农学性质,对除莠剂的抵抗力,和对不同组分特性的改善。
栽培和筛选方法的选择依赖于作物的再生模式,特性遗传率的改善,和可以商品化的品种的种类(例如,F1杂交品种,纯种系品种,等)。对于高度遗传的特性,根据对单个部位的评价而选择优良的个别品种是有效的,而对于低遗传率的特性而言,应当在对相关作物家族反复评价得到平均评价的基础上进行筛选。流行的筛选方法通常包括种系筛选,改良的种系筛选,混合筛选,轮回筛选和回交。下面详细描述了与当前发明相关可以被采用的方法。
I.发明作物
本发明提供的大豆品种及其衍生物的植株具有可以商品化的高产量和高蛋白,同时种子油并没有减少。特别是,本发明首次提供了具有高产量,农学上精良的大豆品种,其平均整体种子总蛋白平均含量超过44%,平均整体种子总蛋白和油平均含量超过64%。例如,这些农学上精良的植株每英亩产量超过35蒲式耳。在某些实施方式中,本发明的植株的种子油平均含量可能超过44%,45%,46%,48%,或50%。本发明植株的平均整体种子总蛋白和油含量可能超过64%,66%,68%,或70%。在本发明的进一步实施方案中,平均整体种子总蛋白含量至少45%,最高大约50%,平均整体种子总蛋白和油含量超过66%,最高大约70%。在本发明的进一步实施方案中,整体种子总蛋白平均含量至少46%,最高至50%,整体种子总蛋白和油平均含量超过68%,最高至约70%。
正如上面所述,本发明的主要优点是发明中的植株蛋白与油含量高,具有可以商业化的高产量。此处所说的商业化高产量可以定义为平均产量至少为每英亩产量35蒲式耳。例如,至少每英亩产量36,37,38,40,42,44或更多蒲式耳,包括从至少每英亩35蒲式耳至每英亩约50,55,60或更多蒲式耳。
本发明提供的大豆品种中表现出具有可以商品化的高产量和高种子蛋白和高蛋白与油含量相组合的品种有0007583,0008079,0137335,0137472,0137441和0137810。当前发明的一个方面指这些品种的植株及其部分以及使用这些植株和及其部分的方法。这些品种的植株部分包括,但不限于,花粉,胚珠和细胞。而且,本发明提供了这些品种的再生细胞的组织培养,培养再生的大豆植株能够表达该品种所有的生理上和形态上的特性。这种再生细胞可能包括胚,分生细胞,花粉,叶子,根,根尖或花,原生质体或源自它的愈合组织。本发明还提供了由组织培养所再生的大豆植株,其中植株能够表达该植株品种的所有生理和形态上的特性,从这些植株品种中可以得到再生细胞。这些品种的植株可能还包括单一基因位点转换。这样的单一基因位点转换的例子还包括显性等位基因,隐性等位基因,通过转化稳定插入大豆基因组的单一基因位点和包含单一基因的单一基因位点。
当前发明还提供了杂交本发明中的大豆植株的方法。在一个实施方案中,本发明的植株有下列品种0007583,0008079,0137335,0137472,0137441或0137810。方法包括植株与其自身或第二个大豆植株进行杂交。当植株与第二个不同的植株杂交,就产生了一个杂交品种。例如,杂交包括种植一个品种的种子和另一个不同的大豆植株;从种子开始就培育大豆植株直至开花;将第一植株的花与第二植株的花粉交叉授粉或将第二植株的花与第一植株的花粉交叉授粉;收获交叉授粉后所得到的种子。
本发明还提供了按照大豆培养计划培养大豆植株的方法,包括:获得本发明的大豆植株,或它的部分,使用植物栽培技术利用植株或它的部分作为栽培物的来源。在本发明的实施方案中,这样的品种包括0007583,0008079,0137335,0137472,0137441或0137810。方法中使用的植物栽培技术包括轮回筛选,混合筛选,群体筛选,回交,种系栽培,基因标记辅助筛选和基因转化。在这些技术中,本发明的大豆植株可以当作雄性或雌性母体。
本发明还提供了由本发明植株生产一种大豆植株的方法,包括以下步骤:(a)将本发明中的植株与第二种大豆植株杂交制备该植株的后代植株;(b)将该后代植株与其自身或第二个植株进行杂交生成该后代植株的后代植株。该方法还包括:(c)将这个后代的后代植株与其自身或第二个植株进行杂交;(d)重复步骤(b)和(c),至少再重复2-10代后形成源自起始植株的大豆植株。在本发明的实施方案中,这样的方法可以进一步定义为生产种子蛋白含量和/或种子蛋白与油含量增加的大豆植株的方法,其中本发明中的大豆植株及其后代相对于第二个大豆植株拥有增加的种子蛋白和/或蛋白与油含量。本发明还提供了由该方法制备的植株。该方法还包括:(a)将源自本发明的植株的植株与它自己或另一个大豆植株进行杂交生成源自本发明植株的其它后代植株;(b)在植物生长条件下种植步骤(a)中的后代大豆种子,生成源自本发明植株的其它植株;(c)重复步骤(a)和(b)中的杂交和种植步骤0至7次进一步产生源自本发明植株的植株。本发明还提供了由该方法产生的植株。
II植物栽培
在培育新作物品种的栽培计划中可以使用本发明中的植株。当前发明的一个方面是关于本发明中的大豆作物与其自身或者第二植株杂交的方法以及由此方法生产的种子和植株。这些方法可以应用于大豆品种的繁殖或者用于生产杂交大豆种子和由其来源的植物。杂交大豆植株可以用于大豆产品的商业化生产或者在生产新型大豆品种的栽培规划中得到应用。本发明所提供的品种在其基因背景精良本性的基础上,特别是其高种子蛋白和高蛋白与油含量与高产量相组合的基础上,特别适于开发新品种。在回交规划中,杂交植株可在给定大豆品种的单一基因位点转换生长的任何给定阶段用作轮回母体。
在筛选第二植株与本发明的植株进行新大豆品种开发时,一般希望所选的植株表现出一种或多种希望的特性。这些可能期望的特性包括种子产量,抗倒伏性,出土能力,籽苗活力,抗病能力,成熟期,植株高度,高蛋白含量,高蛋白与油含量和抗粉碎能力。
遗传的复杂性影响着栽培方法的选择。回交可用于将一个或几个具有高遗传特性的基因转移到期望的品种中。这种方法已经广泛用于抗病品种的栽培(Bowers等,1992;Nickell和Bernard,1992)。多种轮回筛选技术用于定量改善多种基因控制的遗传特性。对自花授粉作物的轮回筛选依赖于授粉的难易。每次授粉得到杂交品种的成功几率和每次成功杂交得到杂交后代的数量。
每个栽培计划应当包括对栽培过程的有效性所做的定期的客观的评价。评价的标准依目标和对象的不同而不同,但是应当包括与正常标准相比每年筛选的增益,先进栽培品种的整体评价,每个单位投入所产出的成功品种的数量(例如,每年,每美元等)。
对于所有希望的先进的栽培品种在有代表性的能够商品化生产的地区通常进行3或更多年的全面检测,并与正常标准相比较。最好的种系作为新的商品化品种的候选。那些在少数几个特性方面仍存在缺陷的品种用做母体生产新的品种以便进一步筛选。
这些过程从第一次杂交开始到导致市场化与分配的最后步骤需要8-12年的时间。因此,新品种的开发是个耗时的过程,需要有细致的前期计划,有效的使用资源和尽可能不改变研究方向。
最困难的工作是鉴定基因优良的个体,因为对于大多数特性,真正的遗传型价值被其它使人困惑的植物特性或环境因素所掩盖。鉴定优良植株的一种方法是观察它相对于其它实验植株和一种以上广为熟知的标准品种的外部性状。一次观察不能确定结果,只有反复观察才能对基因的价值作出良好的评价。
植物栽培的目的是开发新的,独特的,优良的大豆品种和杂交品种。种植者开始筛选和杂交两种或更多种母体种系,然后重复自身杂交和筛选,制造出许多新的基因组合体。每年,植物种植者制造出原生质体,进一步产生下一代。这个原生质体生长在独特的不同的地理、气候和土壤环境中,然后在生长季节结束前进行筛选。所开发的品种是不可预期的,这是由于种植者是在独特环境中进行筛选的,通常没有DNA水平上的控制(使用传统的栽培工艺),产生数以百万计可能的不同的基因体。在该领域具有一般技术的种植者,不能预测他所开发品种的最终结果,除非是在很大的范围内和常规的形式下。这些种植者使用同样的原始母体和同样的筛选技术,也不能重复生产出相同的品种。这不可避免地导致了开发优良的大豆新品种需要大量的研究资金支出。然而,通过对起始种质的鉴定,某些特性可以通过一系列的筛选和杂交传递给后代。尽管不能预测通过给定母体杂交得到的后代具有某种特性,然而,通过在不同代对后代进行观察筛选,反复筛选后得到具有期望的特性或一种以上母体特性集合的后代。一旦起始母体被确认具有一种以上期望的特性,通过常规和反复的杂交和筛选可以生产具有期望特性的后代。
大豆新品种的开发需要对多种大豆进行开发和筛选,杂交和从优良的杂交品种中筛选后代。通过人工杂交雄性能高的母体或雄性不育的母体生产杂交母体,使用某种单一基因位点特性来确证种子确系杂交品种,例如豆荚颜色,花的颜色,发育期颜色或对除莠剂抵抗力。母体种系的其它数据以及杂交品种的表型影响着种植者决定是否进行这种杂交。
使用种系栽培和轮回筛选栽培方法开发出新品种。栽培计划将两种以上品种或广泛不同资源的期望的特性集中到苗圃中,在这里通过自花授粉和对期望的性状进行筛选,栽培出期望的品种。对新品种进行评估以确定哪个品种具有商品化的潜能。
种系栽培通常用来改善自花授粉作物。两个具有良好的互补的特性的母体杂交产生F1代。一株或多株F1自花授粉产生F2代。从F2代(或者更晚,依据种植者的目标)开始筛选最好的植株个体;然后从F3代开始在最好的种系中筛选最好的植株个体。从F3或F4代开始,反复检测种群以提高对遗传力低的特性进行筛选的有效性。在栽培的高级阶段(例如F6和F7代),对最好的种系或表型相似的种系的混合物进行检测以便找到可能的新品种。
通过混合和轮回筛选提高自花授粉或杂交授粉作物的数量。杂合个体的遗传多样性群体是通过几个不同母体的杂交而得到确证或创造出来的。在个体优良度、杰出后代或良好的组合能力的基础上选出最好的植株相互杂交产生新的植株,再用它们进行多轮筛选。
回交将能轻易遗传,具有高度遗传性的特性的基因位点转换至期望的能够作为轮回母体的杂交品种内。被转移的特性的来源被称作供体或非轮回母体。产生的植株期望具有轮回母体(例如品种)的性质和来自供给母体的期望的特性。起始的杂交结束后,选出拥有供给母体表型的个体,与轮回母体反复杂交(回交)。产生的植株期望具有轮回母体的性质(例如品种)和来自供给母体期望的特性。
单种子种系繁衍过程严格意义上是指种植分离的种群,收获单种子植株样本,再种植单种子样本产生下一代。当种群由F2代进展到期望的种植水平时,种系来源的每个植株就要追溯到不同的F2代个体。由于一些种子没能发育或一些植株没产生一个种子,种群中植株的数量逐代递减。结果,并不是种群中所有的F2代植株样本都可以被其后代所表现,此时,代的延续就结束了。
在多种子种系繁衍过程中,大豆种植者通常从种群的每一个植株上收获一个或更多的豆荚,将它们脱粒合成一批。一部分用于种植下一代,一部分储藏。该过程被认为是修饰的单种子种系繁衍或豆荚累积技术。
在收获季节,多种子种系繁衍过程能节省劳动力。它使用机器将豆荚脱粒比单种子种系繁衍过程的手工将每个豆荚脱粒快了许多。多种子种系繁衍过程还使近交的每一代都能种植出相同数量的种群的种子。收获足够的种子以弥补那些不发育或不结种子的植株。
在这几个参考书中可以找到其它常用的用于不同特性和作物的栽培方法的描述(例如,Allard,1960;Simmonds,1979;Sneep等,1979;Fehr,1987a,b)。
适当的检测应当能够发现任何主要的缺点和证实当前品种优良或改进的水平。除了表现出优良的特性外,新的品种还需要适用于工业化标准或创造出新的市场。新品种的诞生还要给种子的培育者、种植者、生产者和消费者额外的支出;特别是广告和市场运作,变更种子和商品化生产活动,和新产品的应用。新品种上市前的检测需要考虑研发费用以及最终品种的技术先进性。对于种子繁殖的品种,一定要适于容易地和经济地生产种子。
大豆Glycine max(L)是一种重要的和有价值的农作物。因而种植者的下一个目标是栽培出产量既稳定又高的具有很高农学特性的大豆品种。之所以定下这个目标就是为了在所用的土地上产出最大量的作物为人类和动物供给食品。为了达到这个目标,大豆的种植者必须筛选和栽培出具有这些特性的优良品种。
在栽培计划中高效的筛选出具有这些期望的特性(例如高产、抗病、蛋白和/或蛋白加油特性)的基因型取决于:1)种群中植株个体的目的特性的多样性在多大程度上是由遗传因素造成的并传递到它的下一代;2)植株特性(产量、疾病特性、蛋白和/或蛋白与油属性)的多样性多大程度上是由于环境因素造成的,在这种环境中种植着不同的基因型植株。这些特性的遗传要么由一种表达不受环境(例如,质量特性)影响的主要基因控制,要么由表达主要受环境影响的多种基因控制(例如,数量特性)。栽培具有数量特性的植株还具有下列特点:1)每种基因的影响差异很小,这使得区分它们的个体很困难或不可能;2)与某个特性有关的基因数量很大,清晰的分离比率即使得到也很少;和3)基因的影响依据环境的不同可能通过不同的方式表达。因此,正确鉴别种群中超亲分离株或具有期望特性的优良基因型植株是很困难的,它的成功与否取决于种植者能否将影响数量特性表达的环境变化减至最小。当集中于一个遗传型植株的特性的数量增加时,鉴别超亲分离株的可能性大大降低。例如,当将三种综合特性例如产量、抗病能力和蛋白和/或蛋白与油属性不同的品种进行杂交,很难同时将与每种特性有关的最大数量的基因集中成一种基因型同时回收。结果,所有的种植者通常期望除了抵抗除莠剂基因外,能够将与第一种综合特性有关的基因部分和与第二种综合特性有关的基因部分集合成一种基因型。
栽培计划所使用的方法和它们的成功率取决于需要同时改进的特性的数量,例如,种子产量、抗病性、和蛋白和/或蛋白与油属性。种群中期望的个体集中培育使得每一个特性得到改进,就能得到具有多种期望特性的植株。这表明这些特性是独立遗传的,而不是遗传连锁的。
这些准则不仅适用于传统的栽培种系,还适用于转基因种系。无论是通过转基因种系的杂交还是多种基因的共转化将期望的传统的和转基因特性集中于一个种系,这种组合效应对产量的影响可能是叠加的。例如,如果具有高遗传属性的种系中有合适的产量和抗病能力的只占1%,那么兼具这三种属性概率就应该是0.01×0.01×0.01或1×10-6。
