CN1628251B - 用于多点探针的电反馈探测系统 - Google Patents

用于多点探针的电反馈探测系统 Download PDF

Info

Publication number
CN1628251B
CN1628251B CN03803462XA CN03803462A CN1628251B CN 1628251 B CN1628251 B CN 1628251B CN 03803462X A CN03803462X A CN 03803462XA CN 03803462 A CN03803462 A CN 03803462A CN 1628251 B CN1628251 B CN 1628251B
Authority
CN
China
Prior art keywords
multipoint probe
electric
detection system
specimen
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN03803462XA
Other languages
English (en)
Other versions
CN1628251A (zh
Inventor
克里斯蒂安·莱特·彼得森
彼得·福尔默·尼耳森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Capres AS
Original Assignee
Capres AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8160957&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1628251(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Capres AS filed Critical Capres AS
Publication of CN1628251A publication Critical patent/CN1628251A/zh
Application granted granted Critical
Publication of CN1628251B publication Critical patent/CN1628251B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/06Probe tip arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • G01Q10/06Circuits or algorithms therefor
    • G01Q10/065Feedback mechanisms, i.e. wherein the signal for driving the probe is modified by a signal coming from the probe itself
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/30Scanning potential microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06794Devices for sensing when probes are in contact, or in position to contact, with measured object

Abstract

一种电反馈探测系统,其用于探测多点探针和电传导材料测试样品表面之间的电接触。该电反馈探测系统包括电探测器单元,其连接至多点探针中的电极组,并且可选地直接到测试样品表面。该探测器单元向多点测试设备提供电信号,该设备可被用于确定多点探针是否与测试样品表面有电接触。该探测器单元包括用于产生电信号的电发生器装置,通过多点探针的第一电极组和第二开关阻抗探测元件组驱动该电信号。跨越阻抗探测元件的电势确定了对测试样品表面的电接触。

