CN1657488A - 陶瓷部件的生产方法 - Google Patents

陶瓷部件的生产方法 Download PDF

Info

Publication number
CN1657488A
CN1657488A CN200410103389.9A CN200410103389A CN1657488A CN 1657488 A CN1657488 A CN 1657488A CN 200410103389 A CN200410103389 A CN 200410103389A CN 1657488 A CN1657488 A CN 1657488A
Authority
CN
China
Prior art keywords
suspensoid
pbtc
described method
powder
described methods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200410103389.9A
Other languages
English (en)
Other versions
CN100371288C (zh
Inventor
安妮-洛尔·佩纳尔
法布里斯·罗西尼奥尔
蒂埃里·沙尔捷
塞西尔·帕纽
马修·墨菲
克里斯托夫·屈埃耶
杰勒德·英斯利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Higher National Institute Of Ceramics Industry
Howmedica Osteonics Corp
Original Assignee
Higher National Institute Of Ceramics Industry
Howmedica Osteonics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Higher National Institute Of Ceramics Industry, Howmedica Osteonics Corp filed Critical Higher National Institute Of Ceramics Industry
Publication of CN1657488A publication Critical patent/CN1657488A/zh
Application granted granted Critical
Publication of CN100371288C publication Critical patent/CN100371288C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

生产陶瓷组合物的方法,包括在水中分散有直径超过100nm的α-氧化铝纳米粉末,使用2-膦酰基丁烷-1,2,4-三羧酸(PBTC)或者4,5-二羟基-m-苯二磺酸二钠盐(TrionTM)作为分散剂,通过加入乙酸酐和乙二醇或聚乙二醇的混合物将pH值调向等电位点(IEP),在受控的气氛(湿度和温度)中干燥并使用冷压进行后致密化并烧结形成的三维结构。