大豆植株(Glycine max L)可以通过自然或机械技术进行杂交(见例子Fehr,1980)。大豆的自然授粉是通过授粉组织的自花授粉或自然杂交授粉。无论是自然还是人工杂交,都应重点考虑开花和开花时间。虽然大豆是一种避光作物,但是随光周期变化基因变化显著(Hamner,1969;Criswell和Hume,1972)。开花的极限光照长度对于适于生长在热带的基因型植株是13小时,对于生长在高纬度对光周期不敏感的基因型植株是24小时(Shibles等,1975)。大豆在长出9天内对日照时间不敏感。完成开花诱导需要光周期短于极限光照长度,为7至26天(Borthwick和Parker,1938;Shanmugasundaram和Tsou,1978)。
当基因型植株生长在适于其生长的区域以外时就得重点考虑其对日照时间的敏感性。当习惯于热带纬度的基因型植株生长在高纬度地区时,它们在霜降前可能不会成熟。通过人工制造短期的日照或嫁接可以诱导植株尽早开花或成熟(Fehr,1980)。大豆通常生长在热带纬度零海拔的冬季苗圃里,那里日照时间比它们的极限光照周期短很多。短期的日照和温暖的温度促进它尽早的开花和种子成熟,基因型植株在种植后的90天或更短的时间内就能生成种子作物。当每个植株只需要很少的自花授粉的种子时,尽早开花对于代的延续是有用的,但是对于人工杂交却不是很有用,因为花朵在长到能够人工杂交大小之前就可以自花授粉。人工光照可以延长自然光照长度至约14.5小时,得到适于杂交的花朵和增加自花授粉种子的产量。
短的光照周期对开花和种子产量的影响可以被海拔部分抵消,可能是由于低温的影响(Major等,1975)。在热带纬度,习惯于北美的品种比在零海拔表现的更像习惯于南美高海拔的品种。
延长开花所需要的光照水平依赖于光源所发出光的质量和所种植的基因型植株。波长大约480nm的蓝光需要相当于波长大约640nm的红光的30倍以上的能量才能抑制开花(Parker等,1946)。
温度在大豆的开花和栽培中也起到很重要的角色(Major等,1975)。它能够影响开花时间和花朵对于杂交的适应性。当温度低于21℃或高于32℃时能够减少开花或种子的萌发(Hamner,1969;vanSchaik和Probst,1958)。人工杂交在26℃和32℃之间最成功是因为较低的温度能减少花粉的散发,形成在长到能操作之前就自花授粉的花朵。温暖的温度由于湿气压力经常导致花朵发育不全的增加;然而,如果土壤湿度充足,在35℃时杂交可能获得成功。
依据开始开花后茎末端的突出,大豆可以分为不确定、半确定、和确定三类(Bernard和Weiss,1973)。当大豆生长在习惯的纬度上时,当主茎上有一半节点形成时,不确定基因型植株就开花了。它们的总状花序很短,包含的花也少,末端节点只有很少的花。当主茎上的节点形成一半时,半确定基因型植株也开花,但是节点的形成和主茎上的开花比不确定基因型植株停止得更突然。它们的总状花序很短,包含很少的花朵而末端的总状花序包含相当于其它花序几倍的花朵。当主茎上所有或大部分节点形成时,确定品种才开始开花。它们通常拥有延长的总状花序,花序可能长几个厘米,有大量的花朵。具报道茎的末端和开花习性受两个主要基因的控制(Brenard和Weiss,1973)。
大豆的花是在花冠开放那天进行典型的自花授粉。自然杂交的数量典型的与昆虫媒介有关,例如蜜蜂,它在行内相邻植株间大约为1%,相邻行植株间大约为0.5%。大豆花的结构与其它豆科植物的花的结构相似,包括含有五个萼片的花萼,含有花瓣的花冠,10个雄蕊和一个雌蕊(Carlson,1973)。花萼包含着花冠直至开花前一天。花冠显露开放露出一个旗瓣,两个翼瓣和两个龙骨瓣。开放的花朵从花冠的底部到旗瓣的顶端长大约7mm,旗瓣的宽大约6mm。雌蕊由含有一至五个胚珠的子房,弯向旗瓣的花柱和棒状的柱头构成。如果花瓣未动,开花前一天和开花后两天柱头对花粉是敏感的。9个雄蕊丝状体是融合在一起的,离旗瓣最近的一个是分开的。雄蕊在柱头下形成一个环直至大约开花前一天,然后它们的丝状体开始快速的延伸升高柱头周围的花药。花药在开花的那天裂开,花粉粒落到柱头上,不到10小时花粉管到达子房,授粉过程完成(Johnson和Bernard,1963)。
自然界中大豆的自花授粉不需要对花朵进行操作。对于两个大豆植株间的杂交,尽管不是必须,最好利用人工杂交。人工杂交时,杂交的雌花在花粉成熟之前就人工的进行杂交授粉,防止其自花授粉,或使用已知的技术将花朵的雄性部分去雄。例如,将大豆花朵的雄性部分去雄的技术包括物理摘除雄性部分、使用能造成雄性不育的基因因素和对雄性部分使用化学除配体剂去除雄性部分。
对于去雄的人工杂交,选择有望今后几天就开花的花朵作为雌花母体。花蕾肿胀,花冠刚能从花萼外看到或已经伸出了花萼。通常一个母体植株上不会产生两个以上的花蕾,所有的自花授粉的花朵或未成熟的花蕾已经用钳子除去。需要小心的除去藏在叶轴托叶上的未成熟的花蕾,它们日后可以长成花朵。用拇指和食指夹住花朵的柱头检查萼片。又长又弯曲的萼片盖住了龙骨瓣,柱头在花朵相反的一面。用镊子夹住萼片,将它从花朵上取下,重复上面的步骤把五个萼片取下,这样就摘除了花萼。用镊子夹住花萼伤疤上面的花冠,同时举起和扭动镊子可以将暴露的花冠摘除。在摘除龙骨瓣时一定小心夹花冠的部位要足够低以防止伤到柱头。在摘除花冠之后可以看见花药环,除非花药与花瓣一起摘除。例如,将所选的雄花放到培养皿或封套中进行杂交授粉。一些情况下使用含有氯化钙晶体的干燥器干燥雄花得到足够的脱落的花粉。
业已证明去雄对于防止自花授粉并不是必须的(Walker等,1979)。当不去雄时,经常将柱头附近的花药摘除便于能清楚的观察授粉。尽管延误几个小时并不会减少种子的播种,雌花还是要在形成后立刻就人工授粉。花粉的脱落通常从早晨开始,当温度超过30℃时可能就结束了,或者晚一点开始在更合适的温度时持续一天。
新近开放花冠的花朵产生有用的花粉,但是与花粉相关的花冠开放程度是全天变化的。很多情况下,收集的雄性花粉可以不经保存就使用。在美国南部和其它气候湿润的地方,花粉的脱落发生在早晨,此时的雌花比下午显得更不成熟和更难操作,花朵由于露水显得更湿润。这种情况下,早晨将雄花放在封套或培养皿中,将开放的容器放在25℃的干燥器中保持4小时。下午将干燥器带到田地,放到荫凉处防止其内部的温度过度升高。当花朵中的花粉保存在5℃时,能保持最高2天的存活能力。当干燥器的温度为3℃时,花朵能够成功的保存几周;然而,在长期储存后还发芽的花粉中,不同的品种所占的比例不同(Kuehl,1961)。
不论雌花去雄与否,可以用镊子摘除雄性母本的花的雄蕊和雌蕊,擦掉雌花柱头上的花药进行人工授粉。摘除前面的萼片和龙骨瓣,用合着的镊子刺穿龙骨瓣,打开镊子把花瓣取走就能得到雄蕊了。擦去柱头上的花药使它们分离,当能看到柱头上的花粉时,就可以使杂交成功的比例最大化。在擦拭柱头之前敲打花药可以检查花粉的脱落。当条件不好时,用几个雄花来获得合适的花粉脱落,或者用同一个雄花与几个具有好的脱落花粉的花朵授粉。
当雄花不必收集储存在干燥器中时,最好能够种植相邻的杂交母体。植株种植的行间距约为65至100cm以方便人员在苗圃中的活动。个体植株自花授粉种子的产量受植株密度的不同从几个至超过1000不等。当植株的密度是30株/米时,每株最多产30或更少的种子,当密度是10株/米时,每株约100个种子,当密度是3株/米时,每株种子的产量最大。人工杂交通常采用的密度是12株/米或更少。
为了迎合不同花期的母体,多重种植的日期要分开约7至14天。母体之间的花期相差很大时,可以人为的缩短天数加快后种母体的开花或人为的延长天数或延后栽种以延后先种母体的开花。例如,习惯于美国南部气候的基因型植株在美国北部进行杂交,将植株用盒子、大罐子、或相似的容器盖住,创造大约12小时的短光照周期达约15天,此时在主茎上就会形成三个连有三片叶型叶子的节。诱导早期开花的植株在小的时候就有了自花授粉的花朵,很难用于杂交。
嫁接可以用来加快花期晚的基因型植株的开花。将花期晚的基因型植株的幼枝嫁接到已经开始开花的枝条上,其将会比正常水平提前42天开花(Kiihl等,1977)。嫁接后的21至50天后幼枝上就开出了第一朵花。
基因型雄性不育对于大豆是有用的,在本发明的上下文中可以用来促进杂交,特别是对于轮回选择计划(Brim和Stuber,1973)。完全分离杂交区域所需要的距离并不清楚;然而,当雄性不育植株距离外部花粉源12米或更远时,外部杂交率低于0.5%(Boerma和Moradshahi,1975)。种植在杂交区域边缘的植株与外部花粉杂交的几率最大,收获时应将其除去避免污染。
行内杂交授粉比相邻行间杂交授粉更普遍;因此,最好将基因上雄性不育的植株种植在方格内,这样每个方向上都有行。例如,每50cm的中心种植一棵植株,将种植区域分成与植株数量相同的区域,与每一个区域的雄性不育的植株种子等数量收获以增强随机授粉。
授粉后观察豆荚发育7天足以鉴定杂交是否成功。授粉后几周可能会发生豆荚和种子的发育不全,但是如果植株的张力最小化发育不全的比例通常很低(Shibles等,1975)。人工杂交栽培的豆荚通过由于除去萼片所形成的花萼伤疤可以与自花授粉的豆荚相区分。豆荚成熟时萼片开始脱落;因此,在豆荚达到成熟颜色时或之前就要完成收获。尽早的收获豆荚还可以避免粉碎时所造成的任何损失。
一旦收获,豆荚在不超过38℃的空气中干燥直到种子含水量为13℃或更低,然后手工除去种子。如果相对湿度不超过50%,种子可以在约25℃条件满意的保存一年之久。在气候湿润的地方,发芽率迅速降低,除非种子被干燥到含水量只有7%并在室温条件下储存在密闭的容器中。在任何气候条件下长期储存种子最好将种子干燥到含水量为7%,在不高于10℃条件下储存在相对湿度为50%的屋子里或密闭容器中。
III单一基因位点转换
当在本发明的上下文中使用术语大豆品种时,这也包括该品种的任何单一基因位点转换。此处所使用的单一基因位点转换的植株是指那些用被称作回交的植物栽培技术所栽培出的大豆植株,其中除了通过回交技术转移的该品种中的单一基因位点外,该品种还有基本上所有期望的形态学和生理学特性。本发明中使用回交可以改善该品种的一个特性或向该品种引入一个特性。此处所使用的回交是指一个杂交后代与它的一个母体大豆植株反复杂交。贡献出能表达期望特性的基因位点的母体大豆植株称作非轮回或供给母体。这个术语是指在回交计划中非轮回母体只使用一次,因而不会轮回。基因位点由非轮回母体转移来的母体大豆植株被认为是轮回母体,因为它要在回交计划中轮回几次使用(Poehlman等,1995;Fehr,1987a,b;Sprague和Dudley,1988)。
在典型的回交计划中,起始的目的品种(轮回母体)与含有将被转移的目的单一基因位点的品种(非轮回母体)进行杂交。由这次杂交产生的后代再与轮回母体进行杂交,重复这个过程直至经转移得到的大豆植株除了具有从非轮回母体转移来的单一基因位点,还具有轮回母体基本上所有期望的形态学和生理学特性。
合适的轮回母体的筛选对于回交的成功很重要。回交方案的目标是更改或取代起始品种的单一特性或属性。为了达到这个目标,用期望的非轮回母体的单一基因位点修饰或取代轮回品种的单一基因位点,同时保留了起始品种基本上所有剩余的期望的基因,因而保留了所有期望的生理学和形态学部分。对于特定的非轮回母体的选择取决于回交的目标;其中的一个主要目标是给植株增加某种商业上期望的,农学上重要的特性。正确的回交方案根据要变化的特性或特点来采取合适的检测方案。尽管当转移的特性是显性等位基因时可以简化回交的方法,隐性等位基因也可以被转移。这种情况下有必要检测后代以便确定是否期望的特性已经成功的转移。
还可以由两种以上的母体培育出大豆品种(Fehr,1987a)。修饰的回交技术在回交中使用不同的轮回母体。使用修饰的回交将具有某些特别期望的特性的品种取代起始轮回母体或者使用多个母体,从每个母体获得不同的期望的特性。
已经确定许多单一基因位点特性通常不被选作新品种的栽培,却可以被回交技术所改进。单一基因位点可能是或不是转基因的;这种特性的例子包括,但不仅限于,雄性不育、对除莠剂耐受、对细菌、真菌、或病毒性疾病耐受、对昆虫耐受、对雄性生育力的恢复、增强的营养品质、产量的稳定性和产量的提高。这些包括通常由细胞核遗传的基因。
单一基因位点可以作为主要特性进行直接筛选。一个例子是抵抗除莠剂特性。在该筛选过程中,起始杂交的后代在回交之前喷洒除莠剂。喷药能除去那些没有抵抗除莠剂特性的植株,只有那些具有抵抗除莠剂基因的植株能用于后面的回交。该过程重复用于所有其它代的回交。
具有特殊用途的一种单一基因位点特性是指能对除莠剂草甘膦产生抵抗力的基因。草甘膦能抑制EPSPS酶的活性,该酶在芳香氨基酸的生物合成过程中显示活性。对该酶的抑制能够导致氨基酸苯丙氨酸、酪氨酸、色氨酸以及它们的二级代谢物的“饥饿”。这种酶的突变体对草甘膦具有耐受性。例如,美国专利4535060描述了EPSPS变种的分离,该变种使得拥有鼠伤寒沙门氏菌(Salmonellatyphimurium)EPSPS基因的有机体对草甘膦产生耐受性称为aroA。具有相似变异的EPSPS基因突变体已经由玉蜀属克隆出来。由突变基因编码的蛋白在残基102和106的氨基酸发生了变化。当这些或其它相似的基因通过基因转化转移到植株中时,就会表现出对除莠剂的抵抗。
具有包含变异的EPSPS基因的转基因的植株在不造成严重伤害后果的前提下直接用除莠剂草甘膦处理。这将帮助种植者通过大范围的应用除莠剂草甘膦在种植有能够抵抗除莠剂的植株的田地里控制杂草的生长。例如,在种植着能够抵抗草甘膦的大豆的地里应用除莠剂ROUNDUPTM,由Monsanto公司制造和销售的商品形式的草甘膦。除莠剂的使用量从每英亩大约4盎司ROUNDUPTM到大约256盎司ROUNDUPTM不等。优选应用每英亩大约16盎司到约64盎司。然而,根据要处理的杂草的品种数量,所需应用的量可以增加或减少。此外,根据能够影响杂草生长和泛滥杂草种类的苗圃的位置和天气情况,最好能够用草甘膦进一步处理。草甘膦的二次应用还包括每英亩应用大约16盎司至约64盎司的ROUNDUPTM。而且,依据土地条件的不同可以调整处理的量。在该领域这种对农作物应用除莠剂的方法众所周知,在Anderson,1983中有总结。
