CN1559888A - 含锶纳米磷酸钙生物活性骨水泥的制备工艺 - Google Patents

含锶纳米磷酸钙生物活性骨水泥的制备工艺 Download PDF

Info

Publication number
CN1559888A
CN1559888A CNA2004100259205A CN200410025920A CN1559888A CN 1559888 A CN1559888 A CN 1559888A CN A2004100259205 A CNA2004100259205 A CN A2004100259205A CN 200410025920 A CN200410025920 A CN 200410025920A CN 1559888 A CN1559888 A CN 1559888A
Authority
CN
China
Prior art keywords
strontium
calcium phosphate
cement
solid
bone cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100259205A
Other languages
English (en)
Other versions
CN1292804C (zh
Inventor
郭大刚
徐可为
憨勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CNB2004100259205A priority Critical patent/CN1292804C/zh
Publication of CN1559888A publication Critical patent/CN1559888A/zh
Application granted granted Critical
Publication of CN1292804C publication Critical patent/CN1292804C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Abstract

本发明公开了一种缓释特殊药理性锶元素且无毒副作用的含锶纳米磷酸钙生物活性骨水泥的制备工艺。本制备工艺采取水泥固相为一定颗粒度分布且按一定摩尔比配制的Ca4(PO4) 2O、CaHPO4、SrHPO4混合粉末,液相为0.5~1mol/l的磷酸H3PO4水溶液,固/液比为1.5~3.0。生理环境下的最终固化产物为含锶缺钙羟基磷灰石,微观形态呈菊花瓣或曲棒状纳米晶体结构。该种水泥除了具有较高的力学及可操作性能之外,还将缓释具特殊药理功能的锶离子,且初步细胞毒性测试结果表明无毒性。该材料较之传统磷酸钙骨水泥具有更广泛的应用前景。