Description

陶瓷部件的生产方法
技术领域
本发明涉及一种使用直接凝固注模法来制备陶瓷部件的方法。
背景技术
直接凝固注模法(DCC)包括将浓缩分散悬浮体凝固为固态从而得到粘着的生坯件,它在干燥过程中显示出较低的收缩性。液态到固态的转变发生在固结的过程中,且由作用于粒子上的静电力控制。
在分散阶段产生的排斥力被粉末表面附近的化学改性产生的吸引力逐渐地并均匀地退火。最初由Gauckler提出的一种DCC的方法(L.J.Gauckler,T.Graule,F.Baader,使用酶催化反应制备陶瓷,Materials Chemistry andPhysics,61,78-102(1999),Gauckler′s最初关于DCC的专利:US 5948335,1999-09-07,″生产陶瓷生坯件的方法以及B.Balzer.M.K.M.Hruschka,L.J.Gauckler.通过DCC制得的潮湿氧化铝体的凝固动力学和机械行为,Journal ofColloid and Interface Science.216,37-386(1999).),之后被SPCTS发展(R.Laucournet,C.Pagnoux,T.Chartier and J.F.Baumard,热分解双乙酸氢氧化铝得到含水浓缩氧化铝悬浮体的凝固方法,Journal of the AmericanCeramic Society,83[11],2661-2667(2000).)该方法在于一旦悬浮体被注入无孔、完全密封的模具,使高浓缩的悬浮体去稳定,使进入延时化学反应的状态。凝固过程可以通过温度催化。
根据DVLO理论,分散的悬浮体的稳定性依靠两个主要方面:pH值和离子强度。在DCC过程中(A.Dakskobler,T.Kosmac,通过加入Mg(II)离子来制备微弱絮凝含水悬浮体,Journal of the American Ceramic Sociey,83[3].666-668(2000);A.Dakskobler,T.Kosmac,通过加入醋酸镁来使用碱性含水悬浮体不稳定,胶体和表面A:Physicochemical and Engineering Aspects.195,197-203(2001);J.Davies1 J.G.P.Binner,用于粘贴产物的电子空间分散的浓缩氧化铝悬浮体的凝固,Journal of the European Ceramic Society.20,1555~1567(2000):J.Davies,J.P.G.Binner来自凝固悬浮体的氧化铝的塑性形态,Journal of the European CeramicSociety.20,1569-1577(2000);and G.V.Francks,NV Velamakanni,F.F.Lange,固结的凝固氧化铝浆的震动成型和原位絮凝,Journal of the American Ceramic Society 78[5].1324-1328(1995).)凝固剂在分散过程之后加入。该试剂导致化学反应,该反应的产物可以增加离子强度和/或向着等电位点(IEP)改变pH值,最终导致悬浮体不稳定。在固结过程之后,成型体在受控气氛中(包括温度和湿度)干燥并烧结。
发明内容
本发明目的在于提供一种直接凝固注模来制备陶瓷部件的方法,尤其应用于生物医学工业(尽管不是必须的)
本发明关于制备陶瓷部件的方法,包括在水中分散直径超过100nm的α-氧化铝纳米粉末,使用2-膦酰基丁烷-1,2,4-三羧酸(PBTC)或者4,5-二羟基-m-苯二磺酸二钠盐(TrionTM)作为分散剂,通过加入乙酸酐和乙二醇或聚乙二醇的混合物将pH值调向等电位点(IEP),在受控的气氛中(湿度和温度)干燥并使用冷等静压进行后致密化并烧结形成的三维结构。
α-氧化铝颗粒直径可以在100nm到5um之间。
通过使用PBTC作为氧化铝纳米粉末的静电分散剂,氧化铝表面的排斥负电荷是接枝PBTC分子离子化的羧基和膦酸基的结果。延时凝固是在加入的乙酸酐与水接触转化为乙酸的时候将pH值向着IEP调整的时候得到的。与乙二醇一起加入的乙酸酐作为助溶剂以增加其在水中的可混合性,这样就可以得到均匀的凝固,乙二醇还可以产生润滑效果,这对冷等静压是有好处的。
纳米粉末优选是带有金属阳离子的氧化物粉末,其可以现示出对PBTC分子强的吸附性(例如氧化铝纳米粉末)。溶剂可以是水基的,例如软化的,高纯度和/或消毒的水。
浓缩悬浮体(也就是固体含量超过55体积%)的制备可以通过首先在溶剂中溶解PBTC(即大约1ppmPBTC mol/氧化物粉未表面m2),之后加入粉末。粉末的加入可以几个阶段,并在每个加入阶段之间伴随超声(US)处理。