该领域的专业人士很容易理解能抵抗除莠剂的基因位点可用于具有抵抗基因的植株的直接筛选。例如,对一组具有或缺少抵抗除莠剂特性的大豆植株应用除莠剂ROUNDUPTM,每英亩约16盎司到64盎司不等,缺少抵抗特性的植株就会被杀死或损坏。按照这种方法,可以筛选出抵抗除莠剂的植株,将其用于商用或在某些栽培规划中进一步开发。在栽培和开发具有抵抗除莠剂特性的优良大豆品种的过程中能够发现该应用的特殊用途。
白色的花色是隐性单一基因位点特性的一个例子。种植和自身杂交来自第一代回交(BC1)的后代。栽培BC1自身杂交的后代以确定那个BC1植株携带有关于白色花色的隐性基因。其它的隐性特性,用其它的后代进行检测,例如,种植诸如BC1F2等后代以确定那个植株携带有隐性基因。
筛选栽培的大豆植株不必非得依靠植株的表型,还可以依靠基因的研究。例如,可以使用一个合适的与目的特性紧密连锁的基因标记物。因而这些标记物可以用于鉴定特定杂交后代某个特性存在与否,进而可以在连续的栽培中筛选后代。这种技术就是通常的标记物辅助筛选。其它任何的标记和测定如果能鉴定植株目的特性的相对存在或缺失,也可以用于栽培目的。用于大豆栽培的标记辅助筛选的示例性方法公开于美国专利No.5437697和No.5491081,它们的全部内容作为此处的参考文献。该方法对于隐性特性和不同的表型具有特别的用处或在传统的测定方法费用昂贵、耗时或有其它缺点时该方法的用处显得特殊。与本发明相关的基因标记物包括,但不限于,单序列长度多态性(SSLPs)(Williams等,1990),随机扩增多态DNAs(RAPDs),DNA扩增指纹(DAF),序列特征性扩增区域(SCARs),随机引物聚合酶链反应(APPCR),扩增片段长度多态性(AFLPs)(EP534858,特别是其全部内容作为此处的参考文献),单核苷酸多态性(SNPs)(Wang等,1998)。
许多质量特性还可以用作大豆的基于表型的基因标记物;但是它们在通常用作母体的品种之间并没有什么不同(Bernard和Weiss,1973)。最广泛使用的基因标记物是花色(紫色优于白色),软毛的颜色(棕色优于灰色),豆荚颜色(棕色优于褐色)。在幼苗阶段,通常将紫色的下胚轴和紫色的花联合和绿色的下胚轴与白色的花联合来鉴定杂交品种。母体之间成熟期,高度,核的颜色和对害虫的抵抗力的不同都可以用来鉴定杂交植株。
IV典型的单一基因位点转换植株的起源和栽培历史
本领域技术人员都知道,通过回交技术,可以将一种或多种特性转移到给定品种中,同时保留该品种几乎所有的特性。美国专利No.6140556描述了通过回交向起始品种引入特性的具体过程,它的全部内容作为此处的参考文献。该专利所描写的过程概述如下:栽培大豆品种Williams’82[Glycine max L.Merr.](Reg.No.222,PI518671),使用回交技术将包含Rpsl基因的基因位点转换到Williams(Bernard和Cremeens,1988)。Williams’82是由来自BC6F3的四种具有抵抗力的种系组合而成的,BC6F3选自来自Williams×Kingwa的12个经检测具有抵抗力的种系。Williams在回交中作为轮回母体,Kingwa作为Rpsl基因位点的来源。这个基因位点使得植株对24种真菌疫病剂中的19种产生抵抗力。
通过下胚轴接种5号疫苗来检测每代回交的F1或F2幼苗是否对真菌有抵抗力。最后一代用1至9号疫苗接种进行检测。当回交使用便于评价的主要基因来控制转移到轮回母体的期望的特性时,通常进行大量的回交实验以避免用大量重复的检验检测具有某些特性的个体后代,例如产量。总的来说,当对于具有某一特性的后代,诸如产量,没有评价标准时,就要进行四次以上的回交实验。在此例中,具有轮回母体性状的种系在没有对产量、单一种系蛋白或油百分含量等特性进行反复检测的情况下就可以组合在一起。
Williams’82除了对疫病的抵抗力以外,其它所有特性都与轮回母体Williams相当。例如,两种品种的成熟期都为38,都有不确定的茎,白色的花,棕色的下胚轴,成熟时褐色的豆荚和带有黑色至浅黑色脐的亮黄色的种子。
V大豆植株的组织培养和体外再生
本发明还有一个方面与大豆品种的组织培养有关。此处使用的术语“组织培养”一种组成,其包含相同或不同类型的分离细胞或组成植株部分的细胞的集合。典型的组织培养类型包括原生质体、愈伤组织和完整的植株细胞,例如胚、花粉、花、叶、根、根尖、花药等。优选的例子里,组织培养包括胚、原生质体、分生细胞、花粉、叶或花药。
在美国专利No.4992375,No.5015580,No.5024944和No.5416011中公布了再生大豆细胞组织培养的准备过程和其植株再生的过程,其中的每个专利的全部内容在此处可作为参考文献。
组织培养的一个重要能力是能够再生出有生育能力的植株。例如,这就可以导致组织培养细胞的转化以及后来的转基因植株的再生。为了高效和成功的实现转化,必须将DNA插入能够产生植株或种系组织的细胞中。
大豆主要通过两种不同的途径进行再生;茎的形态发育和躯体的胚胎发育(Finer,1996)。茎的形态发育是指茎分生组织的分化和栽培。茎由源组织长出,经切割,植根获得完整的植株。在躯体的胚发育阶段,,含有茎和根轴的胚(类似于合子胚)由躯体生长组织生成。整体胚的发芽形成完整植株而不是植根的茎。
茎的形态发育和躯体胚胎发育是不同的过程,再生过程主要依赖于组织培养所使用的外植体和介质。尽管系统不同,两种系统均显示出品种特异的反应,一些种系对于组织培养比其它种系更敏感。对茎的形态发育高度敏感的种系可能不会产生出许多体胚。在诱导阶段能产生大量胚的种系不会产生快速生长的增生品种。因此,最好优化每一个大豆种系的组织培养条件。在组织培养中,专业人员可以通过小范围的培养研究完成这些优化。除了种系特异反应,可以通过茎的形态发育和躯体胚的发育观察增生组织。增生对于两个系统都有益处,因为它使得单一转化的细胞增生成为幼芽组织。
Wright等(1986)首先报道了茎的形态发育,认为它是由大豆幼苗的子叶结开始获得茎的系统过程。茎的分生组织在皮下形成,形态发育组织能够在含有苄基腺嘌呤(BA)的介质中增生。如果确定了茎的皮下和多细胞起源和使用增殖培养,这个系统就可以用于转化。这主要是针对能够产生新茎和在分生组织内部增生细胞以减少与嵌合有关的问题的组织。如果转化的细胞没有充分的增生,不能产生种系组织,由分生组织单一细胞转化的嵌合体的形成就会出问题。一旦很好的理解和满意的修复该组织,就可以把它作为大豆转化的目标组织。
Christianson等(1983)首次报道了大豆中躯体胚的发育,认为是由合子胚轴得到胚的发育组织的。这些胚的发育培养是增生的,但是该系统的重复性却很低,也没有报道胚的来源。后来对不同增生的胚发育的大豆培养的组织学研究显示增生的胚很尖,或表面有少量的能促进胚形成的细胞。初级胚(源自外植体的第一个胚)的来源依赖于外植组织和诱导介质中生长激素的水平(Hartweck等,1988)。在增生的胚的培养中,单一细胞或少数旧的体胚的表面细胞形成新的胚。
如果确定了胚的来源,理解了增生胚的发育培养的局限性,胚发育培养就可以成功的用于再生,包括转基因植株的再生。生物学局限性包括栽培增生的胚的发育组织的困难和与由长期增生的胚的发育组织再生的植株有关的生育能力下降问题(栽培诱导的变化)。一些问题在长期的栽培中很明显。使用最近培养的细胞可以降低或消除这些问题。
VI大豆的基因转化
基因转化用于将筛选的转基因插入到本发明的大豆品种中或用于制备能够通过回交导入大豆品种中的转基因。该领域的专业人员很清楚许多经济上重要的植株(包括大豆),的转化方法。用于大豆基因转化的方法包括,但不限于,电穿孔、微粒轰击、农杆菌介导的转化和原生质体对DNA的直接摄取。
为了用电穿孔实现转化可以采用脆的组织例如细胞的混悬培养或胚形成的愈伤组织,或者直接转化未成熟的胚或其它的组织。该方法中,通过将其与胶质降解酶(pectolyases)接触或以可控的方式机械损伤组织来部分的降解所选细胞的细胞壁。
原生质体也可用于植株电穿孔转化(Bates,1994;Lazzeri,1995)。例如,Dhir和Widholm在Intl.PatentAppl.Publ.No.1WO92/17598中描述了由子叶来源的原生质体的电穿孔形成的转基因大豆植株的过程,此处特意将其作为参考文献。
将转化的DNA片段转移到植株细胞的一种特别高效的方法是微粒轰击。在这种方法中,用核酸覆盖颗粒,再用推力递送到细胞中。典型的颗粒包括钨、铂和金。为了轰击,混悬的细胞在滤膜或固体培养基中浓缩。或者,不成熟的胚或其它目标细胞放置在固体培养基中。待轰击的细胞放置在微粒阻挡板下方适当的距离处。
加速将DNA递送到植株细胞的方法的说明性例子是生物弹颗粒递送系统,它能够推动覆盖有DNA的颗粒或细胞通过滤网,例如不锈钢或Nytex过滤器,到达覆盖着目标大豆细胞的表面。过滤器将颗粒分散使它们不会成堆的传递到受体细胞。人们认为介于投射仪器和待轰击细胞之间的滤网减少了投射聚集物的大小,由于减小了因投射物过大对受体细胞造成的损害,从而提高了转化的频率。
微粒轰击技术应用很广泛,几乎可以用来转化任何植株品种。例如,美国专利No.5322783描述了微粒轰击技术在大豆转化中的应用,它公布的全部内容在此处作为参考文献。
农杆菌介导的转移是又一种广泛应用的将基因位点转换到植物细胞的系统。该技术的优点是能将DNA导入整个植株组织,因而避免了来自原生质体的完整植株的再生。现代农杆菌转化载体和农杆菌一样,可以在E.coli中复制,便于操作(Klee等,1985)。而且,最近在用于农杆菌介导的基因转移的载体方面的技术进步改善了载体中基因和限制位点的排列,方便了能够表达不同多肽编码基因的载体的构建。此处描述的载体具有方便的多接头区域,两侧有用于直接表达插入的多肽编码基因的启动子和聚腺苷酰化位点。此外,包含有装甲和卸甲Ti基因的农杆菌可用于转化。
对于农杆菌介导的转化很有效的植株株系,选择该方法是由于基因位点转换的方便和确定的属性。在该领域使用农杆菌介导植株整合载体将DNA导入植株细胞众所周知(Fraley等,1985;美国专利No.5563055)。例如,Chee和Slightom(1995)以及美国专利No.5569834描述了农杆菌在大豆转化中的应用,其公布的全部内容作为此处的参考文献。
使用基于磷酸钙沉淀,聚乙二醇处理,电穿孔和这些方法的组合方法也可以实现植株原生质体的转化(见,例如,Potrykus等,1985;Omirulleh等,1993;Fromm等,1986;Uchimiya等,1986;Marcotte等,1988)。这些方法由于证明能够使来自原生质体的大豆植株再生而应用于大豆植株(Dhir等,1991)。
VII大豆植株的应用
本发明提供的大豆植株可用于任何被认为有价值的目的。一般的应用包括人类消费所需食品,动物消耗的饲料和工业应用的制备。此处使用的“工业应用”或“工业使用”是指大豆或基于大豆的产品的非食品或非饲料应用。
大豆通常制作成两种主要的产品,大豆蛋白(粗粉)和天然大豆油。这两种产品通常可以进一步精炼以备特殊用途。精炼的油产品可以分解成甘油、脂肪酸和甾醇。这些可以用于食品、饲料或工业用途。可食用的食品产品的应用例子包括咖啡伴乳、人造黄油、蛋黄酱、药品、沙拉调味品、酥油、面包产品和巧克力包衣。
大豆蛋白产品(例如,粗粉)可以分成大豆细粉浓缩物和分离物,两者都有食品/饲料和工业用途。大豆细粉和粗粉经常用于制造肉类的添加剂和类似物,宠物食品,烘焙材料和其它食品产品。由大豆细粉和分离物制作的食品产品包括婴儿食品,糖果产品,谷物食品,食品饮料,面食,发酵粉,啤酒,单色啤酒等。特别是大豆粗粉通常作为蛋白的来源用于家畜的饲养,特别是猪和家禽。饲料应用还包括,但不限于,水产品饲料,蜜蜂饲料,小牛饲料的替代品,鱼饲料,家畜饲料,家禽饲料和宠物饲料等。
所有的大豆产品均可以用作食品/饲料。一般的食品应用包括产品诸如种子,豆芽,烘大豆,用于不同烘焙产品的全脂大豆粉,用作糕点的烤大豆,大豆黄油,大豆咖啡,和其它东方食品中的大豆衍生物。对于饲料的应用,大豆皮通常从大豆剥离,用作饲料。
大豆还有许多其它的工业用途。一个常用的工业用途是制造粘合剂用以制造合成物。例如,使用修饰的大豆蛋白,大豆蛋白的水解物和PF树脂的混合物,含有粉末树脂的大豆细粉和含有泡沫胶的大豆蛋白生产木质合成物。基于大豆的粘合剂已经用于制造普通的木制产品例如胶合板超过70年。虽然尿素-甲醛和苯酚-甲醛树脂的引入降低了基于大豆的粘合剂甾木制产品中的应用,关心环境的人和消费者对来自可再生可食用的粘合剂的青睐重新激起了人们向往开发新型基于大豆的用于木制合成工业的产品的兴趣。
制备粘合剂代表了大豆的另一种工业用途。大豆粘合剂包括大豆水解物粘合剂和大豆细粉粘合剂。大豆水解物是一种无色水溶液,是由大豆蛋白分离物溶在5%氢氧化钠溶液中,在温度120℃,压力30psig条件下反应制得的。产生的降解大豆蛋白溶液在室温下显碱性(pH11),易流动(大约500cps)。大豆细粉是一种把大豆细致磨碎的,去脂的细粉。大豆细粉可以做成不同的粘合剂类型,第一步通常需要将细粉溶于氢氧化钠溶液中。最终形成物的强度和其它性质依据形成物中添加剂的不同而不同。大豆细粉粘合剂还可以和其它商用树脂联合应用。
大豆油可以有许多工业用途。大豆油可能是世上应用最广和费用最低的植物油之一。大豆油的一般工业用途包括抗静电试剂材料,填隙化合物,抗传染剂,杀菌剂,墨水,涂料,防护涂层,人造壁板,除沫剂,乙醇,人造黄油,颜料,油墨,橡胶,酥油,化妆品等。许多年来大豆油一直是醇酸树脂主要成分之一,将其溶于载体溶剂中制成基于油的涂料。该领域的专业人员都知道在加热和一定压力下,将植物油转成醇酸树脂的基本化学原理。
商业上未精炼或精炼的,可食用的大豆油很稳定,不易干。大豆油可以经过修饰增强它在周围环境下的反应活性,或者输入不同形式的能量,使油聚合或加工成干膜。这些修饰形式包括环氧化、醇解或酯交换、直接酯化、分解、异构化、单体修饰和不同形式的聚合,包括加热。大豆油中含有双键的活性亚油酸组分比那些主要的油酸和亚油酸有更多的工业用途。