Description

用于多点探针的电反馈探测系统
发明领域
本发明总的来说涉及一种电反馈探测系统,其用于探测多点探针和局部导电、半导电或超导材料测试样品表面之间的体接触和/或紧密接近,和进一步涉及控制多点探针和材料测试样品表面的相对位置的技术,并且特别涉及一种用于多点探针和多点测试设备的电反馈探测系统,该多点探针和多点测试设备在欧洲专利申请EP98610023.8(Petersen)、国际专利申请PCT/DK99/00391(Capres ApS等人)、欧洲专利申请EP99932677.0(Capres ApS)、欧洲专利申请EP99610052.5(Petersen等人)和国际专利申请PCT/DK00/00513(Capres ApS等人)中进行了描述。
相关领域描述
从文献中已熟知了涉及单探针电极控制方法的扫描隧穿显微镜,其中单探针电极面向传导样品表面;参看例如Binnig和Rohrer,Scanning tunneling microscopy,Helv,Phys.Acta,vol.55,pg.355(1982)。扫描隧穿显微镜包括传导样品和探针,如图1(a)所示。如果探针和样品由很短的距离d隔开并且在此两者之间存在电势V,则在探针和样品之间流过隧穿电流
I ∝ e - Φd
φ是材料的平均功函数。如果距离d在1nm的级别上,则可以产生可探测到的电流。图1(b)示出了完整的扫描隧穿设备的示意图,该扫描隧穿设备能够在不同的测试位置将探针放置在距测试样品隧穿距离内,由此产生纳米级的地形图和测试样品的电特征。
图2(a)-(b)示出了传统的四点探针的示意图(参看例如S.M.Sze,Semiconductor devices-Physics and Technology,Wiley New York(1985),和已公开的国际专利申请WO94/11745)。该传统的四点探针包括如图2(a)所示的四个呈直线配置的电极。通过在两个外围的电极上施加电流可以测量内部的两个电极之间的电压。这使得可以通过等式
ρ=c·(V/I)
确定测试样品的表面电阻率,其中V是测得的电压而I是施加的电流,并且其中c是由四点探针的电极间距和测试样品的尺寸确定的几何因子。图2(b)示出了连接到该四点探针的电路的原理图。
图3(a)-(b)示出了传统的显微镜可见的多点探针的示意图(参看例如已公开的欧洲专利申请EP 1085327A1)。图3(a)示出了多点探针,其包括支撑体和传导探针臂组,该传导探针臂自支撑体的基部自由地伸出。图3(b)示出了多点测试设备,其是实现用于使用显微镜可见的多点探针来测量测试样品电特性的机械和电气装置。
本发明的一个目的在于提供一种新型的电探测器机构,其允许探测多点探针和样品测试材料表面之间的体接触或其他电接触。本发明特别的优势涉及这一事实,即新型的电探测器机构允许探测多点探针电极组之间的电连接,从而给出多点探针电极组的电接触信息。本发明的特定特征是新型的电探测器机构不需要肉眼可见的导电样品表面,从而提供了对任何包含局部电气路径的材料表面的电接触的探测,该局部电气路径是在多点探针的特定位置处的若干多点探针电极之间的路径。
通过根据本发明的用于探测对测试样品特定位置的电接触的电反馈控制系统,获得了上述目的、上述优势和上述特征以及许多其他的通过下文的本发明的优选实施例的详细描述而将显而易见的优势和特征,其中该电反馈控制系统包括:
(a)电发生器设备,其连接至多点探针的第一电极组;
(b)第二开关阻抗探测元件组,其连接所述多点探针的所述第一电极组;和
(c)电探测器装置,其用于探测来自跨越所述第二开关阻抗探测元件组的电信号的测量信号。
本发明的技术特征,即通过利用流入多点探针电极的电信号探测多点探针和测试样品的测试位置之间的接触,避免了在基于显微镜悬臂的多点电极的情况下使用激光偏转探测机构,该激光偏转探测机构使传统光学反馈控制系统得到极大简化,该传统光学反馈控制系统是用于基于显微镜悬臂的测试设备,诸如原子力显微镜和扫描电阻显微镜。
根据本发明连接至第一多点探针电极组的电发生器装置通过在测试位置处的测试样品发送发生器信号,根据特定的探测需要,诸如对电阻、电感、电容或其组合的灵敏度,该电发生器信号为电流或电压、脉冲信号或多个脉冲信号,具有正弦、方形、三角形信号内容或其组合的DC或AC,其范围从LF到HF,如本优选实施例的电发生器信号具有LF正弦AC电流信号。根据本发明的多点探针的第一电极组在从至少两个电极到64个电极的范围,如本优选实施例的多点探针的第一电极组具有两个外围安置的多点探针的电极。根据本发明,向多点探针的两个外围安置电极施加的发生器信号在第二阻抗探测元件组上提供了结果探测器信号,并且推断出关于第三多点探针电极组的电接触条件的信息。电接触条件可以涉及体接触、隧穿接近、中间流体弯面或任何其他允许电流在多点探针电极和测试样品之间流动的效应。
根据本发明的第二开关阻抗探测元件组在从一个到十个的范围内,如本优选实施例的第二开关阻抗探测元件组具有三个。阻抗探测元件的阻性部分的额定值在从1mΩ到100GΩ的范围,如本优选实施例的阻抗探测元件的阻性部分的额定值为1KΩ、10KΩ和100KΩ。
根据本发明,电探测器装置测量跨越第二阻抗探测元件组的电信号,如本优选实施例的电探测器装置具有连接至锁相锁定放大器的灵敏静电计。
附图简述
通过下文的详细描述和随附的权利要求,结合附图,本发明的另外的目的和特征将更加容易地显而易见,附图中:
图1(a)-(b),提供了传统的扫描隧穿显微镜的整体图示。(a),导电探针和测试样品之间的隧穿区域的示意图。(b),示意性地示出了传统的扫描隧穿设备的示图;
图2(a)-(b),提供了传统的四点探针的示意性的图示。(a),示出了与测试样品电接触的传统的四点探针的示意图。(b),示出了连接至传统的四点探针的电流源和静电计的电气示意图;
图3(a)-(b)示出了传统的多点探针和测试设备的整体图示。(a),示出了多点探针电极。(b)是多点测试设备的示意图;
图4示出了根据本发明的电反馈探测系统的示意图;
图5(a)-(b)示出了根据本发明的电反馈探测系统的实施例,其中多点探针没有电连接至测试样品。(a),示出了电反馈探测系统的详细的电气配置。(b),示出了该系统的等效电气图;
图6(a)-(b)示出了根据本发明的电反馈探测系统的实施例,其中多点探针与测试样品电接触。(a),示出了电反馈探测系统的详细的电气配置。(b),示出了该系统的等效电气图;
图7(a)-(b)示出了根据本发明的电反馈探测系统的实施例,其中反馈探测系统包括恒定电流发生器。(a),示出了控制电路中的单一开关阻抗探测元件。(b),示出了控制电路中的开关阻抗探测元件组;
图8示出了根据本发明的电反馈探测系统的实施例,其中反馈探测系统包括恒定电流发生器,并且在多点探针电极组和测试样品材料之间测量探测器信号。
优选实施例详述
优选实施例的涉及构建用于多点探针的电反馈探测系统,并且通过参考图4-8来进行描述。图4示出了使用电反馈探测系统的多点测试设备100的示意图。该设备包括与测试样品104接近的多点探针102,依靠控制器106可以通过由马达平台108移动该测试样品104。多点探针的外围安置的电极连接至电反馈探测系统110,该系统110能够确定多点探针102是否与测试样品104电接触。自电反馈探测系统110向控制器106提供探测器信号112,用以启用在测试样品104上测试位置处多点探针102的受控定位和测量。
图5(a)-(b)和图6(a)-(b)一起示出了本发明优选实施例的原理。图5(a)-(b)示出了在不存在多点探针302和测试样品304之间的电接触的情况下的根据本发明的电反馈探测系统300的电气配置的原理。电发生器设备产生恒定的电流Ic,并且被连接至多点探针302的外围电极302a和302b。包括阻性探测元件R的阻抗探测元件通过闭合的开关SW连接至电路,并且通过放大器电路A测量跨越阻性探测元件R的电势Vr。图5(a)中示出的该情况下的根据本发明的反馈探测系统的等效电气图在图5(b)中示出。恒定电流Ic流经阻性探测元件R,从而产生电势差
Vr=R·Ic
该电势差由放大器A测量并且出现在反馈探测系统的输出中。图6(a)-(b)示出了在多点探针502与测试样品504的表面电接触的情况下的电反馈探测系统500的示意图和等效电路。电发生器装置连接至多点探针502的位于外围的电极502a和502b。产生的电流Ic一部分流经闭合的开关SW和阻性探测元件R,并由放大器电路A测量相应的电势Vr,而一部分流经测试样品504,该测试样品504由未知阻性元件Rx表示。在该情况下电势差Vr
Vr=(R·Rx)/(R+Rx)·Ic
通过参考图5和6,由此可以确定在多点探针和测试样品之间引入的电接触在反馈探测系统的输出中产生明确的变化,因此允许探测多点探针和测试样品的接触条件中的变化。
在本发明的优选实施例中,由电发生器装置产生的恒定电流Ic是1μA,而阻性探测元件R具有100KΩ的额定值,并且因此,如果在多点探针和测试样品之间没有建立电接触,则探测信号Vr为10V。如果存在对测试样品的电接触,则测试样品的电特性引出了测试样品的有效电阻Rx。下面的表显示了关于测试样品的不同有效电阻值Rx的范围的结果探测器信号Vr
 
