CN1531650A - 生物传感器 - Google Patents

生物传感器 Download PDF

Info

Publication number
CN1531650A
CN1531650A CNA028109554A CN02810955A CN1531650A CN 1531650 A CN1531650 A CN 1531650A CN A028109554 A CNA028109554 A CN A028109554A CN 02810955 A CN02810955 A CN 02810955A CN 1531650 A CN1531650 A CN 1531650A
Authority
CN
China
Prior art keywords
electrode
biology sensor
enzyme
illustrating
backing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028109554A
Other languages
English (en)
Other versions
CN100405051C (zh
Inventor
���Ļ�
崔文姬
崔刚
俞在炫
曹浩哲
金玟先
张峰花
南学铉
车根植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
i Sens Inc
Original Assignee
i Sens Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR10-2001-0030169A external-priority patent/KR100427599B1/ko
Priority claimed from KR10-2001-0045720A external-priority patent/KR100455907B1/ko
Application filed by i Sens Inc filed Critical i Sens Inc
Publication of CN1531650A publication Critical patent/CN1531650A/zh
Application granted granted Critical
Publication of CN100405051C publication Critical patent/CN100405051C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels

Abstract

一种用来测定分析物的生物传感器,其包括微孔膜载体,第一电极系统,第二电极系统,和一对绝缘膜。第一电极系统在微孔膜载体的表面形成,第二电极系统在微孔膜载体的反面形成。该生物传感器能够对分析物进行迅速,简单,免分离和选择性的检测。该生物传感器不需要任何庞大的附加电极,因此可以实现小型化,现场检测和任意使用。

