首先参见图1,对脱硫单元10进行说明,其通常包括流化床反应器12、流化床再生器14和流化床还原器16。使固体吸附剂颗粒在脱硫单元10中循环,以便从含硫的烃(如裂化汽油或柴油燃料)中连续除硫。在脱硫单元10中所使用的固体吸附剂颗粒可以是任一种可足够地流体化、循环和再生的基于氧化锌的组合物,所述组合物具有足够的脱硫活性和足够的抗磨性。
在流化床反应器12中,使含烃流体料流向上流过还原的固体吸附剂颗粒的床。与反应器12中的含烃料流接触的还原的固体吸附剂颗粒优选最初(即,刚好在接触含烃流体料流之前)包括氧化锌和还原价态的助催化剂金属组份。尽管不希望受理论的束缚,发明人认为还原的固体吸附剂颗粒的还原价态的助催化剂金属组份使得从含烃料流中除硫更容易,同时氧化锌通过将其转化为硫化锌而用作硫存储介质。
还原的固体吸附剂颗粒的还原价态的助催化剂金属组份优选包括选自镍、钴、铁、锰、钨、银、金、铜、铂、锌、锡、钌、钼、锑、钒、铱、铬、钯的助催化剂金属。更优选还原价态的助催化剂金属组份包括镍作为助催化剂金属。如本文所用,当描述助催化剂金属组份时,术语“还原价态”指的是具有低于助催化剂金属组份在其通用的氧化态中的化合价的化合价的助催化剂金属组份。更具体地,在反应器12中所使用的还原的固体吸附剂颗粒应包括助催化剂金属组份,所述助催化剂金属组份所具有的化合价低于离开再生器14的再生的(即,氧化的)固体吸附剂颗粒的助催化剂金属组份的化合价。更优选地,基本上所有的还原的固体吸附剂颗粒的助催化剂金属组份具有的化合价为0。
在本发明的优选实施方案中,还原价态的助催化剂金属组份包括、组成为或基本组成为由式MAZnB所表征的取代的固体金属溶液,其中M为助催化剂金属,且A和B各为0.01-0.99的数值。对于取代的固体金属溶液,在上式中,优选A为约0.70至约0.97,最优选为约0.85至约0.95。另外,优选B为约0.03至约0.30,最优选为约0.05至0.15。优选B等于(1-A)。
取代的固体溶液具有独特的物理和化学特性,所述特征对于本文所述的吸附剂组合物的化学性质是重要的。取代的固体溶液是合金的子集,所述合金是通过用溶质金属直接取代晶体结构中的溶剂金属原子形成的。例如,发明人认为在还原的固体吸附剂颗粒中所发现的取代的固体金属溶液(MAZnB)是通过溶质锌金属取代溶剂助催化剂金属原子形成的。存在三个有利于形成取代的固体溶液的基本标准:(1)两种元素的原子半径在彼此的15%内;(2)两种纯相的晶体结构是相同的;和(3)两种组份的电负性相似。本文所述的固体吸附剂颗粒中所用的助催化剂金属(作为元素金属或金属氧化物)和氧化锌优选满足以上所述三个标准中的至少两个。例如,当助催化剂金属为镍时,满足第一和第三个标准,但不满足第二个标准。镍和锌金属原子半径在彼此的10%之内,且负电性相近。但是,氧化镍(NiO)优选地形成立方晶体结构,而氧化锌(ZnO)优选为六方晶体结构。镍锌固体溶液保持氧化镍的立方结构。使氧化锌存在于立方结构中提高了相的能量,这限制了可以溶解在氧化镍的结构中的锌的量。化学计量控制微观表现在为92∶8的镍锌固体溶液(Ni0.92Zn0.08)(其在还原期间形成),且微观表现为固体吸附剂颗粒的重复的可再生性。
除了氧化锌和还原价态的助催化剂金属组份,在反应器12中所使用的还原的固体吸附剂颗粒可以另外包括孔隙率增强剂和助催化剂金属-铝酸锌取代的固体溶液。助催化剂金属-铝酸锌取代的固体溶液可由式MZZn(1-Z)Al2O4)所表征,其中Z为0.01-0.99的数值。孔隙率增强剂,当使用时,可以是任何最终提高固体吸附剂颗粒的宏观孔隙率的化合物。优选孔隙率增强剂为珍珠岩。如本文所用,术语“珍珠岩”是硅质火山岩的岩相学术语,所述硅质火山岩天然存在于世界各地的一些区域。使其不同于其它火山矿石的区别特征是其当加热至一定温度时能够膨胀为原始体积的4-20倍的性能。当加热到871℃(1600°F)以上时,碎珍珠岩由于存在和粗珍珠岩结合的水而膨胀。在加热的过程中,结合的水在加热软化的玻璃状颗粒中气化并形成无数微小气泡。这些微小的玻璃密封气泡解释了其轻的重量。可以制备膨胀珍珠岩至重量仅仅为40kg/m3(2.5磅/立方英尺)。膨胀珍珠岩的典型化学分析特征为:二氧化硅73%、氧化铝17%、氧化钾5%、氧化钠3%、氧化钙1%加上痕量元素。膨胀珍珠岩的典型物理特征为:软化点871℃-1,093℃(1600-2000°F)、熔点1,260℃-1,343℃(2300°F-2450°F)、pH6.6-6.8和比重2.2-2.4。如本文所用,术语“膨胀珍珠岩”指的是通过将珍珠岩硅质火山岩加热至871℃(1600°F)以上而膨胀的球形珍珠岩。如本文所用,术语“膨胀珍珠岩颗粒”或“研磨珍珠岩”指的是已进行压碎,以形成细微颗粒物形式的膨胀珍珠岩,其中这种物质的粒度包括97%的粒径少于2微米的颗粒。术语“研磨膨胀珍珠岩”指对膨胀的珍珠岩颗粒进行研磨和压碎所得到的产品。
最初在反应器12中与含烃的流体料流接触的还原的固体吸附剂颗粒可包括在以下表1中所提供的范围内的氧化锌、还原价态的助催化剂金属组份(MAZnB)、孔隙率增强剂(PE)和助催化剂金属-铝酸锌(MZXn(1-Z)Al2O4)。
表1
还原的固体吸附剂颗粒的组份 |
范围 |
ZnO(重量%) |
MAZnB(重量%) |
PE(重量%) |
MZZn(1-Z)Al2O4(重量%) |
优选 |
5-80 |
5-80 |
2-50 |
1-50 |
更优选 |
20-60 |
20-60 |
5-30 |
5-30 |
最优选 |
30-50 |
30-40 |
10-20 |
10-20 |
固体吸附剂颗粒的显著地影响颗粒用于脱硫单元10的适用性的物理特征包括,如颗粒形状、粒度、颗粒密度、和抗磨性。在脱硫单元10中所使用的固体吸附剂颗粒优选包括微球形颗粒,所述微球形颗粒具有的平均粒度为约20至约150微米,更优选为约50至约100微米,最优选为60至80微米。固体吸附剂颗粒的密度优选为约0.5至约1.5克/立方厘米(g/cc),更优选为约0.8至约0.3g/cc,最优选为0.9-1.2g/cc。固体吸附剂颗粒的粒度和密度优选使固体吸附剂颗粒具有作为根据在PowderTechnol.,7,285-292(1973)中描述的Geldart组分类体系的组A的固体的资格。固体吸附剂颗粒优选具有高抗磨性。如本文所用,术语“抗磨性”指的是在湍流运动的控制条件下颗粒抗破碎的量度。颗粒的抗磨性可以使用Davidson指数进行量化。Davidson指数表示在测试条件下,减少至粒度少于20微米的超过20微米粒度部分的重量百分比。Davidson指数使用喷射杯磨损测试法进行测量。喷射杯磨损测试法包括:将5g吸附剂样品进行筛滤以除去0-20微米粒径范围内的颗粒。然后,将20微米以上的颗粒在21升/分钟的速率下进行空气切向喷射1小时,所述空气切向喷射是通过固定在特别设计的喷射杯(1”内径×2”高度)的底部的0.0625英寸的孔所引入。Davidson指数(DI)如下计算:
在本发明中所使用的固体吸附剂优选具有的Davidson指数小于约30,更优选小于约20,最优选小于10。
与反应器12中的还原的固体吸附剂颗粒接触的含烃的流体料流优选包括含硫的烃和氢。进料至反应器12的氢与含硫的烃的摩尔比优选为约0.1∶1至约3∶1,更优选为约0.2∶1至约1∶1,最优选为0.4∶1-0.8∶1。优选含硫的烃在标准温度和压力下通常为液态的流体,但如上所述,当其与氢混合时,其存在于气态中并暴露于反应器12中的脱硫条件下。含硫的烃优选可以用作燃料或燃料的前体。适合的含硫的烃的例子包括裂化汽油、柴油燃料、喷气燃料、直馏石脑油、直馏馏分、焦化瓦斯油、焦化石脑油、烷基化油和直馏瓦斯油。最优选地,含硫的烃包括选自汽油、裂化汽油、柴油燃料及其混合物的烃流体。