R<sub>x</sub> V<sub>r</sub> 从没有电接触情况下V<sub>r</sub>的相对变化
10Ω 9.99μV 1,100,000
10KΩ 9.99mV 1,100
1MΩ 909mV 11
100MΩ 9.09V 1.1
这示出了本发明的该特定优选实施例中的电反馈探测系统通过在10Ω到100MΩ范围中的有效电阻能够探测对测试样品的接触。在本发明的优选实施例中,多点测试设备的控制器使用探测器信号用以确定多点探针对测试样品的测试位置的电接触条件,还用以通过提供给马达平台的电信号有效地改变接触条件,该马达平台定义了多点探针和测试样品的相对位置。
图7(a)-(b)示出了本发明的优选实施例的详细实现方案。在图7(a)中,根据本发明的电反馈探测系统700具有多点探针702的外围安置的电极702a和702b,该多点探针702连接至差分电压—电流转换器,该转换器包括放大器G、阻性探测元件Rset和电压跟随器A1。阻性探测元件R通过开关SW连接至电压—电流转换器的输出。电压—电流转换器的输出与电压差V1-V2成比例。通过放大器A2测量探测器信号Vr。来自电压—电流转换器的电流Ic通过闭合的开关SW和阻性探测元件R,和通过测试样品704中的未知有效电阻Rx发送。图7(b)示出了根据本发明的电反馈探测系统800,其具有连接至测试样品804的多点探针802和连接至多点探针802的外围电极802a和802b的电反馈探测电路。电反馈探测电路包括阻性探测元件R1和R2的组,该元件R1和R2通过开关SW可以独立地切换至电发生器装置的信号路径,优选的应用具有三个所述阻性探测元件,这些元件具有在100Ω到10MΩ范围的额定值。
图8示出了根据本发明另一优选实施例的电反馈控制系统1000,其具有连接至测试样品1004的多点探针1002和连接在多点探针1002的外围电极1002a和1002b与测试样品1004之间的电反馈探测电路。产生的电流Ic部分流经测试样品1004,并且即使当仅有多点探针电极组中的一个与测试表面有电接触时,这也会引起跨越阻性探测元件R的探测器信号Vr的改变。

