CN1610814A - 熔炼稀土合金的坩埚以及稀土合金 - Google Patents

熔炼稀土合金的坩埚以及稀土合金 Download PDF

Info

Publication number
CN1610814A
CN1610814A CNA028265823A CN02826582A CN1610814A CN 1610814 A CN1610814 A CN 1610814A CN A028265823 A CNA028265823 A CN A028265823A CN 02826582 A CN02826582 A CN 02826582A CN 1610814 A CN1610814 A CN 1610814A
Authority
CN
China
Prior art keywords
crucible
rare earth
volume
melting
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028265823A
Other languages
English (en)
Other versions
CN100410611C (zh
Inventor
桥本贵弘
松本福二
美浓轮武久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001351584A external-priority patent/JP3978578B2/ja
Priority claimed from JP2001351583A external-priority patent/JP3944700B2/ja
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Publication of CN1610814A publication Critical patent/CN1610814A/zh
Application granted granted Critical
Publication of CN100410611C publication Critical patent/CN100410611C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

一种坩埚包含Al2O3以及至少一种选自于包括Y2O3的稀土氧化物作为主要组分,并且,其特征在于:在500-1800℃下进行烧制,稀土氧化物在颗粒尺寸最大0.5mm的细小颗粒部分的分布比例高于在颗粒尺寸大于0.5mm的粗大颗粒部分的分布比例,以及基本不存在稀土氧化物与Al2O3的反应产物。该坩埚适合于熔炼稀土合金。