Description

含锶纳米磷酸钙生物活性骨水泥的制备工艺
技术领域
本发明涉及含锶纳米磷酸钙生物活性水泥的制备技术,尤其涉及一种缓释特殊药理性锶元素且无毒副作用的含锶羟基磷灰石骨修复材料的制备工艺。
背景技术
磷酸钙骨水泥(Calcium Phosphate Cement,简称CPC),属多孔结构且固化产物是羟基磷灰石,具有良好的生物相容性、骨传导性,尤其可处理成浆料形式直接注入骨缺陷中并原位固化,因而在牙科骨替代、矫正及重建外科中得到广泛应用。磷酸钙骨水泥主要由两部分组成:磷酸钙粉末与固化液。固化液一般是水或者稀磷酸水溶液,磷酸钙粉末主要有磷酸四钙(Ca4(PO4)2O)、磷酸氢钙(CaHPO4·2H2O或CaHPO4)、磷酸二氢钙(Ca(H2PO4)2·H2O或Ca(H2PO4)2)、磷酸八钙(Ca8H2(PO4)2·5H2O)、磷酸三钙(α-或β-Ca3(PO4)2)、焦磷酸钙(Ca2P2O7)等。此外,据报道,锶(Sr)是人体中存在的一种微量元素,在骨中的含量约占其重量的0.01%,人体中含有的99%以上的Sr、Ca均积聚在骨骼之中。Sr与Ca均属碱土金属,具有许多相似的性质。以离子形态存在的Sr2+分享着与Ca2+相同的生理路线,最终沉积在骨的矿化结构中(Blake,G.M et al.. Sr-89 therapystrontium kineticls in metastatic bone disease.J.Nucl.Med.1986,27:1030/Blake,D.M.,et al.Sr-89 strontium kineticls in disseminated carcinoma of the prostate.Eur.J.Nucl.Med.1986,12:447-454)。已有研究表明,锶具有以下几个方面的特殊药理作用:首先,在骨骼病区的矿化与重建方面,低剂量的锶有助于增加骨的质量与体积,目前尚未没有发现它对矿化形貌和矿物化学组成产生不利的影响(Grynpa M.D.,et al.Strontium increases vertebral bone volume in rats at a low dosethat does not induce detectable mineralizaion defect.Bone,1996,18:253~259);其次,在骨代谢方面,在外界不断供给条件下,锶在骨中的含量因体内解剖学位置不同而异,并发现锶可以与骨中磷灰石晶体表面的少量钙发生交换(Dahl,S.G.,Allain,P.,Marie,P.L.,et al.Incorporation and Distribution of Strontium in Bone.Bone.2001,28(4):446-453);其三,在骨传导性方面,Johal等比较了不同含锶量的玻璃离子水泥后,发现含锶量最高组LG125具有最好的骨传导性(Johal K.K.,etal.In vivo response of strontium and zince-based ionomeric cement implants in bone.Journal of materials science:materials in medicine.2002,13:375-379);其四,在治疗骨质疏松病症方面,锶也发挥了显著疗效,近年来,发现Strontium ranelate(S12911)是一种很有应用潜力的抗骨质疏松药物,体内外实验均表明,S12911具有刺激骨的形成、抑制骨再吸收的作用(Canalis,E.,Hott,M.,Deloffre,P.,Tsouderos,Y.,and Marie,P.J.The divalent strontium salt S12911 enhances bonecell replication and bone formation in vitro.Bone 1996,8:517-523);其五,早在1988年,89SrCl2就被批准为一种减轻病人痛苦的镇静剂,往往在其它治疗方法无效时,它却发挥显著疗效(Lewington,V.J.,Zivanovic,M.A.,Blake,G.B.,et al.Treatment ofbone pain indisseminated prostrate cancer using strontium-89.Nucl.Med.Commun.1988,9:172-186)。此外,国内外学者还研究表明,低剂量Sr(一般低于10%)置换磷灰石中部分钙而获得的含锶羟基磷灰石,不仅具有较之纯羟基磷灰石更好的组织相容性、骨传导性、甚至一定程度上的骨诱导能力(廖大鹏,周正炎,顾云峰等.