Claims (4)

1.一种用于探测多点探针对电传导材料测试样品表面的电接触的电反馈探测系统,包括:
a.电发生器设备,连接至多点探针的第一电极组;
b.所述电发生器设备和所述材料测试样品表面之间的电连接,所述电连接由所述第一电极组提供,其中,所述电发生器设备是差分电压-电流转换器,该差分电压-电流转换器包括:
i.精确放大器,提供两个差分输入、一个输出和一个参考输入;
ii.精确阻性元件,提供内部和外部端口,所述内部端口连接至所述精确放大器的所述输出;以及
iii.电压跟随器,提供输入和输出,所述输入连接至所述精确阻性元件的所述外部端口,并且所述输出连接至所述精确放大器的所述参考输入;
c.第二开关阻抗探测元件组,连接至所述多点探针的所述第一电极组;
d.电探测器装置,所述电探测器装置连接到所述电压跟随器的输出,用于探测来自跨越所述第二开关阻抗探测元件组的电信号的测量信号。
2.根据权利要求1的用于探测多点探针对电传导材料测试样品表面的电接触的电反馈探测系统,进一步包括:滤波器,其用于对所述电探测器装置的输出进行滤波,其包括:低通滤波器、高通滤波器、带通滤波器、比较器滤波器或这些滤波器的任何组合。
3.根据权利要求1的用于探测多点探针对电传导材料测试样品表面的电接触的电反馈探测系统,其中所述多点探针包括:
支撑体,其定义了第一表面;
其中,所述多点探针的第一电极组的每个电极定义了近端和远端,这两端与所述支撑体的所述第一表面呈共平面关系安置,且所述多点探针的第一电极组的每个电极在其所述近端处连接至所述支撑体,并且具有从所述支撑体自由伸出的所述远端,向所述多点探针的第一电极组提供了独立的灵活运动。
4.一种用于测试测试样品的特定位置上的电特征的多点测试设备,包括:
a.权利要求1的电反馈探测系统;
b.用于接收和支撑所述测试样品的装置;和
c.当所述多点探针的第一电极组与测试样品接触时,所述电发生器设备用于产生测试信号并且所述电探测器装置用于探测测量信号。
CN03803462XA 2002-01-07 2003-01-07 用于多点探针的电反馈探测系统 Expired - Fee Related CN1628251B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA200200020 2002-01-07
DKPA200200020 2002-01-07
PCT/DK2003/000006 WO2003058260A1 (en) 2002-01-07 2003-01-07 Electrical feedback detection system for multi-point probes