Description

熔炼稀土合金的坩埚以及稀土合金
技术领域
本发明涉及用于高频熔炼稀土合金的坩埚以及采用该坩埚获得的稀土合金。
背景技术
稀土合金近来作为磁性材料、电池电极材料等在各个领域得到应用。以低成本制造质量稳定的稀土合金很重要。
一般地,稀土合金的制备过程为:称取一定量的原料,以获得要求的组成,将其放入坩埚中,高频熔炼,以及将熔体倒入模具或者旋转辊中进行铸造。
高频熔炼使用的坩埚可以采用在陶瓷制备中使用的传统方法进行制造,所述方法涉及采用水或者粘结剂和水与预定量的原料混合,形成浆料,将浆料成型,随后,从模具中取出并且进行烧制(或者干燥)。由于熔融的稀土合金反应性极高,用于熔炼的坩埚的坩埚材料必须满足如下要求。
即:坩埚材料必须具有:(1)与水的反应性最低和(2)一定程度的稳定性。另一方面,坩埚还应满足如下要求,包括:(1)抵抗高频加热时因热膨胀引起的开裂的能力(抗热冲击性),(2)高的机械强度,(3)熔炼结束时容易将沉积在坩埚内的炉渣除掉,以及(4)成本低。
为了满足上述这些要求,已采用Al2O3或者存在添加剂的Al2O3制造用于熔炼稀土合金的坩埚。
此处使用的Al2O3的稳定性在氧化物中比较高,但是,对于稀土金属则比较差,允许反应一点点地进行。反应的部分变为炉渣。炉渣与坩埚牢固结合,难以除掉,结果带来炉渣去除操作时间过长,影响生产率以及在炉渣去除操作期间可能会损坏坩埚的问题。
这些问题可以通过使用稳定性高并且与稀土金属反应性最小的稀土氧化物和氧化钙加以解决。由于它们容易形成氢氧化物,因此,可以作为未成形的耐火材料使用或者少量添加使用,但是,难于用作制造坩埚用的成型耐火材料的基本材料。
发明公开
因此,本发明的目的是提供一种熔炼稀土合金的坩埚,该坩埚可以使其上产生的任何炉渣易于去除、可以重复使用而且低廉;并且,还提供一种采用该坩埚获得的稀土合金。
分析Al2O3制传统坩埚与作为典型稀土合金的Nd-Fe-B基合金的反应以及产生的炉渣,本发明人发现如下问题。
更具体地,由于坩埚的颗粒尺寸配比对于坩埚对高频加热时因热膨胀引起的开裂是否敏感(或者是否具有改善的热冲击强度)很重要,因此,根据坩埚的用途或者尺寸来调整颗粒尺寸分布。颗粒尺寸最大2mm,特别是最大0.5mm的Al2O3颗粒优先与Nd或者稀土金属发生如下反应:
该反应逐步进行。颗粒尺寸大于2mm的Al2O3颗粒在距表面10-100μm的深度内发生反应,但是,反应不会进一步进行,就仿佛颗粒受到反应膜保护一样。推测出现这种差异的原因在于更细小的粉末活性更高。
这种反应的进行导致出现如图2所示的状态。当反应到达由粗大颗粒部分10和细小颗粒部分11构成的坩埚1的内部时,坩埚的已反应区域形成与坩埚1牢固结合的炉渣1A。当采用该存在未受损害的炉渣1A的坩埚熔炼随后的批料时,反应进一步进行,而且,坩埚的内部容积改变。因此,一个基本要求就是每个批次或者周期性地将炉渣1A除掉。由于炉渣1A与坩埚1牢固结合,因此,清除工作很困难,而且,在该步骤期间可能会损坏坩埚1。
因此,从几个方面进行了研究,本发明人发现通过向颗粒尺寸最大为0.5mm的部分中加入高浓度的稀土氧化物防止坩埚材料与稀土合金反应,能够提高坩埚的寿命,由此,即使产生炉渣,也能够容易除掉。
另一方面,由于稀土合金的熔炼分批次进行,因此,从室温加热到熔炼温度(1000-1700℃)并随后冷却的热循环重复进行。所以,坩埚受到热膨胀及收缩的重复循环。这可能会引起坩埚开裂,导致坩埚进一步劣化。
参照图3,对上述现象进行描述。上述热循环引起由粗大颗粒部分10和细小颗粒部分11构成的坩埚1在1B处开裂。结果,反应到达坩埚内部,已反应区域形成与坩埚1牢固结合的炉渣1A。当采用该存在未受损害的炉渣1A的坩埚熔炼随后的批料时,反应进一步进行,而且,坩埚的内部容积改变。因此,一个基本要求就是每个批次或者周期性地将炉渣1A除掉。然而,由于炉渣1A与坩埚1牢固结合,因此,清除工作很困难,而且,在该步骤期间可能会损坏坩埚1。在这方面,已发现:通过使用热膨胀系数低的Al2TiO5作为主要组分,能够防止热循环期间产生裂纹,而且,通过向颗粒尺寸最大为0.5mm的部分中加入高浓度的稀土氧化物防止坩埚材料与稀土合金反应,能够提高坩埚的寿命,由此,即使产生炉渣,也能够容易除掉。基于上述这些发现,完成了本发明。
具体地,本发明提供:
(1)一种用于熔炼稀土合金的坩埚,其包含Al2O3以及至少一种选自于包括Y2O3的稀土氧化物作为主要组分,其特征在于:通过在500-1800℃下烧制获得所述坩埚,稀土氧化物在颗粒尺寸最大0.5mm的细小颗粒部分的分布比例高于在颗粒尺寸大于0.5mm的粗大颗粒部分的分布比例,以及坩埚中基本不存在稀土氧化物与Al2O3的反应产物;
(2)根据(1)的熔炼稀土合金的坩埚,其特征在于:细小颗粒部分的2-100%(体积)是稀土氧化物,而粗大颗粒部分的20-100%(体积)是Al2O3;以及
(3)使用根据(1)或(2)的坩埚获得的稀土合金。
而且,本发明提供:
(4)一种用于熔炼稀土合金的坩埚,其包含Al2TiO5以及至少一种选自于包括Y2O3的稀土氧化物作为主要组分,其特征在于:通过在1000-1700℃下烧制获得所述坩埚,稀土氧化物在颗粒尺寸最大0.5mm的细小颗粒部分的分布比例高于在颗粒尺寸大于0.5mm的粗大颗粒部分的分布比例,以及坩埚中基本不存在稀土氧化物与Al2TiO5的反应产物;
(5)一种用于熔炼稀土合金的坩埚,其包含Al2O3、Al2TiO5以及至少一种选自于包括Y2O3的稀土氧化物作为主要组分,其特征在于:通过在1000-1700℃下烧制获得所述坩埚,稀土氧化物在颗粒尺寸最大0.5mm的细小颗粒部分的分布比例高于在颗粒尺寸大于0.5mm的粗大颗粒部分的分布比例,以及坩埚中基本不存在稀土氧化物与Al2O3和Al2TiO5的反应产物;
(6)根据(4)或(5)的熔炼稀土合金的坩埚,其特征在于:细小颗粒部分的2-100%(体积)是稀土氧化物;
(7)根据(4),(5)或(6)的熔炼稀土合金的坩埚,其特征在于:所述至少一种稀土氧化物是Y2O3;以及
(8)使用根据(4)-(7)中之任一项的坩埚获得的稀土合金。
附图简述
图1是其中已产生炉渣的根据本发明坩埚的局部横截面视图。
图2是其中已产生炉渣的传统坩埚的局部横截面视图。
图3是另一个其中已产生炉渣的传统坩埚的局部横截面视图。
实施本发明的最佳模式
根据本发明第一个实施方案的稀土合金熔炼坩埚是一个包含Al2O3以及一种或多种选自于包括Y2O3的稀土氧化物的氧化物作为主要组分的坩埚,其特征在于:通过在500-1800℃下烧制获得所述坩埚,稀土氧化物在颗粒尺寸最大0.5mm的细小颗粒部分的分布比例高于在颗粒尺寸大于0.5mm的粗大颗粒部分的分布比例,以及坩埚中基本不存在稀土氧化物与Al2O3的反应产物。