Description

生物传感器
技术领域
本发明涉及一种生物传感器,更具体地,涉及一种包含微孔膜载体,第一电极系统,第二电极系统,和一对绝缘膜的生物传感器,其中第一电极系统在微孔膜载体的表面形成并且第二电极系统在微孔膜载体的反面形成。
发明技术
生物传感器是指一种设备,探针,或电极,其当与适当的样品接触时,在存在目的分析物的条件下产生电信号。通常通过固定与合适的转换系统紧密接触的生物敏感物质以将分析物的浓度转化成可定量的信号来构建生物传感器。
尽管几个优点,当前可用的生物传感器全部有很多有待解决的问题:化学干扰,环境影响,长期稳定性,信噪比和传感器包装系统的设计。
在生物传感器的发展中可看出下列趋势:
a)小型化
b)用组合多于一种敏感元件的阵列传感器系统测定几种试剂
c)开发可大规模生产的任意使用的(disposable)传感器
d)使用可植入生物芯片体内分析
e)处理来自具有人工智能系统的阵列传感器系统的输出
同时,一个长期目标是开发一种迅速,简单,免分离的检测蛋白的方法。已经使用显色和发荧光的半乳糖苷-葡聚糖底物来设计针对C-活性蛋白(C-reactive protein),铁蛋白和免疫球蛋白的均相酶免疫测定(EIAs)(Gibbons等,“Homogeneous Enzyme Immunoassay for Proteins Employingβ-Galactosidase,”Analytical Biochemistry 102/167-170,1980;和Armenta等,“Improved Sensitivity in Homogeneous Enzyme Immunoassays Using aFluorogenic Macromolecular Substrate:An Assay for Serum Ferritin,”Analytical Biochemistry 146/211-219,1985)。然而,在该均相方案中酶活性的低程度调节已使该方法对于现实应用而言不切实际。
此外,已报道一种针对大分子的免分离的双固相EIA,其依赖于一种酶偶联物(生物素-葡萄糖-6-磷酸脱氢酶-抗体)在结合了聚苯乙烯胶乳的抗生物素蛋白和结合了聚苯乙烯胶乳的分析物的两种固体相之间的分配(Schray等,“Separation-Free Dual Solid Phase Enzyme Immunoassay forMacromolecules,”Analytical Chemistry,60/353-56,1988)。然而,该测定方案需要24小时来酶促产生可检测的产物。
早就认识到将电化学检测与EIAs结合将是有利的。电极对检测样品的颜色或浊度不敏感,因此可用来开发可直接应用于全血样的方法。然而,许多关于使用电化学检测来设计EIAs或“免疫传感器”的报道的大多数已依赖于使用这样的传感器如多相测定设备中的固相,其中将抗体固定在给定电极的表面。在样品与其它试剂温育后,在加入测量束缚酶(bound enzyme)活性所需的底物之前必须洗涤电极表面。
作为一个具体实例,在1991年11月5日颁发的美国专利No.5,063,081中,Cozzette等公开了一种用于检测特定分析物种类如抗原的基于配体/配体受体的生物传感器。这里,一种基底传感器(base sensor),其包含一种使用贵后过渡金属(noble late transition metal)如铱,金,铂或银的催化指示电极,并被一种由例如银和氯化银制成的组合参比和对电极(柱25-26)包围。一种抗体固定在基底传感器上。然后将得到的生物传感器与含有样品和标记的第二种分析物特异性抗体的混合物接触(柱45-46)。还可将选择透性硅烷层用作针对干扰物的筛子。然而,优选通过使用洗涤溶液或通过使用含有酶底物作为洗涤物的溶液从传感器去除未结合物质和干扰电活化粒种(柱47-49)。
作为另一个具体实例,在1998年11月3日颁发的美国专利No.5,830,680中,Meyerhoff等公开了一种适合在任何本底信号上检测分析信号的酶夹层免疫测定盒,所述本底信号是源自与所述盒接触的本体溶液(bulksolution)。这里,所述盒包含一种微孔膜载体,其一侧已经用一种导电金属层涂布,和至少一个第一捕捉抗体层,其被固定在微孔膜载体的至少一个第一空间独特区域中的导电金属层上。参考图1,其是扩散电池设备的图解,可以看到该盒需要另外的辅助电极和/或参比电极,因此未实现小型化和现场检测(point-of-care testing)。
因此,尽管该领域中所有过去和当前的研究活动,长期以来期望一种可以避免上述缺点的新型生物传感器。
发明概述
本发明的一个目的是提供一种生物传感器,其包含微孔膜载体,其上固定生物活性物质的第一电极系统,第二电极系统和一对绝缘胶片,其中第一电极系统在微孔膜载体的表面形成并且第二电极系统在微孔膜载体的反面形成。
本发明的另一个目的是提供一种生物传感器,其包含微孔膜载体,其上固定生物活性物质的第一电极系统,第二电极系统和一对绝缘膜,一个垫板和一对带孔的盖子,其中第一电极系统在微孔膜载体的表面形成并且第二电极系统在微孔膜载体的反面形成,并且将一种酶-分析物偶联物或一种酶-抗体偶联体固定在垫板上。
附图简述
参考附图可最好的理解本发明最优实施方案的应用,附图中相同的参考号用于相同和对应的部分,其中:
图1是现有技术扩散电池设备的示意图,其中在微孔膜载体上只形成一个电极系统;
a:分析物溶液b:底物溶液
图2a为依照本发明实施方案1在整个条带上形成的基于对称微孔电极的生物传感器的分解透视图;
图2b是本发明实施方案1的生物传感器的透视图;
图2c是基于对称微孔电极的生物传感器的分解透视图,其中依照本发明实施方案1使用分别在两个绝缘基片上形成的电连接器改装生物传感器;
图2d是2c生物传感器的透视图,其中依照本发明实施方案1改装生物传感器;
图2e是基于不对称微孔电极的生物传感器的分解透视图,其中依照本发明实施方案1使用分别在两个绝缘基片上形成的电连接器改装生物传感器;
图2f是2e生物传感器的透视图,其中依照本发明实施方案1改装生物传感器;
图3是依照本发明实施方案1说明生物传感器应用实例的图解;
图4a是依照本发明实施方案2的生物传感器的分解透视图;
图4b是依照本发明实施方案2的生物传感器的透视图;
图5是说明依照本发明实施方案2将生物传感器应用于样品溶液的实例的图解;
图6a和图6b是依照本发明实施方案2装备了改良进样毛细管的生物传感器的截面图;
图7a是依照本发明实施方案3的生物传感器的分解透视图;
(关于图7b-7e我推荐使用单独的图号)
图7b-7e显示依照本发明实施方案3生物传感器的各种改装;
图8显示提及的免分离免疫测定步骤的原理和顺序的图解;
图9是本发明扩散电池设备的示意图;
图10是生物传感器的环状伏安图,该生物传感器是实施例1中基于不对称微孔电极的生物传感器,其中将铁氰化钾用作电极的氧化还原剂;
图11是实施例1生物传感器的典型校正曲线,其中将葡糖氧化酶物理固定在用于葡萄糖分析的工作电极上;
图12是实施例2生物传感器的动态响应曲线,其中将葡糖氧化酶和铁氰化钾物理固定在工作电极上;
图13是实施例3生物传感器的校正曲线,其中将葡糖氧化酶-生物素偶联物用作酶-分析物偶联物并且将抗生物素蛋白用作抗体;
图14是实施例3生物传感器的动态响应曲线和