锶磷灰石修复下颌骨缺损的实验研究.上海口腔医学.2000;9(2):73~75),还改变了其溶解动力学,提高了生物降解性(J.Christoffersen,M.R.Christoffersen,N.Kolthoff,et al.Effects of strontium ions on growth and dissolutionof hydroxtapatite and on bone mineral detection.Bone.1997,20(1):47~54)。因此,若将锶掺入磷酸钙骨水泥中,获得含锶磷灰石产物,既可保持传统骨水泥的诸多优点,又可充分发挥锶或者含锶磷灰石的上述良好药理性能或者生物学性能。2001年法国学者(L.Lerous,J.L.Lacout.Preparation of calcium strontiumhydroxyapatites by a new route involving calcium phosphate cements.J.Mater.Res.2001,16(1):171~178)首次采用制备磷酸钙骨水泥的方法合成了含锶羟基磷灰石,采用的固相粉末为Ca4(PO4)2O和α-Ca3(PO4)2,液相为Sr(NO3)2与H3PO4的水溶液,但缺点是最终固化产物中含有大量对人体组织不利的NO3 -离子,不适于临床上人体骨修复等应用,有关力学性能方面的后续研究及类似内容还未见报道。
发明内容
本发明的目的在于提供一种具有缓释特殊药理性锶离子且无毒副作用的含锶纳米磷酸钙生物活性骨水泥的制备工艺。
本发明的技术方案是这样解决的:
1)固相粉末的组成:将Ca4(PO4)2O、SrHPO4、CaHPO4粉末按照摩尔比2∶x∶(2-x)混和,其中x=0.1~1;
2)液相的制备:配制浓度为0.5~1mol/l的磷酸H3PO4水溶液作为水泥固化液。
3)固/液比选择:固相粉末与液相调和时的质量比为1.5~3.0。
采用本发明的制备工艺制成的含锶纳米磷酸钙生物活性骨水泥,其最终固化产物为掺锶缺钙羟基磷灰石(Ca(10-x)Srx(PO4)(6+1.005z/y+0.047xz)2OH),钙磷摩尔比Ca/P为1.48~1.62,微观形态为菊花瓣(瓣厚40~45nm,宽300~350nm)或曲棒状(直径40~50nm,长1.0~1.5μm)纳米晶体结构。
采用本发明的制备工艺制成的含锶纳米磷酸钙生物活性骨水泥,其固化后的压缩强度为40~60MPa,初凝时间为4~11min,终凝时间为10~17min,适合人体非负载部位的骨修复。固相粉末磷酸四钙Ca4(PO4)2O、磷酸氢锶SrHPO4、磷酸氢钙CaHPO4的平均粒度范围分别为8~13μm、0.7~1.3μm、0.8~1.5μm。
采用本发明的制备工艺制成的含锶纳米磷酸钙生物活性骨水泥,具有缓释锶离子作用,从而延长锶离子对植入部位的药理性治疗功效,而且锶与部分钙的置换有利于提高这种骨水泥的降解性。
具体实施方式
下面结合实施例对本发明的内容作进一步详细说明:
实施例1:将0.6g水泥混合粉末与0.4g浓度为1mol/l的H3PO4水溶液(其中x=0.5,即Sr/(Sr+Ca)=5%;固/液质量比为1.5∶1)用药匙调和30s以形成均匀一致的水泥浆料,填入直径为6mm、高为12mm的不锈钢圆柱体模具中并施加0.7MPa的压力压实,将制成的圆柱体试样塞进直径6.5mm、高13mm的玻璃管中,然后置入温度为37℃、相对湿度为100%的环境中固化,固化15min后,将试样取出并迅速浸入SBF(模拟体液)中,每隔3天更换一次SBF,2周后形成固化体的最终产物成分为含锶缺钙羟基磷灰石(Ca9.5Sr0.5(PO4)6.692OH,Ca/P=1.49)。试样在SBF中浸泡1天的平均压缩强度为53.16MPa,最大压缩强度为60.20MPa。2周后的平均压缩强度为47.37MPa,最大压缩强度为51.72MPa。初凝时间为5.5min,终凝时间为12min。细胞毒性试验结果为0级。在生理盐水中静态浸泡实验结果表明,随浸泡时间延长,锶的释放量逐渐增加但较缓慢,4周后锶释放量为其总量的7.4%。
实施例2:将0.6g水泥混合粉末与0.24g浓度为0.5mol/l的H3PO4水溶液(其中x=0.5,即Sr/(Sr+Ca)=5%;固/液质量比为2.5∶1)用药匙调和30s以形成均匀一致的水泥浆料,填入直径为6mm、高为12mm的不锈钢圆柱体模具中并施加0.7MPa的压力压实,将制成的圆柱体试样塞进直径6.5mm、高13mm的玻璃管中,然后置入温度为37℃、相对湿度为100%的环境中固化,固化15min后,将试样取出并迅速浸入SBF中,每隔3天更换一次SBF,2周后形成固化体的最终产物成分为含锶缺钙羟基磷灰石(Ca9.5Sr0.5(PO4)6.212OH,Ca/P=1.61)。试样在SBF中浸泡1天的平均压缩强度为51.55MPa,最大压缩强度为57.68MPa。初始凝结时间为4min,最终凝结时间为10min。