使用基于大豆的材料可以制备溶剂。例如,甲基豆酯,一种基于大豆油的甲基酯,正在被市场接纳为优良溶剂的替代品,用于部分清洗和去垢,涂料和油墨的去除,以及油流出的补救。它还以多种形式的消费商品上市,包括洗手液,汽车上的腊和涂写的清洗剂。大豆油和甲醇通过酯交换反应形成甲基豆酯。无数的生产商和供给商为其提供了商业用途。作为一种溶剂,甲基豆酯具有很强的环保和安全特性,这使得它在工业应用中受到青睐。它毒性比其它大多数溶剂小,可生物降解,闪点很高,挥发性有机化合物含量低(VOCs)。与金属、塑料、大多数人造橡胶和其它有机溶剂有很好的相容性。目前甲基豆酯的应用包括清洗剂、涂料脱除剂、油流出的清洗和生物学补救剂、杀虫剂佐剂、防腐剂和生物燃料添加剂。
VIII定义
下面的描述和表格中使用了许多术语。为了对说明和权利要求提供一个清晰和一致的理解,下面给出了定义:
A:当和词语“包含”或权利要求中其它开放语言连用时,词语“一个”指“一个或更多”。
农学上优良:此处所使用的意思是一种基因型,它具有许多显著的特性,包括出土能力、存活能力、生长能力、疾病抵抗力、种子播种能力、直立能力和打谷能力,它决定了种植者能否收获具有明显商业价值的产品。
等位基因:基因位点的一种或多种替换形式,所有的等位基因都与一个特性或属性相关。在二倍体细胞或有机体中,给定基因的两个等位基因占据了一对同源染色体上相应的基因位点。
回交:种植者反复进行杂交后代的杂交的过程,例如,第一代杂交品种(F1)再与该杂交后代的一个母体进行杂交。回交用于将一个或多个单一基因位点从一个基因环境转移到另一个基因环境。
商品化高产量:对于种植者具有商业价值的作物产量,实际作物产量每英亩至少35蒲式耳或平均至少15。
杂交:两个母体植株交配。
杂交授粉:来自不同植株的两个配体联合受精。
出土能力:这个评分表示了种子在种植后从土壤中伸出的能力。每种基因型按照它出土的百分比分成1至9分。1分表示优良的出土比率和百分率,中间的5分表示平均比率,9分表示很差的出土比率和百分率。
酶:生物反应中可以作为催化剂的分子。
F1杂交品种:不同基因型植株杂交的第一代后代。
基因型:细胞或有机体的基因构成。
工业应用:大豆植株的非食品和非饲料应用。术语“大豆植株”包括大豆植株的植株部分或其衍生物。
缺铁萎黄症:基于视觉观察的从1到9的植物打分系统。1分意味着植株没有发育不全或叶子没有变黄,9分意味着植株由于缺铁萎黄症而死亡或濒临死亡,5分意味着处于部分叶子变黄的中间健康状态。
连锁:一种现象,指同一染色体上的等位基因比其独立传递时更频繁地聚集在一起。
抗倒伏能力:倒伏分成1到9分。1分显示植株直立。5分显示植株倾斜与地面成45度角,9分显示植株躺倒在地面上。
标记:易于检测的表型,优选以不受环境影响的共显性形式(二倍体杂合体的一个基因位点上的两个等位基因都易于检测)继承,即,遗传率为1。
成熟期:当95%的豆荚达到成熟颜色时,就认为植株成熟了。在北半球成熟期在8月31日后的测定的日子里。
表型:细胞或有机体的可检测的特性,这些特性是基因表达的表现。
疫病耐受性:对疫霉根腐病的耐受性分成1到9分,1表示最好或最高的耐受性,逐渐减少直至9分,此时植株对疫病没有耐受性。
植株高度:从土壤表层到植株节点顶部的长度,以英寸测量。
数量特性基因位点(QTL):数量基因位点(QTL)是指某种程度上控制用数量代表的特性的基因位点,这些特性通常连续描述。
再生:由组织培养栽培植株。
相对成熟期:由给定区域的大豆工业指定的成熟期归类。这个数值分成10个相对成熟期组。在小范围比较,10个相对成熟期组的不同和收获期成熟期的不同基本相等。
种子蛋白环氧化酶活性:种子蛋白环氧化酶活性定义为在种子表皮内基于环氧化酶的存在或缺失用于区分品种的化学分类技术。有两种大豆品种,一种具有很高的环氧化酶活性(暗红色),另一种具有很低的环氧化酶活性(无色)。
自花授粉:花粉由植株的花药转移到同一植株的柱头上。
收获前裂开的豆荚的数量:裂开的豆荚包括从豆荚掉到地上的种子。这是一个可见的从1到9的分数,用于在给定实验中比较所有基因型。1分意味着豆荚没有开裂,没有种子掉出来。5分表示大约50%的豆荚开裂,种子掉到地上,9分表示100%的豆荚开裂。
单一基因位点转换植株:由植物栽培技术回交培育的植株,其中除了通过回交技术和/或基因转化转移到品种中的单一基因位点的特性以外,还可以发现几乎所有的期望的大豆品种的形态上和生理上的特性。
基本等同:与平均值相比较没有统计学上显著差异的特性(例如,p=0.05)。
组织培养:一种组成,其包含相同或不同类型的分离细胞或者组成植株部分的该类型细胞的集合。
转基因:包含通过转化导入大豆植株基因组的序列的基因位点。
IX实施例
下面的例子包含了本发明的优选的实施方案。本领域技术人员应该明白例子中所揭示的技术,这些发明的技术在本发明的实践中表现很好,被认为是实践的优选的模式。然而,考虑到当前的发明,本领域技术人员应认识到表明的具体例子中可以有许多变化,在不违反本发明的概念、精髓和范围的情况下仍然可以获得相似的结果。更特殊的是,很明显可以用化学和生理学相关的药物代替此处描述的药物,可以获得相同或相似的结果。正如所附权利要求所定义的,本领域技术人员都看得出来所有相似的取代物或修饰物都在本发明的精髓、范围和概念范围以内。
实施例1
大豆品种0007583的栽培
本发明提供了与大豆品种0007583的植株、种子和衍生物有关的方法和构成。大豆品种0007583习惯于在中间组(mid-group)2大豆生长的地区生长,对于多种疫病具有抵抗力,具有很高的种子蛋白和高蛋白与油含量与高产量相组合。该品种是来自A2553和SN30003的杂交品种。A2553是Asgrow种子公司的商品,SN30003是Wilcox(1998)公司的c1944品种,美国种质资源信息网络部(GRIN)给它的登记号是PI599584。007583的栽培如下:1996-97年冬天,在Isabella,PR将A2553与SN30003进行杂交。1997年在Janesville,WI种植F1代种子,1997-98年冬天在Isabella,PR种植F2代种子。1998年在Janesville,WI大量种植F3代种子,从大量植株中筛选单一植株单独脱粒。1999年在Janesville,WI在PRYT(单一植株产量检测)实验中种植F3:4代种子。2000年在Wisconsin的5个地方种植F3:5代种子以检测产量和基因型,同时生成的种子种植在Beaman,IA。2001年在中西部的11个地方种植F3:6代种子以检测产量和基因型,同时在Beaman,IA种植的种子有所增加。在不同代中筛选品种的标准包括:种子产量、抗倒伏能力、出土能力、幼苗存活能力、疾病抵抗力、成熟期、植株高度和种子油与蛋白含量。
大豆品种0007583对于栽培目的和检测被认为是无变化的。在自花授粉或近亲授粉的基础上,种植和培育种子可以得到品种0007583,农业领域的专业人员都知道这些。除了受环境因素影响或反复的两性繁殖过程中所发生的特性的变化以外,品种0007583并没有发生什么变化。对该品种的客观描述见下面表1。本领域技术人员认为这些典型的指标会随环境的变化而不同,其它等价的指标也在本发明的范围内。
表1:品种0007583的表型描述
特性 | 表型 |
相对成熟期 | 2.7 |
易聚拢(Roundup Ready) | Suscept. |
STS | Suscept. |
自由度(Liberty) | Suscept. |
花 | 紫色 |
软毛 | 灰色 |
核 | 不完全黑 |
豆荚颜色 | 褐色 |
种子光泽 | 暗淡 |
下胚轴颜色 | 淡紫色 |
种子形状 | 扁球形 |
叶子形状 | 卵形的 |
小叶大小 | 居中 |
叶子颜色 | 居中 |
树冠 | 多毛 |
生长习性 | 不确定 |
疫病等位基因 | Rpslk |
SCN品种3 | Susc. |
SCN品种14 | Susc. |
习惯区域 | 中间组2大豆生长区域 |
耐受性评分 | 4.7(检测平均4.7) |
混合物评分 | 4.3(检测平均4.7) |
分析和比较了0007583和其竞争品种的表现的特性。检测的特性包括成熟期、植株高度、倒伏情况、种子蛋白与油含量和缺铁萎黄症比率。分析结果如下,见表2-7。
表2:品种0007583和所选品种的典型农学特性
品种 | 成熟度期 | 高度 | 倒伏 | 蛋白 | 油脂 |
0007583 | 24.5 | 37.5 | 2.5 | 46.2 | 20.4 |
A2247 | 23.0 | 34.5 | 2.5 | 43.3 | 21.6 |
A2553 | 24.5 | 31.0 | 2.5 | 40.2 | 23.0 |
A2824 | 29.0 | 33.0 | 3.0 | 44.0 | 21.2 |
SN30003 | 24.5 | 37.0 | 2.5 | 51.0 | 18.5 |
SN30017 | 27.5 | 42.0 | 3.0 | 49.1 | 19.7 |
表3:品种0007583和所选品种的缺铁萎黄病比率
品种 | IDE | IDC | 平均 |
0007583 | 4.7 | 6.3 | 5.5 |
A1923 | 3.3 | 4.0 | 3.7 |
A2247 | 4.7 | 4.5 | 4.6 |
A2553 | 4.7 | 5.0 | 4.8 |
平均 | 4.4 | 5.0 | 4.7 |
范围 | 2.7-6.2 | 2.8-7.2 | 2.8-6.5 |
IDE=早期缺铁萎黄病比率
IDC=缺铁萎黄病比率
表4:品种0007583的产量检测
代 | 年 | 检测记录 | #位点 | 生长茂盛度(Rank) | #检测数(Entries) |
F4 | 1999 | 9WY37M-02 | 1 | 13 | 48 |
F5 | 2000 | 00JWIX-10 | 5 | 01 | 50 |
F6 | 2001 | 01JWH0-21 | 11 | 32 | 50 |
表5:品种0007583(待测)与所列的其它品种的比较:全年,所有地区
品种 | TST | BU/ACBU/AC | MAT#TST | MATCHK | MATCMP | IDE#TST | IDECHK | IDECMP | 油#TST | 油CHK | 油CMP | PRO#TST | PROCHK | PROCMP | PHT#TST | PHTCHK | PHTCMP | LDG#TST | LDGCHK | LDGCMP | |||
WINS | CHK | CMP | DIFF | ||||||||||||||||||||
AG2102-14AG2202A2247AG2402A2553CSR2310CST21000CST23000CST231NMBS59125NKS24-L2PION92B23PION92B35 | 11111511151111111111111111 | 97107234243554 | 47.447.449.447.449.447.447.447.447.447.447.447.447.4 | 43.947.247.145.353.048.449.550.448.549.148.448.147.8 | 3.50.22.32.1-3.6-1.0-2.1-3.0-1.1-1.7-1.0-0.6-0.3 | 991191199999999 | 25.625.625.425.625.425.625.625.625.625.625.625.625.6 | 20.624.322.623.825.424.624.426.123.229.322.521.923.1 | 2222222222222 | 4.34.34.34.34.34.34.34.34.34.34.34.34.3 | 4.84.84.84.14.44.64.84.44.34.33.63.85.4 | 4474744444434 | 20.920.920.820.920.820.920.920.920.920.920.921.020.9 | 22.221.422.022.123.121.522.221.721.820.421.922.722.0 | 4474744444434 | 44.344.344.844.344.844.344.344.344.344.344.343.944.3 | 40.040.341.940.838.940.740.440.141.640.939.938.940.8 | 6686866666666 | 37.037.037.137.037.137.037.037.037.037.037.037.037.0 | 31.834.335.435.333.133.531.335.133.635.232.231.435.4 | 991191199999999 | 1.91.92.01.92.01.91.91.91.91.91.91.91.9 | 1.31.22.01.61.81.51.21.41.41.91.61.82.2 |
TST=检测数目
WINS=优于所列品种的数目
BU/AC=产量(蒲式耳/英亩)
MAT=成熟期(天)
IDE=缺铁萎黄病(早期)比率
OIL=种子油脂含量
PRO=种子蛋白含量
PHT=植株高度(英寸)
LDG=倒伏比率(范围:1-9,1=最好)
表6:品种0007583和竞争品种的表现的比较
MAT PLT PHO FLD % %
品种 YLD DAY HGT LDG SCR EMR IDC PRO 油
0007583 47.4 25.6 37.0 1.9 3.3 1.3 4.3 43.8 21.2
ASGROW A2553 52.9 25.6 33.8 1.6 2.5 1.8 4.4 38.8 23.1
DEKALB DKB23-95 51.3 25.4 33.5 1.5 3.0 1.3 5.1 42.2 21.4
STINE 2491-6 50.8 26.7 32.5 1.4 2.9 1.7 4.8 42.1 21.2
CORN STATES T23000 50.4 26.1 35.1 1.4 2.8 1.3 4.4 40.3 21.9
CORN STATES T21000 49.5 24.4 31.3 1.2 2.5 1.5 4.8 40.6 22.3
MIKE BRAYTON SEEDS 59125 49.1 29.3 35.2 1.9 2.9 1.3 4.3 41.2 20.5
PIONEER 92B37 48.5 22.0 39.4 2.1 3.8 1.7 4.2 40.8 22.4