图15是实施例4 CRP生物传感器的校正曲线;使用固定在前面微孔电极的CRP抗体,在上垫板中干燥的碱性磷酸酶-CRP偶联物和通过底板浸泡的对-氨基苯磷酸盐来获取信号。
发明详述
本发明涉及一种生物传感器,其包含微孔膜载体,第一电极系统,第二电极系统和一对绝缘膜(或一对带有电连接器的绝缘基片),其中第一电极系统在微孔膜载体的表面形成并且第二电极系统在微孔膜载体的反面形成。依照本发明的生物传感器不需要任何附加电极。
参考图2a和2b,依照本发明的生物传感器使用的电化学电池(100)包含一个微孔膜载体(101),第一电极系统(102),第二电极系统(103)。第一电极系统(102)由其上固定生物活性物质的工作电极(104),第一电极连接器(105)和第一引线出口(106)组成。第二电极系统由一个对电极(107),第二电极连接器(108)和第二引线出口组成(109)。第一电极系统和第二电极系统(102,103)通过电极连接器(105,108)经由例如鳄鱼夹或焊剂的连接被电连接。
参考图2b至2f,其中改装2a的生物传感器,按照本发明的生物传感器中使用的电化学电池(100)包含微孔膜载体(101),第一电极系统(102),和第二对称(2b)或不对称(2c)电极系统(103)。第一电极系统(102)由其上固定生物活性物质的工作电极(104),在顶部绝缘膜的下侧形成的第一电极连接器(105)和第一引线出口(106)组成。第二电极系统由一个对电极(107),底部绝缘膜的上表面形成的第二电极连接器(108)和第二引线出口(109)组成。将第一、第二引线出口(106和109)紧压与第一、第二电极连接器(105和108)连接,并且还将在顶部绝缘膜下侧形成的分段的第一连接器(105’)和在底部绝缘膜的表面形成的105紧压连接以在底部基片上以面朝上的方向安装两个连接器(105’和105)。通过将它们插入插座中连接电极连接器(105,108)电连接第一和第二电极系统(102,103)。
通常通过化学气相淀积或物理蒸气淀积喷镀导电材料或通过丝漏印刷导电材料形成第一和第二电极系统(102,103)。能够用来形成第一和第二电极系统(102,103)的导电材料的实例包括但不限于导电聚合物,碳,和导电金属如金,铂,银,铑,铱,钌,钯,锇或铜。导电材料通常形成厚度为大约150至大约1000的层。更优选地,导电层厚200-800,最优选导电层厚300-600。
可用来形成微孔膜载体(101)的材料应与经常用于将生物活性物质如酶,电子传递介质和抗体固定在电极系统上的有机溶剂相容,并且应显示足够高的拉伸强度以抵抗在操作过程中多孔结构的撕裂和/或其它扭变。可用来形成微孔膜载体(101)的材料的实例包括有机聚合物(例如尼龙,硝化纤维,聚偏二氟乙烯,聚砜,聚酯或聚碳酸酯)和无机材料如多孔陶瓷或吸附陶瓷。优选微孔尼龙网,因为它是天然亲水的而且可以以基本上不含湿润剂的形式商购。
即使在用导电层涂布膜之后,它也仍可以是微孔性的,具有约0.01微米至约10微米的通常范围内的孔径。甚至理论上更大的孔径也是可能的,其只被用于部分封闭(occlude)孔的附加导电材料的费用所限制。优选的平均孔径为约0.2μm至约0.45μm。该孔径允许具有不超过5000Da分子量的分析物以及底物通过孔。
电化学电池(100)的表面,除了工作电极(104),第一电极连接器(105),对电极(107)和第二电极连接器(108)的区域以外,都用绝缘膜(110,111)覆盖。可以用来形成绝缘膜(110,111)的材料包括但不限于聚氯乙烯(PVC)或它的共聚物如聚氯乙烯-二(2-乙基己基)癸二酸酯,聚乙烯,聚氨基甲酸酯,聚碳酸酯,聚酯等。还可通过将绝缘聚合物糊丝漏印刷在尼龙膜上,接着热处理来形成绝缘膜(110,111)。绝缘膜(110,111)应该仅限制底物通过微孔膜区域的扩散并且应该最小化生物传感器的扭变。如果微孔电极和尼龙膜的尺寸与图2c-2f中所示相同,可以将电连接分别印刷在绝缘膜上,并且可以紧压以连接电极和组装生物传感器系统。
该形式的生物传感器(2c-2f)在大规模制造方面有优势;可以分别制备印在绝缘盖上沉积金的微孔电极和连接电极并且在将生物材料固定在工作电极上后一步组装为一个整体。如果采用等离子沉积的方法,非对称的双面电极(2e和2f)可能比对称的双面电极(2c和2d)更容易制备;非对称双面电极,需要在丝漏印刷的对电极反面电极沉积一次即可,而对称的双面电极需要在破坏真空后电极沉积两次。
按照本发明的生物传感器可以迅速,简单,免分离的电化学免疫测定和选择性检测分析物。另外,该生物传感器不需要任何附加电极因此可以实现小型化,现场检测和任意使用。
如图3所示,按照本发明的生物传感器可直接应用于人体来检测各种样品,包括生物材料。待测的生物材料包括代谢物,例如葡萄糖,胆固醇,乳酸,肌酸酐,蛋白质,过氧化氢,醇,氨基酸,谷氨酸丙酮酸酯和谷氨酸草酰乙酯。例如,使用胆固醇氧化酶,乳酸氧化酶,谷氨酸氧化酶,辣根过氧化物酶或醇氧化酶可分别定量分析胆固醇,乳酸,谷氨酸,过氧化氢和乙醇。为工作电极提供的电子传送介质可使用二茂铁或它的衍生物,醌或它的衍生物,有机导电盐类或viologen。电子传送介质可固定在与酶结合的工作电极上,并且优选是一种能形成氧化还原对的混合价化合物。优选的化合物包括六胺基氯化钌(III),铁氰化钾,亚铁氰化钾,二甲基二茂铁,二茂铁,一元羧酸二茂铁,7,7,8,8-四氰基对醌二甲烷,四硫富瓦烯,二茂镍,N-methylacidinium,四硫并四苯(tetrathiatetracene),N-甲基吩嗪鎓(N-methylphenazinium),氢醌,3-二甲氨基安息香酸,3-methyl-2-benzothiozolinone hydrazone,2-甲氧基-4-烯丙基苯酚,4-氨基安替比林(4-aminoantipyrin),二甲替苯胺,4-氨基安替比林(4-aminoantipyrene),4-甲氧基萘酚,3,3,5,5-四甲基联苯胺,2,2-连氮基-二-[3-乙基苯并噻唑啉磺酸盐(酯)](2,2-azino-d-[3-ethylbenzthiazolinesulfonate],邻联(二)茴香胺,邻甲苯胺,2,4-二氯苯酚,4-氨基非那宗,联苯胺和普鲁士蓝。
按照本发明的生物传感器的另一个优选实施方案如图4a和4b所示,其中生物传感器包含:一个微孔膜载体(101);第一电极系统(102),其由一个其上固定生物活性物质的工作电极(104)组成,第一电极连接器(105)和第一引线出口组成(106);第二电极系统(103),其由一个对电极(107)组成,第二电极连接器(108)和第二引线出口组成(109);一对绝缘膜(110,111);一个吸收垫板(112);和一个多孔材料(113)制成的薄膜,通过毛细管作用分析物透过其导入。
参照图4a,4b,和5,更详细地描述生物传感器的工作原理。透过与微孔电极后的吸收垫板(112)结合的薄多孔材料(113),通过毛细管作用导入含有分析物的样品溶液(2)。在该过程中,通过尺寸和电荷排阻,极性磷脂和混合控制,可以消除干扰如人血中含有的固体粒子(血细胞比容)使得只有血浆接触到固定在工作电极(104)上的生物活性物质。在生物活性物质的催化作用下,分析物是产生容易氧化或还原种类的电化学活性种类。该氧化还原种类在电极传递或接受电子而产生与分析物浓度成比例的电信号,因此可以实现定量测量。另外,在由微孔膜载体(101),吸收垫板(112)和薄多孔材料(113)作用产生的化学势的调节下,可将样品溶液的流量调整在合适的范围。