如本文所用,术语“汽油”指的是在约37.7℃至约204.4℃(约100°F至约400°F)的范围内沸腾的烃的混合物,或其任何馏分。适合的汽油的例子包括但不限于在炼油厂内的烃料流,如石脑油、直馏石脑油、焦化石脑油、催化裂化汽油、减粘裂化石脑油、烷基化油、异构化油(isomerate)、重整产品等等,及其混合物。
如本文所用,术语“裂化汽油”指的是在37.7℃至约204.4℃(约100°F至约400°F)的范围内沸腾的烃的混合物,或其任一种馏分;其为将较大的烃分子裂化为较小的分子的热或催化裂化的产物。适合的热方法的例子包括但不限于焦化、热裂化、减粘裂化等等,及其组合。适合的催化裂化法的例子包括但不限于流化床催化裂化、重油裂化等等,及其组合。因此,适合的裂化汽油的例子包括但不限于焦化汽油、热裂化汽油、减粘裂化汽油、流体催化裂化汽油、重油裂化汽油等等,及其混合物。在一些情况下,当将其用作本发明的方法中的含硫流体时,可以在脱硫之前将裂化汽油分馏和/或氢化处理。
如本文所用,术语“柴油燃料”指的是在约149℃至约399℃(约300°F至约750°F)的范围内沸腾的烃的混合物,或其任何馏分。适合的柴油燃料的例子包括但不限于轻循环油、煤油、喷气燃料、直馏柴油、氢化处理柴油等等,及其混合物。
作为本发明脱硫方法中适合的进料,本文所述的含硫的烃包括一些烯烃、芳烃和硫,以及链烷烃和环烷烃。在气态裂化汽油中烯烃的量通常为约10至约35重量%(基于气态裂化汽油的总重量)。对于柴油燃料,基本上不含烯烃。在气态裂化汽油中芳烃的量通常为约20至约40重量%(基于气态裂化汽油的总重量)。在气态柴油燃料中芳烃的量通常为约10至约90重量%,基于气态柴油燃料的总重量。适于在本发明的脱硫方法中使用的含硫的烃流体(优选裂化汽油或柴油燃料)中原子硫的量通常高于约百万分之50(以重量计)(ppmw)的含硫的烃流体,更优选为约100ppmw的原子硫至约10,000ppmw的原子硫,最优选为150ppmw的原子硫至500ppmw的原子硫。优选至少约50重量%的存在于本发明所使用的含硫的烃流体中的原子硫为有机硫化合物的形式。更优选至少约75重量%的存在于本发明所使用的含硫的烃流体中的原子硫为有机硫化合物的形式,最优选至少约90重量%的存在于本发明所使用的含硫的烃流体中的原子硫为有机硫化合物的形式。如本文所用,与“ppmw的硫”连用的“硫”或术语“原子硫”指的是在含硫的烃中的原子硫(约32个原子质量单位)的量,而不是硫化合物(如有机硫化合物)的原子质量或重量。
如本文所用,术语“硫”指的是以任一种形式通常存在于含硫的烃(如,裂化汽油或柴油燃料)中的硫。可以通过实施本发明从含硫的烃流体中除去的这种硫的例子包括但不限于硫化氢、氧硫化碳(COS)、二硫化碳(CS2)、硫醇(RSH)、有机硫化物(R-S-R)、有机二硫化物(R-S-S-R)、噻吩、取代噻吩、有机三硫化物、有机四硫化物、苯并噻吩、烷基噻吩、烷基苯并噻吩、烷基二苯并噻吩等等,及其组合,以及通常存在于计划用于本发明的脱硫方法中的类型的含硫的烃中的较大分子量的这种物质,其中每个R可以是含有1-10个碳原子的烷基、环烷基或芳基。
如本文所用,术语“流体”指的是气体、液体、蒸气及其组合。
如本文所用,术语“气态”指的是其中含硫的烃流体(如,裂化汽油或柴油燃料)主要在气相中或为蒸气相的状态。
如本文所用,术语“细微颗粒”指的是平均粒度少于500微米的颗粒。
再次参见图1,在流化床反应器12中,使还原的固体吸附剂细微颗粒与向上流动的气态含烃流体料流在足以产生脱硫的烃和加载了硫的固体吸附剂颗粒的一套脱硫条件下接触。含烃流体料流的流动足以使位于反应器12中的固体吸附剂颗粒的床流化。反应器12中的脱硫条件包括温度、压力、重时空速(WHSV)和表观速度。以下表2中提供了这种脱硫条件的优选范围。
表2
脱硫条件 |
范围 |
温度(°F) |
压力(psig) |
WHSV(hr-1) |
表观速度(ft/s) |
优选 |
250-1200 |
25-750 |
1-20 |
0.25-5 |
更优选 |
500-1000 |
100-400 |
2-12 |
0.5-2.5 |
最优选 |
700-850 |
150-250 |
3-8 |
1.0-1.5 |
当还原的固体吸附剂颗粒与反应器12中的含烃料流在脱硫条件下接触时,可将存在于含烃流体料流中的硫化合物,特别是有机硫化合物从这种流体料流中除去。至少部分从含烃流体料流中除去的硫将至少部分还原的固体吸附剂颗粒的氧化锌转化为硫化锌。
与许多常规的脱硫方法(如,加氢脱硫)相反,在反应器12中的脱硫过程中,优选在含硫的烃流体中基本上没有硫转化为硫化氢和保留为硫化氢。相反,优选反应器12的流体流出物(通常包括脱硫的烃和氢)含有比在进料至反应器12的流体进料(通常包括含硫的烃和氢)中更少量的硫化氢(如果有的话)。反应器12的流体流出物优选包含少于进料至反应器12的流体进料中的硫的量的约50重量%,更优选少于流体进料中的硫的量的约20重量%,最优选少于流体进料中的硫的量的5重量%。对于反应器12的流体流出物的总的含硫量而言,优选少于总的流体流出物的约百万分之50(以重量计)(ppmw),更优选少于约30ppmw,再更优选少于约15ppmw,最优选少于10ppmw。
在反应器12中脱硫之后,其后可以将脱硫的烃流体,优选脱硫的裂化汽油或脱硫的柴油燃料分离并从流体流出物中进行回收,并优选进行液化。这种脱硫的烃流体的液化可以通过本领域已知的任何方法或方式完成。所得到的液化的脱硫的烃优选包括少于进料至反应区的含硫的烃(如,裂化汽油或柴油燃料)中的硫的量的约50重量%,更优选少于含硫的烃中的硫的量的约20重量%,最优选少于含硫的烃中的硫的量的约5重量%。脱硫的烃优选包括少于约50ppmw的硫,更优选少于约30ppmw的硫,再更优选少于约15ppmw的硫,最优选少于10ppmw的硫。在反应器12中脱硫之后,通过第一输送装置18将至少部分的加载了硫的吸附剂颗粒转移到再生器14中。在再生器14中,使加载了硫的吸附剂颗粒与含氧再生料流接触。含氧再生料流优选包括至少1摩尔%的氧,其余部分为气态稀释剂。更优选含氧再生料流包括约1至约50摩尔%的氧和约50至约95摩尔%的氮,更优选约2至约20摩尔%的氧和约70至约90摩尔%的氮,最优选3-10摩尔%的氧和75-85摩尔%的氮。
再生器14中的再生条件足以使至少部分的加载了硫的固体吸附剂颗粒的硫化锌通过与含氧再生料流接触转化为氧化锌。下面表3中提供了这种再生条件的优选范围。
表3
再生条件 |
范围 |
温度(°F) |
压力(psig) |
表观速度(ft/s) |
优选 |
500-1500 |
10-250 |
0.5-10 |
更优选 |
700-1200 |
20-150 |
1.0-5 |
最优选 |
900-1100 |
30-75 |
2.0-3.0 |
当加载了硫的固体吸附剂颗粒与含氧再生料流在上述再生条件下接触时,至少部分的助催化剂金属组份氧化以形成氧化助催化剂金属组份。在再生器14中,优选将加载了硫的吸附剂的取代的固体金属溶液(MAZnB)和/或硫化的取代固体金属溶液(MAZnBS)转化为由式MXZnYO所表征的取代的固体金属氧化物溶液,其中M为助催化剂金属,且X和Y各自为0.01至约0.99的数值。在上式中,优选X为约0.5至约0.9,最优选为0.6至0.8。另外优选Y为约0.1至约0.5,最优选为0.2至0.4。优选Y等于(1-X)。