DEKALB DKB23-73 48.5 23.2 33.6 1.4 2.9 1.2 4.3 41.9 21.9
DEKALB DKB23-51 48.4 24.6 33.5 1.5 2.9 2.0 4.6 41.0 21.6
SYNGENTA NKS24-L2 48.4 22.5 32.2 1.6 3.2 1.2 3.6 40.1 22.0
PIONEER 92B23 48.1 21.9 31.4 1.8 3.2 1.3 3.8 39.5 22.7
PIONEER 92B35 47.8 23.1 35.4 2.2 2.8 1.5 5.4 41.0 22.1
ASGROWAG2202 47.2 24.3 34.3 1.2 2.4 1.8 4.8 40.6 21.5
ASGROW A2247 46.2 22.5 35.8 1.9 3.5 1.5 4.8 41.9 22.2
STINE 1892-2 46.0 18.2 31.1 2.3 3.7 1.7 4.2 40.6 22.7
SYNGENTA NKS21-A1 45.9 17.6 31.6 1.8 3.3 2.0 5.2 40.3 23.0
HISOY 10C2-1-2 45.5 19.8 34.1 2.0 3.6 1.4 5.0 40.5 21.7
IVORY 45.3 20.6 29.5 1.2 3.3 1.3 4.8 41.6 22.2
HISOY 10C2-1-3 45.3 18.9 36.9 1.9 3.6 1.5 4.1 40.6 21.8
ASGROW AG2402 45.3 23.8 35.3 1.6 2.7 1.5 4.1 41.0 22.2
HISOY 10C2-13-2 45.1 25.1 34.2 2.1 3.3 1.0 4.5 41.2 22.2
ASGROW A2069 45.0 18.0 30.5 1.6 3.2 1.3 3.8 41.4 21.7
ASGROW A1923 44.5 17.3 31.8 1.2 2.9 1.5 4.7 40.6 22.0
ASGROW AG2001 43.7 18.3 32.3 1.6 2.9 1.2 5.1 41.2 23.0
DEKALB DKB19-51 42.3 18.3 32.0 1.2 2.8 2.2 4.1 39.5 22.6
参加平均 48.2 23.3 33.9 1.8 3.1 1.5 4.7 40.9 21.9
LSD(.30) 1.4 0.8 1.1 0.3 0.3 0.4 0.8 0.4 0.2
LSD(.05) 2.7 1.6 2.1 0.6 0.6 0.8 1.5 0.8 0.4
CV 6.7 7.3 5.4 34.3 19.0 34.3 16.5 1.5 1.4
检测# 11.0 9.0 6.0 9.0 8.0 3.0 2.0 5.0 5.0
表7:0007583与超过5个地区的所选品种的其它比较
品种 | YLD | MAT天数 | PLTHGT | LDG | PHOSCR | %PRO | %油 |
0007583 | 54.7 | 24.5 | 37.5 | 2.5 | 4.5 | 46.2 | 20.4 |
ASGROW A2553 | 53.1 | 24.5 | 31.0 | 2.5 | 3.5 | 40.2 | 23.0 |
ASGROW A2247 | 49.7 | 23.0 | 34.5 | 2.5 | 3.5 | 43.3 | 21.6 |
ASGROW A2824 | 49.5 | 29.0 | 33.0 | 3.0 | 5.0 | 44.0 | 21.2 |
SN30017 | 46.7 | 27.5 | 42.0 | 3.0 | 5.5 | 49.1 | 19.7 |
SN30003 | 44.4 | 24.5 | 37.5 | 2.5 | 5.0 | 50.5 | 18.7 |
参加平均 | 45.8 | 25.1 | 37.0 | 2.6 | 4.9 | 47.0 | 19.7 |
LSD(.30) | 2.8 | 1.3 | 1.9 | 0.5 | 0.7 | 0.8 | 0.4 |
LSD(.05) | 5.3 | 2.4 | 3.7 | 1.0 | 1.3 | 1.5 | 0.7 |
CV | 8.2 | 4.8 | 5.0 | 19.3 | 12.8 | 2.2 | 2.5 |
检测# | 4.0 | 2.0 | 2.0 | 2.0 | 2.0 | 4.0 | 4.0 |
实施例2
大豆品种0008079的栽培
大豆品种0008079是一种对草甘膦耐受的品种,具有高种子蛋白含量和高蛋白与油含量与高产量相组合以及农学精良的背景。该品种对于来自Rpslk等位基因的疫病的多个品种具有抵抗力。该品种习惯于在中间组2大豆生长区域生长,相对成熟期是2.8。1996-97年冬天在Isabella,PR将SN30003和AGW26703杂交产生该品种。该品种的栽培如下:1997年,在Janesville,WI种植F1代种子,1997-98年冬天在Isabella,PR种植F2代种子。1998年在Janesville,WI大量种植F3代种子,从大量植株中筛选单一植株单独脱粒。1999年在Janesville,WI在PRYT(单一植株产量检测)实验中种植F3:4代种子。2000年在Wisconsin的5个地方种植F3:5代种子以检测产量和基因型,同时生成的种子种植在Beaman,IA。2001年在中西部的11个地方种植F3:6代种子以检测产量和基因型,同时在Beaman,IA种植的种子有所增加。在不同代中筛选品种的标准包括:种子产量、抗倒伏能力、出土能力、幼苗存活能力、疾病抵抗力、成熟期、植株高度和种子油与蛋白含量。
大豆品种0008079对于栽培目的和检测被认为是无变化的。在自花授粉或近亲授粉的基础上,种植和培育种子可以得到品种0008079,农业领域的技术人员都知道这些。除了受环境因素影响或反复的两性繁殖过程中所发生的特性的变化以外,品种0008079并没有发生什么变化。对该品种的客观描述见下面表8。本领域技术人员认为这些典型的指标会随环境的变化而不同,其它等价的指标也在本发明的范围内。
表8:品种0008079的表型描述
特性 | 表型 |
相对成熟期 | 2.6 |
易聚拢(Roundup Ready) | RR |
STS | Suscept. |
自由度(Liberty) | Suscept. |
花 | 紫色 |
软毛 | 灰色 |
核 | 不完全黑 |
豆荚颜色 | 棕色 |
种子光泽 | 暗淡 |
下胚轴颜色 | 淡紫色 |
种子形状 | 扁球形 |
叶子形状 | 卵形 |
小叶大小 | 居中 |
叶子颜色 | 居中 |
树冠 | 多毛 |
生长习性(I/D/S)* | 不确定 |
疫病等位基因 | Rpslk |
SCN品种3 | Susc. |
SCN品种14 | Susc. |
分析和比较了0008079和其竞争品种的表现的特性。检测的特性包括成熟期、植株高度、倒伏情况、对于疫霉根腐病的抵抗力、产量、种子蛋白与油含量。分析结果如下,见表9-13。
表9:品种0008079和所选品种的典型农学特性
农学特性 | |||||
种系 | Mat天数 | Ht | Lodg | 蛋白 | 油 |
0008079 | 26.0 | 32.0 | 2.0 | 48.1 | 18.9 |
AG2402 | 15.6 | 33.6 | 1.2 | 41.0 | 22.3 |
AG2703 | 22.6 | 35.1 | 1.1 | 40.1 | 22.0 |
DKB26-52 | 21.0 | 39.1 | 3.7 | 41.4 | 21.6 |
SN30003 | 24.5 | 37.0 | 2.5 | 51.0 | 18.5 |
SN30017 | 27.5 | 42.0 | 3.0 | 49.1 | 19.7 |
表10:品种0008079的产量检测
代 | 年 | 检测记录 | #位点 | 生长茂盛度 | #检测数(Entries) |
F4 | 1999 | 9WY38R-37 | 1 | 1 | 48 |
F5 | 2000 | 00JWIX-39 | 5 | 6 | 50 |
F6 | 2001 | 01JWI3-26 | 10 | 49 | 50 |
表11:疫霉根腐病反应(Phytophthora megasperma var.sojae)*
分析(检测的反应)
检测记录 | 品种 | 死亡比率 | 总数 |
01JWI3-26 | 1 | 0 | 15 |
01JWI3-26 | 3 | 0 | 14 |
01JWI3-26 | 5 | 0 | 13 |
*对以下品种可能有抗性:1-11,13-15,17,18,21-24,26,27,36-38
表12:品种00088079和超过10个地区的竞争品种的表现比较
MAT PLT PHO FLD % %
品种 YLD 天数 HGT LDG SCR EMR PRO 油
0008079 40.1 27.1 36.3 2.0 3.6 1.2 48.1 19.0
DEKALB DKB26-52 47.0 21.0 39.1 3.7 4.6 1.2 41.2 21.9
ASGROW AG2703 46.8 22.6 35.1 1.1 3.0 1.0 40.1 22.2
ASGROW AG2402 43.1 15.6 33.6 1.2 2.9 1.0 40.8 22.6
ASGROW DJW2601EOR 37.7 23.6 36.9 2.4 4.4 1.2
参加平均 44.6 22.3 35.6 1.9 3.5 1.1 42.6 21.4
LSD(.30) 1.3 0.8 1.0 0.3 0.4 0.2 0.2 0.1
LSD(.05) 2.5 1.4 2.0 0.6 0.8 0.5 0.4 0.2
CV 6.5 7.0 5.2 27.6 21.8 20.1 0.9 0.9
检测# 10.0 9.0 7.0 5.0 8.0 2.0 6.0 6.0
表13:0008079和超过5个地区的所选品种进行其它比较
MAT PLT PHO % %
品种 YLD 天数 HGT LDG SCR PRO 油
0008079 49.2 26.0 32.0 2.0 4.5 48.4 18.9
A2553 53.1 24.5 31.0 2.5 3.5 40.2 23.0
A2247 49.7 23.0 34.5 2.5 3.5 43.3 21.6
A2824 49.5 29.0 33.0 3.0 5.0 44.0 21.2
SN30017 46.7 27.5 42.0 3.0 5.5 49.1 19.7
SN30003 44.4 24.5 37.5 2.5 5.0 50.5 18.7
参加平均 45.8 25.1 37.0 2.6 4.9 47.0 19.7
检测平均 47.8 25.5 35.7 2.7 4.6 46.4 20.4
LSD(.30) 2.8 1.3 1.9 0.5 0.7 0.8 0.4
LSD(.05) 5.3 2.4 3.7 1.0 1.3 1.5 0.7
CV 8.2 4.8 5.0 19.3 12.8 2.2 2.5
检测# 4.0 2.0 2.0 2.0 2.0 4.0 4.0
实施例3
大豆品种0137335的栽培
大豆品种0137335是一种对草甘膦耐受的品种,具有高种子蛋白含量和高蛋白与油含量与高产量相组合以及农学精良的背景。该品种习惯于生长在Iowa,mid-Illinois和mid-Indiana生长地区,成熟期是23。品种0137335是来自1998年在Ames,IA的SN30003和AG3003的杂交品种。AG3003是Asgrow种子公司的商品。该品种的栽培如下:1998年秋天和1999年深冬,在Isabela,PR种植F1和F2代种子。对F2代植株进行筛选和单独脱粒。1999年在Ames,IA在PROW(后代行)土地中种植F3:4代种子。从PROW土地中将表现最好农学特性的F3代进行筛选和单独脱粒。分析每一个F3植株种子的蛋白含量。2000年在Ames,IA的PROW土地上种植蛋白含量最高的F3:4种系。
2000年秋天大量收获具有最好农学特性的种系。筛选出蛋白含量最高的种系用作2001年产量的检测。在Iowa的5个地方种植F3:5代种子以检测产量和农学表现。2002年将生成的种子种植在Beaman,IA。在不同代中筛选品种的标准包括:产量、抗倒伏能力、出土能力、幼苗存活能力、疾病抵抗力、成熟期、植株高度和种子油与蛋白含量。
对该品种的客观描述见下面的表14。本领域技术人员认为这些典型的指标会随环境的变化而不同,其它等价的指标也在本发明的范围内。
表14
特性 | 表型 |
相对成熟期 | 2.3 |
易聚拢(Roundup Ready) | RR |
STS | 易受影响 |
自由度(Liberty) | 易受影响 |
花 | 紫色 |
软毛 | 灰色 |
核 | 不完全黑 |
豆荚颜色 | |
种子光泽 | |
下胚轴颜色 | |
种子形状 | 扁球形 |
叶子形状 | 卵形 |
小叶大小 | 中度 |
叶子颜色 | 中度 |
树冠 | |
生长习性 | 不确定 |
疫病等位基因 | |
SCN品种3 | 易受影响 |
SCN品种14 | 易受影响 |
根结线虫 | 易受影响 |
分析和比较了0137335和其竞争品种的表现特性。检测的特性包括成熟期、植株高度、倒伏情况、种子蛋白与油含量。分析结果如下,见表15-17。
表15:品种013735和所选品种的典型农学特性
农学特性 | ||||||
种系 | Mat天数 | Ht | Lodg | 蛋白质 | 油 | 种子/lb |
0137335 | 25 | 3.3 | 43.9 | 20.9 | ||
DKB23-51 | 24 | 2.5 | 39.9 | 21.7 | ||
AG2103 | 22 | 2.0 | 40.3 | 21.8 |
表16:品种0137335的产量检测
代 | 年 | 检测记录 | #位点 | 生长茂盛度 | #检测数 |
F3:5 | 2001 | 01AHHA-10 | 5 | 6 | 50 |