同时,导入生物传感器内部的样品溶液以及通过酶反应产生的种类被吸收到吸收垫板(112)中,这样可以保证大约30分钟至大约20小时的连续测量。该类型的生物传感器可称为自动进样和流动生物传感器。维持样品的连续流动不需要机械组件如蠕动泵和复杂的流体通道。此外,由于可以连续测量,如图3所示,该生物传感器除了血液外还可以适用于体液。
图6a和6b显示本发明另外的实施方案。在图6a中,生物传感器另外包括第一和第二微孔膜载体(101a,101b)和粘合层(130);在图6b中,生物传感器另外包括第二微孔膜载体(101b),粘附层(130)和塑料基片(140)。
按照本发明的生物传感器还可用作通过EIA检测分析物蛋白质的免分离固相免疫传感器。
图7a显示了按照本发明生物传感器的一个优选实施方案。参照图7a,用于EIA的生物传感器包含:一个微孔膜载体(101);第一电极系统(102),其由一个其上固定生物活性物质(抗体)的工作电极组成,第一电极连接器(105)和第一引线出口(106)组成;第二电极系统(103),其由一个对电极(107)组成,第二电极连接器(108)和第二引线出口(109)组成;一对绝缘膜(110,111);一个其上吸收和干燥酶-分析物偶联物的垫板(114a);和一对分别带孔(117,118)的盖子(115,116)。
参照图7a和图8,更充分描述提及的免分离免疫测定步骤的原理和顺序。通过顶盖(115)上形成的孔(117)将含有分析物的样品溶液(例如血液)导入生物传感器。导入的溶液与吸收了预定量的酶-分析物偶联物的垫板(114a)(例如硝化纤维膜,纸和玻璃纤维)接触。然后,分析物蛋白质和溶解在溶液中的酶-分析物偶联物形成与固定在工作电极(104)上的生物活性物质(抗体)的竞争性结合。在已经形成充分结合后,通过在底盖(116)上形成的孔(118)导入对缀合酶特异的底物。该底物穿过孔,与结合的酶-分析物偶联物接触,并引发酶反应。通过该反应,将底物转化为产物,并且传递到电极的电子产生电信号。该电信号传至电极系统(102)表面并通过适当的设备检测。通过底物与未结合的酶-分析物偶联物的反应也可产生电信号。然而,未结合的酶-分析物偶联物离电极表面足够远结果酶-底物反应产生的电子不能到达电极。由此,可以省略洗涤步骤和分离步骤。
电信号与捕获的酶-分析物偶联体的量成比例,因此从校正曲线评估可以定量分析物蛋白质的量。此外,由于对电极系统(103)是在微孔膜载体(101)的反面形成,不需要另外的电极系统。因此可以实现一种小型化,免分离的固相免疫传感器。
图7b,7c,7d,和7e各自显示其它使用改进的按照本发明生物传感器的优选实施方案。如图7b和7d所示,可以加入吸附有底物的垫板(114b),其使得分析物蛋白质的检测更简单。如图7c和7d所示,可以加入过滤垫(114c),这样通过例如尺寸排阻,电荷排阻,极性磷脂和混合控制,可以预先消除干扰如人血中含有的固体粒子(血细胞比容)。此外,过滤垫(114c)上可吸收蛋白质稳定剂和/或缓冲溶液以实现改善的分析物蛋白质检测。如图7e所示,通过其加入样品溶液的孔和经由毛细管与底物槽(reservoir)连接、通过其加入底物溶液的孔可以在相同一侧形成,这样可以实现更简单的样品和底物溶液供应。通过在底部基片(116)上冲孔或模压图案可以形成连接毛细管(119)与底物槽(118’)的孔(118)。如果将底部基片(116)模压以形成连接毛细管(119)与槽(118’)的孔(118),第二底板是不必要的。
如本领域的技术人员所熟知,可以将酶-抗体偶联物而不是酶-分析物偶联物吸收于垫板中(114a)。此外,选择合适的酶-底物对也是众所周知的。例如,尿酸酶-尿酸对,肌氨酸氧化酶-肌氨酸对,胆固醇氧化酶-胆固醇对,3-磷酸甘油氧化酶-3-磷酸甘油对,丙酮酸氧化酶-丙酮酸对,硫辛酰胺脱氢酶-NADH对,过氧化氢酶-H2O2对,L-谷氨酸氧化酶-L-谷氨酸对,胆红素氧化酶-胆红素对,碱性磷酸化酶-对-氨基苯酚磷酸盐对,和葡糖氧化酶-葡萄糖对都是合适的酶-底物对(见美国专利No.5,830,680)。
也可以非干燥的形式使用依照本发明的生物传感器。
如图9所示,非干燥的生物传感器包含:一个微孔膜载体(101);其上固定抗体的第一电极系统(102);第二电极系统(103);和一对绝缘膜,其中第一电极系统(102)在微孔膜载体(101)的表面形成而第二电极系统(103)在微孔膜载体(101)的反面形成。将分析物和酶-偶联物(酶-分析物偶联物或酶-抗体偶联物)放在第一个隔室(200)中,将酶的底物放在第二个隔室(300)中。
如图9所示,因为第一电极系统(102)和第二电极系统(103)一起在微孔膜载体(101)的两个表面形成,不需要另外的电极。
本发明的生物传感器可以适用于任何能够导致抗体产生的分析物,例如,C-活性蛋白,hCG,PSA,肌氨酸磷酸激酶(同工酶MB,BB和MM),肌钙蛋白,肌红蛋白,肌球蛋白轻链,血纤蛋白原,促甲状腺激素,FSH,肝炎抗原,糖基化蛋白(glycated proteins)(如Hb A1c和果糖胺)和与各种各样的特异性病毒如马铃薯病毒相关的各种蛋白质。
所用的底物取决于使用的酶。技术人员将容易实现酶-底物对的合适选择。例如,当将葡糖氧化酶用作酶时,优选底物为葡萄糖。通过葡糖氧化酶的催化作用葡萄糖氧化为葡萄糖酸并产生H2O2。H2O2在大约+700mV的电压下(相对于Ag/AgCl)产生电信号。
另一方面,当使用碱性磷酸化酶时,优选对-氨基苯磷酸盐。对-氨基苯基磷酸盐通过碱性磷酸酶的作用产生电活性物质对-氨基苯酚,其进一步被氧化而在+190mV的外加电压下(相对于Ag/AgCl)产生最优电信号。
同时,辣根过氧化物酶利用H2O2作为底物,其中用作电子传移介质的Fe(II)氧化为Fe(III)。通过施加-100mV的还原电压可以检测由Fe(III)还原所产生的电流。
物理吸附或化学成键可以实现将生物活性物质固定在工作电极上,如酶,电极传递介质或抗体。物理吸附是通过将生物活性物质溶液滴在工作电极上,然后培养而实现的。该方法利用生物活性物质和电极形成材料之间的亲和力。化学成键利用在工作电极表面形成的活化自组装单层。通过各种方法使用活性化合物如烷基硫醇,胺和羧酸实现工作电极表面的修饰。形成生物活性物质与自组装单层的共价结合(Meyerhoff等,Mikrochim.Acta.117/195-206,1995)。
按照下列实施例可以获得本发明的更好理解,所述实施例是提出来说明本发明而不可解释为来限制本发明。
试剂
使用材料和试剂的来源如下:
葡糖氧化酶(GOx;EC 1.1.3.4,VII-S类型,245-900单位/g,来源于Aspergillus Niger;2-[N-吗啉代]乙磺酸(MES),1-乙基-3,3-二甲氨基丙基碳二亚胺(EDAC),N-羟磺基琥珀酰亚胺(NHS),铁氰化钾(K3Fe(CN)6),β-D(+)-葡萄糖,2-巯基乙胺和DL-6,8-硫辛酰胺,来源于Sigma(St.Louis,Missouri,美国);1,2-二硫戊环-3-戊酸,3-巯基丙酸,11-巯基十一酸,16-巯基十六酸(MHDA/C16),和乙酸二茂铁(Fc-COOH),来源于Aldrich(Milwaukee,Wisconsin,美国);磷酸氢二钠和磷酸二氢钠,来源于Kanto Chemical(东京,日本);Nytran中性微孔尼龙膜(孔径0.2μm),来源于Schleicher和Schuell ofKeene,New Hampshire;硝化纤维素(NC)膜来源于Whatman International(Maidstone,英国)。所有其它使用的化学药品为分析级。