可以使用的稀土氧化物是一种或多种选自于包括钇(Y)以及从La至Lu的稀土元素的氧化物。其中,优选使用氢氧化物形成程度较低的Y2O3,CeO2,Dy2O3,Tb4O7和Sm2O3
稀土氧化物在颗粒尺寸最大0.5mm的细小颗粒部分的分布比例高为的是限制坩埚与稀土合金反应。具体地,优选整个坩埚中稀土氧化物的至少50%(体积)、尤其是至少60%(体积)存在于细小颗粒部分。
还优选细小颗粒部分中稀土氧化物的含量为2-100%(体积),尤其是10-100%(体积)。
在这一部分,余量可以是陶瓷如Al2O3、SiO2、TiO2、ZrO2、MgO、CaO、Si3N4、BN和TiB2中的一种,或者它们的组合。
另一方面,由于颗粒尺寸大于0.5mm的粗大颗粒部分的反应性较低,因此,能够使用在机械强度、稳定性以及成本等方面实现良好平衡的Al2O3。Al2O3的含量为粗大颗粒部分的20-100%(体积),特别是50-100%(体积)。
在这一部分,余量可以是稀土氧化物如Y2O3,CeO2,Dy2O3,Tb4O7和Sm2O3以及陶瓷如SiO2、TiO2、ZrO2、MgO、CaO、Si3N4、BN和TiB2中的一种,或者它们的组合。其添加量优选50%(体积)或更低。当稀土氧化物用于粗大颗粒部分时,其在粗大颗粒部分的存在比例必须低于在细小颗粒部分的比例。
应该注意:粗大颗粒的尺寸优选最大10mm,尤其是最大5mm。
根据本发明第二个实施方案的稀土合金熔炼坩埚是一个包含Al2TiO5以及至少一种选自于包括Y2O3的稀土氧化物作为主要组分的坩埚,其特征在于:通过在1000-1700℃下烧制获得所述坩埚,稀土氧化物在颗粒尺寸最大0.5mm的细小颗粒部分的分布比例高于在颗粒尺寸大于0.5mm的粗大颗粒部分的分布比例,以及坩埚中基本不存在稀土氧化物与Al2TiO5的反应产物;以及
根据本发明第三个实施方案的稀土合金熔炼坩埚是一个包含Al2O3、Al2TiO5以及至少一种选自于包括Y2O3的稀土氧化物作为主要组分的坩埚,其特征在于:通过在1000-1700℃下烧制获得所述坩埚,稀土氧化物在颗粒尺寸最大0.5mm的细小颗粒部分的分布比例高于在颗粒尺寸大于0.5mm的粗大颗粒部分的分布比例,以及坩埚中基本不存在稀土氧化物与Al2O3和Al2TiO5的反应产物。
和第一个实施方案一样,可以使用的稀土氧化物是一种或多种选自于包括钇(Y)以及从La至Lu的稀土元素的氧化物。其中,优选使用氢氧化物形成程度较低的Y2O3,CeO2,Dy2O3,Tb4O7和Sm2O3。尤其是,最优选使用稳定性最优异的Y2O3
稀土氧化物在颗粒尺寸最大0.5mm的细小颗粒部分的分布比例高为的是限制坩埚与稀土合金反应。具体地,优选整个坩埚中稀土氧化物的至少50%(体积)、尤其是至少60%(体积)存在于细小颗粒部分。
还优选细小颗粒部分中稀土氧化物的含量为2-100%(体积),尤其是10-100%(体积)。
在这一部分,尽管从机械强度等角度考虑可以添加含量最高为50%(体积)的陶瓷如Al2OB2、SiO2、TiO2、ZrO2、MgO、CaO、Si3N4、BN和TiB2中的一种,或者它们的组合,但是,优选余量为Al2TiO5
另一方面,Al2TiO5成为颗粒尺寸大于0.5mm,优选最大5mm的粗大颗粒部分的主要组分。
这里,可以用通常用作坩埚原料的Al2O3替代部分Al2TiO5,但是,在确保坩埚机械强度的情况下,优选混合物中Al2TiO5的比例较高。
当用Al2O3替代部分Al2TiO5时,优选替代部分最多为80%(体积),尤其是最多30%(体积)。
应该注意:对于粗大颗粒部分,可以添加比例最高为50%(体积)的上述稀土氧化物以及陶瓷如SiO2、TiO2、ZrO2、MgO、CaO、Si3N4、BN和TiB2中的一种,或者它们的混合物。当稀土氧化物用于粗大颗粒部分时,如上所述,其在粗大颗粒部分的存在比例必须低于在细小颗粒部分的比例。
在实施本发明时,细小颗粒与粗大颗粒的混合比例随坩埚尺寸等的改变而变化,并且优选细小颗粒部分占10-60%(体积),尤其是20-40%(体积)。如果细小颗粒部分低于10%(体积),则强度降低的可能性很大。如果细小颗粒部分高于60%(体积),则发生热冲击失效的可能性增加。
本发明的坩埚例如采用如下步骤制备。
将稀土氧化物和Al2O3和/或Al2TiO5放在具有预定直径(例如5mm或者0.5mm)的筛孔的筛子上,并且筛分成颗粒尺寸最大0.5mm的细小颗粒部分以及粗大颗粒部分(例如,颗粒尺寸为0.5-5mm)。稀土氧化物用于细小颗粒部分,而Al2O3和/或Al2TiO5用于粗大颗粒部分。
对细小颗粒部分和粗大颗粒部分进行混合,使细小颗粒部分的比例达10-60%(体积)。将混合物浆料装入预定模具中,在该模具中,在大气气氛、真空气氛或者Ar等惰性气氛中,500-1800℃下,优选1000-1700℃下,对浆料进行烧制,制备出坩埚。
如果在高于1800℃的温度下进行烧制,则在稀土氧化物与Al2O3和/或Al2TiO5之间可能会发生反应,并且,同时,某些区域会致密化,结果,对热冲击的脆性的可能增大。另外,由于已反应区和未反应区的收缩因子不同,因此坩埚发生变形,结果,坩埚无法使用的倾向增大。另一方面,在低于500℃的温度下加热导致烧结不足,无法获得要求的强度。
即:通过在上述温度范围烧制坩埚材料,能够获得一种基本不存在稀土氧化物与Al2O3和/或Al2TiO5(和/或Al2O3)的反应产物的坩埚。
如上所述,根据本发明的用于熔炼稀土合金的坩埚使用热膨胀系数低的材料-Al2O3和/或Al2TiO5,以防止在热循环期间开裂,而且,在颗粒尺寸最大0.5mm的细小颗粒部分稀土氧化物的比例较高,以限制坩埚与稀土合金发生反应。
因此,如图1所示,反应不会到达由粗大颗粒10和细小颗粒11构成的坩埚1内部,而且,炉渣1A与坩埚1的结合弱。因此,能够容易地将炉渣1A除掉,并且,能够避免在去除炉渣操作期间对坩埚1产生任何损坏。
由于减少了炉渣的量,即:抑制了坩埚与稀土合金的反应,结果,带来了提高产品产量的附加优点。
这里还可以预期一种采用上述本发明的坩埚制备的稀土合金。
该稀土合金类型并不关键,只要是其含有一种或多种选自于Y以及从La至Lu的稀土元素。示例性合金是Nd-Fe-B基合金和Sm-Co基合金。
这类稀土合金的制备过程可以为:对原料进行混合,以提供一种预定组成,将混合物置于本发明的坩埚中,在惰性气氛如Ar中,500-1800℃下,优选1000-1700℃下实施高频熔炼,并且,将获得的熔体倒入模具中,之后,进行冷却。