表17:品种0137335和超过5个地区的竞争品种的表现比较
% % MAT PLT FLD PHO
品种 YLD 油 PRO 天数 LDG HGT EMR SCR
0137335 48.3 20.9 43.9 24.6 3.3 3.0 3.3
DKB23-51 53.8 21.7 39.9 24.0 2.5 37.0 2.0 3.5
AG2103 52.2 21.8 40.3 21.6 2.0 36.0 3.0 2.5
CX198RR 47.6 21.5 40.4 21.0 2.0 36.0 3.0 3.3
A2553/AG1901:63.@. 45.0 24.9 36.0 19.0 2.5 33.0 2.0 2.8
AG1901 41.9 24.4 37.8 19.0 3.5 46.0 3.0 4.3
参加平均 43.5 21.4 42.4 22.6 2.8 36.3 4.1 3.5
LSD(.30) 2.5 0.3 0.5 1.0 0.6 0.4 0.7
LSD(.05) 4.8 0.5 0.9 2.0 1.1 1.0 1.3
检测# 5.0 5.0 5.0 5.0 3.0 3.0 3.0 4.0
实施例4
大豆品种0137472的栽培
大豆品种0137472习惯于生长在Iowa,mid-Illinois和mid-Indiana生长地区,成熟期是24。该品种是一种对草甘膦耐受的品种,具有高种子蛋白含量,高蛋白与油含量和高产量以及农学精良的背景。该品种是来自1998年在Ames,IA的SN30003和FPG2975的杂交品种。FPG2975是Asgrow种子公司的商品(见美国专利No.6313380)。品种0137472的栽培如下:1998年秋天和1999年深冬,在Isabela,PR种植F1和F2代种子。对F2代植株进行筛选和单独脱粒。1999年在Ames,IA在PROW(后代行)土地中种植F2:3代种子。从PROW土地中将表现最好农学特性的F3代进行筛选和单独脱粒。分析每一个F3植株种子的蛋白含量。2000年在Ames,IA的PROW土地上种植蛋白含量最高的F3:4种系。
2000年秋天大量收获具有最好农学特性的种系。筛选出蛋白含量最高的种系用作2001年产量的检测。在Iowa的5个地方种植F3:5代种子以检测产量和农学表现。2002年将生成的种子种植在Beaman,IA。在不同代中筛选品种0137472的标准包括:产量、抗倒伏能力、出土能力、幼苗存活能力、疾病抵抗力、成熟期、植株高度和种子油与蛋白含量。
对该品种的客观描述见下面的表18。本领域技术人员认为这些典型的指标会随环境的变化而不同,其它等价的指标也在本发明的范围内。
表18:品种0137472的表型描述
特性 | 表型 |
相对成熟期 | 2.4 |
易聚拢 | RR |
STS | Susc. |
自由度 | Susc. |
花 | 紫色 |
软毛 | 灰色 |
核 | 不完全黑 |
种子光泽 | |
种子形状 | 扁球形 |
叶子形状 | 卵形 |
小叶大小 | 中度 |
叶子颜色 | 中等绿 |
树冠 | |
生长习性 | 不确定 |
疫病等位基因 | |
SCN品种3 | Susc. |
SCN品种14 | Susc. |
根结线虫 | Susc. |
分析和比较了0137472和其竞争品种的表现的特性。检测的特性包括成熟期、植株高度、倒伏情况、种子蛋白与油含量。分析结果如下,见表19-20。
表19:品种0137472的产量检测
代 | 年 | 检测记录 | #位点 | 生长茂盛度 | #检测数 |
F3:5 | 2001 | 01AHHA-8 | 5 | 20 | 50 |
表20:品种0137472与竞争品种超过5个地区的表现比较
% % MAT PLT FLD PHO
品种 YLD 油 PRO 天数 LDG HGT EMR SCR
0137472 44.5 20.7 44.9 24.8 3.5 40.0 5.0 3.8
DKB23-51 53.8 21.7 39.9 24.0 2.5 37.0 2.0 3.5
AG2103 52.2 21.8 40.3 21.6 2.0 36.0 3.0 2.5
CX198RR 47.6 21.5 40.4 21.0 2.0 36.0 3.0 3.3
AG1901 41.9 24.4 37.8 19.0 3.5 46.0 3.0 4.3
参加平均 43.5 21.4 42.4 22.6 2.8 36.3 4.1 3.5
LSD(.30) 2.5 0.3 0.5 1.0 0.6 0.6 0.7 0.7
LSD(.05) 4.8 0.5 0.9 2.0 1.1 1.0 1.4 1.3
检测# 5.0 5.0 5.0 5.0 3.0 3.0 3.0 4.0
实施例5
大豆品种0137441的栽培
大豆品种0137441是一种对草甘膦耐受的品种,具有高种子蛋白含量和高蛋白与油含量与高产量相组合以及农学精良的背景。该品种习惯于生长在Iowa,mid-Illinois和mid-Indiana生长地区,成熟期是26。该品种是来自1998年在Ames,IA的SN30003和AG3302的杂交品种。AG3302是Asgrow种子公司的商品。品种的0137441栽培如下:1998年秋天和1999年深冬,在Isabela,PR种植F1和F2代种子。对F2代植株进行筛选和单独脱粒。1999年在Ames,IA在PROW(后代行)土地中种植F2:3代种子。从PROW土地中将表现最好农学特性的F3代进行筛选和单独脱粒。分析每一个F3植株种子的蛋白含量。2000年在Ames,IA的PROW土地上种植蛋白含量最高的F3:4种系。2000年秋天大量收获具有最好农学特性的种系。筛选出蛋白含量最高的种系用作2001年产量的检测。在Iowa的5个地方种植F3:5代种子以检测产量和农学表现。2002年将生成的种子种植在Beaman,IA。在不同代中筛选品种0137441的标准包括:产量、抗倒伏能力、出土能力、幼苗存活能力、疾病抵抗力、成熟期、植株高度和种子油与蛋白含量。
对该品种的客观描述见下面表21。本领域技术人员认为这些典型的指标会随环境的变化而不同,其它等价的指标也在本发明的范围内。
表21:品种0137441的表型描述
特性 | 表型 |
相对成熟度 | 2.6 |
易聚拢 | RR |
STS | |
自由度 | Susc. |
花 | 紫色 |
软毛 | 灰色 |
核 | 不完全黑 |
豆荚颜色 | |
种子光泽 | |
下胚轴颜色 | |
种子形状 | 扁球形 |
叶子形状 | 卵形 |
小叶大小 | 居中 |
叶子颜色 | 中绿 |
树冠 | |
生长习性 | 不确定 |
疫病等位基因 | |
SCN品种3 | Susc. |
SCN品种14 | Susc. |
根结线虫 | Susc. |
分析和比较了0137441和其竞争品种的表现的特性。检测的特性包括成熟期、植株高度、倒伏情况、种子蛋白与油含量。分析结果如下,见表22-24。
表22:品种0137441的产量检测
代 | 年 | 检测记录 | #位点 | 生长茂盛度 | #检测数 |
F3:5 | 2001 | 01AHJA-35 | 5 | 24 | 50 |
表23:品种0137441和所选品种的典型农学特性
农学特性 | ||||||
种系 | Mat天数 | Ht | Lodg | 蛋白质 | 油 | 种子/lb |
0137441 | 26 | 3.0 | 45.4 | 20.4 | ||
AG2703 | 27 | 3.0 | 39.8 | 22.1 | ||
AG2402 | 24 | 3.5 | 40.0 | 22.5 |
表24:品种0137441与竞争品种超过5个地区的表现比较
% % MAT FLD PHO
品种 YLD 油 PRO 天数 LDG EMR SCR
0137441 45.2 20.4 45.4 26.0 3.0 3.0 3.5
DEKALB DKB31-51 54.0 22.1 40.4 32.2 3.0 3.0 2.5
ASGROW AG2703 52.0 22.1 39.8 27.0 3.0 3.0 2.5
DEKALB DKB28-51 51.7 21.1 39.8 29.0 3.5 1.0 4.0
ASGROW AG3201 48.8 21.1 40.2 32.7 3.5 2.0 3.0
DEKALB DKB26-51 48.3 22.3 39.4 25.7 2.5 2.0 2.5
ASGROW AG2501 46.8 22.9 39.9 24.5 2.5 2.0 3.0
DEKALB DKB32-51 46.8 21.4 41.3 32.7 3.0 3.0 4.0
ASGROW AG2402 46.6 22.5 40.0 23.5 3.5 3.0 3.5
ASGROW AG2601 44.7 22.0 41.1 26.0 3.0 3.0 3.0
参加平均 45.1 21.0 42.4 28.5 3.1 2.6 3.6
LSD(.30) 2.7 0.2 0.4 1.2 0.6 0.5 1.0
LSD(.05) 5.2 0.4 0.8 2.2 1.2 1.1 1.9
检测# 5.0 5.0 5.0 4.0 2.0 2.0 2.0
实施例6
大豆品种0137810的栽培
大豆品种0137810习惯于生长在S.Iowa,mid-Illinois和mid-Indiana生长地区,成熟期是31。该品种具有高种子蛋白含量和高蛋白与油含量与高产量相组合以及农学精良的背景。是一种对草甘膦耐受的品种。该品种是来自1998年在Ames,IA的SN30017和AG3003的杂交品种。AG3003是Asgrow种子公司的商品,SN30017是Wilcox(1998)公司的c1945品种,美国种质资源信息网络部(GRIN)给它的登记号是PI599585。品种0137810的栽培如下:1998年秋天和1999年深冬,在Isabela,PR种植F1和F2代种子。对F2代植株进行筛选和单独脱粒。1999年在Ames,IA在PROW(后代行)土地中种植F2:3代种子。从PROW土地中将表现最好农学特性的F3代进行筛选和单独脱粒。分析每一个F3植株种子的蛋白含量。2000年在Ames,IA的PROW土地上种植蛋白含量最高的F3:4种系。
2000年秋天大量收获具有最好农学特性的种系。筛选出蛋白含量最高的种系用作2001年产量的检测。在Iowa的5个地方种植F3:5代种子以检测产量和农学表现。2002年将生成的种子种植在Beaman,IA。对该品种的客观描述见下面表25。本领域技术人员认为这些典型的指标会随环境的变化而不同,其它等价的指标也在本发明的范围内。
表25:品种0137810的表型描述
特性 | 表型 |
相对成熟度 | 3.1 |
易聚拢 | RR |
STS | Susc. |
自由度 | Susc. |
花 | 紫色 |
软毛 | 灰色 |
核 | 黑色 |
豆荚颜色 | |
种子光泽 | |
下胚轴颜色 | |
种子形状 | 扁球形 |
叶子形状 | 卵形 |
小叶大小 | 居中 |
叶子颜色 | 中绿 |
树冠 | 不确定 |
生长习性 | 不确定 |
疫病等位基因 | Susc. |
SCN品种3 | Susc. |
SCN品种14 | Susc. |
根结线虫 | Susc. |
分析和比较了0137810和其竞争品种的表现的特性。检测的特性包括成熟期、植株高度、倒伏情况、种子蛋白与油含量。分析结果如下,见表26-28。
表26:品种0137810和所选品种的典型农学特性
农学特性 | ||||||
种系 | Mat天数 | Ht | Lodg | 蛋白质 | 油 | 种子/lb |
0137810 | 30 | 3.5 | 44.3 | 20.2 | ||
AG2703 | 27 | 3.0 | 39.8 | 22.1 | ||
DKB28-51 | 29 | 3.5 | 39.8 | 21.1 |
表27:品种0137810的产量检测
代 | 年 | 检测记录 | #位点 | 生长茂盛度 | #检测数 |
F3:5 | 2001 | 01AHJA-19 | 5 | 8 | 50 |
表28:品种0137810和竞争品种超过5个地区的表现比较
% % MAT FLD PHO
品种 YLD 油 PRO 天数 LDG EMR SCR
DEKALB DKB31-51 54.0 22.1 40.4 32.2 3.0 3.0 2.5
ASGROW AG2703 52.0 22.1 39.8 27.0 3.0 3.0 2.5
DEKALB_ DKB28-51 51.7 21.1 39.8 29.0 3.5 1.0 4.0
ASGROW AG3201 48.8 21.1 40.2 32.7 3.5 2.0 3.0
DEKALB DKB26-51 48.3 22.3 39.4 25.7 2.5 2.0 2.5
Invention 0137810 47.8 20.2 44.3 30.2 3.5 2.0 3.5
ASGROW AG2501 46.8 22.9 39.9 24.5 2.5 2.0 3.0
DEKALB DKB32-51 46.8 21.4 41.3 32.7 3.0 3.0 4.0
ASGROW AG2402 46.6 22.5 40.0 23.5 3.5 3.0 3.5
ASGROW AG2601 44.7 22.0 41.1 26.0 3.0 3.0 3.0
参加平均 45.1 21.0 42.4 28.5 3.1 2.6 3.6
LSD(.30) 0.2 0.4 1.2 0.6 0.3 1.0 0.9
LSD(.05) 0.4 0.8 2.2 1.2 0.8 1.9 1.3
CV 1.5 1.4 5.5 16.0 2.3 18.9 9.3
检测# 5.0 5.0 4.0 3.0 3.0 3.0 3.0
参考文献
下面的文献在此处特意作为参考文献,它们提供了此处涉及的具体的过程或其它补充细节。
Allard,“Principles of Plan`t Breeding”John Wiley & Sons,NY,U.of CA,Davis,CA,50-98,1960.