为了得到分散体,可以使用解聚集和/或研磨处理(例如球磨,盘式磨),还可以在分散后加入粘合剂。排气阶段在真空下(<50mbar)进行以去除US处理之后存在于悬浮体中的气泡
之后,在温度大约为5℃下进行分散好的悬浮体的热稳定化,使得当加入凝固剂时延迟凝固,这样就提供了注模的时间。
使用乙酸酐作为凝固剂。因为它对于水很敏感,其必须与助溶剂进行混合,这样就有助于增加乙酸酐在水中的可混合性,并减低乙酸酐的水解动力学。
与热稳定阶段同理,必须将温度设定到想要的温度。
在混合时,将凝固剂及其助溶剂的混合物加入到悬浮体中。应对该混合进行调整以避免气泡的产生,例如可以通过旋转刀片的机械方法来进行,刀片的设计取决于悬浮体的粘度大小。同样很重要的是在悬浮体的全部体积内部达到凝固剂的均匀分布,以进一步得到均匀的凝胶。
注模优选在凝固剂刚刚与悬浮体混合并在凝固前的那一刻时候进行,被注模的悬浮体在无孔模具中发生凝固。
一旦坯体凝固,就有必要进行干燥和脱模。优选首先开始将坯体在模具中干燥以增强,之后再进行脱模。如果干燥直接在模具中进行,那么模具需要设计成可以防止应力或裂纹。如果脱模首先进行,那么就必须强化凝固坯体来防止变形。
再次,干燥必须还要在受控的气氛下(温度和湿度)进行来防止坯体开裂。
干燥后的致密体进一步在2,000bar的冷等静压力下进行后期致密化。
钛试剂(4,5-二羟基-m-苯二磺酸二钠盐)可以用于代替PBTC以得到相类似的结果。
最终的烧结阶段会赋予坯体以最终的性能。烧结的过程可以和自然的烧结过程一样简单。
具体实施方式
本发明可以多种方法进行,但是所述的生产陶瓷部件并使用PBTC的方法将通过实施例并参考附图(其是生产过程的流程图)说明。
所使用的α-氧化铝纳米粉末具有7m2/g的表面积,理论密度为3.98g.cm-3和颗粒直径范围是100nm到5μm。
第一步包括制备浓缩的悬浮体,例如具有固体含量为58体积%的100ml悬浮体。这样的固体含量是实际操作中可以用于氧化铝粉末最大的量的,其特征如上述(超过58体积%的固体含量,将使粘度太高而不能够得到良好浓缩悬浮体的排气性能)。氧化铝粉末的重量需要加入到230.84g,相应的表面积为1615.9m2。最优化的分散剂的量(也即是产生最低粘性的量)定为相当于每平方米的氧化铝粉末表面积10-6mol的2-膦酰基丁烷-1,2,4-三羧酸(PBTC)。实际上,以四钠盐(PBTC-Na4)加入PBTC,其摩尔质量为358g。将0.578g的PBTC-Na4,在加入氧化铝粉末之前溶解在42ml的软化水中。
58体积%的固体是一个很高的固体含量。有必要分两次加入该粉末。40体积%的量首先加入,之后实施下面描述的第二步,加入剩下的18体积%的氧化铝粉末并再次进行第2部。
固体分散剂和凝胶剂的总重量小于固体总重量的2%。
第二步包括使用超声处理用于氧化铝粉末的去聚结。超声能量必须足够高(700Watts)才能打破强大的聚结。为了防止因为超声产生的能量加热悬浮体,在2分钟的时间里,每3秒施加1秒的脉冲。还可以使用冷却系统以减少热量。
第三步包括浓缩悬浮体的排气,其可以在小于50mbars的真空室内进行。
第四步包括制备乙酸酐(凝固剂)和乙二醇(助溶剂)(或可选择地使用聚乙二醇)的混合物,按下面的体积比例:1/8的乙酸酐和7/8的乙二醇或聚乙二醇,进行混合。
第五步包括将浓缩悬浮体和凝固剂和助溶剂的混合物冷却至5℃。
第六步包括将100ml的浓缩悬浮体和8ml的凝固剂和助溶剂的混合物在几rpm的刀片式搅拌的机械作用下进行混合,防止气穴现象(产生气泡)的发生。
第七步包括在基于例如硅,乳胶或特氟龙(Teflon)的无孔模具中进行注模。一旦注模,在5分钟内就会在室温下发生凝固过程。使用无孔刚性和/或柔性模具(润滑剂如凡士林,特氟龙,或高纯度的橄榄油用以帮助部件从模具中移出)。
第八步包括直接在模具中干燥三维潮湿坯体。干燥温度和湿度的调整依赖于部件的尺寸和形状。典型地,温度和湿度的增加抑制了裂纹的产生。但两者都必须依赖于干燥部件的尺寸和形状进行调整。
第九步包括干燥生坯件的脱模。
第十步包括在2000bar的压力下对干燥的生坯件进行冷等静压(CIP),例如使用乳胶或硅基树脂作为环绕包封。
所得到的生密度在理论密度的60%以上。因为使用了特殊的系统而使颗粒具有流动性,所以可以使用冷等静压(CIP)步骤,例如颗粒的好的流动性可以形成更密的致密体。
对纯的α-氧化铝使用的由下而上(bottom-up)方法可以控制另外加入的添加剂的类型和含量。例如氧化镁,γ-氧化铝,硅,氧化锆等。
第十一步包括在1600℃下自然烧结部件2小时,使其密度接近于理论值。
该方法的主要优点在于一旦烧结后得到只需要最小加工量就可以得到陶瓷部件且用该法可以得到以前用现有技术无法得到的陶瓷形状。与经典的使用酶(Gayskler)的DCC方法相比,其速度非常快,可以在5分针之内得到均匀的凝固体。