离开再生器14的再生的固体吸附剂颗粒可包括氧化锌、氧化的助催化剂金属组份(MXZnYO)、孔隙率增强剂(PE)和助催化剂金属-铝酸锌(MZZn(1-Z)Al2O4),以下表4中提供了上述组份的范围。
表4
再生的固体吸附剂颗粒的组份 |
范围 |
ZnO(重量%) |
MXZnYO(重量%) |
PE(重量%) |
MZZn(1-Z)Al2O4(重量%) |
优选 |
5-80 |
5-70 |
2-50 |
1-50 |
更优选 |
20-60 |
15-60 |
5-30 |
5-30 |
最优选 |
30-50 |
20-40 |
10-20 |
10-20 |
在再生器14中再生之后,将再生的(即,氧化的)固体吸附剂颗粒通过第二输送装置20输送到还原器16。在还原器16中,再生的固体吸附剂颗粒与含氢的还原料流接触。含氢的还原料流优选包含至少50摩尔%的氢,其余部分为裂化的烃产品,如甲烷、乙烷和丙烷。更优选含氢的还原料流包含至少约70摩尔%的氢,最优选至少80摩尔%的氢。还原器16中的还原条件足以使再生的固体吸附剂颗粒的氧化的助催化剂金属组份的化合价降低。以下表5中提供了这种还原条件的优选范围。
表5
还原条件 |
范围 |
温度(°F) |
压力(psig) |
表观速度(ft/s) |
优选 |
250-1250 |
25-750 |
0.1-4 |
更优选 |
600-1000 |
100-400 |
0.2-2.0 |
最优选 |
750-850 |
150-250 |
0.3-1.0 |
当再生的固体吸附剂颗粒与还原器16中的含氢的还原料流在上述还原条件下接触时,可将至少部分氧化的助催化剂金属组份还原以形成还原价态的助催化剂金属组份。优选将至少大部分的取代的固体金属氧化物溶液(MXZnYO)转化为还原价态的助催化剂金属组份(MAZnB)。
在已将固体吸附剂颗粒在还原器16中还原之后,可通过第三输送装置22将其输送回反应器12,用于与反应器12中的含烃流体料流再接触。
再次参见图1,第一输送装置18通常包括反应器气动提升机24、反应器接收器26和反应器闭锁料斗28,所述闭锁料斗对于流体而言置于反应器12和再生器14之间。在操作脱硫单元10的过程中,连续地将加载了硫的吸附剂颗粒从反应器12中取出,并由反应器气动提升机24将其从反应器12运送至反应器接收器18。反应器接收器18经反应器回流管线30流体连接到反应器12上。将用于将加载了硫的吸附剂颗粒从反应器12输送到反应器接收器26的提升气体从反应器接收器26中的加载了硫的吸附剂颗粒中分离,并经反应器回流管线30返回到反应器12中。可操作反应器闭锁料斗26以将加载了硫的吸附剂颗粒从反应器12和反应器接收器26的高压烃环境转移到再生器14的低压氧环境。为了完成这种转移,反应器闭锁料斗28定期接收来自反应器接收器26的加载了硫的吸附剂颗粒的批料,将来自反应器接收器26和再生器14的加载了硫的吸附剂颗粒隔离,并将围绕加载了硫的吸附剂颗粒的环境的压力和组成从高压烃环境改变为低压惰性组份(如,氮)环境。如上所述,在已经转变加载了硫的吸附剂颗粒的环境之后,将加载了硫的吸附剂颗粒从反应器闭锁料斗28分批输送到再生器14。由于将加载了硫的吸附剂颗粒连续地从反应器12中取出,但以分批的方式在反应器闭锁料斗28中进行处理,因而反应器接收器26起缓冲容器的作用,在其中从反应器12连续取出的加载了硫的吸附剂颗粒可以在将加载了硫的吸附剂颗粒从反应器接收器26到反应器闭锁料斗28的转移之间进行积累。因此,反应器接收器26和反应器闭锁料斗28配合,将加载了硫的吸附剂颗粒在反应器12和再生器14之间的流动从连续的方式转变为分批的方式。加载了硫的吸附剂颗粒从反应器接收器26到反应器闭锁料斗28,以及从反应器闭锁料斗28到再生器14的转移主要通过重力流动,借助于容器之间小幅度(如,6.89-27.56kPa(1-4psi))的压差来完成。反应器12和反应器接收器26中的压力优选基本上相同。反应器12中的压力优选高于再生器14中的压力。反应器12和再生器14之间的压差优选为至少约344.5kPa(50psi),更优选至少约517kPa(75psi),最优选至少689kPa(100psi)。
第二输送装置20通常包括再生器气动提升机32、再生器接收器34和再生器闭锁料斗36,所述闭锁料斗36对于流体而言置于再生器14和还原器16之间。在操作脱硫单元10的过程中,将再生的吸附剂颗粒连续地从再生器14中取出,并通过再生器气动提升机32从再生器14运送至再生器接收器34。再生器接收器34经再生器回流管线38流体连接到接收器14上。使用于将再生的吸附剂颗粒从再生器14输送到再生器接收器34的提升用气体从再生器接收器34中的再生的吸附剂颗粒中分离,并经再生器回流管线38返回到再生器14中。可操作再生器闭锁料斗36以将再生的吸附剂颗粒从再生器14和再生器接收器34的低压氧环境转移到还原器16的高压氢环境。为了完成这种转移,再生器闭锁料斗36定期接收来自再生器接收器34的再生的吸附剂颗粒的批料,将来自再生器接收器34和还原器16的再生的吸附剂颗粒隔离,并将围绕再生的吸附剂颗粒的环境的压力和组成从低压氧环境改变为高压氢环境。如上所述,在已经转变再生的吸附剂颗粒的环境之后,将再生的吸附剂颗粒从再生器闭锁料斗36分批输送到还原器16。由于将再生的吸附剂颗粒连续地从再生器14中取出,但以分批的方式在再生器闭锁料斗36中进行处理,因而再生器接收器34起缓冲容器的作用,在其中从再生器14连续取出的再生的吸附剂颗粒可以在将再生的吸附剂颗粒从再生器接收器34到再生器闭锁料斗36的转移之间进行积累。因此,再生器接收器34和再生器闭锁料斗36配合,将再生的吸附剂颗粒在再生器14和还原器16之间的流动从连续的方式转变为分批的方式。再生的吸附剂颗粒从再生器接收器34到再生器闭锁料斗36,以及从再生器闭锁料斗36到还原器16的转移主要通过重力流动,借助于容器之间小幅度(如,6.89-27.56kPa(1-4psi))的压差来完成。再生器14和再生器接收器34中的压力优选基本上相同。再生器14中的压力优选少于还原器16中的压力。再生器14和还原器16之间的压差优选为至少约344.5kPa(50psi),更优选至少约517kPa(75psi),最优选至少689kPa(100psi)。
再次参见图1,可操作反应器闭锁料斗28,以将固体吸附剂颗粒从反应器12和反应器接收器26中的高压烃环境转移到再生器14中的低压氧环境。为了避免来自反应器12的烃在再生器14中燃烧,这种转移是必须的。为了将反应器12和再生器14中的压力分别维持在用于脱硫和再生的最佳水平,这种转移也是必须的。
现在参见图2,根据以下连续的步骤,通过操作反应器闭锁料斗28可完成固体吸附剂颗粒从高压烃环境向低压氧环境的转移:
1.采用来自“热N2”源的氮,将氧从已排空的闭锁料斗吹扫到再生器中;
2.采用来自“循环H2”源的氢,将氮从已排空的闭锁料斗吹扫到火炬;
3.采用来自“循环H2”源的氢对已排空的闭锁料斗加压;
4.采用来自反应器接收器的加载了硫的吸附剂颗粒填充已排空的闭锁料斗;
5.通过将氢从闭锁料斗排出到火炬,对填充的闭锁料斗减压;
6.采用来自“热N2”源的氮将烃从填充的闭锁料斗吹扫到火炬;和
7.从填充的闭锁料斗向再生器排放加载了硫的吸附剂。
下面表6总结了在反应器闭锁料斗步骤1-7的过程中图2中所示的阀的控制顺序。在表6中,“O”表示开阀,而“-”表示关阀。