注意:在高频熔炼中采用的温度优选控制在上述范围内,以便防止与稀土氧化物、Al2TiO5和坩埚中的其他组分发生任何反应。
实施例
下面,通过图表给出了实施例和对照例,但是,本发明不受这些实例的限制。
实施例1
将CeO2和Al2O3通过5mm和0.5mm的两个筛网,筛分成颗粒尺寸最大0.5mm的细小颗粒部分以及颗粒尺寸为0.5-5mm的粗大颗粒部分。将CeO2分配至细小颗粒部分,并且将Al2O3分配至粗大颗粒部分。
将细小颗粒部分与粗大颗粒部分按照30%(体积)与70%(体积)的比例进行混合。制备出该混合物的浆料倒入石膏模具中,在该模具中保持2天以上。随后从模具中取出,再保持2天,并且在1550℃烧制,制备出坩埚。坩埚的外径540mm,高840mm,厚40mm,重229kg。
在该坩埚中,放入500kg的Nd-Fe-B基磁铁的原料,已对该原料进行了称量,以使其组成式为:30.5Nd-1.2Dy-1.0B-2.0Co-0.2Al-65.1Fe(%(重量))。通过高频加热,在Ar气氛中,1500℃下熔炼70分钟之后,将熔体浇注至模具中。
坩埚保持80分钟进行冷却,然后在大气环境中打开,随后,进行炉渣去除操作。之后,将原料放入坩埚中并再次进行熔炼。以此方式,重复进行上述过程,直至坩埚不能使用为止。在第58次熔炼循环结束时进行炉渣去除期间,坩埚失效。这58次循环的产品平均回收率为98.7%,去除炉渣所花平均时间是13分钟。
实施例2
如实施例1那样,制备出坩埚,只是制备并用作颗粒尺寸最大0.5mm的细小颗粒部分的混合物中,包含50%(体积)的CeO2、30%(体积)的Al2O3和20%(体积)的SiO2;制备并用作颗粒尺寸大于0.5mm的粗大颗粒部分的混合物中,包含10%(体积)的CeO2和90%(体积)的Al2O3
如实施例1那样,使用该坩埚熔炼稀土合金。在第54次熔炼循环结束时进行炉渣去除期间,坩埚失效。这54次循环的产品平均回收率为98.5%,去除炉渣所花平均时间是15分钟。
实施例3
如实施例1那样,制备出坩埚,只是制备并用作颗粒尺寸最大0.5mm的细小颗粒部分的混合物中,包含80%(体积)的CeO2和20%(体积)的Y2O3;制备并用作颗粒尺寸大于0.5mm的粗大颗粒部分的混合物中,包含70%(体积)的Al2O3和30%(体积)的SiO2
如实施例1那样,使用该坩埚熔炼稀土合金。在第68次熔炼循环结束时进行炉渣去除期间,坩埚失效。这68次循环的产品平均回收率为98.9%,去除炉渣所花平均时间是10分钟。
实施例4
如实施例1那样,制备出坩埚,只是采用Y2O3作为颗粒尺寸最大0.5mm的细小颗粒部分。
如实施例1那样,使用该坩埚熔炼稀土合金。在第75次熔炼循环结束时进行炉渣去除期间,坩埚失效。这75次循环的产品平均回收率为99.0%,去除炉渣所花平均时间是9分钟。
实施例5
如实施例1那样,制备出坩埚,只是制备并用作颗粒尺寸最大0.5mm的细小颗粒部分的混合物中,包含50%(体积)的Y2O3、30%(体积)的Al2O3和20%(体积)的SiO2;制备并用作颗粒尺寸大于0.5mm的粗大颗粒部分的混合物中,包含10%(体积)的Y2O3和90%(体积)的Al2O3
如实施例1那样,使用该坩埚熔炼稀土合金。在第65次熔炼循环结束时进行炉渣去除期间,坩埚失效。这65次循环的产品平均回收率为98.8%,去除炉渣所花平均时间是11分钟。
实施例6
如实施例1那样,制备出坩埚,只是制备并用作颗粒尺寸最大0.5mm的细小颗粒部分的混合物中,包含90%(体积)的Y2O3和10%(体积)的Dy2O3;制备并用作颗粒尺寸大于0.5mm的粗大颗粒部分的混合物中,包含70%(体积)的Al2O3和30%(体积)的SiO2
如实施例1那样,使用该坩埚熔炼稀土合金。在第72次熔炼循环结束时进行炉渣去除期间,坩埚失效。这72次循环的产品平均回收率为98.8%,去除炉渣所花平均时间是10分钟。
对照例1
如实施例1那样,制备出坩埚,只是采用Al2O3作为颗粒尺寸最大0.5mm的细小颗粒部分和颗粒尺寸大于0.5mm的粗大颗粒部分。
如实施例1那样,使用该坩埚熔炼稀土合金。在第36次熔炼循环结束时进行炉渣去除期间,坩埚失效。这36次循环的产品平均回收率为98.0%,去除炉渣所花平均时间是33分钟。
对照例2
如实施例1那样,制备出坩埚,只是制备并用作颗粒尺寸最大0.5mm的细小颗粒部分的混合物中,包含80%(体积)的Al2O3和20%(体积)的SiO2;制备并用作颗粒尺寸大于0.5mm的粗大颗粒部分的混合物中,包含10%(体积)的CeO2和90%(体积)的Al2O3
如实施例1那样,使用该坩埚熔炼稀土合金。在第33次熔炼循环结束时进行炉渣去除期间,坩埚失效。这33次循环的产品平均回收率为97.9%,去除炉渣所花平均时间是36分钟。
对照例3
如实施例1那样,制备出坩埚,只是制备并用作颗粒尺寸最大0.5mm的细小颗粒部分的混合物中,包含80%(体积)的Al2O3和20%(体积)的SiO2;制备并用作颗粒尺寸大于0.5mm的粗大颗粒部分的混合物中,包含10%(体积)的Y2O3和90%(体积)的Al2O3
如实施例1那样,使用该坩埚熔炼稀土合金。在第37次熔炼循环结束时进行炉渣去除期间,坩埚失效。这37次循环的产品平均回收率为98.1%,去除炉渣所花平均时间是29分钟。
对照例4
如实施例1那样,制备出坩埚,只是制备并用作颗粒尺寸最大0.5mm的细小颗粒部分的混合物中,包含99%(体积)的Al2O3和1%(体积)的Y2O3;制备并用作颗粒尺寸大于0.5mm的粗大颗粒部分的混合物中,包含70%(体积)的Al2O3和30%(体积)的SiO2
如实施例1那样,使用该坩埚熔炼稀土合金。在第41次熔炼循环结束时进行炉渣去除期间,坩埚失效。这41次循环的产品平均回收率为97.9%,去除炉渣所花平均时间是30分钟。
表1
           细小颗粒部分[%(体积)]           粗大颗粒部分[%(体积)]  使用循环次数 回收率(%)   炉渣去除时间(分钟)
  CeO2 Y2O3   Dy2O3 Al2O3  SiO2    CeO2   Y2O3  Al2O3    SiO2
实施例1   100     -     -     -   -     -     -   100     -   58   98.7     13
实施例2   50     -     -     30   20     10     -   90     -   54   98.5     15