Publications (2)

Publication Number Publication Date
CN1628251A CN1628251A (zh) 2005-06-15
CN1628251B true CN1628251B (zh) 2010-08-18

Family

ID=8160957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN03803462XA Expired - Fee Related CN1628251B (zh) 2002-01-07 2003-01-07 用于多点探针的电反馈探测系统

Country Status (9)

Country Link
US (2) US7135876B2 (zh)
EP (1) EP1466182B1 (zh)
JP (1) JP4500546B2 (zh)
KR (1) KR100978699B1 (zh)
CN (1) CN1628251B (zh)
AT (1) ATE519119T1 (zh)
AU (1) AU2003206667A1 (zh)
IL (1) IL162847A0 (zh)
WO (1) WO2003058260A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1466182B1 (en) 2002-01-07 2011-08-03 Capres A/S Electrical feedback detection system for multi-point probes
CN102305896B (zh) * 2004-06-21 2015-05-13 卡普雷斯股份有限公司 一种用于提供探头对准的方法
US7541219B2 (en) * 2004-07-02 2009-06-02 Seagate Technology Llc Integrated metallic contact probe storage device
JP4665704B2 (ja) * 2005-10-17 2011-04-06 セイコーインスツル株式会社 計測プローブ及び表面特性計測装置並びに表面特性計測方法
US7268571B1 (en) * 2006-03-20 2007-09-11 Texas Instruments Incorporated Method for validating and monitoring automatic test equipment contactor
KR20090005217A (ko) * 2006-04-24 2009-01-12 카프레스 에이/에스 얕은 반도체 주입에 대한 면 저항 및 누설 전류 밀도 계측 방법
KR100868071B1 (ko) * 2006-09-27 2008-11-10 연세대학교 산학협력단 차동 전극 임피던스의 상대적인 측정을 이용한 전극의 접촉모니터링 방법
US8113038B2 (en) * 2006-12-20 2012-02-14 International Business Machines Corporation Systems and methods for detecting a coating on an item such as a magnetic head
EP1970714A1 (en) * 2007-03-12 2008-09-17 Capres Aps Device including a contact detector
EP2237052A1 (en) 2009-03-31 2010-10-06 Capres A/S Automated multi-point probe manipulation
CN102436334A (zh) * 2011-10-27 2012-05-02 苏州瀚瑞微电子有限公司 电容触摸屏系统测试机
EP2677324A1 (en) 2012-06-20 2013-12-25 Capres A/S Deep-etched multipoint probe
US9194888B2 (en) * 2012-10-11 2015-11-24 Tektronix, Inc. Automatic probe ground connection checking techniques
US9170273B2 (en) * 2013-12-09 2015-10-27 Globalfoundries U.S. 2 Llc High frequency capacitance-voltage nanoprobing characterization
CN105445557A (zh) * 2015-01-04 2016-03-30 宁波英飞迈材料科技有限公司 一种高通量电阻率测试装置
DE102015105075A1 (de) * 2015-04-01 2016-10-06 Infineon Technologies Ag Stromsensor
WO2017136468A1 (en) * 2016-02-01 2017-08-10 Bio-Rad Laboratories, Inc. Direct contact instrument calibration system
CN107656146B (zh) * 2016-07-25 2019-10-18 中核建中核燃料元件有限公司 一种预防测头触碰格架的测量装置的测量方法
CN108982950B (zh) * 2018-07-02 2021-10-22 东北大学 测试ybco膜超导环流电压信号的传感器及其制作方法
CN110850126B (zh) * 2018-08-03 2022-12-27 均豪精密工业股份有限公司 检测系统、探针装置及面板检测方法
TWI827809B (zh) * 2019-04-04 2024-01-01 丹麥商卡普雷斯股份有限公司 測量測試樣本之電性的方法,以及多層測試樣本
KR102512651B1 (ko) * 2021-03-25 2023-03-23 연세대학교 산학협력단 주사탐침 현미경용 프로브 및 이를 포함하는 이진 상태 주사탐침 현미경
EP4332558A1 (en) * 2022-09-05 2024-03-06 Stichting IMEC Nederland Methods and devices for liquid impedance measurement using a four-electrode device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611125A (en) * 1969-06-04 1971-10-05 Sylvania Electric Prod Apparatus for measuring electrical resistance
US3735254A (en) * 1970-06-06 1973-05-22 Philips Corp Method of determining the sheet resistance and measuring device therefor
US3995213A (en) * 1975-10-02 1976-11-30 The United States Of America As Represented By The Secretary Of The Air Force Surface impedance tester
US5214389A (en) * 1992-01-06 1993-05-25 Motorola, Inc. Multi-dimensional high-resolution probe for semiconductor measurements including piezoelectric transducer arrangement for controlling probe position
US5627522A (en) * 1992-03-27 1997-05-06 Abbott Laboratories Automated liquid level sensing system
US6091248A (en) * 1994-08-29 2000-07-18 Imec Vzw Method for measuring the electrical potential in a semiconductor element
US6154041A (en) * 1992-11-10 2000-11-28 Cheng; David Method and apparatus for measuring thickness of semiconductor substrates
EP1085327A1 (en) * 1999-09-15 2001-03-21 Christian Leth Petersen Multi-point probe