Anderson,“Weed Science Principles,”West Publishing Company,1983.
Bates,“Genetic transformation of plants by protoplast electroporation,”Mol.Biotechnol.,2(2):135-145,1994.
Bernard and Weiss,“Qualitative genetics,”In:Soybeans:Improvement,Production,and Uses,Caldwell(Ed.),Am.Soc.of Agron.,117-154,1973.
Bernard and Cremeens,“Registration of Williams‘82 Soybean”Crop Sci.,28:1027-1028,1988.
Boerma and Moradshahi,“Pollen movement within and between rows to male-sterile soybeans,”Crop Sci.,15:858-861,1975.
Borthwick and Parker,“Photoperiodic perception in Biloxi soybeans,”Bot.Gaz.,100:374-387,1938.
Bowers,Paschall,Bernard,Goodman,“Inheritance of resistance to soybean mosaic virus in′Buffalo′and HLS soybean”Crop Sci.,32(1)67-72,1992.
Brim and Stuber,“Application of genetic male steriliry to reeurrent selection schemes insoybeans,”Crop Sci.,13:528-530,1973.
Burton,“Breeding soybeans for improved protein quantity and quality,”In Proc.Of the WorldSoybean Res.,Shibles(ed).Conf.III,Ames,IA,Westview Press,Inc.Boulder,CO,361-367,1984.
Burton,“Quantitative genetics:results relevant to soybean breeding,”In:Soybeans:Improvement,Production,and Uses.Wilcox(ed),Am.Soc.Agron.,Madison,WI,211-248,1987.
Byth,Weber,and Caldwell,“Correlated truncation selection for yield in soybeans,”Crop Sci.,6:249-251,1969.
Caldwell,Weber,Byth,“Selection value of phenotypic attributes in soybeans,”Crop Sci.,6:249-251,1966.
Carlson,“Morphology”,In:Soybeans:Improvement,Production,and Uses,Caldwell(Ed.),Am.Soc.Agron.,Madison,WI,17-95,1973.
Chee and Slightom,“Transformation of soybean(Glycine max)via Agrobacterium tumefaciensand analysis of transformed plants,”Methods Mol.Biol.,44:101-119,1995.
Christianson,Warnick,Carlson,“A morphogenetically competent soybean suspension culture,”Science,222:632-634,1983.
Cianzio and Fehr,“Genetic variability for soybean seed composition in crosses between high andlow protein parents,”J.Agric.Univ.PR,66:123-129,1982.
Criswell and Hume,“Variation in sensitivity to photoperiod among early maturing soybeanstrains,”Crop Sci.,12:657-660,1972.
Dhir,Dhir Sturtevant,Winholm,“Regeneration of transformed shoots for electroporated soybeanGlycine max L.Merr.protoplasts,”Plant Cell Rep.,10(2):97-101,1991.
Fehr,“Soybean,”In:Hybridization of Crop Plants,Fehr and Hadley(Eds.),Am.Soc.Agron.and Crop Sci.Soc.Am.,Madison,WI,90-599,1980.
Fehr,In:Soybeans:Improvement,Production and Uses,2nd Edition,Manograph.,16:249,1987a.
Fehr,“Principles of variety development,”Theory and Technique,(Vol 1)and Crop SpeciesSoybean(Vol 2),Iowa State Univ.,Macmillian Pub.Co.,NY,360-376,1987b.
Finer,Cheng,Verma,“Soybean transformation:Technologies and progress,”In:Soybean:Genetics,Molecular Biology and Biotechnology,CAB Intl.,Verma andShoemaker(ed),Wallingford,Oxon,UK,250-251,1996.
Fraley,Rogers,Horsch,Eichboltz,Flick,Fink,Hoffmann,Sanders,“The sev system a newdisarmed ti plasmid vector system for plant transformation,”Bio.Tech.,3(7):629-635,1985.
Fromm,Taylor,Walbot,“Stable transformation of maize after gene transfer by electroporation,”Nature,319(6056):791-793.,1986.
Fulmer,“The soybean as a chemical factory.In:Soybean Utilization Alternatives,McCann(ed),The Center for Alternative Crops and Products,Univ.of Minnesota,1-12,1988.
Hamner,“Glycine max(L.)Merrill,”In:The Induction of Flowering:Some Case Histories,Evans(ed),Cornell Univ.Press,Ithaca,NY,62-89,1969.
Hartweck,Lazzeri,Cui,Collins,Williams“Auxin orientation effects on somatic embryogenesisfrom immature soybean cotyledons,”In Vitro Cell.Develop.Bio.,24:821-828,1988.
Hartwig,“Breeding soybeans for high protein content and quality,”In:New approaches tobreeding for improved plant protein,Intl.Atomic Energy Agency,Vienna,67-70,1969.
Hartwig,“Varietal improvement,”In:Soybeans:Improvement,production,and uses,Caldwell(ed)1st ed.,Agronomy,16:187-210,1969.
Hartwig,“Breeding productive soybeans with a higher percentage of protein.In:Seed proteinimprovement in cereals and legumes,Vol.II,Intl.Atomic Energy Agency,Vienna,59-66,1979.
Hinson et al.,“Associations between chemical composition of seed and seed yield of soybeans,”Crop Sci.,22:829-830,1972.
Hymowitz,“Soybeans,”In:Evolution in crop plants,Simmonds(ed)Longman Group,London,159-162,1976.
Johnson and Bernard,“Soybean genetics and breeding,”In:The Soybean,Norman(ed),Academic Press,NY,1-73,1963.
Johnson,“Breeding for oil and protein in soybeans,”Soybean Dig.,21(11):73-75,1961.
Kiihl,Hartwig,Kilen,“Grafting as a tool in soybean breeding,”Crop Sci.,17:181-182,1977.
Klee,Yanofsky,Nester,“Vectors for transformation of higher plants,”Bio.Tech.,3(7):637-642,1985.
Kuehl,“Pollen viability and stigma receptivity of Glycine max(L.)Merrill,”Thesis,NorthCarolina State College,Raleigh,NC,1961.
Kwon and Torrie,“Heritability of and interrelationships among traits of two soybeanpopulations,”Crop Sci.,4:196-198,1964.
Lazzeri,“Stable transformation of barley via direct DNA uptake.Electroporation-and PEG-mediated protoplast transformation,”Methods Mol.Biol.,49:95-106,1995.
Leffel,“High protein lines and chemical constituent pricing in soybean,”J.Prod.Agric.,1:111-115,1988.
Leffel and Rhodes,“Agronomic performance and economic value of high-seed-protein soybean,”J.Prod.Agric.,6:365-368,1993.
Major,Johnson,Tanner,Anderson,“Effects of daylength and temperature on soybeandevelopment,”Crop Sci.,15:174-179,1975.
Marcotte and Bayley,Quatrano,“Regulation of a wheat promoter by abscisic acid in riceprotoplasts,”Nature,335(6189):454-457,1988.
Mounts,Wolf,Martinez,“Processing and utilization,”In:Soybeans:Improvement,Production,and Uses,Wilcox(ed),Am.Soc.Agron.,Madison,WI,1987.
Nickell and Bernard,“Registration of L84-5873 and L84-5932 soybean germplasm lines resistantto brown stem rot,”Crop Sci.,32(3):835,1992.
Omirulleh,Abraham,Golovkin,Stefanov,Karabaev,Mustardy,Morocz,Dudits,“Activity of achimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derivedcells and transgenic plants in maize,”Plant Mol.Biol.,21(3):415-428,1993.
Openshaw and Hadley,“Selection indices to modify protein concentration of soybean seeds,”Crop Sci.,24:1-4,1984.
Orf,“Modifying soybean composition by plant breeding,”In:Soybean utilization alternative,Univ.Minnesota Center Alternative Crops and Products,McCann(ed),St.Paul,131-141,1988.
Pantalone,Burton,Carter,Jr.,“Soybean fibrous root heritability and genotypic correlations withagronomic and seed quality characteristics,”Crop Sci.,36:1120-1125,1996.
Parker,Hendricks,Borthwick,Scully,“Action spectrum for the photoperiodic control of floralinitiation of short-day plants,”Bot.Gaz.,108:1-26,1946.
Poehlman and Sleper,“Breeding Field Crops”Iowa State University Press,Ames,1995.
Potrykus,Paszkowski,Saul,Petruska,Shillito,“Molecular and general genetics of a hybridforeign gene introduced into tobacco by direct gene transfer,”Mol.Gen.Genet.,199(2):169-177,1985.
Sebern and Lambert,“Effect of stratification for pereent protein in two soybean populations,”Crop Sci.,24:225-228,1984.
Serretti,Schapaugh,Jr.,Leffel,“Amino acid profiles of high seed protein soybean,”Crop Sci.,34:207-209,1994.
Shanmugasundaram and Tsou,“Photoperiod and critical duration for flower induction insoybean,”Crop Sci.,18:598-601,1978.
Shanmon,Wilcox,Probst,“Estimated gains from selection for protein and yield in the F4generation of six soybean populations,”Crop Sci.,12:824-826,1972.
Shibles,Anderson,Gibson,“Soybean,”In:Crop Physiology,Some Case Histories,Evans(ed),Cambridge Univ.Press,Cambridge,England,51-189,1975.
Simmonds,“Principles of crop improvement,”Longman,Inc.,NY,369-399,1979.
Simpson,Jr.and Wilcox,“Genetic and phenotypic associations of agronomic characteristics infour high protein soybean populations,”Crop Sci.,23:1077-1081,1983.
Sneep and Hendriksen,“Plant breeding perspectives,”Wageningen(ed),Center for AgriculturalPublishing and Documentation,1979.
Sprague and Dudley,Corn and Improvement,3rd ed.,1988.
Thorne and“Incorporation of high protein,exotic germplasm into soybean populations by 2-and3-way crosses,”Crop Sci.,10:652-655,1970.
Uchimiya,Fushimi,Hashimoto,Harada,Syono,Sugawara,“Expression of a foreign gene incallus derived from DNA-treated protoplasts of rice(Oryza-sativa)”Mol.Gen.Genet.,204(2):204-207,1986.
van Schaik and Probst,“Effects of some environmental factors on flower production andreproductive effciency in soybeans,”Agron.J.,50:192-197,1958.
Walker,Cianzio,Bravo,Fehr,“Comparison of emasculation and nonemasculation for artificialhybridization of soybeans,”Crop Sci.,19:285-286,1979.
Wang et al.,“Large-scale identification,mapping,and genotyping of single-nucleotidepolymorphisms in the human genome,”Science,280:1077-1082,1998.
Wehrmann,Fehr,Cianzio,Cavins,“Transfer of high seed protein to high-yielding soybeancultivars,”Crop Sci.,27:927-931,1987.
Wilcox and Cavins,“Backcrossing high seed protein to a soybean cultivar,”Crop Sci.,35:1036-1041,1995.
Wilcox.C1944 and C1945 Soybean Germplasm.Crop Sci 38(3):900,1998.
Williams et al.,“Oligonucleotide primers of arbitrary sequence amplify DNA polymorphismswhich are useful as genetic markers,”Nucleic Acids Res.,18:6531-6535,1990.
Wright,Koehler,Hinchee,Carnes,“Plant regeneration by organogenesis in Glycine max,”PlantCell Reports,5:150-154,1986.