表6
|
时间 |
阀编号 |
步骤 |
步(s) |
步骤总和(m) |
工艺总和(m) |
411 |
418 |
410 |
457 |
455 |
401 |
402 |
403 |
409 |
405 |
406 |
407 |
456 |
454 |
408 |
1a |
5 |
0.08 |
0.08 |
- |
- |
O |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
1b |
1 |
0.10 |
0.10 |
O |
O |
O |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
1c |
182 |
3.13 |
3.13 |
O |
O |
O |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
1d |
1 |
3.15 |
3.15 |
- |
O |
O |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
1e |
5 |
3.23 |
3.23 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
2a |
5 |
0.08 |
3.32 |
- |
- |
- |
- |
- |
- |
- |
- |
O |
- |
- |
- |
- |
O |
O |
2b |
1 |
0.10 |
3.33 |
- |
O |
- |
O |
- |
- |
- |
- |
O |
- |
- |
- |
- |
O |
O |
2c |
118 |
2.07 |
5.30 |
- |
O |
- |
O |
- |
- |
- |
- |
O |
- |
- |
- |
- |
O |
O |
2d |
1 |
2.08 |
5.32 |
- |
O |
- |
- |
- |
- |
- |
- |
O |
- |
- |
- |
- |
O |
O |
2e |
5 |
2.17 |
5.40 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
3a |
1 |
0.02 |
5.42 |
- |
- |
- |
- |
O |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
3b |
5 |
0.10 |
5.50 |
- |
- |
- |
- |
O |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
3c |
34 |
0.67 |
6.07 |
- |
- |
- |
- |
O |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
3d |
5 |
0.75 |
6.15 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
4a |
5 |
0.08 |
6.23 |
- |
- |
- |
- |
- |
- |
- |
- |
O |
- |
- |
- |
- |
- |
O |
4b |
1 |
0.10 |
6.25 |
- |
O |
- |
- |
- |
- |
- |
O |
O |
- |
- |
- |
- |
- |
O |
|
时间 |
阀编号 |
步骤 |
步(s) |
步骤总和(m) |
工艺总和(m) |
411 |
418 |
410 |
457 |
455 |
401 |
402 |
403 |
409 |
405 |
406 |
407 |
456 |
454 |
408 |
4c |
5 |
0.18 |
6.33 |
- |
O |
- |
- |
- |
- |
O |
O |
O |
- |
- |
- |
- |
- |
O |
4d |
5 |
0.27 |
6.42 |
- |
O |
- |
- |
- |
O |
O |
O |
O |
- |
- |
- |
- |
- |
O |
4e |
109 |
2.08 |
8.23 |
- |
O |
- |
- |
- |
O |
O |
O |
O |
- |
- |
- |
- |
- |
O |
4f |
5 |
2.17 |
8.32 |
- |
O |
- |
- |
- |
- |
O |
O |
O |
- |
- |
- |
- |
- |
O |
4g |
3 |
2.22 |
8.37 |
- |
O |
- |
- |
- |
- |
O |
O |
O |
- |
- |
- |
- |
- |
O |
4h |
5 |
2.30 |
8.45 |
- |
O |
- |
- |
- |
- |
- |
O |
O |
- |
- |
- |
- |
- |
O |
4i |
3 |
2.35 |
8.50 |
- |
O |
- |
- |
- |
- |
- |
O |
O |
- |
- |
- |
- |
- |
O |
4j |
5 |
2.43 |
8.58 |
- |
O |
- |
- |
- |
- |
- |
- |
O |
- |
- |
- |
- |
- |
O |
5a |
82 |
1.37 |
9.95 |
- |
O |
- |
- |
- |
- |
- |
- |
O |
- |
- |
- |
- |
O |
O |
6a |
4 |
1.43 |
10.02 |
O |
O |
- |
- |
- |
- |
- |
- |
O |
- |
- |
- |
- |
O |
O |
6b |
211 |
4.95 |
13.53 |
O |
O |
- |
- |
- |
- |
- |
- |
O |
- |
- |
- |
- |
O |
O |
6c |
1 |
4.97 |
13.55 |
- |
O |
- |
- |
- |
- |
- |
- |
O |
- |
- |
- |
- |
O |
O |
6d |
5 |
5.05 |
13.63 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
7a |
5 |
0.08 |
13.72 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
- |
7b |
1 |
0.10 |
13.73 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
- |
7c |
1 |
0.12 |
13.75 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
O |
- |
7d |
5 |
0.20 |
13.83 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
O |
O |
- |
|
时间 |
阀编号 |
步骤 |
步(s) |
步骤总和(m) |
工艺总和(m) |
411 |
418 |
410 |
457 |
455 |
401 |
402 |
403 |
409 |
405 |
406 |
407 |