实施例3:将0.6g水泥混合粉末与0.3g浓度为0.5mol/l的H3PO4水溶液(其中x=0.5,即Sr/(Sr+Ca)=5%;固/液质量比为2.0∶1)用药匙调和30s以形成均匀一致的水泥浆料,填入直径为6mm、高为12mm的不锈钢圆柱体模具中并施加0.7MPa的压力压实,将制成的圆柱体试样塞进直径6.5mm、高13mm的玻璃管中,然后置入温度为37℃、相对湿度为100%的环境中固化,固化15min后,将试样取出并迅速浸入SBF中,每隔3天更换一次SBF,2周后形成固化体的最终产物成分为含锶缺钙羟基磷灰石(Ca9.5Sr0.5(PO4)6.262OH,Ca/P=1.60)。试样在SBF中浸泡1天的平均压缩强度为45.12MPa,最大压缩强度为47.77MPa。初始凝结时间为7min,最终凝结时间为13min。
实施例4,将0.6g水泥混合粉末与0.4g浓度为1.0mol/l的H3PO4水溶液(其中x=1,即Sr/(Sr+Ca)=10%;固/液质量比为1.5∶1)用药匙调和30s以形成均匀一致的水泥浆料,填入直径为6mm、高为12mm的不锈钢圆柱体模具中并施加0.7MPa的压力压实,将制成的圆柱体试样塞进直径6.5mm、高13mm的玻璃管中,然后置入温度为37℃、相对湿度为100%的环境中固化,固化15min后,将试样取出并迅速浸入SBF中,每隔3天更换一次SBF,2周后形成固化体的最终产物成分为含含锶缺钙羟基磷灰石(Ca9Sr(PO4)6.722OH,Ca/P=1.49)。试样在SBF中浸泡1天的平均压缩强度为36.92MPa,最大压缩强度为45.01MPa。初始凝结时间为6min,最终凝结时间为13min。细胞毒性试验结果为0级。在生理盐水中静态浸泡实验结果表明,4周后锶释放量为其总量的14.16%。
实施例5:将0.6g水泥混合粉末与0.24g浓度为0.5mol/l的H3PO4水溶液(其中x=1,即Sr/(Sr+Ca)=10%;固/液质量比为2.5∶1)用药匙调和30s以形成均匀一致的水泥浆料,填入直径为6mm、高为12mm的不锈钢圆柱体模具中并施加0.7MPa的压力压实,将制成的圆柱体试样塞进直径6.5mm、高13mm的玻璃管中,然后置入温度为37℃、相对湿度为100%的环境中固化,固化20min后,将试样取出并迅速浸入SBF中,每隔3天更换一次SBF,2周后形成固化体的最终产物成份为含含锶缺钙羟基磷灰石(Ca9Sr(PO4)6.222OH,Ca/P=1.61)。试样在SBF中浸泡1天的平均压缩强度为44.41MPa,最大压缩强度为47.77MPa。初始凝结时间为11min,最终凝结时间为17min。
实施例6:将0.6g水泥混合粉末与0.20g浓度为0.5mol/l的H3PO4水溶液(其中x=1,即Sr/(Sr+Ca)=10%;固/液质量比为3.0∶1)用药匙调和30s以形成均匀一致的水泥浆料,填入直径为6mm、高为12mm的不锈钢圆柱体模具中并施加0.7MPa的压力压实,将制成的圆柱体试样塞进直径6.5mm、高13mm的玻璃管中,然后置入温度为37℃、相对湿度为100%的环境中固化,固化15min后,将试样取出并迅速浸入SBF中,每隔3天更换一次SBF,2周后形成固化体的最终产物成份为含锶缺钙羟基磷灰石(Ca9Sr(PO4)6.192OH,Ca/P=1.62)。试样在SBF中浸泡1天的平均压缩强度为44.32MPa,最大压缩强度为47.77MPa。初始凝结时间为7.5min,最终凝结时间为14min。
实施例7:将0.6g水泥混合粉末与0.40g浓度为0.5mol/l的H3PO4水溶液(其中x=0.1,即Sr/(Sr+Ca)=1%;固/液质量比为1.5∶1)用药匙调和30s以形成均匀一致的水泥浆料,填入直径为6mm、高为12mm的不锈钢圆柱体模具中并施加0.7MPa的压力压实,将制成的圆柱体试样塞进直径6.5mm、高13mm的玻璃管中,然后置入温度为37℃、相对湿度为100%的环境中固化,固化15min后,将试样取出并迅速浸入SBF中,每隔3天更换一次SBF,2周后形成固化体的最终产物成份为含锶缺钙羟基磷灰石(Ca9.9Sr0.1(PO4)6.342OH,Ca/P=1.58)。试样在SBF中浸泡1天的平均压缩强度为50.15MPa,最大压缩强度为56.37MPa。初始凝结时间为5.0min,最终凝结时间为11min。