在磷酸缓冲盐水(PBS,140mM NaCl)中制备样品和标准溶液。所有水溶液用去离子水制备(18MΩcm)。碱性磷酸酶(AKP),对-硝基苯磷酸盐,抗生物素蛋白(来自于鸡蛋白),生物素(维生素H)和明胶以及牛血清清蛋白(BSA)购自St.Louis,Missouri Sigma。对氨基苯磷酸盐是由对-硝基苯磷酸盐合成。制备缓冲液所用的去离子水是YamatoMillipore WQ 500(电阻:18MΩ)。
实施例1
1-1)对称双面微孔金电极的制作
将微孔尼龙膜(15×30mm2)置于直径为6mm的合适的面罩和13mm宽的输出条(outlet strip)(用于电连接目的)下面。采用物理蒸气淀积技术将膜两面都镀上金;喷镀时间300s,压力75m托,等离子体电流25-30mA,电压350-500V。这样在膜的中心形成圆盘状的金电极,外径为4mm,厚度大约为300。在中心圆盘电极周围,包括在狭窄的金引线出口上浇铸溶解在四氢呋喃(THF)中(1∶6w/v)的PVC层(33%PVC和67%二(2-乙基己基)癸二酸酯(均为w/w%))。这留下6mm的中心未触动的圆盘状金电极。电极形状如图2a所示。在另一个实施方案中,在无面罩的尼龙膜(6×6cm2)的两面都镀上金,并剪成如图2a中所示的形状。然后,将镀金的电极片放置在两个带有丝网印刷的电极连接器的绝缘膜之间,并压紧以组装为对称的双面微孔电极。
1-2)非对称双面微孔金电极的制作
使用碳糊(或任何导电糊如银/氯化银)将对电极丝网印刷在尼龙膜的一面,所述对电极是模仿工作电极的轮廓线而内部中空。在膜的反面,用实施例1-1中描述的物理沉积方法形成金电极。将电极剪成图2e中所示的形状,并挤压于两个带有丝网印刷的电极连接器的绝缘膜之间。使用环状伏安图(扫描速率:60mV/min)在含Fe(III)/Fe(II)的缓冲液中检验非对称双面微孔电极的电化学特性;如图10所示,电极提供可逆响应而在沉积金和丝网印刷的碳之间并未出现短路。
1-3)生物活性物质的固定
用MES缓冲液漂洗电极并立刻置于搅拌的10μl含有10mg/ml GOx和140mM NaCl,pH值为7.4的磷酸盐缓冲液中一小时,使得Gox物理吸附于金电极表面,其后用磷酸盐缓冲液漂洗它们。
1-4)葡萄糖传感器的制造
图4a和4b中所示的自动进样和流动的葡萄糖传感器是通过把微孔金带状(strip)电极夹入多孔的硝化纤维(NC)带和作为吸收垫板的玻璃纤维中间制成的。
1-5)葡萄糖传感器的分析性能
为了检测葡萄糖传感器的分析性能,使用标准葡萄糖溶液,通过一种测量电流技术测量对葡萄糖的稳态响应。图11显示在0.8V电压下生物传感器的典型校正曲线,其表明葡萄糖传感器能够对葡萄糖响应大约30分钟。在0mg/dL至200mg/dL葡萄糖范围内观测到线性响应。斜率为2.60×10-3nA/(mg/dL)并且相关系数为0.988。从这些结果,证实使用本发明的生物传感器可以连续自动进样及检测。
实施例2
2-1)金电极的制造
以与实施例1-1中描述相同的方法获得金电极。
2-2)生物活性物质的固定
用MES缓冲液漂洗电极并立刻置于搅拌的10μl含有10mg/ml Gox,200mM铁氰化钾和140mM NaCl,pH值为7.4的磷酸盐缓冲液中一小时,其后用磷酸盐缓冲液漂洗它们。
2-3)葡萄糖传感器的制造
自动进样和流动的葡萄糖传感器是通过把微孔金带电极夹入多孔的NC带和作为吸收垫板的玻璃纤维中间制成的。
2-4)葡萄糖传感器的分析性能
为了检验葡萄糖传感器的分析性能,通过测量电流技术测量对葡萄糖的稳态响应。图12显示在0.38V电压下生物传感器的动态响应,其表明葡萄糖传感器能够对每种葡萄糖溶液(50mg/dL,100mg/dL和200mg/dL)响应一个小时。图12显示葡萄糖分析的典型动态响应曲线。在0mg/dL至200mg/dL葡萄糖范围内观测到线性响应。斜率为85.8nA/(mg/dL)并且相关系数为0.998。这些结果显示即使在0.38V的低电压下也可获得对葡萄糖更敏感的响应。从这些结果,证实使用本发明的生物传感器可以连续自动进样及检测。
实施例3
制备如图7a所说明的免分离,固相免疫传感器。
3-1)金电极的制造
以与实施例1-1中描述相同的方法获得金电极。
3-2)生物传感器的制造
用MES缓冲液漂洗电极。将10μl含有0.05mg/ml抗生物素蛋白和0.05M碳酸钠,pH值为9.6的磷酸盐缓冲液滴至工作电极上。然后,将电极4℃温育16小时。使用其上吸附50μl葡糖氧化酶-生物素偶联物(2.5μg/ml)的玻璃纤维膜(Whatman International of Maidstone,英国)作为垫板(114a)。
3-3)校正
使用从实施例3-2获得的免疫传感器进行校正:将标准生物素溶液稀释到10-5M至10-14M的浓度。通过顶盖(115)上形成的孔(117)将每种标准溶液加至免疫传感器。在+800mV的外加电压下实现抗生物素蛋白与生物素或酶偶联物之间稳定的竞争性结合。然后,通过底盖(116)上形成的孔(118)加入底物(葡萄糖)。可以检测通过酶反应产生的电流。图13显示电流变化依赖于生物素浓度的校正曲线。在10-7M(1.0μA)至10-10M(0.5μA)生物素之间发现有显著的信号差异。
3-4)信号变化的测量
使用从实施例3-2中获得的免疫传感器获得动态响应曲线:分别将10-12M生物素缓冲液和10-4M不含生物素的缓冲液加入免疫传感器。传感器达到稳定后,通过孔(118)将10μl的葡萄糖溶液加至传感器的后部。通过测量电流技术测量免疫传感器的动态响应,其结果见图14。
图14显示对于10-12M生物素缓冲液的电流变化为1μA,对于10-4M生物素缓冲液的电流变化为0.4μA。对于不含生物素的缓冲溶液的电流变化为大约0.05μA。从这些结果,证实为了检测合适的抗原-抗体反应可以改进该模式免疫传感器。
实施例4
以如图7e所示的形式制备一种免分离的固相C-活性蛋白(CRP)免疫传感器,并且与如在实施例3-1和3-2中描述相似的生物材料固定方法;通过物理吸附将抗-CRP(0.0125mg/mL)固定在金电极上,将碱性磷酸酶(ALP)而不是实施例3-1中的葡糖氧化酶-生物素用作与CRP连接酶(ALP-CRP;0.2mg/mL),并且使用对-氨基苯磷酸盐(5mg/mL)而不是实施例3-2中的葡萄糖。通过将已知量的CRP溶解于再生血清(reconstituted serum)中制备标准CRP溶液并加入到如图7e所示生物传感器的孔(117)中。将底物对-氨基苯酚加至孔118,其通过毛细管119扩散至槽118’,并且通过电极系统100(图7e)的微孔扩散而产生电化学信号。在+150mV的外加电压下通过测量电流技术测量免疫传感器的电流响应,其结果总结在图15中。
如图15所示,对于10-6mg/mL CRP/血清溶液的电流变化为0.75μA,并且对于10-4mg/mL CRP/血清溶液的电流变化为0.6μA。从这些结果,证实该免疫传感器可以有效用于高敏感检测CRP。