456 |
454 |
408 |
7e |
5 |
0.28 |
13.92 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
O |
O |
O |
- |
7f |
131 |
2.47 |
16.10 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
O |
O |
O |
- |
7g |
9 |
2.62 |
16.25 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
O |
O |
O |
- |
7h |
5 |
2.70 |
16.33 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
- |
O |
O |
- |
7i |
5 |
2.78 |
16.42 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
- |
7j |
5 |
2.87 |
16.50 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
现在参见图2并结合表6,电子控制装置40可操作地与表6中所列和图2中所示的阀相连接。可操作电子控制装置40以表6中所示的方式打开和关闭阀,从而自动进行反应器闭锁料斗步骤1-7。再次参见图2,压力指示器42可以用于检测反应器闭锁料斗28中的压力,且水平面指示器44可以用于检测吸附剂颗粒在反应器闭锁料斗28中的水平面。压力和水平面指示器42、44可操作地与电子控制装置40相连接,从而向电子控制装置40提供压力和水平面指示信号。电子控制装置40包括提供时间信号的计时器45,所述时间信号指示反应器闭锁料斗步骤1-7的某一步的开始和结束。反应器闭锁料斗28包括内部过滤器46,所述过滤器使得气体可以通过此处,同时基本上阻挡了固体吸附剂颗粒流过此处。
再次参见图2并结合表6,通过打开阀411、418和410进行步骤1,同时使反应器闭锁料斗28排出任何固体吸附剂颗粒。这种配置使得氮向上流过排放的反应器闭锁料斗28和过滤器46,从而将存在于反应器闭锁料斗28中的氧吹扫到再生器。使步骤1进行一定时限,在所述时限内足以将基本上所有的氧从反应器闭锁料斗28中清除。该时限可以预先确定,且计时器45可以向电子控制装置40提供时限过去的指示。进行步骤1的时限优选为约1至约8分钟,最优选为约2.5至约4.5分钟。
通过打开阀457、418和409进行步骤2。该配置使得氢向上流过排放的反应器闭锁料斗28和过滤器46,从而将从步骤1留在反应器闭锁料斗28中的氮吹扫到火炬。使步骤2进行一定时限,在所述时限内足以将基本上所有的氮从反应器闭锁料斗28中清除。该时限可以预先确定,且计时器45可以向电子控制装置40提供时限过去的指示。进行步骤2的时限优选为约1至约6分钟,最优选为约1.5至约3分钟。
通过打开阀455进行步骤3,从而采用向下流过过滤器46的氢向排放的反应器闭锁料斗28加压。使步骤3进行直至压力指示器42提供反应器闭锁料斗28中的压力已到达预定的反应器闭锁料斗填充压力的指示。该反应器闭锁料斗填充压力优选在反应器接收器内的压力的至少20%之内,更优选在反应器接收器内的压力的10%之内,且更优选在反应器接收器内的压力的5%之内。最优选反应器闭锁料斗填充压力比反应器接收器中的压力低约6.89kPa至约27.5kPa(约1至约4psi),从而在反应器接收器和反应器闭锁料斗28之间提供了小幅度的压差,从而有助于将加载了硫的吸附剂颗粒从反应器接收器转移到反应器闭锁料斗28中。进行步骤3的时限优选为约0.2至约2分钟,最优选为约0.4至约1分钟。
通过打开阀401、402、403、418和409进行步骤4。该配置使得加载了硫的吸附剂颗粒从反应器接收器转移到排放的反应器闭锁料斗28中。在加载了硫的吸附剂颗粒进入反应器闭锁料斗28时,来自步骤3的留在反应器闭锁料斗28中的氢向上通过过滤器46移动到火炬。使步骤4进行直至水平面指示器44提供反应器闭锁料斗28中的加载了硫的吸附剂颗粒的量已达到预定的填充水平面的指示。进行步骤4的时限优选为约1至约6分钟,最优选为约2至约3分钟。
通过打开阀418和409进行步骤5。该配置使得留在填充的反应器闭锁料斗28中的任何加压的氢向上通过过滤器排放到火炬中,从而使填充的反应器闭锁料斗28减压。可使步骤5进行预定时限,在所述时限内足以使反应器闭锁料斗28减压。该时限可以预先确定,且计时器45可以向电子控制装置40提供时限过去的指示。另外,可以使步骤5进行直至压力指示器42提供反应器闭锁料斗28中的压力已达到预定的反应器闭锁料斗排放压力的指示。该反应器闭锁料斗排放压力优选在再生器中的压力的至少20%之内,更优选在再生器中的压力的10%之内,且更优选在再生器中的压力的5%之内。最优选反应器闭锁料斗排放压力比再生器中的压力高约6.89kPa至约27.5kPa(约1至约4psi),从而在反应器闭锁料斗28和再生器之间提供了小幅度的压差,从而有助于将加载了硫的吸附剂颗粒从反应器闭锁料斗28转移到再生器中。进行步骤5的时限优选为约0.5至约4分钟,最优选为约1至约2分钟。
通过打开阀411、418和409进行步骤6。该配置使得采用向上流过填充的反应器闭锁料斗28和过滤器46的氮将在步骤4期间转移到反应器闭锁料斗28中的烃吹扫到火炬中。经过填充的反应器闭锁料斗28的氮的流速应足够低,以便避免大量的固体吸附剂颗粒被夹带到向上流动的氮气流中。但是,在向上流动的氮气流中夹带的少量固体吸附剂颗粒可以通过过滤器46从氮气流中过滤出去。使步骤6进行一定时限,在所述时限内足以将基本上所有的烃从反应器闭锁料斗28中清除。该时限可以预先确定,且计时器45可以向电子控制装置40提供时限过去的指示。进行步骤6的时限优选为约2至约12分钟,最优选为约3至约8分钟。
通过打开405、406、407和456进行步骤7。该配置使得加载了硫的吸附剂颗粒可以从填充的反应器闭锁料斗28转移到再生器中。在从反应器闭锁料斗28排放加载了硫的吸附剂颗粒的过程中,氮向下流过过滤器46,从而在反应器闭锁料斗28中提供背压,并清除过滤器46上的在步骤6期间所收集固体吸附剂颗粒(如果有的话)。进行步骤7直至水平面指示器44提供反应器闭锁料斗28已基本上排放了加载了硫的吸附剂颗粒的指示。进行步骤7的时限优选为约1至约8分钟,最优选为约2至约4分钟。
在步骤1-3和5-7的过程中,关闭阀402和403并打开阀454。在这样的配置中,将反应器闭锁料斗28通过来自“高压N2”源的氮与反应器接收器隔离,从而避免了反应器接收器与反应器闭锁料斗28之间的流体交换。在步骤1-6期间,关闭阀406和407并打开408。在这种的配置中,将反应器闭锁料斗28通过来自“高压N2”源的氮与再生器隔离,从而避免了反应器闭锁料斗28与再生器之间的流体交换。反应器闭锁料斗28与反应器接收器和再生器的这种隔离通过确保烃和氢不暴露到它们能燃烧的氧环境,而提供了增强的安全性。
在步骤7之后,可以重复反应器闭锁料斗步骤1-7,用于另外一批加载了硫的吸附剂颗粒。优选进行反应器闭锁料斗步骤1-7的总的循环时间为约5至约30分钟,更优选为约10至约20分钟,最优选为14-18分钟。
再次参见图1,可操作再生器闭锁料斗36以将固体吸附剂颗粒从再生器和再生器接收器34中的低压氧环境转移到还原器16中的高压氢环境。为了避免来自还原器16的氢在再生器14或再生器接收器中燃烧,这种转移是必须的。为了将再生器14和还原器16中的压力分别维持在用于再生和还原的最佳水平,这种转移也是必须的。