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA665756A (en) * 1959-06-08 1963-06-25 Western Electric Company, Incorporated Resistivity measuring circuit
DE3246669A1 (de) 1982-12-16 1984-06-20 Siemens AG, 1000 Berlin und 8000 München Leckwaechter
JPS59103288U (ja) * 1982-12-27 1984-07-11 富士通株式会社 抵抗測定回路
JPS59119276A (ja) * 1982-12-27 1984-07-10 Hitachi Ltd 絶縁抵抗測定装置
IT1206837B (it) * 1987-01-09 1989-05-11 Fiat Auto Spa Procedimento e dispositivo per il controllo non distruttivo di puntidi saldatura di lamiera realizzati mediante saldatura elettrica
US5136252A (en) * 1990-12-17 1992-08-04 At&T Bell Laboratories Apparatus and methods for evaluating resistive bodies
WO1994011745A1 (en) 1992-11-10 1994-05-26 David Cheng Method and apparatus for measuring film thickness
DE69433974T2 (de) * 1993-04-13 2005-09-01 Agilent Technologies, Inc., Palo Alto Elektro-optisches instrument
US5525911A (en) * 1993-08-04 1996-06-11 Tokyo Electron Limited Vertical probe tester card with coaxial probes
JP3577839B2 (ja) * 1996-06-04 2004-10-20 株式会社日立製作所 不良検査方法および装置
JP4685240B2 (ja) 1998-07-08 2011-05-18 カプレス エイピーエス 多探針プローブ
EP0974845A1 (en) 1998-07-08 2000-01-26 Christian Leth Petersen Apparatus for testing electric properties using a multi-point probe
JP2000214181A (ja) * 1999-01-21 2000-08-04 Hioki Ee Corp コンタクトプロ―ブおよび回路基板検査装置
CA2309412A1 (en) 2000-05-24 2001-11-24 Michael Thompson Scanning of biochemical microassays by kelvin microprobe
JP3638865B2 (ja) * 2000-07-13 2005-04-13 喜萬 中山 ナノチューブ端子を用いた四端子測定装置
EP1466182B1 (en) 2002-01-07 2011-08-03 Capres A/S Electrical feedback detection system for multi-point probes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611125A (en) * 1969-06-04 1971-10-05 Sylvania Electric Prod Apparatus for measuring electrical resistance
US3735254A (en) * 1970-06-06 1973-05-22 Philips Corp Method of determining the sheet resistance and measuring device therefor
US3995213A (en) * 1975-10-02 1976-11-30 The United States Of America As Represented By The Secretary Of The Air Force Surface impedance tester
US5214389A (en) * 1992-01-06 1993-05-25 Motorola, Inc. Multi-dimensional high-resolution probe for semiconductor measurements including piezoelectric transducer arrangement for controlling probe position
US5627522A (en) * 1992-03-27 1997-05-06 Abbott Laboratories Automated liquid level sensing system
US6154041A (en) * 1992-11-10 2000-11-28 Cheng; David Method and apparatus for measuring thickness of semiconductor substrates
US6091248A (en) * 1994-08-29 2000-07-18 Imec Vzw Method for measuring the electrical potential in a semiconductor element
EP1085327A1 (en) * 1999-09-15 2001-03-21 Christian Leth Petersen Multi-point probe