Claims (20)

1.一种生物传感器,其包含:
一种微孔膜载体;
第一电极系统,其由其上固定生物活性物质的工作电极,第一电极连接器和第一引线出口组成;
第二电极系统,其由对电极,第二电极连接器和第二引线出口组成;和
一对绝缘膜,其覆盖除了所述工作电极,第一电极连接器,对电极和第二电极连接器区域以外的所述第一和第二电极系统的表面,
其中,所述第一电极系统在所述微孔膜载体的表面形成并且所述第二电极系统在所述微孔膜载体的反面形成。
2.如权利要求1中阐明的生物传感器,其中所述第一和第二电极系统是由导电材料对称制成。
3.如权利要求1中阐明的生物传感器,其中所述第一和第二电极系统是由导电材料不对称制成。
4.如权利要求1中阐明的生物传感器,其中所述第一和第二引线出口和连接器分开在所述绝缘膜上安装。
5.如权利要求2中阐明的生物传感器,其中所述第一和第二绝缘膜包括分开形成的电连接器,并且其中将所述对称或不对称双面电极插入所述绝缘膜之间并与绝缘膜的所述连接器连接。
6.如权利要求2中阐明的生物传感器,其中所述导电材料选自金,铂,银,氯化银,铑,铱,钌,钯,锇,碳,铜及其混合物。
7.如权利要求1中阐明的生物传感器,所述微孔膜载体是由选自有机聚合物,无机聚合物,天然织物或合成纤维,纸和陶瓷中的一员制成。
8.如权利要求1中阐明的生物传感器,其中所述微孔膜载体是微孔尼龙网。
9.如权利要求1中阐明的生物传感器,其另外包含由多孔材料制成的薄膜和一种去除导入样品的吸收垫板,待测样品通过所述薄膜被导入所述生物传感器。
10.如权利要求1中阐明的生物传感器,其中所述生物活性物质是一种酶。
11.如权利要求10中阐明的生物传感器,其中所述酶选自葡糖氧化酶,葡糖脱氢酶,乳酸氧化酶,胆固醇氧化酶,谷氨酸氧化酶,辣根过氧化物酶,醇氧化酶,谷氨酸丙酮酸转氨酶和谷氨酸草酰乙酸转氨酶。
12.如权利要求10中阐明的生物传感器,其中所述生物活性物质是酶与电子传递介质的组合。
13.如权利要求12中阐明的生物传感器,其中所述电子传递介质选自六胺基氯化钌(III),铁氰化钾,亚铁氰化钾,二甲基二茂铁,二茂铁,一元羧酸二茂铁,7,7,8,8-四氰基对醌二甲烷,四硫富瓦烯,二茂镍,N-methylacidinium,四硫并四苯,N-甲基吩嗪鎓,氢醌,3-二甲氨基安息香酸,3-methyl-2-benzothjozolinone hydrazone,2-甲氧基-4-烯丙基苯酚,4-氨基安替比林,二甲替苯胺,4-氨基安替比林,4-甲氧基萘酚,3,3,5,5-四甲基联苯胺,2,2-连氮基-二-[3-乙基苯并噻唑啉磺酸盐(酯)],邻联(二)茴香胺,邻甲苯胺,2,4-二氯苯酚,4-氨基非那宗,联苯胺和普鲁士蓝。
14.如权利要求1中所阐述的生物传感器,其另外包含:
在所述工作电极顶部包含酶-分析物偶联物或酶-抗体偶联物(含有或不含有蛋白质稳定剂和缓冲盐)的垫板;
在所述对电极下空白或含有所述底物(具有或不具有蛋白质稳定剂和缓冲盐)的垫板;和
在所述垫板顶部带孔的一对盖子。
15.如权利要求2中所阐述的生物传感器,其另外包含:
在所述工作电极顶部包含酶-分析物偶联物或酶-抗体偶联物(含有或不含有蛋白质稳定剂和缓冲盐)的垫板;
在所述对电极下空白或含有所述底物(含有或不含有蛋白质稳定剂和缓冲盐)的垫板;和
在所述垫板顶部带孔的一对盖子。
16.如权利要求2中所阐述的生物传感器,其另外包含:
在所述工作电极顶部包含酶-分析物偶联物或酶-抗体偶联物(含有或不含有蛋白质稳定剂和缓冲盐)的垫板;
在所述对电极下空白或含有所述底物(含有或不含有蛋白质稳定剂和缓冲盐)的垫板;和
在所述含生物材料的垫板顶部带孔的上盖和带有底物导入孔的下盖和通过所述对电极下的毛细管连接的储槽。
17.如权利要求14中阐明的生物传感器,其中所述生物活性物质是对所选抗原特异的抗体。
18.如权利要求14中阐明的生物传感器,缀合酶选自任何还原酶或氧化酶。
19.如权利要求10中阐明的生物传感器,其中将所述生物活性物质物理或化学固定在所述工作电极上。
20.如权利要求1中阐明的生物传感器,其另外包含:
第一隔室,其中放置酶-分析物偶联物或酶-抗体偶联物和分析物;和
第二隔室,其中放置所述酶的底物;
其中将所述微孔膜放置于所述第一和第二隔室间,所述膜上形成第一和第二电极。
CNB028109554A 2001-05-30 2002-05-30 生物传感器 Expired - Fee Related CN100405051C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR30169/2001 2001-05-30
KR10-2001-0030169A KR100427599B1 (ko) 2001-05-30 2001-05-30 대면형 다공성 전극을 포함하는 자가 시료채취 흐름계형바이오 센서
KR45720/2001 2001-07-28
KR10-2001-0045720A KR100455907B1 (ko) 2001-07-28 2001-07-28 대면형 다공성 전극을 이용한 비분리형 효소-면역센서