现在参见图3,根据以下连续的步骤,通过操作再生器闭锁料斗36可完成固体吸附剂颗粒从低压氧环境向高压氢环境的转移:
1.采用来自“热N2”源的氮,将氧从填充的闭锁料斗吹扫到再生器;
2.采用来自“循环H2”源的氢,将氮从填充的闭锁料斗吹扫到火炬;
3.采用来自“循环H2”源的氢对填充的闭锁料斗加压;
4.将再生的吸附剂从填充的闭锁料斗排放到还原器;
5.通过将氢从闭锁料斗排出到火炬,使已排空的闭锁料斗减压;
6.采用来自“热N2”源的氮,将烃从已排空的闭锁料斗吹扫到火炬;和
7.向已排空的闭锁料斗填充来自再生器接收器的再生的吸附剂颗粒。
下面表7总结了在再生器闭锁料斗步骤1-7的过程中图3中所示的阀的控制顺序。
表7
|
时间 |
阀编号 |
步骤 |
步(s) |
步骤总和(m) |
工艺总和(m) |
432 |
451 |
431 |
421 |
430 |
417 |
426 |
427 |
428 |
422 |
423 |
424 |
425 |
429 |
1a |
5 |
0.08 |
0.08 |
- |
- |
O |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
1b |
1 |
0.10 |
0.10 |
O |
O |
O |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
1c |
182 |
3.13 |
3.13 |
O |
O |
O |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
1d |
1 |
3.15 |
3.15 |
- |
O |
O |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
1e |
5 |
3.23 |
3.23 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
2a |
5 |
0.08 |
3.32 |
- |
- |
- |
- |
O |
- |
- |
- |
- |
- |
- |
- |
O |
O |
2b |
1 |
0.10 |
3.33 |
- |
O |
- |
O |
O |
- |
- |
- |
- |
- |
- |
- |
O |
O |
2c |
118 |
2.07 |
5.30 |
- |
O |
- |
O |
O |
- |
- |
- |
- |
- |
- |
- |
O |
O |
2d |
5 |
2.15 |
5.38 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
3a |
1 |
0.02 |
5.40 |
- |
- |
- |
- |
- |
O |
- |
- |
- |
- |
- |
- |
O |
O |
3b |
5 |
0.10 |
5.48 |
- |
- |
- |
- |
- |
O |
- |
- |
- |
- |
- |
- |
O |
O |
3c |
34 |
0.67 |
6.05 |
- |
- |
- |
- |
- |
O |
- |
- |
- |
- |
- |
- |
O |
O |
4a |
5 |
0.08 |
6.13 |
- |
- |
- |
- |
- |
O |
- |
- |
- |
- |
- |
- |
O |
- |
4b |
1 |
0.10 |
6.15 |
- |
- |
- |
- |
- |
O |
- |
- |
O |
- |
- |
- |
O |
- |
4c |
5 |
0.18 |
6.23 |
- |
- |
- |
- |
- |
O |
- |
O |
O |
- |
- |
- |
O |
- |
4d |
5 |
0.27 |
6.32 |
- |
- |
- |
- |
- |
O |
O |
O |
O |
- |
- |
- |
O |
- |
|
时间 |
阀编号 |
步骤 |
步(s) |
步骤总和(m) |
工艺总和(m) |
432 |
451 |
431 |
421 |
430 |
417 |
426 |
427 |
428 |
422 |
423 |
424 |
425 |
429 |
4e |
132 |
2.47 |
8.52 |
- |
- |
- |
- |
- |
O |
O |
O |
O |
- |
- |
- |
O |
- |
4f |
9 |
2.62 |
8.67 |
- |
- |
- |
- |
- |
O |
O |
O |
O |
- |
- |
- |
O |
- |
4g |
5 |
2.70 |
8.75 |
- |
- |
- |
- |
- |
O |
O |
O |
- |
- |
- |
- |
O |
- |
4h |
5 |
2.78 |
8.83 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
- |
5a |
5 |
0.08 |
8.92 |
- |
O |
- |
- |
O |
- |
- |
- |
- |
- |
- |
- |
O |
O |
5b |
82 |
1.45 |
10.28 |
- |
O |
- |
- |
O |
- |
- |
- |
- |
- |
- |
- |
O |
O |
6a |
4 |
0.07 |
10.35 |
O |
O |
- |
- |
O |
- |
- |
- |
- |
- |
- |
- |
O |
O |
6b |
211 |
3.58 |
13.87 |
O |
O |
- |
- |
O |
- |
- |
- |
- |
- |
- |
- |
O |
O |
6c |
1 |
3.60 |
13.88 |
- |
O |
- |
- |
O |
- |
- |
- |
- |
- |
- |
- |
O |
O |
6d |
5 |
3.68 |
13.97 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
7a |
5 |
0.08 |
14.05 |
- |
- |
O |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
7b |
1 |
0.10 |
14.07 |
- |
O |
O |
- |
- |
- |
- |
- |
- |
- |
- |
O |
- |
O |
7c |
5 |
0.18 |
14.15 |
- |
O |
O |
- |
- |
- |
- |
- |
- |
- |
O |
O |
- |
O |
7d |
5 |
0.27 |
14.23 |
- |
O |
O |
- |
- |
- |
- |
- |
- |
O |
O |
O |
- |
O |
7e |
110 |
2.10 |
16.07 |
- |
O |
O |
- |
- |
- |
- |
- |
- |
O |
O |
O |
- |
O |
7f |
5 |
2.18 |
16.15 |
- |
O |
O |
- |
- |
- |
- |
- |
- |