实施例3   80     20     -     -   -     -     -   70     30   68   98.9     10
实施例4   -     100     -     -   -     -     -   100     -   75   99.0     9
实施例5   -     50     -     30   20     -     10   90     -   65   98.9     11
实施例6   -     90     10     -   -     -     -   70     30   72   98.8     10
对照例1   -     -     -     100   -     -     -   100     -   36   98.0     33
对照例2   -     -     -     80   20     10     -   90     -   33   97.9     36
对照例3   -     -     -     80   20     -     10   90     -   37   98.1     29
对照例4   -     1     -     99   -     -     -   70     30   41   97.9     30
如表1所示,将实施例1-6与对照例1-4进行比较,可以看出:在颗粒尺寸最大0.5mm的细小颗粒部分稀土氧化物含量较高的实施例成功地显著提高了坩埚的使用循环次数,并且容易去除炉渣和提高产品的回收率。
实施例7
将Y2O3和Al2TiO5通过5mm和0.5mm的两个筛网,筛分成颗粒尺寸最大0.5mm的细小颗粒部分以及颗粒尺寸为0.5-5mm的粗大颗粒部分。将Y2O3分配至细小颗粒部分,并且将Al2TiO5分配至粗大颗粒部分。
将细小颗粒部分与粗大颗粒部分按照50%(体积)与50%(体积)的比例进行混合。制备出该混合物的浆料并倒入石膏模具中,在该模具中保持2天以上。随后从模具中取出,再保持2天,并且在1550℃烧制,制备出坩埚。坩埚的外径540mm,高840mm,厚40mm,重218kg。
在该坩埚中,放入500kg的Nd-Fe-B基磁铁的原料,已对该原料进行了称量,以使其组成式为:30.5Nd-1.2Dy-1.0B-2.0Co-0.2Al-65.1Fe(%(重量))。通过高频加热,在Ar气氛中,1500℃下熔炼70分钟之后,将熔体浇注至模具中。
坩埚保持80分钟进行冷却,然后在大气环境中打开,随后,进行炉渣去除操作。之后,将原料放入坩埚中并再次进行熔炼。以此方式,重复进行上述过程,直至坩埚不能使用为止。
在第172次熔炼循环结束时进行炉渣去除期间,坩埚失效。这172次循环的产品平均回收率为99.1%,去除炉渣所花平均时间是7分钟。
实施例8
如实施例7那样,制备出坩埚,只是制备并用作颗粒尺寸最大0.5mm的细小颗粒部分的混合物中,包含50%(体积)的的Y2O3、30%(体积)的Al2TiO5、和20%(体积)的SiO2;制备并用作颗粒尺寸大于0.5mm的粗大颗粒部分的混合物中,包含10%(体积)的的Y2O3和90%(体积)的Al2TiO5
如实施例7那样,使用该坩埚熔炼稀土合金。在第188次熔炼循环结束时进行炉渣去除期间,坩埚失效。这188次循环的产品平均回收率为98.9%,去除炉渣所花平均时间是9分钟。
实施例9
如实施例7那样,制备出坩埚,只是制备并用作颗粒尺寸最大0.5mm的细小颗粒部分的混合物中,包含30%(体积)的的Y2O3、30%(体积)的Al2TiO5、10%(体积)的Al2O3和30%(体积)的SiO2;制备并用作颗粒尺寸大于0.5mm的粗大颗粒部分的混合物中,包含70%(体积)的Al2TiO5、20%(体积)的Al2O3和10%(体积)的SiO2
如实施例7那样,使用该坩埚熔炼稀土合金。在第196次熔炼循环结束时进行炉渣去除期间,坩埚失效。这196次循环的产品平均回收率为98.8%,去除炉渣所花平均时间是11分钟。
对照例5
如实施例7那样,制备出坩埚,只是采用Al2O3作为颗粒尺寸最大0.5mm的细小颗粒部分和颗粒尺寸大于0.5mm的粗大颗粒部分。
如实施例7那样,使用该坩埚熔炼稀土合金。在第36次熔炼循环结束时进行炉渣去除期间,坩埚失效。这36次循环的产品平均回收率为98.0%,去除炉渣所花平均时间是33分钟。
对照例6
如实施例7那样,制备出坩埚,只是采用Al2O3作为颗粒尺寸最大0.5mm的细小颗粒部分;采用Al2TiO5作为颗粒尺寸大于0.5mm的粗大颗粒部分。
如实施例7那样,使用该坩埚熔炼稀土合金。在第51次熔炼循环结束时进行炉渣去除期间,坩埚失效。这51次循环的产品平均回收率为98.2%,去除炉渣所花平均时间是24分钟。
上述实施例以及对照例的结果如表2所示。
表2
    细小颗粒部分[%(体积)]           粗大颗粒部分[%(体积)] 使用循环次数 回收率(%)   炉渣去除时间(分钟)
  Y2O3  Al2TiO5  Al2O3    SiO2  Y2O3 Al2TiO5  Al2O3  SiO2
实施例7   100     -   -     -   -   100   -     -   172   99.1     7
实施例8   50     30   -     20   10   90   -     -   188   98.9     9
实施例9   30     30   10     30   -   70   20     10   196   98.8     11
对照例5   -     -   100     -   -   -   100     -   36   98.0     33
对照例6   -     -   100     -   -   100   -     -   51   98.2     24
如表2所示,将实施例7-9与对照例5-6进行比较,可以看出:在颗粒尺寸最大0.5mm的细小颗粒部分稀土氧化物含量较高的实施例成功地显著提高了坩埚的使用循环次数,并且容易去除炉渣和提高产品的回收率。
比较实施例7和对照例4可以发现:使用Al2TiO5能够显著增加坩埚的寿命。
当如实施例8和9所示,为了提高坩埚的强度而添加Al2O3或SiO2时,与实施例7相比,尽管产品回收率稍有下降以及炉渣去除时间有所延长,但是,其使用循环次数却进一步增加。
如上所述,本发明能够成功地延长坩埚的寿命、减少炉渣去除时间、提高产品的产量、降低劳动成本以及增加产品回收率。