Publications (2)

Publication Number Publication Date
CN1531650A true CN1531650A (zh) 2004-09-22
CN100405051C CN100405051C (zh) 2008-07-23

Family

ID=26639109

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028109554A Expired - Fee Related CN100405051C (zh) 2001-05-30 2002-05-30 生物传感器

Country Status (7)

Country Link
US (1) US7455756B2 (zh)
EP (1) EP1390733B1 (zh)
JP (1) JP4057521B2 (zh)
CN (1) CN100405051C (zh)
AT (1) ATE468531T1 (zh)
DE (1) DE60236429D1 (zh)
WO (1) WO2002097416A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101454667B (zh) * 2005-12-27 2013-04-24 拜尔保健有限公司 使用带有至少一个孔的基板的电化学传感器系统及其制造方法
CN103828112A (zh) * 2011-09-23 2014-05-28 浦项工科大学校产学协力团 包括含有有机金属的自组装性高分子聚合物的电极及其制备方法
CN101842698B (zh) * 2007-10-31 2016-06-15 爱科来株式会社 分析工具
CN107122820A (zh) * 2008-09-25 2017-09-01 通用电气公司 具有基于间隙的传感装置的传感器和制作与使用其的方法
CN109073642A (zh) * 2015-09-17 2018-12-21 格哈德·马勒 用于生物感测和其它应用的传感器设备
CN109310355A (zh) * 2016-06-30 2019-02-05 拓自达电线株式会社 电极材料
CN110146562A (zh) * 2018-12-17 2019-08-20 浙江大学山东工业技术研究院 一种基于普鲁士蓝的无酶尿酸传感器及其制备方法
CN110312818A (zh) * 2016-11-21 2019-10-08 美题隆公司 用于生物传感器的钌合金
CN111278360A (zh) * 2017-11-08 2020-06-12 豪夫迈·罗氏有限公司 用于检测体液中的分析物的传感器以及制造传感器的方法
CN111351781A (zh) * 2018-12-20 2020-06-30 麦德龙生物株式会社 电化学发光分析装置和使用其分析样品的方法
CN112057084A (zh) * 2020-09-07 2020-12-11 浙江大学 基于柔性塑料基片的双面丝网印刷电极及其方法
CN114431560A (zh) * 2021-12-30 2022-05-06 广州市赛特检测有限公司 一种新冠病毒快速检测口罩及生物探针修饰方法
CN114441613A (zh) * 2021-12-30 2022-05-06 广州市赛特检测有限公司 一种生物靶标物质的电阻抗传感器、检测方法及用途
US11490846B2 (en) 2016-06-30 2022-11-08 Tatsuta Electric Wire & Cable Co., Ltd. Bioelectrode and method for producing bioelectrode

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455907B1 (ko) * 2001-07-28 2004-11-12 주식회사 아이센스 대면형 다공성 전극을 이용한 비분리형 효소-면역센서
US7813780B2 (en) 2005-12-13 2010-10-12 Medtronic Minimed, Inc. Biosensors and methods for making and using them
KR100936586B1 (ko) 2002-09-19 2010-01-13 엘지전자 주식회사 멀티미디어 방송 및 멀티캐스트 서비스에서의 데이터 전송 방법 및 시스템
US20040133079A1 (en) * 2003-01-02 2004-07-08 Mazar Scott Thomas System and method for predicting patient health within a patient management system
US7723099B2 (en) * 2003-09-10 2010-05-25 Abbott Point Of Care Inc. Immunoassay device with immuno-reference electrode
DE102004031370B4 (de) * 2004-06-29 2022-03-24 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Emulation einer Gegenelektrode in einem monolithisch integrierten elektrochemischen Analysesystem
US8309057B2 (en) * 2005-06-10 2012-11-13 The Invention Science Fund I, Llc Methods for elevating neurotrophic agents
DE112006003813T5 (de) * 2006-03-20 2009-01-22 Inverness Medical Switzerland Gmbh Wasserlösliche Konjugate zur elektrochemischen Detektion
US8338183B2 (en) 2006-07-29 2012-12-25 I-Sens, Inc. Electrochemical determination system of glycated proteins
JP2008073736A (ja) * 2006-09-22 2008-04-03 Toray Ind Inc レーザー加工方法、およびバイオセンサ用電極の製造方法
ITFI20060322A1 (it) * 2006-12-13 2008-06-14 Menarini Farma Ind Processo per la preparazione di elettrodi modificati, elettrodi preparati con tale processo, e biosensori enzimatici che li comprendono.
JP4283880B2 (ja) * 2007-07-20 2009-06-24 パナソニック株式会社 電気化学測定用電極板、およびこの電極板を有する電気化学測定装置、ならびにこの電極板を用いて目的物質を定量する方法
US8679772B2 (en) * 2008-06-06 2014-03-25 Agency For Science, Technology And Research Immunoassay
US8101065B2 (en) * 2009-12-30 2012-01-24 Lifescan, Inc. Systems, devices, and methods for improving accuracy of biosensors using fill time
US8877034B2 (en) 2009-12-30 2014-11-04 Lifescan, Inc. Systems, devices, and methods for measuring whole blood hematocrit based on initial fill velocity
JP6046115B2 (ja) * 2011-04-18 2016-12-14 ノビオセンス ビー.ブイ. バイオセンサー
US8956518B2 (en) 2011-04-20 2015-02-17 Lifescan, Inc. Electrochemical sensors with carrier field
EP2972333B1 (en) 2013-03-11 2018-09-19 The University of Toledo A biosensor device to target analytes in situ, in vivo, and/or in real time, and methods of making and using the same
US9485873B2 (en) * 2013-03-15 2016-11-01 Lawrence Livermore National Security, Llc Depositing bulk or micro-scale electrodes
WO2015061250A2 (en) * 2013-10-21 2015-04-30 Daniels Rodney C Nanoporous bioelectrochemical sensors for measuring redox potential in biological samples
KR102302876B1 (ko) * 2014-06-23 2021-09-17 삼성전자주식회사 생체 전극 및 이를 이용한 생체 신호 처리 장치 및 방법
WO2016121952A1 (ja) * 2015-01-29 2016-08-04 アラム株式会社 液体センサ
DE102015005781A1 (de) 2015-05-08 2016-11-10 Forschungszentrum Jülich GmbH Verfahren zur Herstellung einer Vorrichtung zum elektrochemischen Nachweis von Molekülen mittels Redox-Cycling, sowie Vorrichtung hierzu und deren Verwendung
US9855000B2 (en) 2015-05-18 2018-01-02 Milo Sensors, Inc. Transdermal analyte sensing device
JP6576170B2 (ja) * 2015-09-02 2019-09-18 旭化成ファーマ株式会社 くし型電極を用いた糖化タンパク質の測定方法
GB201520660D0 (en) 2015-11-23 2016-01-06 Inside Biometrics Ltd Electrochemical test device
EP3540419A1 (en) * 2018-03-12 2019-09-18 Consejo Superior De Investigaciones Científicas (CSIC) A device and a method for sensing the conductivity of a fluid
KR102094837B1 (ko) * 2018-09-27 2020-03-30 주식회사 아이센스 연속 혈당 측정용 센서 부재
CN113484385A (zh) * 2021-03-11 2021-10-08 桂林理工大学 一种基于MXene材料固定胆固醇氧化酶的生物传感器及其检测方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063081A (en) * 1988-11-14 1991-11-05 I-Stat Corporation Method of manufacturing a plurality of uniform microfabricated sensing devices having an immobilized ligand receptor
AUPM506894A0 (en) * 1994-04-14 1994-05-05 Memtec Limited Novel electrochemical cells
AU2365895A (en) * 1994-04-26 1995-11-16 Regents Of The University Of Michigan, The Unitary sandwich enzyme immunoassay cassette, device and method of use
EP0690306A1 (en) * 1994-06-28 1996-01-03 Mochida Pharmaceutical Co., Ltd. Method and device for specific binding assay
US6153069A (en) * 1995-02-09 2000-11-28 Tall Oak Ventures Apparatus for amperometric Diagnostic analysis
JP3548919B2 (ja) * 1995-07-07 2004-08-04 カシオ計算機株式会社 バイオセンサ
JPH09101280A (ja) * 1995-10-05 1997-04-15 Casio Comput Co Ltd バイオセンサ
JP3460183B2 (ja) * 1996-12-24 2003-10-27 松下電器産業株式会社 バイオセンサ
AUPO581397A0 (en) * 1997-03-21 1997-04-17 Memtec America Corporation Sensor connection means
US6033866A (en) * 1997-12-08 2000-03-07 Biomedix, Inc. Highly sensitive amperometric bi-mediator-based glucose biosensor
KR100349000B1 (ko) * 1998-07-09 2003-03-26 주식회사 아이센스 친수성폴리우레탄을사용한바이오센서의제조방법
US6338790B1 (en) * 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6696240B1 (en) * 1999-10-26 2004-02-24 Micronix, Inc. Capillary test strip to separate particulates