- |
O |
O |
- |
O |
7g |
3 |
2.23 |
16.20 |
- |
O |
O |
- |
- |
- |
- |
- |
- |
- |
O |
O |
- |
O |
|
时间 |
阀编号 |
步骤 |
步(s) |
步骤总和(m) |
工艺总和(m) |
432 |
451 |
431 |
421 |
430 |
417 |
426 |
427 |
428 |
422 |
423 |
424 |
425 |
429 |
7h |
5 |
2.32 |
16.28 |
- |
- |
O |
- |
- |
- |
- |
- |
- |
- |
- |
O |
- |
O |
7i |
3 |
2.37 |
16.33 |
- |
- |
O |
- |
- |
- |
- |
- |
- |
- |
- |
O |
- |
O |
7j |
5 |
2.45 |
16.42 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
7k |
5 |
2.53 |
16.50 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
O |
O |
现在参见图3并结合表7,电子控制装置40可操作地与表7中所列和图3中所示的阀相连接。可操作电子控制装置40以表7中所示的方式打开和关闭阀,从而自动进行再生器闭锁料斗步骤1-7。再次参见图3,压力指示器48可以用于检测再生器闭锁料斗36中的压力,且水平面指示器50可以用于检测吸附剂颗粒在再生器闭锁料斗36中的水平面。压力和水平面指示器48、50可操作地与电子控制装置40相连接,从而向电子控制装置40提供压力和水平面指示信号。电子控制装置40包括提供时间信号的计时器45,所述时间信号指示再生器闭锁料斗步骤1-7的某一步的开始和结束。再生器闭锁料斗36包括内部过滤器52,所述过滤器使得气体可以通过此处,同时基本上阻挡了固体吸附剂颗粒流过此处。
再次参见图3并结合表7,通过打开阀432、451和431进行步骤1,同时采用再生的固体吸附剂颗粒填充再生器闭锁料斗36。这种配置使得氮向上流过填充的再生器闭锁料斗36和过滤器52,从而将存在于再生器闭锁料斗36中的氧吹扫到再生器。氮通过再生器闭锁料斗36的流速应足够慢,以避免大量的固体吸附剂颗粒被夹带在向上流动的氮气流中。但是,少量夹带在向上流动的氮气流中的固体吸附剂颗粒可以通过过滤器52从氮气流中过滤出去。使步骤1进行一定时限,在所述时限内足以将基本上所有的氧从再生器闭锁料斗36中清除。该时限可以预先确定,且计时器45可以向电子控制装置40提供时限过去的指示。进行步骤1的时限优选为约1至约8分钟,最优选为约2.5至约4.5分钟。
通过打开阀421、451和430进行步骤2。该配置使得氢向上流过填充的再生器闭锁料斗36和过滤器52,从而将从步骤1中留在再生器闭锁料斗36中的氮吹扫到火炬。氢通过再生器闭锁料斗36的流速应足够慢,以避免大量固体吸附剂颗粒被夹带到向上流动的氢气流中。但是,少量夹带在向上流动的氢气流中的固体吸附剂颗粒可以通过过滤器52从氢气流中过滤出去。使步骤2进行一定时限,在所述时限内足以将基本上所有的氮从反应器闭锁料斗36中清除。该时限可以预先确定,且计时器45可以向电子控制装置40提供时限过去的指示。进行步骤2的时限优选为约1至约6分钟,最优选为约1.5至约3分钟。
通过打开阀417进行步骤3,从而采用向下流过过滤器46的氢向填充的再生器闭锁料斗36加压。使步骤3进行直至压力指示器48提供再生器闭锁料斗36中的压力已到达预定的再生器闭锁料斗排放压力的指示。该再生器闭锁料斗排放压力优选在还原器内的压力的至少20%之内,更优选在还原器内的压力的10%之内,且更优选在还原器内的压力的5%之内。最优选再生器闭锁料斗排放压力比还原器中的压力高约6.89kPa至约27.5kPa(约1至约4psi),从而在再生器闭锁料斗36和还原器之间提供了小幅度的压差,从而有助于将加载了硫的吸附剂颗粒从再生器闭锁料斗36转移到还原器中。进行步骤3的时限优选为约0.2至约2分钟,最优选为约0.4至约1分钟。
通过打开阀426、427、428和417进行步骤4。该配置使得再生的吸附剂颗粒从填充的再生器闭锁料斗36转移到还原器中。在从再生器闭锁料斗36排放再生的吸附剂颗粒的过程中,氮向下流过过滤器52,从而在再生器闭锁料斗36中提供背压,且清除了过滤器52在步骤1和2期间所收集的固体吸附剂颗粒(如果有的话)。使步骤4进行直至水平面指示器50提供再生器闭锁料斗36已基本上排放再生的吸附剂颗粒的指示。进行步骤4的时限优选为约1至约8分钟,最优选为约2至约4分钟。
通过打开阀451和430进行步骤5。该配置使得留在排放的再生器闭锁料斗36中的任何加压的氢向上通过过滤器排放到火炬中,从而使再生器闭锁料斗36减压。可使步骤5进行一定时限,在所述时限内足以使再生器闭锁料斗36减压。该时限可以预先确定,且计时器45可以向电子控制装置40提供时限过去的指示。另外,可以使步骤5进行直至压力指示器48提供再生器闭锁料斗36中的压力已达到预定的再生器闭锁料斗填充压力的指示。该再生器闭锁料斗填充压力优选在再生器接收器中的压力的至少20%之内,更优选在再生器接收器中的压力的10%之内,且更优选在再生器接收器中的压力的5%之内。最优选再生器闭锁料斗填充压力比再生器接收器中的压力高约6.89kPa至约27.5kPa(约1至约4psi),从而在再生器接收器和再生器闭锁料斗36之间提供了小幅度的压差,从而有助于将加载了硫的吸附剂颗粒从再生器接收器转移到再生器闭锁料斗36中。进行步骤5的时限优选为约0.5至约4分钟,最优选为约1至约2分钟。
通过打开阀432、451和430进行步骤6。该配置使得采用向上流过排放的再生器闭锁料斗36和过滤器46的氮将在步骤4期间转移到再生器闭锁料斗36中的氢吹扫到火炬中。使步骤6进行一定时限,在所述时限内足以将基本上所有的氢从再生器闭锁料斗36中清除。该时限可以预先确定,且计时器45可以向电子控制装置40提供时限过去的指示。进行步骤6的时限优选为约1至约10分钟,最优选为约2至约6分钟。
通过打开422、423、424、451和431进行步骤7。该配置使得再生的吸附剂颗粒可以从再生器接收器转移到排放的再生器闭锁料斗36中。在再生的吸附剂颗粒进入再生器闭锁料斗36的同时,将来自步骤6的留在再生器闭锁料斗36中的氮通过过滤器52向上转移到再生器中。进行步骤7直至水平面指示器50提供再生器闭锁料斗36中再生的吸附剂颗粒的量已达到预定的再生器闭锁料斗填充水平面的指示。进行步骤7的时限优选为约1至约6分钟,最优选为约2至约3分钟。
在步骤1-6的过程中,关闭阀423和424并打开阀425。在这样的配置中,将再生器闭锁料斗36通过来自“高压N2”源的氮与再生器接收器隔离,从而避免了再生器接收器与再生器闭锁料斗36之间的流体交换。在步骤1-3和5-7的过程中,关闭阀427和428,同时打开429。在这种的配置中,将再生器闭锁料斗36通过来自“高压N2”源的氮与还原器16隔离,从而避免了再生器闭锁料斗36与还原器之间的流体交换。再生器闭锁料斗36与再生器接收器和还原器的这种隔离通过确保烃和氢不暴露到它们能燃烧的氧环境,从而提供了增强的安全性。
在步骤7之后,可以重复再生器闭锁料斗步骤1-7,用于另外一批再生的吸附剂颗粒。优选进行再生器闭锁料斗步骤1-7的总的循环时间为约5至约30分钟,更优选为约10至约20分钟,最优选为14-18分钟。