Claims (3)

1、含锶纳米磷酸钙生物活性骨水泥的制备工艺,其特征在于:
1)固相粉末组成:将磷酸四钙Ca4(PO4)2O、磷酸氢锶SrHPO4、磷酸氢钙CaHPO4粉末按照摩尔比2∶x∶(2-x)混和,其中x=0.1~1;
2)液相的制备:配制浓度为0.5~1mol/l的磷酸H3PO4水溶液作为固化液;
3)固/液比选择:将固相粉末与液相进行调和,调和时固相粉末与液相质量比为1.5~3.0∶1。
2、根据权利要求1所述的含锶纳米磷酸钙生物活性骨水泥的制备工艺,其特征在于:在温度为37℃、相对湿度为100%的生理环境中,两周后形成的最终固化产物为含锶缺钙羟基磷灰石,分子式为Ca(10-x)Srx(PO4)(6+1.005z/y+0.047xz)2OH,其中x=0.1~1,y=1.5~3.0,z=0.5~1.0,钙磷摩尔比Ca/P为1.48~1.62;微观形态为菊花瓣或曲棒状纳米晶体,压缩强度为40~60MPa,初凝时间为4~11min,终凝时间为10~17min。
3、根据权利要求1所述的含锶纳米磷酸钙生物活性骨水泥的制备工艺,其特征在于:固相粉末磷酸四钙Ca4(PO4)2O、磷酸氢锶SrHPO4、磷酸氢钙CaHPO4的平均粒度范围分别为8~13μm、0.7~1.3μm、0.8~1.5μm。
CNB2004100259205A 2004-03-08 2004-03-08 含锶纳米磷酸钙生物活性骨水泥的制备工艺 Expired - Fee Related CN1292804C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100259205A CN1292804C (zh) 2004-03-08 2004-03-08 含锶纳米磷酸钙生物活性骨水泥的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100259205A CN1292804C (zh) 2004-03-08 2004-03-08 含锶纳米磷酸钙生物活性骨水泥的制备工艺

Publications (2)

Publication Number Publication Date
CN1559888A true CN1559888A (zh) 2005-01-05
CN1292804C CN1292804C (zh) 2007-01-03

Family

ID=34441187

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100259205A Expired - Fee Related CN1292804C (zh) 2004-03-08 2004-03-08 含锶纳米磷酸钙生物活性骨水泥的制备工艺

Country Status (1)

Country Link
CN (1) CN1292804C (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100340526C (zh) * 2005-08-30 2007-10-03 西安交通大学 可降解泡沫状掺锶磷酸钙陶瓷骨支架材料的制备方法
WO2007144662A1 (en) * 2006-06-16 2007-12-21 Imperial Innovations Limited Bioactive glass
FR2903684A1 (fr) * 2006-07-12 2008-01-18 Centre Nat Rech Scient Nouveau compose phospho-calco-strontique et ses utilisations dans des ciments endodontiques.
CN100425295C (zh) * 2006-09-19 2008-10-15 天津大学 预混合型膏状磷酸钙骨水泥
CN100460021C (zh) * 2005-04-08 2009-02-11 豪迈帝凯莱宾格股份有限公司 磷酸钙水泥
CN101053673B (zh) * 2007-04-20 2010-11-10 西安交通大学 高强韧可降解磷酸锶钙复合骨水泥及其制备方法
US8357515B2 (en) 2007-12-17 2013-01-22 Queen Mary & Westfield College Latency associated protein construct with aggrecanase sensitive cleavage site
CN104174070A (zh) * 2014-09-11 2014-12-03 山东明德生物医学工程有限公司 锶钙复合骨水泥及制备方法
CN109381740A (zh) * 2018-06-29 2019-02-26 广州润虹医药科技股份有限公司 一种锶离子介导的自固化磷酸钙骨水泥
CN114209878A (zh) * 2021-11-30 2022-03-22 北京纳通医学研究院有限公司 用于骨水泥复合材料的固相粉体及骨水泥复合材料和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078550A (ja) * 1993-06-28 1995-01-13 Mitsuo Kondo 医療用リン酸カルシウム
JPH07106887A (ja) * 1993-10-04 1995-04-21 Clarion Co Ltd イコライザ装置
FR2772651B1 (fr) * 1997-12-23 2000-01-28 Commissariat Energie Atomique Procede de conditionnement de dechets industriels, notamment radioactifs, dans des ceramiques apatitiques
CN1166414C (zh) * 2002-04-17 2004-09-15 西安交通大学 一种可降解型生物活性人工骨的制备方法
DE10225420A1 (de) * 2002-06-07 2003-12-24 Sanatis Gmbh Strontium-Apatit-Zement-Zubereitungen, die daraus gebildeten Zemente und die Verwendung davon