Claims (8)

1.一种用于熔炼稀土合金的坩埚,其包含Al2O3以及至少一种选自于包括Y2O3的稀土氧化物作为主要组分,其特征在于:通过在500-1800℃下烧制获得所述坩埚,稀土氧化物在颗粒尺寸最大0.5mm的细小颗粒部分的分布比例高于在颗粒尺寸大于0.5mm的粗大颗粒部分的分布比例,以及坩埚中基本不存在稀土氧化物与Al2O3的反应产物。
2.根据权利要求1的熔炼稀土合金的坩埚,其特征在于:细小颗粒部分的2-100%(体积)是稀土氧化物,而粗大颗粒部分的20-100%(体积)是Al2O3
3.使用根据权利要求1或2的坩埚获得的稀土合金。
4.一种用于熔炼稀土合金的坩埚,其包含Al2TiO5以及至少一种选自于包括Y2O3的稀土氧化物作为主要组分,其特征在于:通过在1000-1700℃下烧制获得所述坩埚,稀土氧化物在颗粒尺寸最大0.5mm的细小颗粒部分的分布比例高于在颗粒尺寸大于0.5mm的粗大颗粒部分的分布比例,以及坩埚中基本不存在稀土氧化物与Al2TiO5的反应产物。
5.一种用于熔炼稀土合金的坩埚,其包含Al2O3、Al2TiO5以及至少一种选自于包括Y2O3的稀土氧化物作为主要组分,其特征在于:通过在1000-1700℃下烧制获得所述坩埚,稀土氧化物在颗粒尺寸最大0.5mm的细小颗粒部分的分布比例高于在颗粒尺寸大于0.5mm的粗大颗粒部分的分布比例,以及坩埚中基本不存在稀土氧化物与Al2O3和Al2TiO5的反应产物。
6.根据权利要求4或5的熔炼稀土合金的坩埚,其特征在于:细小颗粒部分的2-100%(体积)是稀土氧化物。
7.根据权利要求4、5或6的熔炼稀土合金的坩埚,其特征在于:所述至少一种稀土氧化物是Y2O3
8.使用根据权利要求4-7中之任一项的坩埚获得的稀土合金。
CNB028265823A 2001-11-16 2002-11-14 熔炼稀土合金的坩埚 Expired - Fee Related CN100410611C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP351584/2001 2001-11-16
JP2001351584A JP3978578B2 (ja) 2001-11-16 2001-11-16 希土類合金溶解用坩堝および希土類合金
JP2001351583A JP3944700B2 (ja) 2001-11-16 2001-11-16 希土類合金溶解用坩堝および希土類合金
JP351583/2001 2001-11-16