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101454667B (zh) * 2005-12-27 2013-04-24 拜尔保健有限公司 使用带有至少一个孔的基板的电化学传感器系统及其制造方法
US9668683B2 (en) 2005-12-27 2017-06-06 Ascensia Diabetes Care Holdings Ag Electrochemical sensor system using a substrate with at least one aperture and method of making the same
US10010279B2 (en) 2005-12-27 2018-07-03 Ascensia Diabetes Care Holdings Ag Method of determining an analyte concentration of a fluid
CN101842698B (zh) * 2007-10-31 2016-06-15 爱科来株式会社 分析工具
CN107122820A (zh) * 2008-09-25 2017-09-01 通用电气公司 具有基于间隙的传感装置的传感器和制作与使用其的方法
CN103828112A (zh) * 2011-09-23 2014-05-28 浦项工科大学校产学协力团 包括含有有机金属的自组装性高分子聚合物的电极及其制备方法
CN109073642A (zh) * 2015-09-17 2018-12-21 格哈德·马勒 用于生物感测和其它应用的传感器设备
US11313787B2 (en) 2015-09-17 2022-04-26 Zyvex Labs, Llc Sensor device for biosensing and other applications
CN109310355A (zh) * 2016-06-30 2019-02-05 拓自达电线株式会社 电极材料
CN109310355B (zh) * 2016-06-30 2022-03-22 拓自达电线株式会社 电极材料
US11490846B2 (en) 2016-06-30 2022-11-08 Tatsuta Electric Wire & Cable Co., Ltd. Bioelectrode and method for producing bioelectrode
CN110312818B (zh) * 2016-11-21 2023-01-13 美题隆公司 用于生物传感器的钌合金
CN110312818A (zh) * 2016-11-21 2019-10-08 美题隆公司 用于生物传感器的钌合金
CN111278360A (zh) * 2017-11-08 2020-06-12 豪夫迈·罗氏有限公司 用于检测体液中的分析物的传感器以及制造传感器的方法
CN110146562A (zh) * 2018-12-17 2019-08-20 浙江大学山东工业技术研究院 一种基于普鲁士蓝的无酶尿酸传感器及其制备方法
CN111351781A (zh) * 2018-12-20 2020-06-30 麦德龙生物株式会社 电化学发光分析装置和使用其分析样品的方法
CN111351781B (zh) * 2018-12-20 2023-11-24 麦德龙生物株式会社 电化学发光分析装置和使用其分析样品的方法
CN112057084A (zh) * 2020-09-07 2020-12-11 浙江大学 基于柔性塑料基片的双面丝网印刷电极及其方法
CN114431560A (zh) * 2021-12-30 2022-05-06 广州市赛特检测有限公司 一种新冠病毒快速检测口罩及生物探针修饰方法
CN114441613A (zh) * 2021-12-30 2022-05-06 广州市赛特检测有限公司 一种生物靶标物质的电阻抗传感器、检测方法及用途

Also Published As

Publication number Publication date
WO2002097416A1 (en) 2002-12-05
EP1390733A1 (en) 2004-02-25
US7455756B2 (en) 2008-11-25
EP1390733A4 (en) 2007-10-31
US20040140209A1 (en) 2004-07-22
ATE468531T1 (de) 2010-06-15
JP4057521B2 (ja) 2008-03-05
JP2004527769A (ja) 2004-09-09
CN100405051C (zh) 2008-07-23
EP1390733B1 (en) 2010-05-19
DE60236429D1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
CN100405051C (zh) 生物传感器
Zhang et al. Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals
Stradiotto et al. Electrochemical sensors: A powerful tool in analytical chemistry
CN1188697C (zh) 带多孔色层分离谱膜片的生物传感器
CN1180250C (zh) 电化学生物传感器测试带、制造方法和电化学生物传感器
CN1781022A (zh) 用于进行现场测试的膜条生物传感器系统
KR101471932B1 (ko) 스크린 프린팅을 이용한 다중 진단 멤브레인 센서의 제조방법
US7658825B2 (en) Measuring device and measuring method for detecting analytes
TW200420883A (en) Flow-through assay devices
KR880701290A (ko) 고정된 효소전극
Ramírez et al. The evolution and developments of immunosensors for health and environmental monitoring: Problems and perspectives
Feng et al. Recent advances of carbon nanotubes‐based electrochemical immunosensors for the detection of protein cancer biomarkers
Pandey et al. Nanoporous gold as a solid support for protein immobilization and development of an electrochemical immunoassay for prostate specific antigen and carcinoembryonic antigen
Cheng et al. Integrated electrochemical lateral flow immunoassays (eLFIAs): recent advances
US20070202561A1 (en) Electronic Detection Immunoassays that Utilize a Binder Support Medium
JP2009002939A (ja) アンペロメトリック型バイオセンサ
CN101430336B (zh) 利用电化学检测血红素或血比容的方法及检测试片
CN1228635C (zh) 一种生物传感器及运用该传感器的量化检测方法
JP5311406B2 (ja) 免疫センサ
Li et al. Development and modeling of an ultrasensitive label-free electrochemical immunosensor for okadaic acid based on polythionine-modified three-dimensional gold nanoelectrode ensembles
JP2010156605A (ja) 電気的分析方法
Rajaram et al. The design and fabrication of disposable sensors: an overview
JP2007212215A (ja) 多孔質担体、及び多孔質担体製造方法
Ruecha et al. (Bio) chemical sensors based on paper
Choi et al. Biosensor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080723

Termination date: 20130530