Claims (40)
1.农学上优良的大豆植株品种,其整体种子总蛋白平均含量介于44%至50%之间,整体种子总蛋白与油平均含量介于64%至70%之间以及具有可商品化的高产量。
2.权利要求1中植株的植物部分。
3.权利要求2中植株的植物部分,可进一步定义为权利要求1中植株的花粉。
4.权利要求2中植株的植物部分,可进一步定义为权利要求1中植株的胚珠。
5.权利要求2中植株的植物部分,可进一步定义为权利要求1中大豆植株的细胞。
6.权利要求1中植株的种子。
7.权利要求1中植株的再生细胞的组织培养,其中组织培养再生的大豆植株能够表达权利要求1中植株的所有的生理学和形态学特性。
8.权利要求7中的组织培养,其中再生细胞是胚、分生组织细胞、花粉、叶、根、根尖或花或是原生质体或由其来源的愈伤组织。
9.权利要求7中的组织培养再生的大豆植株,其中再生的大豆植株能够表达权利要求1中植株的所有的生理学和形态学特性。
10.权利要求1中的大豆植株,其进一步包括单一基因位点转换。
11.权利要求10中的大豆植株,其中单一基因位点转换包括显性等位基因。
12.权利要求10中的大豆植株,其中单一基因位点转换包括隐性等位基因。
13.权利要求10中的大豆植株,其中单一基因位点通过转化稳定的插入大豆的基因组内。
14.权利要求10中的大豆植株,其中所述单一基因位点包括单个基因。
15.农学上优良的大豆植株品种,其整体种子总蛋白平均含量介于44%至50%之间,整体种子总蛋白与油平均含量介于64%至70%之间以及具有可商品化的高产量,其中植株的制备方法包含下列步骤
(a)将大豆品种SN30003的植株与第二个品种进行杂交,其中所述第二个品种具有可商品化的高产量;
(b)从所述杂交筛选出后代大豆植株;
(c)将后代大豆植株与其自身或第三个植株杂交产生该后代的后代植株;
(d)重复步骤(b)和(c),再经过3-10代,产生农学上精良的大豆植株品种,其整体种子总蛋白平均含量介于44%至50%之间,整体种子总蛋白与油平均含量介于64%至70%之间以及具有可商品化的高产量。
16.生产大豆种子的方法,包括将权利要求1的植株与其自身或第二个大豆植株进行杂交。
17.权利要求16的方法,可进一步定义为制备杂交大豆种子的方法,包括将权利要求1中的植株与第二个不同的大豆植株进行杂交。
18.权利要求17的方法,其中杂交包括下列步骤:
(a)种植权利要求1中的植株和第二个不同的大豆植株的种子;
(b)从所述种子培育大豆植株直至所述植株开花;
(c)将权利要求1中的植株的花与所述第二大豆植株的花粉交叉授粉或将第二植株的花与权利要求1中的植株的花粉交叉授粉;
(d)收获杂交授粉得到的种子。
19.在大豆栽培计划中培育大豆植株的方法,其包括:
(a)获得权利要求1中的大豆植株或其部分;和
(b)使用植物栽培技术将所述植株或部分作为栽培材料的来源。
20.权利要求19的方法,其中植物栽培技术选自轮回筛选、混合筛选、群体筛选、回交、纯种栽培、基因标记辅助筛选和基因转化。
21.权利要求20的方法,其中将权利要求1中的大豆植株用作雌性母体。
22.权利要求20的方法,其中将权利要求1中的大豆植株用作雄性母体。
23.由权利要求1中的植株产生大豆植株的方法,该方法包括下列步骤:
(a)将权利要求1中的植株的一个植物与第二个大豆植株进行杂交,制备源自权利要求1中植株的后代植株;
(b)将该后代植株与其自身或第二个植株进行杂交,产生源自权利要求1中植株的后代的后代植株。
24.权利要求23的方法,其进一步包括:
(c)将后代的后代植株与其自身或第二个植株进行杂交;和
(d)重复步骤(b)和(c),再经过至少另外2-10代,产生源自权利要求1中植株的大豆植株。
25.权利要求24的方法,其进一步定义为种子蛋白与油含量增加的大豆植株的生产方法,其中所述大豆植株相对于所述第二个大豆植株,种子蛋白与油含量增加。
26.权利要求24的方法,其进一步定义为蛋白含量增加的大豆植株的生产方法,其中所述大豆植株相对于所述第二大豆植株,种子蛋白含量增加。
27.权利要求24的方法,其进一步定义为种子油含量和种子蛋白与油含量增加的大豆植株的生产方法,其中所述大豆植株相对于所述第二大豆植株,种子蛋白和蛋白与油含量增加。
28.权利要求24的方法,其进一步包括:
(a)将权利要求1中的植株来源的植物与其自身或另一个大豆植株进行杂交,产生源自权利要求1中植株的另外的后代的种子;
(b)在植株生长条件下培育所述种子,产生源自权利要求1植株的另外的植株;和
(c)重复杂交和培育步骤(a)和(b)0-7次,产生源自权利要求1中植株的更多的植株。
29.源自权利要求1中植株品种的植物或其部分,其中所述植物按照权利要求24的方法生产,且其中所述植物整体种子总蛋白平均含量介于44%至50%之间,整体种子总蛋白与油平均含量介于64%至70%之间,并且还具有可商品化的高产量。
30.生产具有高种子蛋白含量和高蛋白与油含量与高产量相组合的大豆植株的方法,其包括:
(a)将大豆品种SN30003的植株与第二个品种进行杂交,其中所述第二个品种具有可商品化的高产量;
(b)从所述杂交筛选后代大豆植株;
(c)将后代大豆植株与其自身或第三个植株杂交产生后代的后代植株;
(d)重复步骤(b)和(c),再经过另外3-10代,产生具有高种子蛋白和蛋白与油含量与高产量相组合的大豆植株,其中筛选包括在所述一代或多代对种子蛋白含量,种子油含量和/或种子产量的筛选,其中所述大豆植株整体种子总蛋白平均含量介于44%至50%之间,整体种子总蛋白与油平均含量介于64%至70%之间以及具有可商品化的高产量。
31.权利要求30的方法,其中在所述种子蛋白含量,种子油含量和/或种子产量的基础上,对后代的后代植株在每一代都进行筛选以便于杂交。
32.按照权利要求30的方法产生的大豆植株,其整体种子总蛋白平均含量介于44%至50%之间,整体种子总蛋白与油平均含量介于64%至70%之间以及具有可商品化的高产量。
33.生产食品或饲料的方法,其包括:
(a)获得权利要求1中的植株;
(b)培育所述植株直至成熟;和
(c)从所述植株制备食品或饲料。
34.权利要求33的方法,其中所述食品是蛋白浓缩物。
35.权利要求33的方法,其中所述食品是蛋白分离物。
36.权利要求33的方法,其中所述食品是粗粉。
37.权利要求33的方法,其中所述食品是油。
38.权利要求33的方法,其中所述食品是细粉。
39.权利要求33的方法,其中所述饲料包括大豆皮。
40.生产用于工业应用的产品的方法,其包括:
(a)获得权利要求1中的植株;
(b)培育所述植株直至成熟;和
(c)由所述植株制备产品用于工业应用。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39628702P | 2002-07-11 | 2002-07-11 | |
US60/396,287 | 2002-07-11 | ||
PCT/US2003/021708 WO2004006659A1 (en) | 2002-07-11 | 2003-07-11 | High yielding soybean plants with increased seed protein plus oil |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1681384A true CN1681384A (zh) | 2005-10-12 |
CN1681384B CN1681384B (zh) | 2010-05-26 |
Family
ID=30116002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN03821573XA Expired - Lifetime CN1681384B (zh) | 2002-07-11 | 2003-07-11 | 种子蛋白和油含量增加的高产大豆植物 |
Country Status (10)
Country | Link |
---|---|
US (2) | US20040060082A1 (zh) |
EP (1) | EP1538896A4 (zh) |
JP (1) | JP2005532812A (zh) |
KR (1) | KR20050051633A (zh) |
CN (1) | CN1681384B (zh) |
AR (1) | AR040554A1 (zh) |
AU (1) | AU2003256493A1 (zh) |
BR (1) | BR0312609A (zh) |
CA (1) | CA2492364A1 (zh) |
WO (1) | WO2004006659A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023151004A1 (en) * | 2022-02-11 | 2023-08-17 | Northeast Agriculture University | Methods and compositions for increasing protein and oil content and/or modifying oil profile in plant |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7566813B2 (en) * | 2002-03-21 | 2009-07-28 | Monsanto Technology, L.L.C. | Nucleic acid constructs and methods for producing altered seed oil compositions |
BRPI0507088A (pt) * | 2004-01-26 | 2007-06-19 | Renessen Llc | alimento de soja com alto teor de proteìna |
CN101704583A (zh) * | 2004-05-24 | 2010-05-12 | 方太海德有限公司 | 浮岛 |
PT1885176T (pt) | 2005-05-27 | 2016-11-28 | Monsanto Technology Llc | Evento mon89788 de soja e métodos para a sua deteção |
KR20080052558A (ko) * | 2005-07-08 | 2008-06-11 | 레네센 엘엘씨 | 트립토판 고함유 대두 가루 |
US8677504B2 (en) * | 2005-07-14 | 2014-03-18 | Qualcomm Incorporated | Method and apparatus for encrypting/decrypting multimedia content to allow random access |
BRPI0615947B1 (pt) * | 2005-09-07 | 2023-12-19 | Monsanto Technology Llc | Método de prognosticar o fenótipo de uma planta de soja para teor de glicinina e de beta-conglicinina, e kit |
WO2008079545A2 (en) | 2006-11-15 | 2008-07-03 | Agrigenetics, Inc. | Generation of plants with altered protein, fiber, or oil content |
EP1947198A1 (en) * | 2007-01-18 | 2008-07-23 | Syngeta Participations AG | Maize plants characterised by quantitative trait loci (QTL) |
US20080193587A1 (en) * | 2007-02-09 | 2008-08-14 | Vermeire Drew A | Composition and method of feeding a young livestock animal |
US20080260895A1 (en) * | 2007-04-17 | 2008-10-23 | Vermeire Drew A | Milk replacer composition and product and method for producing the same |
WO2008150892A2 (en) * | 2007-05-31 | 2008-12-11 | Monsanto Technology Llc | Compositions for production of soybean with elevated oil content |
CN103403169A (zh) | 2011-02-24 | 2013-11-20 | 衣阿华州立大学研究基金公司 | 改变植物中生物化学成分的材料和方法 |
CN104255438B (zh) * | 2014-10-09 | 2016-07-13 | 山东省畜牧总站 | 一种饲草型大豆的选育方法 |
WO2016123447A1 (en) * | 2015-01-29 | 2016-08-04 | Schillinger Genetics, Inc | Soybean processing method |
CN106069742A (zh) * | 2016-07-21 | 2016-11-09 | 重庆市农业科学院 | 一种提高油菜种质资源含油量的方法 |
JP2022044851A (ja) * | 2019-04-09 | 2022-03-18 | 住友化学株式会社 | 有限伸育性ダイズの栽培地における雑草防除方法 |
CA3156113A1 (en) * | 2019-10-01 | 2021-04-08 | Monsanto Technology Llc | CROSS POLLINATION BY LIQUID-MEDIATED ADMINISTRATION OF POLLEN TO CLOSED STIGMA OF FLOWER FROM RECIPIENT PLANTS |
US11653604B2 (en) * | 2019-10-01 | 2023-05-23 | Monsanto Technology Llc | Cross pollination through liquid-mediated delivery of pollen to enclosed stigmas of flowers from recipient plants |
US11730099B2 (en) | 2020-04-04 | 2023-08-22 | Monsanto Technology Llc | Compositions and methods for liquid-mediated delivery of pollen |
US20220279739A1 (en) * | 2021-03-02 | 2022-09-08 | Monsanto Technology Llc | Compositions and methods for pollen storage |
CN113355443B (zh) * | 2021-06-18 | 2022-06-07 | 中国农业科学院作物科学研究所 | 用于辅助鉴别大豆油脂含量高低的分子标记Oil-11-6708663、试剂盒和方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5684229A (en) * | 1996-05-10 | 1997-11-04 | Asgrow Seed Company | Soybean cultivar 91112039947 |
US5684235A (en) * | 1996-09-20 | 1997-11-04 | Asgrow Seed Company | Soybean cultivar 91339893433 |
US5973235A (en) * | 1998-02-26 | 1999-10-26 | Monsanto Corporation | Soybean cultivar 943470629664 |
US6040499A (en) * | 1998-03-25 | 2000-03-21 | Monsanto Corporation | Soybean cultivar 943347632294 |
US5998707A (en) * | 1998-08-10 | 1999-12-07 | Monsanto Corporation | Soybean cultivar 9323269436984 |
US6140556A (en) * | 1999-01-15 | 2000-10-31 | Dekalb Genetics Corporation | Soybean cultivar CX414cRR |
US6184442B1 (en) * | 2000-01-06 | 2001-02-06 | Asgrow Seed Company Llc | Soybean cultivar 9323265446452 |
US7053272B2 (en) * | 2002-07-11 | 2006-05-30 | Monsanto Technology, L.L.C. | Soybean variety 0007583 |
US7138570B2 (en) * | 2002-07-11 | 2006-11-21 | Monsanto Technology, L.L.C. | Soybean variety 0008079 |
BRPI0715496A2 (pt) * | 2006-07-17 | 2013-03-26 | Renessen Llc | farelo de soja com alto teor de proteÍna |
CA2660526A1 (en) * | 2006-08-15 | 2008-02-21 | Monsanto Technology Llc | Compositions and methods of plant breeding using high density marker information |
-
2003
- 2003-07-11 EP EP03764493A patent/EP1538896A4/en not_active Ceased
- 2003-07-11 AR AR20030102517A patent/AR040554A1/es not_active Application Discontinuation
- 2003-07-11 CN CN03821573XA patent/CN1681384B/zh not_active Expired - Lifetime
- 2003-07-11 CA CA002492364A patent/CA2492364A1/en not_active Abandoned
- 2003-07-11 BR BR0312609-9A patent/BR0312609A/pt not_active Application Discontinuation
- 2003-07-11 JP JP2004521669A patent/JP2005532812A/ja active Pending
- 2003-07-11 KR KR1020057000574A patent/KR20050051633A/ko not_active Application Discontinuation
- 2003-07-11 WO PCT/US2003/021708 patent/WO2004006659A1/en active Application Filing
- 2003-07-11 US US10/618,101 patent/US20040060082A1/en not_active Abandoned
- 2003-07-11 AU AU2003256493A patent/AU2003256493A1/en not_active Abandoned
-
2014
- 2014-02-26 US US14/191,145 patent/US20140289909A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023151004A1 (en) * | 2022-02-11 | 2023-08-17 | Northeast Agriculture University | Methods and compositions for increasing protein and oil content and/or modifying oil profile in plant |
Also Published As
Publication number | Publication date |
---|---|
US20140289909A1 (en) | 2014-09-25 |
WO2004006659A1 (en) | 2004-01-22 |
EP1538896A4 (en) | 2006-03-22 |
CA2492364A1 (en) | 2004-01-22 |
KR20050051633A (ko) | 2005-06-01 |
US20040060082A1 (en) | 2004-03-25 |
BR0312609A (pt) | 2005-07-26 |
CN1681384B (zh) | 2010-05-26 |
AR040554A1 (es) | 2005-04-13 |
EP1538896A1 (en) | 2005-06-15 |
JP2005532812A (ja) | 2005-11-04 |
AU2003256493A1 (en) | 2004-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1681384A (zh) | 种子蛋白和油含量增加的高产大豆植物 | |
CN1038893C (zh) | 谷粒品质性状强化的玉米的新生产方法 | |
Serna-Saldivar | Corn: chemistry and technology | |
Fernández-Martínez et al. | Sunflower | |
US9943048B2 (en) | Method for producing rice F1 seed, rice F1 seed, and rice male sterile line | |
CN1738529A (zh) | 增强的授粉者和增加无籽西瓜产量的方法 | |
MX2007003794A (es) | Plantas de frijol de soya de alto rendimiento con bajo contenido de acido linolenico. | |
CN1863454A (zh) | 新辣椒植物 | |
Sanjana Reddy | Sorghum, sorghum bicolor (L.) Moench | |
US20140143905A1 (en) | Maize plants having a partially or fully multiplied genome and uses thereof | |
US7241941B1 (en) | Soybean variety 0137335 | |
AU2016341138B2 (en) | High protein oat species | |
US6639132B1 (en) | Altered fatty-acid, protein, oil, and starch corn lines and method for producing same | |
CN1653883A (zh) | 对黑胫病真菌具有抗性的芸苔属植物 | |
CN1622752A (zh) | 具有改善的籽粒质量性状的玉米植物 | |
US5424483A (en) | Methods and compositions of a hybrid genetic corn complement, DK554 | |
Agnihotri et al. | Genetic enhancement in rapeseed-mustard for quality and disease resistance through in vitro techniques | |
CN1040123A (zh) | 植物中可遗传的雄性不育性和无融合生殖的无性诱导 | |
KR20140058506A (ko) | 부분적으로 또는 완전히 다중화된 게놈을 가지는 보통계 밀 식물 또는 이의 부분물, 이의 하이브리드와 생성물, 및 이를 생성 및 사용하는 방법 | |
US12016285B2 (en) | Higher-yielding proso | |
CN1893818A (zh) | 生产改变含油量的植物 | |
CN1930297A (zh) | 新的香瓜植物 | |
US5449855A (en) | Methods and compositions of a hybrid genetic corn complement, DK743 | |
WO2022224146A1 (en) | Brassica napus line ome0001 | |
CN1893819A (zh) | 生产改变含油量的植物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20100526 |