Publications (2)

Publication Number Publication Date
CN1610814A true CN1610814A (zh) 2005-04-27
CN100410611C CN100410611C (zh) 2008-08-13

Family

ID=26624566

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028265823A Expired - Fee Related CN100410611C (zh) 2001-11-16 2002-11-14 熔炼稀土合金的坩埚

Country Status (6)

Country Link
US (2) US7157395B2 (zh)
EP (1) EP1452812B1 (zh)
KR (1) KR100704842B1 (zh)
CN (1) CN100410611C (zh)
TW (1) TWI253956B (zh)
WO (1) WO2003042617A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239834B (zh) * 2008-03-12 2010-06-02 北京航空航天大学 氧化钇掺杂氧化锆坩埚及其采用热压烧结制坩埚的方法
CN101239832B (zh) * 2008-03-12 2010-06-02 北京航空航天大学 氧化钇掺杂氧化钕坩埚及其采用热压烧结制坩埚的方法
CN101302115B (zh) * 2008-06-30 2010-08-11 北京航空航天大学 采用凝胶注模成型工艺制作复合多级y2o3粉坩埚的方法
CN101302116B (zh) * 2008-06-30 2010-09-08 北京航空航天大学 采用等静压工艺干压制作复合多级细粉y2o3坩埚的方法
CN104748548A (zh) * 2013-12-30 2015-07-01 比亚迪股份有限公司 一种高温熔炼坩埚及其处理方法与应用
CN111848134A (zh) * 2020-08-04 2020-10-30 江苏隆达超合金航材有限公司 一种真空感应炉用坩埚一体成型制造工艺
CN114044687A (zh) * 2021-12-17 2022-02-15 江西离子型稀土工程技术研究有限公司 一种稀土氧化物本体坩埚及其制备方法
CN115159999A (zh) * 2022-07-06 2022-10-11 青岛正望新材料股份有限公司 一种用于生产炼钢用功能性耐火材料的稀土原料及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131429A (ja) * 2004-11-02 2006-05-25 Towa Corp 低密着性材料及び樹脂成形型
US20110021340A1 (en) * 2009-07-24 2011-01-27 Karl-Heinz Schofalvi Refractory
US20110129784A1 (en) * 2009-11-30 2011-06-02 James Crawford Bange Low thermal expansion doped fused silica crucibles
CN115121785B (zh) * 2022-07-06 2023-02-14 青岛正望新材料股份有限公司 一种炼钢用功能性耐火材料