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460021C (zh) * 2005-04-08 2009-02-11 豪迈帝凯莱宾格股份有限公司 磷酸钙水泥
CN100340526C (zh) * 2005-08-30 2007-10-03 西安交通大学 可降解泡沫状掺锶磷酸钙陶瓷骨支架材料的制备方法
WO2007144662A1 (en) * 2006-06-16 2007-12-21 Imperial Innovations Limited Bioactive glass
US20100068677A1 (en) * 2006-07-12 2010-03-18 Philippe Boudeville Novel Phosphorus-calcium-strontium compound and uses thereof in endodontic cements
WO2008006970A3 (fr) * 2006-07-12 2008-04-24 Centre Nat Rech Scient Nouveau compose phospho-calco-strontique et ses utilisations
FR2903684A1 (fr) * 2006-07-12 2008-01-18 Centre Nat Rech Scient Nouveau compose phospho-calco-strontique et ses utilisations dans des ciments endodontiques.
US8268278B2 (en) * 2006-07-12 2012-09-18 Centre National De La Recherche Scientifique Phosphorus-calcium-strontium compound and uses thereof in endodontic cements
CN100425295C (zh) * 2006-09-19 2008-10-15 天津大学 预混合型膏状磷酸钙骨水泥
CN101053673B (zh) * 2007-04-20 2010-11-10 西安交通大学 高强韧可降解磷酸锶钙复合骨水泥及其制备方法
US8357515B2 (en) 2007-12-17 2013-01-22 Queen Mary & Westfield College Latency associated protein construct with aggrecanase sensitive cleavage site
CN104174070A (zh) * 2014-09-11 2014-12-03 山东明德生物医学工程有限公司 锶钙复合骨水泥及制备方法
CN109381740A (zh) * 2018-06-29 2019-02-26 广州润虹医药科技股份有限公司 一种锶离子介导的自固化磷酸钙骨水泥
CN114209878A (zh) * 2021-11-30 2022-03-22 北京纳通医学研究院有限公司 用于骨水泥复合材料的固相粉体及骨水泥复合材料和应用

Also Published As

Publication number Publication date
CN1292804C (zh) 2007-01-03

Similar Documents

Publication Publication Date Title
Wang et al. Citric acid enhances the physical properties, cytocompatibility and osteogenesis of magnesium calcium phosphate cement
DE60116098T2 (de) Zusammensetzung für einen injizierbaren knochenmineral ersatz
EP1296909B1 (de) Magnesium-ammonium-phosphat-zemente, deren herstellung und verwendung
US6425949B1 (en) Hydraulic surgical cement
Huan et al. Novel bioactive composite bone cements based on the β-tricalcium phosphate–monocalcium phosphate monohydrate composite cement system
CN101695584B (zh) 一种促骨再生修复的可注射复合材料及其制备方法
EP1715829B1 (en) Rapid-hardening calcium phosphate cement compositions
CN105396175B (zh) 含柠檬酸钙的骨水泥及其制备方法
CN103272279B (zh) 一种生物活性多层化复相陶瓷微球材料、制备方法及应用
CN1292804C (zh) 含锶纳米磷酸钙生物活性骨水泥的制备工艺
US20120111226A1 (en) Galliated Calcium Phosphate Biomaterials
CA2518104A1 (en) Artificial bone mineral substitute for in vivo hardening
AU2001271209A1 (en) A composition for an injectable bone mineral substitute material
US20180161477A1 (en) Structured Mineral Bone Replacement Element
CN102580144A (zh) 外科用骨水泥及其制造方法
CN105251058B (zh) 一种载药促骨生长注射型硫酸钙骨水泥的制备方法
CN101444639B (zh) 掺锶磷酸钙生物活性骨水泥的制备工艺
IL153699A (en) The composition for transplantation basically
Sheng et al. Advanced applications of strontium-containing biomaterials in bone tissue engineering
KR20110008006A (ko) 진통성 아파타이트 인산 칼슘 시멘트
DE102006013854B4 (de) Verwendung eines Hydroxylapatit bildenden Materials mit bioaktiver Wirkung als Dentalmaterial
CN104174070B (zh) 锶钙复合骨水泥及制备方法
US8894958B2 (en) Galliated calcium phosphate biomaterials
CN102139124A (zh) 一种可降解复合钙磷酸盐骨水泥组合物及其制备方法和应用
CN109985275A (zh) 可塑形dbm骨诱导自固化植骨材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070103

Termination date: 20130308