Claims (13)

1.生产陶瓷部件的方法,包括在水中分散直径超过100nm的α-氧化铝纳米粉末,使用2-膦酰基丁烷-1,2,4-三羧酸(PBTC)或者4,5-二羟基-m-苯二磺酸二钠盐(TrionTM)作为分散剂,通过加入乙酸酐和乙二醇或聚乙二醇的混合物将pH值调向等电位点(IEP),在受控的气氛(湿度和温度)中干燥并使用冷等静压进行后致密化并烧结形成的三维结构。
2.权利要求1所述方法,其中纳米粉末是带有金属阳离子的氧化物粉末,其能够展现出PBTC分子的强吸附性,例如软化,高纯度的和/或消毒的水。
3.权利要求1或2所述的方法,其中PBTC是首先和水混合再加入粉末。
4.权利要求1-3所述的方法,其中粉末在几个阶段中加入并在每次加入阶段之间进行超声处理。
5.权利要求4或5所述的方法,其中粘合剂是在分散后加入的。
6.权利要求4或5所述的方法,其中排气阶段是在超声处理之后,在真空下进行的以去除气泡。
7.上述权利要求任一项所述的方法,其中用热稳定阶段来得到所需要的分散温度。
8.上述权利要求任一项所述的方法,其中乙酸酐作为凝固剂并与助溶剂进行混合来增加乙酸酐在水中的可混合性,并减低乙酸酐的水解动力学。
9.前述权利要求7或8任一项所述的方法,其中在悬浮体中加入凝固剂和其助溶剂的混合物,同时混合并防止气泡的产生。
10.权利要求9所述的方法,其中包括通过旋转刀片来进行机械混合。
11.权利要求9和10所述方法,一旦凝固剂混合到悬浮体中且在凝固之前,将悬浮体注模到无孔模具中,并在其中发生凝固。
12.权利要求11所述的方法,其中坯体凝固并在烧结前进行干燥和脱模。
13.权利要求11或12所述的方法,其中通过冷等静压对干燥的坯体进行后致密化。
CNB2004101033899A 2003-11-10 2004-11-10 陶瓷部件的生产方法 Expired - Fee Related CN100371288C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0326183.1A GB0326183D0 (en) 2003-11-10 2003-11-10 Method of producing a ceramic component
GB0326183.1 2003-11-10

Publications (2)

Publication Number Publication Date
CN1657488A true CN1657488A (zh) 2005-08-24
CN100371288C CN100371288C (zh) 2008-02-27

Family

ID=29726261

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004101033899A Expired - Fee Related CN100371288C (zh) 2003-11-10 2004-11-10 陶瓷部件的生产方法

Country Status (7)

Country Link
US (2) US20050167895A1 (zh)
EP (1) EP1529764B1 (zh)
JP (1) JP2005162605A (zh)
CN (1) CN100371288C (zh)
AT (1) ATE344221T1 (zh)
DE (1) DE602004003017T2 (zh)
GB (1) GB0326183D0 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515763A (zh) * 2011-11-10 2012-06-27 哈尔滨工业大学 一种钙钛矿结构陶瓷溶胶的制备方法
CN112562958A (zh) * 2020-11-27 2021-03-26 天长市中德电子有限公司 一种低温烧结锰锌软磁铁氧体材料的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070078190A1 (en) * 2005-09-30 2007-04-05 Distefano Frank V Use of 2,3-dihydroxynaphthalene-6-sulfonic acid salts as dispersants
US20100096601A1 (en) * 2005-10-27 2010-04-22 Distefano Frank Vito Molecules with complexing groups for aqueous nanoparticle dispersions and uses thereof
GB0608756D0 (en) * 2006-05-03 2006-06-14 Benoist Girard Sas Prosthetic acetabular cup with outwardly projecting flange
GB0622074D0 (en) * 2006-11-06 2006-12-13 Howmedica Osteonics Corp Method of synthesising a nano metic composite and for use thereof in a method for producing a ceramic component