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825653A (en) * 1972-09-11 1974-07-23 Atomic Energy Commission Process for preparing sinterable aluminum titanate powder
US3890140A (en) * 1973-05-10 1975-06-17 Us Energy Aluminum titanate crucible for molten uranium
CA1122839A (en) * 1978-05-01 1982-05-04 Ralph R. Keeling Admission and egress control gate
JPS55121966A (en) * 1979-03-06 1980-09-19 Asahi Glass Co Ltd Aluminum titanate sintered body
US4966875A (en) * 1987-09-24 1990-10-30 General Motors Corp. Wear-resistant ceramic for casting rare earth alloys
JPH01264963A (ja) 1988-04-15 1989-10-23 T Ii P Kk 金属溶解用高純度ち密質イットリアるつぼの製造法
JPH03115535A (ja) * 1989-09-28 1991-05-16 Nippon Mining Co Ltd 希土類金属の酸素低減方法
US5383978A (en) * 1992-02-15 1995-01-24 Santoku Metal Industry Co., Ltd. Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
US5409871A (en) * 1993-11-02 1995-04-25 Pcc Airfoils, Inc. Ceramic material for use in casting reactive metals
US5480471A (en) * 1994-04-29 1996-01-02 Crucible Materials Corporation Re-Fe-B magnets and manufacturing method for the same
JPH0840770A (ja) * 1994-07-30 1996-02-13 Shinagawa Refract Co Ltd ジルコニア質焼結体及びその製造方法
CN1122839A (zh) 1994-11-11 1996-05-22 冶金工业部包头稀土研究院 高稀土含量铁-铬-铝-稀土合金的制备工艺
DE69716588T2 (de) * 1996-04-10 2003-06-12 Showa Denko Kk Gusslegierung für die Herstellung von Dauermagneten mit seltenen Erden und Verfahren zur Herstellung dieser Legierung und dieser Dauermagneten
TW446690B (en) 1998-06-22 2001-07-21 Showa Denko Kk Refractories for casting a rare-earth alloy, their production method, and method for casting an rare-earth alloy
US20030141829A1 (en) * 2002-01-31 2003-07-31 Shan-Ho Yu Current equalizer assembly for LCD backlight panel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239834B (zh) * 2008-03-12 2010-06-02 北京航空航天大学 氧化钇掺杂氧化锆坩埚及其采用热压烧结制坩埚的方法
CN101239832B (zh) * 2008-03-12 2010-06-02 北京航空航天大学 氧化钇掺杂氧化钕坩埚及其采用热压烧结制坩埚的方法
CN101302115B (zh) * 2008-06-30 2010-08-11 北京航空航天大学 采用凝胶注模成型工艺制作复合多级y2o3粉坩埚的方法
CN101302116B (zh) * 2008-06-30 2010-09-08 北京航空航天大学 采用等静压工艺干压制作复合多级细粉y2o3坩埚的方法
CN104748548A (zh) * 2013-12-30 2015-07-01 比亚迪股份有限公司 一种高温熔炼坩埚及其处理方法与应用
CN111848134A (zh) * 2020-08-04 2020-10-30 江苏隆达超合金航材有限公司 一种真空感应炉用坩埚一体成型制造工艺
CN114044687A (zh) * 2021-12-17 2022-02-15 江西离子型稀土工程技术研究有限公司 一种稀土氧化物本体坩埚及其制备方法
CN115159999A (zh) * 2022-07-06 2022-10-11 青岛正望新材料股份有限公司 一种用于生产炼钢用功能性耐火材料的稀土原料及其制备方法
CN115159999B (zh) * 2022-07-06 2023-03-24 青岛正望新材料股份有限公司 一种用于生产炼钢用功能性耐火材料的稀土原料及其制备方法

Also Published As

Publication number Publication date
EP1452812A4 (en) 2006-08-23
KR20040065219A (ko) 2004-07-21
EP1452812A1 (en) 2004-09-01
KR100704842B1 (ko) 2007-04-10
TW200300705A (en) 2003-06-16
CN100410611C (zh) 2008-08-13
US20060252629A1 (en) 2006-11-09
US7157395B2 (en) 2007-01-02
EP1452812B1 (en) 2014-04-23
WO2003042617A1 (fr) 2003-05-22
TWI253956B (en) 2006-05-01
US20050016635A1 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
CN1211312C (zh) 陶瓷复合材料和多孔陶瓷材料及其生产方法
CN1175947C (zh) 耐高温覆膜砂制备工艺
CN1610814A (zh) 熔炼稀土合金的坩埚以及稀土合金
CN1202041C (zh) 耐蚀性陶瓷、含耐蚀性陶瓷的发光管及发光管的制造方法
CN1934029A (zh) 氧氮化物粉末及其制造方法
CN1086201A (zh) 陶瓷磨粒料及其制造方法和磨削制品
CN101067080A (zh) 荧光体及其制造方法和发光器具
CN1242349A (zh) 氮化铝烧结体及其制备方法
CN1108215A (zh) α-氧化铝粉末的制造方法及其由该方法得到的α-氧化铝粉末
CN1933948A (zh) 陶瓷片的制造方法、使用它的陶瓷基板及其用途
CN1216011C (zh) 耐火耐酸砖及其制备方法
CN1061330C (zh) 耐磨烧结型锆刚玉复合材料及其生产方法
CN1314825C (zh) 一种硼酸镁晶须和陶瓷颗粒增强铝基复合材料的制动器衬片及制备工艺
CN1582264A (zh) 碳化硼质烧结体及其制造方法
TWI297002B (zh)
CN1568378A (zh) 硅化铪靶及其制造方法
CN1887796A (zh) 利用铁矿石尾矿制备Si3N4/TiN复相导电陶瓷材料的方法
JP2005272293A (ja) 酸化アルミニウム質焼結体とこれを用いた半導体製造装置用部材並びに液晶製造装置用部材
JP3904874B2 (ja) 半導体製造装置用部材
CN1134380C (zh) 烧结锆莫来石砖的制备方法
CN105924170B (zh) 一种Si-SiC衬底材料及其制备方法
CN1076468C (zh) 耐剥落、耐爆裂性及耐氧化性的格板及其制造方法
CN1483702A (zh) 合成复合硅线石产品及其制备方法
JP4583334B2 (ja) 鋳造用の金属−セラミックス複合材料の製造法
JP3978578B2 (ja) 希土類合金溶解用坩堝および希土類合金

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080813

Termination date: 20201114

CF01 Termination of patent right due to non-payment of annual fee