现在参见图2和3,电子控制装置40可操作地与图2和3中所示阀、传感器和计时器45经电子信号线或无线信号传递相连接,并对其编程,以采用上述方式进行用于反应器闭锁料斗28和再生器闭锁料斗36的步骤1-7。电子控制装置40可以是本领域已知的任一种可编程计算装置,如可编程逻辑控制器(PLC)或个人计算机。压力传感器42、48和水平面传感器44、50可以是本领域已知的任一种适合的压力和水平面指示装置。优选水平面传感器44、50是核水平面计(nuclear level gauge)。
再次参见图2和3,优选来自“循环H2”源的氢包括至少50摩尔%的氢,更优选至少75摩尔%的氢,最优选至少95摩尔%的氢。优选来自“热N2”源和“高压N2”源的氮包括至少50摩尔%的氮,更优选包括至少75摩尔%的氮,最优选至少95摩尔%的氮。尽管本发明在此被描述为使用氮作为惰性吹扫气体和隔离气体,也可以使用任何惰性气体代替来自“热N2”源和“高压N2”源的氮。此外,尽管本发明在此被描述为使用氢作为吹扫气体和加压气体,也可以使用任一种适合的气体,优选含氢体或含烃气体代替来自“循环H2”源的氢。
现在参见图4和5,对可用作反应器闭锁料斗28和/或再生器闭锁料斗36(图1-3中所示)的闭锁料斗100进行说明,闭锁料斗100通常包括容器主体102和容器盖104。可以通过将容器盖104的凸缘与容器主体102的凸缘相对、将多个螺栓穿过两个凸缘、并将螺母紧固到螺栓上,使容器主体102和容器盖104能够彼此刚性相连。容器主体102包括通常为截头圆锥体状的底部106和通常为圆柱形的顶部108。底部106的下端带有固体出口110,通过其将固体颗粒从闭锁料斗100排出。底部106也带有第一气体入口/出口112,通过其可将气体进料至闭锁料斗100和从闭锁料斗100排出。顶部108带有上部开口,当将容器盖104紧固到容器主体102时,该上部开口由容器盖104覆盖。容器盖104包括顶板114和过滤器116。并且当将容器主体102和容器盖104进行组装时,使过滤器116刚性紧固到顶板114上,容器主体102中的上部开口基本由顶板114所覆盖。
参见图5,过滤器116包括固体入口118、下流管120、气体多支管122、第二气体入口/出口124和过滤元件126。固体入口118与容器主体102的内部经下流管120流体连接,所述下流管120通过在顶板114中的开口延伸。因此,固体颗粒可以经固体入口118和下流管120进料至闭锁料斗100。气体多支管122限定了与第二气体入口/出口124流体连接的内部空间,从而可以将气体经气体入口/出口124进料至气体多支管122和从气体多支管122中排出。气体多支管122的内部与闭锁料斗100的内部经过滤元件126流体连接,所述过滤元件连接到顶板114上,向下延伸到容器主体102的内部,且与顶板114中的开口流体连接。因此,在容器主体102和第二气体入口/出口124之间流动的气体必须经过过滤元件126。可操作过滤元件126以避免夹带在向上流经闭锁料斗100的流体中的固体颗粒经第二气体入口/出口124排出闭锁料斗100。过滤元件126可以通过简单地将使流过此处的流体的方向换向而清除集中在其中的固体。每一个过滤元件126优选包括拉长的管状截面的金属过滤材料。将每一个过滤元件126的末端加盖,以便所有流经过滤元件126的流体必须经过过滤材料。过滤材料优选为烧结金属过滤器,优选烧结不锈钢,其具有在少于10微米,更优选少于约5微米,最优选为0.5-2.5微米的99%的粒度保留。适合的过滤材料可由纽约East Hills的Pall Corporation获得。通风垫128容纳在容器主体102的底部106中,且覆盖第一气体入口/出口112,从而使在第一气体入口/出口112和容器主体102的内部之间流动的气体必须经过通气垫128。通气垫优选由具有与过滤元件126基本上相同的过滤特性的过滤材料形成。因此,通风垫128避免了排出容器主体102的固体颗粒通过第一气体入口/出口112。
现在参见图6,对控制固体颗粒从第一容器200转移到第二容器202的系统进行说明,所述系统通常包括第一管线204、第二管线206、上游的阀208、下游的阀210、压差指示器212和压力控制器214。现在结合参见图1和6,第一容器200(图6中所示)可以是反应器12、再生器14和还原器16(图1中所示)中的任一个或全部,且第二容器202(图6中所示)可以是反应器接收器26、再生器接收器34和反应器12(图1中所示)的任一个或全部。
再次参见图6,第一管线204与第一容器200和第二容器202流体连接,且可对其进行操作以将固体颗粒从第一容器200输送到第二容器202。第二管线206与第二容器202和第一容器200流体连接,且可对其操作以将流体(主要是提升用气体)从第二容器202输送到第一容器200。上游的阀208对于流体而言置于第一容器200和第二容器202之间的管线204中。下游的阀210对于流体而言置于第二容器202和第一容器200之间的第二管线206中。当第一和第二容器200、202的相对高度使固体颗粒不能通过重力从第一容器200流动到第二容器202时,可以将气动提升机216对于流体而言置于管线204中。尽管图6说明了使用气动提升机216的固体转移系统,使用重力流动而不是气动提升以将固体颗粒从第一容器200转移到第二容器202的系统完全在本发明的范围内。
可操作上游的阀208以通过调节流过固体的上游的阀208的打开尺度来控制流过第一管线204的固体的速率。上游的阀208优选为滑动阀。通常将滑动阀用于炼油工业以控制固体颗粒通过管道的转移速率。但是,一般经过这种滑动阀的压降是相对高(如,13.8kPa-48kPa(2-7psi))。这种大的压降使得对流速进行调节和允许滑动阀两侧的压力驱动力的波动成为可能。在滑动阀两侧的压力驱动力的波动可能是由于来源或目标阀的压力方面的操作改变和/或在这些容器内部固体水平面的改变。此外,滑动阀两侧的压降的选择有时受到安全性的支配,以避免来自目标容器的气体的回流。例如,这对于流化床催化裂化单元就是一种担忧。但是,使用这样高的滑动阀两侧的压降可能导致流经此处的固体颗粒的磨损提高,并且当固体颗粒的成本高时特别令人担忧。此外,当处理要求低固体循环的系统时,选择这种高压降导致滑动阀中的开口很小,以致于可能产生流动问题。
本发明使用下游的阀210以在第二容器202和第一管线204中提供背压,从而显著降低经过上游的阀208的压降。该配制使得上游的阀208中的开口尺寸足够大,以便在低固体循环速率下允许足够的流量控制。此外,这种配制通过保持经过上游的阀208中的开口的低的固体颗粒速度,有助于使固体颗粒的磨损最小化。为了解决上游的阀208两侧的压降的波动(所述波动是由于在第一和第二容器200、202中的操作压力方面的改变,或在第一和第二容器200、202中的固体水平面的改变)的问题,允许第二容器202中的压力进行波动。可操作压力控制器214以测量第二容器202中的压力,并调节下游的阀210以使上游的阀208两侧的压差(由压差指示器212测量)保持在所需要水平。为了保持所需要的上游的阀208两侧的压差,可以使用任选的电子控制装置218以自动调节第二容器202中的压力。
尽管图6解释说明了在其中控制第二容器202中的压力以保持所需要的上游的阀208两侧压差的固体转移系统,为了获得相同的效果控制第一容器200中的压力也完全在本发明的范围之内。
在本说明书和附加的权利要求的范围内,可进行合理的变动、变更和适应性修改而不背离本发明的范围。