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5788891A (en) * 1994-05-09 1998-08-04 Gauckler; Ludwig J. Method for the forming of ceramic green parts
DE19519318C2 (de) * 1995-05-26 1997-05-15 Bayer Ag Verfahren zur Herstellung von 2-Phosphonobutan-1,2,4-tricarbonsäure und ihrer Alkalimetallsalze
US5900201A (en) * 1997-09-16 1999-05-04 Eastman Kodak Company Binder coagulation casting
TW579372B (en) * 1998-07-29 2004-03-11 Sumitomo Chemical Co Process for producing alumina sintered body
CN1065846C (zh) * 1998-09-25 2001-05-16 清华大学 精密陶瓷部件的无毒性凝胶注模成型方法
CN1075477C (zh) * 1998-10-30 2001-11-28 清华大学 陶瓷部件快速成型的方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515763A (zh) * 2011-11-10 2012-06-27 哈尔滨工业大学 一种钙钛矿结构陶瓷溶胶的制备方法
CN102515763B (zh) * 2011-11-10 2013-05-22 哈尔滨工业大学 一种钙钛矿结构陶瓷溶胶的制备方法
CN112562958A (zh) * 2020-11-27 2021-03-26 天长市中德电子有限公司 一种低温烧结锰锌软磁铁氧体材料的制备方法

Also Published As

Publication number Publication date
JP2005162605A (ja) 2005-06-23
CN100371288C (zh) 2008-02-27
EP1529764A1 (en) 2005-05-11
GB0326183D0 (en) 2003-12-17
ATE344221T1 (de) 2006-11-15
US20090256285A1 (en) 2009-10-15
EP1529764B1 (en) 2006-11-02
US20050167895A1 (en) 2005-08-04
DE602004003017D1 (de) 2006-12-14
DE602004003017T2 (de) 2007-02-08

Similar Documents

Publication Publication Date Title
US8877119B2 (en) Method of synthesizing multi-phase oxide ceramics with small phase domain sizes
US20090256285A1 (en) Method of producing a ceramic component
CN1065846C (zh) 精密陶瓷部件的无毒性凝胶注模成型方法
CN1686945A (zh) 硅溶胶凝固成型陶瓷部件的方法
US5667548A (en) Process for producing ceramic green compacts by double layer compression
EP1918264A2 (en) Method of synthesising a nano metric composite and for use thereof in a method for producing a ceramic component
CN111348921B (zh) 用于光固化成形的陶瓷材料及其乳液包覆制备方法、应用
CN112851342A (zh) 一种氧化锆陶瓷材料及其制备方法和应用
Bell et al. Temperature induced forming: application of bridging flocculation to near-net shape production of ceramic parts
EP0605694B1 (de) Verfahren zur herstellung keramischer grünkörper
JP4676066B2 (ja) 炭化ホウ素鋳造体
Yu et al. A novel gel tape casting process based on gelation of sodium alginate
CN1293021C (zh) 金属-陶瓷梯度材料的制备方法
US5922272A (en) Manufacture of ceramic articles
CN1172876C (zh) 一种水基流延制备陶瓷薄片的方法
CN110947033A (zh) 人工骨支架材料、材料制备方法及人工骨支架的制备方法
KR100435427B1 (ko) 구상의 수산화바륨티타네이트 미립자의 제조방법
CN110755692A (zh) 一种聚乙烯醇复合骨支架的制备方法
Yang et al. Novel In-situ Coagulation Casting of Ceramic Suspensions
CN1092167C (zh) 通过鳌合反应实现延迟固化的陶瓷胶态成型方法
KR100722379B1 (ko) 투명 실리카 글래스의 제조 방법
JP3314554B2 (ja) 窒化珪素粉末及び窒化珪素含有水系スラリー
KR100328923B1 (ko) 응고법을 이용한 실리카 레이돔의 제조방법
KR100530104B1 (ko) 고상폐기물을 재활용한 세라믹 다공체의 제조방법
JP2002508734A (ja) 温度変化を用いる水性系中でのセラミック及び金属の成形法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080227

Termination date: 20091210