Also Published As

Publication number Publication date
AU2003206667A1 (en) 2003-07-24
US20050127929A1 (en) 2005-06-16
KR100978699B1 (ko) 2010-08-30
US7307436B2 (en) 2007-12-11
US7135876B2 (en) 2006-11-14
JP2005514625A (ja) 2005-05-19
EP1466182A1 (en) 2004-10-13
WO2003058260A1 (en) 2003-07-17
IL162847A0 (en) 2005-11-20
CN1628251A (zh) 2005-06-15
JP4500546B2 (ja) 2010-07-14
KR20040085146A (ko) 2004-10-07
ATE519119T1 (de) 2011-08-15
US20070024301A1 (en) 2007-02-01
EP1466182B1 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
CN1628251B (zh) 用于多点探针的电反馈探测系统
Hochwitz et al. Capacitive effects on quantitative dopant profiling with scanned electrostatic force microscopes
EP0433604B1 (en) Electrical probe incorporating scanning proximity microscope
US5168159A (en) Barrier height measuring apparatus including a conductive cantilever functioning as a tunnelling probe
Jacobs et al. Measuring and modifying the electric surface potential distribution on a nanometre scale: a powerful tool in science and technology
CN103140009A (zh) 用于等离子体诊断的Langmuir多探针控制电路
US6583412B2 (en) Scanning tunneling charge transfer microscope
Tran et al. “Zeptofarad”(10− 21 F) resolution capacitance sensor for scanning capacitance microscopy
JP4245951B2 (ja) 電気特性評価装置
US6912892B2 (en) Atomic force microscope
Kalinin et al. Local electronic transport at grain boundaries in Nb-doped Sr Ti O 3
Zou et al. Conductivity-based contact sensing for probe arrays in dip-pen nanolithography
Klein et al. Contact potential differences measurement: Short history and experimental setup for classroom demonstration
KR20080080494A (ko) 나노크기 결함 분리 및 측정 시스템
US6208151B1 (en) Method and apparatus for measurement of microscopic electrical characteristics
US6423967B1 (en) Detection apparatus and detection method to be used for scanning probe and observation apparatus and observation method
US9541576B2 (en) Electrochemical force microscopy
Quitoriano et al. Interpreting Kelvin probe force microscopy under an applied electric field: local electronic behavior of vapor–liquid–solid Si nanowires
Böhm Electric force microscopy: Gigahertz and nanometer measurement tool
CN113092825B (zh) 原子力显微镜系统及其电流检测方法
US20180024161A1 (en) Scanning probe microscope and method for measuring local electrical potential fields
Fardi et al. Scanning impedance microscopy (SIM): A novel approach for AC transport imaging
Bae et al. A new bifunctional topography and current probe for scanning force microscope testing of integrated circuits
Fumagalli et al. Probing electrical transport properties at the nanoscale by current-sensing atomic force microscopy
Bae et al. A new test method for contactless quantitative current measurement via scanning magneto-resistive probe microscopy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100818

Termination date: 20220107